1 /* 2 * coupled.c - helper functions to enter the same idle state on multiple cpus 3 * 4 * Copyright (c) 2011 Google, Inc. 5 * 6 * Author: Colin Cross <ccross@android.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, but WITHOUT 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 16 * more details. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/cpu.h> 21 #include <linux/cpuidle.h> 22 #include <linux/mutex.h> 23 #include <linux/sched.h> 24 #include <linux/slab.h> 25 #include <linux/spinlock.h> 26 27 #include "cpuidle.h" 28 29 /** 30 * DOC: Coupled cpuidle states 31 * 32 * On some ARM SMP SoCs (OMAP4460, Tegra 2, and probably more), the 33 * cpus cannot be independently powered down, either due to 34 * sequencing restrictions (on Tegra 2, cpu 0 must be the last to 35 * power down), or due to HW bugs (on OMAP4460, a cpu powering up 36 * will corrupt the gic state unless the other cpu runs a work 37 * around). Each cpu has a power state that it can enter without 38 * coordinating with the other cpu (usually Wait For Interrupt, or 39 * WFI), and one or more "coupled" power states that affect blocks 40 * shared between the cpus (L2 cache, interrupt controller, and 41 * sometimes the whole SoC). Entering a coupled power state must 42 * be tightly controlled on both cpus. 43 * 44 * This file implements a solution, where each cpu will wait in the 45 * WFI state until all cpus are ready to enter a coupled state, at 46 * which point the coupled state function will be called on all 47 * cpus at approximately the same time. 48 * 49 * Once all cpus are ready to enter idle, they are woken by an smp 50 * cross call. At this point, there is a chance that one of the 51 * cpus will find work to do, and choose not to enter idle. A 52 * final pass is needed to guarantee that all cpus will call the 53 * power state enter function at the same time. During this pass, 54 * each cpu will increment the ready counter, and continue once the 55 * ready counter matches the number of online coupled cpus. If any 56 * cpu exits idle, the other cpus will decrement their counter and 57 * retry. 58 * 59 * requested_state stores the deepest coupled idle state each cpu 60 * is ready for. It is assumed that the states are indexed from 61 * shallowest (highest power, lowest exit latency) to deepest 62 * (lowest power, highest exit latency). The requested_state 63 * variable is not locked. It is only written from the cpu that 64 * it stores (or by the on/offlining cpu if that cpu is offline), 65 * and only read after all the cpus are ready for the coupled idle 66 * state are are no longer updating it. 67 * 68 * Three atomic counters are used. alive_count tracks the number 69 * of cpus in the coupled set that are currently or soon will be 70 * online. waiting_count tracks the number of cpus that are in 71 * the waiting loop, in the ready loop, or in the coupled idle state. 72 * ready_count tracks the number of cpus that are in the ready loop 73 * or in the coupled idle state. 74 * 75 * To use coupled cpuidle states, a cpuidle driver must: 76 * 77 * Set struct cpuidle_device.coupled_cpus to the mask of all 78 * coupled cpus, usually the same as cpu_possible_mask if all cpus 79 * are part of the same cluster. The coupled_cpus mask must be 80 * set in the struct cpuidle_device for each cpu. 81 * 82 * Set struct cpuidle_device.safe_state to a state that is not a 83 * coupled state. This is usually WFI. 84 * 85 * Set CPUIDLE_FLAG_COUPLED in struct cpuidle_state.flags for each 86 * state that affects multiple cpus. 87 * 88 * Provide a struct cpuidle_state.enter function for each state 89 * that affects multiple cpus. This function is guaranteed to be 90 * called on all cpus at approximately the same time. The driver 91 * should ensure that the cpus all abort together if any cpu tries 92 * to abort once the function is called. The function should return 93 * with interrupts still disabled. 94 */ 95 96 /** 97 * struct cpuidle_coupled - data for set of cpus that share a coupled idle state 98 * @coupled_cpus: mask of cpus that are part of the coupled set 99 * @requested_state: array of requested states for cpus in the coupled set 100 * @ready_waiting_counts: combined count of cpus in ready or waiting loops 101 * @online_count: count of cpus that are online 102 * @refcnt: reference count of cpuidle devices that are using this struct 103 * @prevent: flag to prevent coupled idle while a cpu is hotplugging 104 */ 105 struct cpuidle_coupled { 106 cpumask_t coupled_cpus; 107 int requested_state[NR_CPUS]; 108 atomic_t ready_waiting_counts; 109 atomic_t abort_barrier; 110 int online_count; 111 int refcnt; 112 int prevent; 113 }; 114 115 #define WAITING_BITS 16 116 #define MAX_WAITING_CPUS (1 << WAITING_BITS) 117 #define WAITING_MASK (MAX_WAITING_CPUS - 1) 118 #define READY_MASK (~WAITING_MASK) 119 120 #define CPUIDLE_COUPLED_NOT_IDLE (-1) 121 122 static DEFINE_PER_CPU(struct call_single_data, cpuidle_coupled_poke_cb); 123 124 /* 125 * The cpuidle_coupled_poke_pending mask is used to avoid calling 126 * __smp_call_function_single with the per cpu call_single_data struct already 127 * in use. This prevents a deadlock where two cpus are waiting for each others 128 * call_single_data struct to be available 129 */ 130 static cpumask_t cpuidle_coupled_poke_pending; 131 132 /* 133 * The cpuidle_coupled_poked mask is used to ensure that each cpu has been poked 134 * once to minimize entering the ready loop with a poke pending, which would 135 * require aborting and retrying. 136 */ 137 static cpumask_t cpuidle_coupled_poked; 138 139 /** 140 * cpuidle_coupled_parallel_barrier - synchronize all online coupled cpus 141 * @dev: cpuidle_device of the calling cpu 142 * @a: atomic variable to hold the barrier 143 * 144 * No caller to this function will return from this function until all online 145 * cpus in the same coupled group have called this function. Once any caller 146 * has returned from this function, the barrier is immediately available for 147 * reuse. 148 * 149 * The atomic variable must be initialized to 0 before any cpu calls 150 * this function, will be reset to 0 before any cpu returns from this function. 151 * 152 * Must only be called from within a coupled idle state handler 153 * (state.enter when state.flags has CPUIDLE_FLAG_COUPLED set). 154 * 155 * Provides full smp barrier semantics before and after calling. 156 */ 157 void cpuidle_coupled_parallel_barrier(struct cpuidle_device *dev, atomic_t *a) 158 { 159 int n = dev->coupled->online_count; 160 161 smp_mb__before_atomic(); 162 atomic_inc(a); 163 164 while (atomic_read(a) < n) 165 cpu_relax(); 166 167 if (atomic_inc_return(a) == n * 2) { 168 atomic_set(a, 0); 169 return; 170 } 171 172 while (atomic_read(a) > n) 173 cpu_relax(); 174 } 175 176 /** 177 * cpuidle_state_is_coupled - check if a state is part of a coupled set 178 * @drv: struct cpuidle_driver for the platform 179 * @state: index of the target state in drv->states 180 * 181 * Returns true if the target state is coupled with cpus besides this one 182 */ 183 bool cpuidle_state_is_coupled(struct cpuidle_driver *drv, int state) 184 { 185 return drv->states[state].flags & CPUIDLE_FLAG_COUPLED; 186 } 187 188 /** 189 * cpuidle_coupled_state_verify - check if the coupled states are correctly set. 190 * @drv: struct cpuidle_driver for the platform 191 * 192 * Returns 0 for valid state values, a negative error code otherwise: 193 * * -EINVAL if any coupled state(safe_state_index) is wrongly set. 194 */ 195 int cpuidle_coupled_state_verify(struct cpuidle_driver *drv) 196 { 197 int i; 198 199 for (i = drv->state_count - 1; i >= 0; i--) { 200 if (cpuidle_state_is_coupled(drv, i) && 201 (drv->safe_state_index == i || 202 drv->safe_state_index < 0 || 203 drv->safe_state_index >= drv->state_count)) 204 return -EINVAL; 205 } 206 207 return 0; 208 } 209 210 /** 211 * cpuidle_coupled_set_ready - mark a cpu as ready 212 * @coupled: the struct coupled that contains the current cpu 213 */ 214 static inline void cpuidle_coupled_set_ready(struct cpuidle_coupled *coupled) 215 { 216 atomic_add(MAX_WAITING_CPUS, &coupled->ready_waiting_counts); 217 } 218 219 /** 220 * cpuidle_coupled_set_not_ready - mark a cpu as not ready 221 * @coupled: the struct coupled that contains the current cpu 222 * 223 * Decrements the ready counter, unless the ready (and thus the waiting) counter 224 * is equal to the number of online cpus. Prevents a race where one cpu 225 * decrements the waiting counter and then re-increments it just before another 226 * cpu has decremented its ready counter, leading to the ready counter going 227 * down from the number of online cpus without going through the coupled idle 228 * state. 229 * 230 * Returns 0 if the counter was decremented successfully, -EINVAL if the ready 231 * counter was equal to the number of online cpus. 232 */ 233 static 234 inline int cpuidle_coupled_set_not_ready(struct cpuidle_coupled *coupled) 235 { 236 int all; 237 int ret; 238 239 all = coupled->online_count | (coupled->online_count << WAITING_BITS); 240 ret = atomic_add_unless(&coupled->ready_waiting_counts, 241 -MAX_WAITING_CPUS, all); 242 243 return ret ? 0 : -EINVAL; 244 } 245 246 /** 247 * cpuidle_coupled_no_cpus_ready - check if no cpus in a coupled set are ready 248 * @coupled: the struct coupled that contains the current cpu 249 * 250 * Returns true if all of the cpus in a coupled set are out of the ready loop. 251 */ 252 static inline int cpuidle_coupled_no_cpus_ready(struct cpuidle_coupled *coupled) 253 { 254 int r = atomic_read(&coupled->ready_waiting_counts) >> WAITING_BITS; 255 return r == 0; 256 } 257 258 /** 259 * cpuidle_coupled_cpus_ready - check if all cpus in a coupled set are ready 260 * @coupled: the struct coupled that contains the current cpu 261 * 262 * Returns true if all cpus coupled to this target state are in the ready loop 263 */ 264 static inline bool cpuidle_coupled_cpus_ready(struct cpuidle_coupled *coupled) 265 { 266 int r = atomic_read(&coupled->ready_waiting_counts) >> WAITING_BITS; 267 return r == coupled->online_count; 268 } 269 270 /** 271 * cpuidle_coupled_cpus_waiting - check if all cpus in a coupled set are waiting 272 * @coupled: the struct coupled that contains the current cpu 273 * 274 * Returns true if all cpus coupled to this target state are in the wait loop 275 */ 276 static inline bool cpuidle_coupled_cpus_waiting(struct cpuidle_coupled *coupled) 277 { 278 int w = atomic_read(&coupled->ready_waiting_counts) & WAITING_MASK; 279 return w == coupled->online_count; 280 } 281 282 /** 283 * cpuidle_coupled_no_cpus_waiting - check if no cpus in coupled set are waiting 284 * @coupled: the struct coupled that contains the current cpu 285 * 286 * Returns true if all of the cpus in a coupled set are out of the waiting loop. 287 */ 288 static inline int cpuidle_coupled_no_cpus_waiting(struct cpuidle_coupled *coupled) 289 { 290 int w = atomic_read(&coupled->ready_waiting_counts) & WAITING_MASK; 291 return w == 0; 292 } 293 294 /** 295 * cpuidle_coupled_get_state - determine the deepest idle state 296 * @dev: struct cpuidle_device for this cpu 297 * @coupled: the struct coupled that contains the current cpu 298 * 299 * Returns the deepest idle state that all coupled cpus can enter 300 */ 301 static inline int cpuidle_coupled_get_state(struct cpuidle_device *dev, 302 struct cpuidle_coupled *coupled) 303 { 304 int i; 305 int state = INT_MAX; 306 307 /* 308 * Read barrier ensures that read of requested_state is ordered after 309 * reads of ready_count. Matches the write barriers 310 * cpuidle_set_state_waiting. 311 */ 312 smp_rmb(); 313 314 for_each_cpu(i, &coupled->coupled_cpus) 315 if (cpu_online(i) && coupled->requested_state[i] < state) 316 state = coupled->requested_state[i]; 317 318 return state; 319 } 320 321 static void cpuidle_coupled_handle_poke(void *info) 322 { 323 int cpu = (unsigned long)info; 324 cpumask_set_cpu(cpu, &cpuidle_coupled_poked); 325 cpumask_clear_cpu(cpu, &cpuidle_coupled_poke_pending); 326 } 327 328 /** 329 * cpuidle_coupled_poke - wake up a cpu that may be waiting 330 * @cpu: target cpu 331 * 332 * Ensures that the target cpu exits it's waiting idle state (if it is in it) 333 * and will see updates to waiting_count before it re-enters it's waiting idle 334 * state. 335 * 336 * If cpuidle_coupled_poked_mask is already set for the target cpu, that cpu 337 * either has or will soon have a pending IPI that will wake it out of idle, 338 * or it is currently processing the IPI and is not in idle. 339 */ 340 static void cpuidle_coupled_poke(int cpu) 341 { 342 struct call_single_data *csd = &per_cpu(cpuidle_coupled_poke_cb, cpu); 343 344 if (!cpumask_test_and_set_cpu(cpu, &cpuidle_coupled_poke_pending)) 345 smp_call_function_single_async(cpu, csd); 346 } 347 348 /** 349 * cpuidle_coupled_poke_others - wake up all other cpus that may be waiting 350 * @dev: struct cpuidle_device for this cpu 351 * @coupled: the struct coupled that contains the current cpu 352 * 353 * Calls cpuidle_coupled_poke on all other online cpus. 354 */ 355 static void cpuidle_coupled_poke_others(int this_cpu, 356 struct cpuidle_coupled *coupled) 357 { 358 int cpu; 359 360 for_each_cpu(cpu, &coupled->coupled_cpus) 361 if (cpu != this_cpu && cpu_online(cpu)) 362 cpuidle_coupled_poke(cpu); 363 } 364 365 /** 366 * cpuidle_coupled_set_waiting - mark this cpu as in the wait loop 367 * @dev: struct cpuidle_device for this cpu 368 * @coupled: the struct coupled that contains the current cpu 369 * @next_state: the index in drv->states of the requested state for this cpu 370 * 371 * Updates the requested idle state for the specified cpuidle device. 372 * Returns the number of waiting cpus. 373 */ 374 static int cpuidle_coupled_set_waiting(int cpu, 375 struct cpuidle_coupled *coupled, int next_state) 376 { 377 coupled->requested_state[cpu] = next_state; 378 379 /* 380 * The atomic_inc_return provides a write barrier to order the write 381 * to requested_state with the later write that increments ready_count. 382 */ 383 return atomic_inc_return(&coupled->ready_waiting_counts) & WAITING_MASK; 384 } 385 386 /** 387 * cpuidle_coupled_set_not_waiting - mark this cpu as leaving the wait loop 388 * @dev: struct cpuidle_device for this cpu 389 * @coupled: the struct coupled that contains the current cpu 390 * 391 * Removes the requested idle state for the specified cpuidle device. 392 */ 393 static void cpuidle_coupled_set_not_waiting(int cpu, 394 struct cpuidle_coupled *coupled) 395 { 396 /* 397 * Decrementing waiting count can race with incrementing it in 398 * cpuidle_coupled_set_waiting, but that's OK. Worst case, some 399 * cpus will increment ready_count and then spin until they 400 * notice that this cpu has cleared it's requested_state. 401 */ 402 atomic_dec(&coupled->ready_waiting_counts); 403 404 coupled->requested_state[cpu] = CPUIDLE_COUPLED_NOT_IDLE; 405 } 406 407 /** 408 * cpuidle_coupled_set_done - mark this cpu as leaving the ready loop 409 * @cpu: the current cpu 410 * @coupled: the struct coupled that contains the current cpu 411 * 412 * Marks this cpu as no longer in the ready and waiting loops. Decrements 413 * the waiting count first to prevent another cpu looping back in and seeing 414 * this cpu as waiting just before it exits idle. 415 */ 416 static void cpuidle_coupled_set_done(int cpu, struct cpuidle_coupled *coupled) 417 { 418 cpuidle_coupled_set_not_waiting(cpu, coupled); 419 atomic_sub(MAX_WAITING_CPUS, &coupled->ready_waiting_counts); 420 } 421 422 /** 423 * cpuidle_coupled_clear_pokes - spin until the poke interrupt is processed 424 * @cpu - this cpu 425 * 426 * Turns on interrupts and spins until any outstanding poke interrupts have 427 * been processed and the poke bit has been cleared. 428 * 429 * Other interrupts may also be processed while interrupts are enabled, so 430 * need_resched() must be tested after this function returns to make sure 431 * the interrupt didn't schedule work that should take the cpu out of idle. 432 * 433 * Returns 0 if no poke was pending, 1 if a poke was cleared. 434 */ 435 static int cpuidle_coupled_clear_pokes(int cpu) 436 { 437 if (!cpumask_test_cpu(cpu, &cpuidle_coupled_poke_pending)) 438 return 0; 439 440 local_irq_enable(); 441 while (cpumask_test_cpu(cpu, &cpuidle_coupled_poke_pending)) 442 cpu_relax(); 443 local_irq_disable(); 444 445 return 1; 446 } 447 448 static bool cpuidle_coupled_any_pokes_pending(struct cpuidle_coupled *coupled) 449 { 450 cpumask_t cpus; 451 int ret; 452 453 cpumask_and(&cpus, cpu_online_mask, &coupled->coupled_cpus); 454 ret = cpumask_and(&cpus, &cpuidle_coupled_poke_pending, &cpus); 455 456 return ret; 457 } 458 459 /** 460 * cpuidle_enter_state_coupled - attempt to enter a state with coupled cpus 461 * @dev: struct cpuidle_device for the current cpu 462 * @drv: struct cpuidle_driver for the platform 463 * @next_state: index of the requested state in drv->states 464 * 465 * Coordinate with coupled cpus to enter the target state. This is a two 466 * stage process. In the first stage, the cpus are operating independently, 467 * and may call into cpuidle_enter_state_coupled at completely different times. 468 * To save as much power as possible, the first cpus to call this function will 469 * go to an intermediate state (the cpuidle_device's safe state), and wait for 470 * all the other cpus to call this function. Once all coupled cpus are idle, 471 * the second stage will start. Each coupled cpu will spin until all cpus have 472 * guaranteed that they will call the target_state. 473 * 474 * This function must be called with interrupts disabled. It may enable 475 * interrupts while preparing for idle, and it will always return with 476 * interrupts enabled. 477 */ 478 int cpuidle_enter_state_coupled(struct cpuidle_device *dev, 479 struct cpuidle_driver *drv, int next_state) 480 { 481 int entered_state = -1; 482 struct cpuidle_coupled *coupled = dev->coupled; 483 int w; 484 485 if (!coupled) 486 return -EINVAL; 487 488 while (coupled->prevent) { 489 cpuidle_coupled_clear_pokes(dev->cpu); 490 if (need_resched()) { 491 local_irq_enable(); 492 return entered_state; 493 } 494 entered_state = cpuidle_enter_state(dev, drv, 495 drv->safe_state_index); 496 local_irq_disable(); 497 } 498 499 /* Read barrier ensures online_count is read after prevent is cleared */ 500 smp_rmb(); 501 502 reset: 503 cpumask_clear_cpu(dev->cpu, &cpuidle_coupled_poked); 504 505 w = cpuidle_coupled_set_waiting(dev->cpu, coupled, next_state); 506 /* 507 * If this is the last cpu to enter the waiting state, poke 508 * all the other cpus out of their waiting state so they can 509 * enter a deeper state. This can race with one of the cpus 510 * exiting the waiting state due to an interrupt and 511 * decrementing waiting_count, see comment below. 512 */ 513 if (w == coupled->online_count) { 514 cpumask_set_cpu(dev->cpu, &cpuidle_coupled_poked); 515 cpuidle_coupled_poke_others(dev->cpu, coupled); 516 } 517 518 retry: 519 /* 520 * Wait for all coupled cpus to be idle, using the deepest state 521 * allowed for a single cpu. If this was not the poking cpu, wait 522 * for at least one poke before leaving to avoid a race where 523 * two cpus could arrive at the waiting loop at the same time, 524 * but the first of the two to arrive could skip the loop without 525 * processing the pokes from the last to arrive. 526 */ 527 while (!cpuidle_coupled_cpus_waiting(coupled) || 528 !cpumask_test_cpu(dev->cpu, &cpuidle_coupled_poked)) { 529 if (cpuidle_coupled_clear_pokes(dev->cpu)) 530 continue; 531 532 if (need_resched()) { 533 cpuidle_coupled_set_not_waiting(dev->cpu, coupled); 534 goto out; 535 } 536 537 if (coupled->prevent) { 538 cpuidle_coupled_set_not_waiting(dev->cpu, coupled); 539 goto out; 540 } 541 542 entered_state = cpuidle_enter_state(dev, drv, 543 drv->safe_state_index); 544 local_irq_disable(); 545 } 546 547 cpuidle_coupled_clear_pokes(dev->cpu); 548 if (need_resched()) { 549 cpuidle_coupled_set_not_waiting(dev->cpu, coupled); 550 goto out; 551 } 552 553 /* 554 * Make sure final poke status for this cpu is visible before setting 555 * cpu as ready. 556 */ 557 smp_wmb(); 558 559 /* 560 * All coupled cpus are probably idle. There is a small chance that 561 * one of the other cpus just became active. Increment the ready count, 562 * and spin until all coupled cpus have incremented the counter. Once a 563 * cpu has incremented the ready counter, it cannot abort idle and must 564 * spin until either all cpus have incremented the ready counter, or 565 * another cpu leaves idle and decrements the waiting counter. 566 */ 567 568 cpuidle_coupled_set_ready(coupled); 569 while (!cpuidle_coupled_cpus_ready(coupled)) { 570 /* Check if any other cpus bailed out of idle. */ 571 if (!cpuidle_coupled_cpus_waiting(coupled)) 572 if (!cpuidle_coupled_set_not_ready(coupled)) 573 goto retry; 574 575 cpu_relax(); 576 } 577 578 /* 579 * Make sure read of all cpus ready is done before reading pending pokes 580 */ 581 smp_rmb(); 582 583 /* 584 * There is a small chance that a cpu left and reentered idle after this 585 * cpu saw that all cpus were waiting. The cpu that reentered idle will 586 * have sent this cpu a poke, which will still be pending after the 587 * ready loop. The pending interrupt may be lost by the interrupt 588 * controller when entering the deep idle state. It's not possible to 589 * clear a pending interrupt without turning interrupts on and handling 590 * it, and it's too late to turn on interrupts here, so reset the 591 * coupled idle state of all cpus and retry. 592 */ 593 if (cpuidle_coupled_any_pokes_pending(coupled)) { 594 cpuidle_coupled_set_done(dev->cpu, coupled); 595 /* Wait for all cpus to see the pending pokes */ 596 cpuidle_coupled_parallel_barrier(dev, &coupled->abort_barrier); 597 goto reset; 598 } 599 600 /* all cpus have acked the coupled state */ 601 next_state = cpuidle_coupled_get_state(dev, coupled); 602 603 entered_state = cpuidle_enter_state(dev, drv, next_state); 604 605 cpuidle_coupled_set_done(dev->cpu, coupled); 606 607 out: 608 /* 609 * Normal cpuidle states are expected to return with irqs enabled. 610 * That leads to an inefficiency where a cpu receiving an interrupt 611 * that brings it out of idle will process that interrupt before 612 * exiting the idle enter function and decrementing ready_count. All 613 * other cpus will need to spin waiting for the cpu that is processing 614 * the interrupt. If the driver returns with interrupts disabled, 615 * all other cpus will loop back into the safe idle state instead of 616 * spinning, saving power. 617 * 618 * Calling local_irq_enable here allows coupled states to return with 619 * interrupts disabled, but won't cause problems for drivers that 620 * exit with interrupts enabled. 621 */ 622 local_irq_enable(); 623 624 /* 625 * Wait until all coupled cpus have exited idle. There is no risk that 626 * a cpu exits and re-enters the ready state because this cpu has 627 * already decremented its waiting_count. 628 */ 629 while (!cpuidle_coupled_no_cpus_ready(coupled)) 630 cpu_relax(); 631 632 return entered_state; 633 } 634 635 static void cpuidle_coupled_update_online_cpus(struct cpuidle_coupled *coupled) 636 { 637 cpumask_t cpus; 638 cpumask_and(&cpus, cpu_online_mask, &coupled->coupled_cpus); 639 coupled->online_count = cpumask_weight(&cpus); 640 } 641 642 /** 643 * cpuidle_coupled_register_device - register a coupled cpuidle device 644 * @dev: struct cpuidle_device for the current cpu 645 * 646 * Called from cpuidle_register_device to handle coupled idle init. Finds the 647 * cpuidle_coupled struct for this set of coupled cpus, or creates one if none 648 * exists yet. 649 */ 650 int cpuidle_coupled_register_device(struct cpuidle_device *dev) 651 { 652 int cpu; 653 struct cpuidle_device *other_dev; 654 struct call_single_data *csd; 655 struct cpuidle_coupled *coupled; 656 657 if (cpumask_empty(&dev->coupled_cpus)) 658 return 0; 659 660 for_each_cpu(cpu, &dev->coupled_cpus) { 661 other_dev = per_cpu(cpuidle_devices, cpu); 662 if (other_dev && other_dev->coupled) { 663 coupled = other_dev->coupled; 664 goto have_coupled; 665 } 666 } 667 668 /* No existing coupled info found, create a new one */ 669 coupled = kzalloc(sizeof(struct cpuidle_coupled), GFP_KERNEL); 670 if (!coupled) 671 return -ENOMEM; 672 673 coupled->coupled_cpus = dev->coupled_cpus; 674 675 have_coupled: 676 dev->coupled = coupled; 677 if (WARN_ON(!cpumask_equal(&dev->coupled_cpus, &coupled->coupled_cpus))) 678 coupled->prevent++; 679 680 cpuidle_coupled_update_online_cpus(coupled); 681 682 coupled->refcnt++; 683 684 csd = &per_cpu(cpuidle_coupled_poke_cb, dev->cpu); 685 csd->func = cpuidle_coupled_handle_poke; 686 csd->info = (void *)(unsigned long)dev->cpu; 687 688 return 0; 689 } 690 691 /** 692 * cpuidle_coupled_unregister_device - unregister a coupled cpuidle device 693 * @dev: struct cpuidle_device for the current cpu 694 * 695 * Called from cpuidle_unregister_device to tear down coupled idle. Removes the 696 * cpu from the coupled idle set, and frees the cpuidle_coupled_info struct if 697 * this was the last cpu in the set. 698 */ 699 void cpuidle_coupled_unregister_device(struct cpuidle_device *dev) 700 { 701 struct cpuidle_coupled *coupled = dev->coupled; 702 703 if (cpumask_empty(&dev->coupled_cpus)) 704 return; 705 706 if (--coupled->refcnt) 707 kfree(coupled); 708 dev->coupled = NULL; 709 } 710 711 /** 712 * cpuidle_coupled_prevent_idle - prevent cpus from entering a coupled state 713 * @coupled: the struct coupled that contains the cpu that is changing state 714 * 715 * Disables coupled cpuidle on a coupled set of cpus. Used to ensure that 716 * cpu_online_mask doesn't change while cpus are coordinating coupled idle. 717 */ 718 static void cpuidle_coupled_prevent_idle(struct cpuidle_coupled *coupled) 719 { 720 int cpu = get_cpu(); 721 722 /* Force all cpus out of the waiting loop. */ 723 coupled->prevent++; 724 cpuidle_coupled_poke_others(cpu, coupled); 725 put_cpu(); 726 while (!cpuidle_coupled_no_cpus_waiting(coupled)) 727 cpu_relax(); 728 } 729 730 /** 731 * cpuidle_coupled_allow_idle - allows cpus to enter a coupled state 732 * @coupled: the struct coupled that contains the cpu that is changing state 733 * 734 * Enables coupled cpuidle on a coupled set of cpus. Used to ensure that 735 * cpu_online_mask doesn't change while cpus are coordinating coupled idle. 736 */ 737 static void cpuidle_coupled_allow_idle(struct cpuidle_coupled *coupled) 738 { 739 int cpu = get_cpu(); 740 741 /* 742 * Write barrier ensures readers see the new online_count when they 743 * see prevent == 0. 744 */ 745 smp_wmb(); 746 coupled->prevent--; 747 /* Force cpus out of the prevent loop. */ 748 cpuidle_coupled_poke_others(cpu, coupled); 749 put_cpu(); 750 } 751 752 /** 753 * cpuidle_coupled_cpu_notify - notifier called during hotplug transitions 754 * @nb: notifier block 755 * @action: hotplug transition 756 * @hcpu: target cpu number 757 * 758 * Called when a cpu is brought on or offline using hotplug. Updates the 759 * coupled cpu set appropriately 760 */ 761 static int cpuidle_coupled_cpu_notify(struct notifier_block *nb, 762 unsigned long action, void *hcpu) 763 { 764 int cpu = (unsigned long)hcpu; 765 struct cpuidle_device *dev; 766 767 switch (action & ~CPU_TASKS_FROZEN) { 768 case CPU_UP_PREPARE: 769 case CPU_DOWN_PREPARE: 770 case CPU_ONLINE: 771 case CPU_DEAD: 772 case CPU_UP_CANCELED: 773 case CPU_DOWN_FAILED: 774 break; 775 default: 776 return NOTIFY_OK; 777 } 778 779 mutex_lock(&cpuidle_lock); 780 781 dev = per_cpu(cpuidle_devices, cpu); 782 if (!dev || !dev->coupled) 783 goto out; 784 785 switch (action & ~CPU_TASKS_FROZEN) { 786 case CPU_UP_PREPARE: 787 case CPU_DOWN_PREPARE: 788 cpuidle_coupled_prevent_idle(dev->coupled); 789 break; 790 case CPU_ONLINE: 791 case CPU_DEAD: 792 cpuidle_coupled_update_online_cpus(dev->coupled); 793 /* Fall through */ 794 case CPU_UP_CANCELED: 795 case CPU_DOWN_FAILED: 796 cpuidle_coupled_allow_idle(dev->coupled); 797 break; 798 } 799 800 out: 801 mutex_unlock(&cpuidle_lock); 802 return NOTIFY_OK; 803 } 804 805 static struct notifier_block cpuidle_coupled_cpu_notifier = { 806 .notifier_call = cpuidle_coupled_cpu_notify, 807 }; 808 809 static int __init cpuidle_coupled_init(void) 810 { 811 return register_cpu_notifier(&cpuidle_coupled_cpu_notifier); 812 } 813 core_initcall(cpuidle_coupled_init); 814