xref: /openbmc/linux/drivers/cpufreq/imx6q-cpufreq.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Freescale Semiconductor, Inc.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/cpu.h>
8 #include <linux/cpufreq.h>
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/nvmem-consumer.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/pm_opp.h>
15 #include <linux/platform_device.h>
16 #include <linux/regulator/consumer.h>
17 
18 #define PU_SOC_VOLTAGE_NORMAL	1250000
19 #define PU_SOC_VOLTAGE_HIGH	1275000
20 #define FREQ_1P2_GHZ		1200000000
21 
22 static struct regulator *arm_reg;
23 static struct regulator *pu_reg;
24 static struct regulator *soc_reg;
25 
26 enum IMX6_CPUFREQ_CLKS {
27 	ARM,
28 	PLL1_SYS,
29 	STEP,
30 	PLL1_SW,
31 	PLL2_PFD2_396M,
32 	/* MX6UL requires two more clks */
33 	PLL2_BUS,
34 	SECONDARY_SEL,
35 };
36 #define IMX6Q_CPUFREQ_CLK_NUM		5
37 #define IMX6UL_CPUFREQ_CLK_NUM		7
38 
39 static int num_clks;
40 static struct clk_bulk_data clks[] = {
41 	{ .id = "arm" },
42 	{ .id = "pll1_sys" },
43 	{ .id = "step" },
44 	{ .id = "pll1_sw" },
45 	{ .id = "pll2_pfd2_396m" },
46 	{ .id = "pll2_bus" },
47 	{ .id = "secondary_sel" },
48 };
49 
50 static struct device *cpu_dev;
51 static bool free_opp;
52 static struct cpufreq_frequency_table *freq_table;
53 static unsigned int max_freq;
54 static unsigned int transition_latency;
55 
56 static u32 *imx6_soc_volt;
57 static u32 soc_opp_count;
58 
59 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
60 {
61 	struct dev_pm_opp *opp;
62 	unsigned long freq_hz, volt, volt_old;
63 	unsigned int old_freq, new_freq;
64 	bool pll1_sys_temp_enabled = false;
65 	int ret;
66 
67 	new_freq = freq_table[index].frequency;
68 	freq_hz = new_freq * 1000;
69 	old_freq = clk_get_rate(clks[ARM].clk) / 1000;
70 
71 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
72 	if (IS_ERR(opp)) {
73 		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
74 		return PTR_ERR(opp);
75 	}
76 
77 	volt = dev_pm_opp_get_voltage(opp);
78 	dev_pm_opp_put(opp);
79 
80 	volt_old = regulator_get_voltage(arm_reg);
81 
82 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
83 		old_freq / 1000, volt_old / 1000,
84 		new_freq / 1000, volt / 1000);
85 
86 	/* scaling up?  scale voltage before frequency */
87 	if (new_freq > old_freq) {
88 		if (!IS_ERR(pu_reg)) {
89 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
90 			if (ret) {
91 				dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
92 				return ret;
93 			}
94 		}
95 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
96 		if (ret) {
97 			dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
98 			return ret;
99 		}
100 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
101 		if (ret) {
102 			dev_err(cpu_dev,
103 				"failed to scale vddarm up: %d\n", ret);
104 			return ret;
105 		}
106 	}
107 
108 	/*
109 	 * The setpoints are selected per PLL/PDF frequencies, so we need to
110 	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
111 	 * PLL1 is as below.
112 	 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
113 	 * flow is slightly different from other i.MX6 OSC.
114 	 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
115 	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
116 	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
117 	 *  - Disable pll2_pfd2_396m_clk
118 	 */
119 	if (of_machine_is_compatible("fsl,imx6ul") ||
120 	    of_machine_is_compatible("fsl,imx6ull")) {
121 		/*
122 		 * When changing pll1_sw_clk's parent to pll1_sys_clk,
123 		 * CPU may run at higher than 528MHz, this will lead to
124 		 * the system unstable if the voltage is lower than the
125 		 * voltage of 528MHz, so lower the CPU frequency to one
126 		 * half before changing CPU frequency.
127 		 */
128 		clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
129 		clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
130 		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
131 			clk_set_parent(clks[SECONDARY_SEL].clk,
132 				       clks[PLL2_BUS].clk);
133 		else
134 			clk_set_parent(clks[SECONDARY_SEL].clk,
135 				       clks[PLL2_PFD2_396M].clk);
136 		clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
137 		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
138 		if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
139 			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
140 			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
141 		}
142 	} else {
143 		clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
144 		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
145 		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
146 			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
147 			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
148 		} else {
149 			/* pll1_sys needs to be enabled for divider rate change to work. */
150 			pll1_sys_temp_enabled = true;
151 			clk_prepare_enable(clks[PLL1_SYS].clk);
152 		}
153 	}
154 
155 	/* Ensure the arm clock divider is what we expect */
156 	ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
157 	if (ret) {
158 		int ret1;
159 
160 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
161 		ret1 = regulator_set_voltage_tol(arm_reg, volt_old, 0);
162 		if (ret1)
163 			dev_warn(cpu_dev,
164 				 "failed to restore vddarm voltage: %d\n", ret1);
165 		return ret;
166 	}
167 
168 	/* PLL1 is only needed until after ARM-PODF is set. */
169 	if (pll1_sys_temp_enabled)
170 		clk_disable_unprepare(clks[PLL1_SYS].clk);
171 
172 	/* scaling down?  scale voltage after frequency */
173 	if (new_freq < old_freq) {
174 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
175 		if (ret)
176 			dev_warn(cpu_dev,
177 				 "failed to scale vddarm down: %d\n", ret);
178 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
179 		if (ret)
180 			dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
181 		if (!IS_ERR(pu_reg)) {
182 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
183 			if (ret)
184 				dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
185 		}
186 	}
187 
188 	return 0;
189 }
190 
191 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
192 {
193 	policy->clk = clks[ARM].clk;
194 	cpufreq_generic_init(policy, freq_table, transition_latency);
195 	policy->suspend_freq = max_freq;
196 	dev_pm_opp_of_register_em(cpu_dev, policy->cpus);
197 
198 	return 0;
199 }
200 
201 static struct cpufreq_driver imx6q_cpufreq_driver = {
202 	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
203 		 CPUFREQ_IS_COOLING_DEV,
204 	.verify = cpufreq_generic_frequency_table_verify,
205 	.target_index = imx6q_set_target,
206 	.get = cpufreq_generic_get,
207 	.init = imx6q_cpufreq_init,
208 	.name = "imx6q-cpufreq",
209 	.attr = cpufreq_generic_attr,
210 	.suspend = cpufreq_generic_suspend,
211 };
212 
213 #define OCOTP_CFG3			0x440
214 #define OCOTP_CFG3_SPEED_SHIFT		16
215 #define OCOTP_CFG3_SPEED_1P2GHZ		0x3
216 #define OCOTP_CFG3_SPEED_996MHZ		0x2
217 #define OCOTP_CFG3_SPEED_852MHZ		0x1
218 
219 static int imx6q_opp_check_speed_grading(struct device *dev)
220 {
221 	struct device_node *np;
222 	void __iomem *base;
223 	u32 val;
224 	int ret;
225 
226 	if (of_find_property(dev->of_node, "nvmem-cells", NULL)) {
227 		ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
228 		if (ret)
229 			return ret;
230 	} else {
231 		np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp");
232 		if (!np)
233 			return -ENOENT;
234 
235 		base = of_iomap(np, 0);
236 		of_node_put(np);
237 		if (!base) {
238 			dev_err(dev, "failed to map ocotp\n");
239 			return -EFAULT;
240 		}
241 
242 		/*
243 		 * SPEED_GRADING[1:0] defines the max speed of ARM:
244 		 * 2b'11: 1200000000Hz;
245 		 * 2b'10: 996000000Hz;
246 		 * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
247 		 * 2b'00: 792000000Hz;
248 		 * We need to set the max speed of ARM according to fuse map.
249 		 */
250 		val = readl_relaxed(base + OCOTP_CFG3);
251 		iounmap(base);
252 	}
253 
254 	val >>= OCOTP_CFG3_SPEED_SHIFT;
255 	val &= 0x3;
256 
257 	if (val < OCOTP_CFG3_SPEED_996MHZ)
258 		if (dev_pm_opp_disable(dev, 996000000))
259 			dev_warn(dev, "failed to disable 996MHz OPP\n");
260 
261 	if (of_machine_is_compatible("fsl,imx6q") ||
262 	    of_machine_is_compatible("fsl,imx6qp")) {
263 		if (val != OCOTP_CFG3_SPEED_852MHZ)
264 			if (dev_pm_opp_disable(dev, 852000000))
265 				dev_warn(dev, "failed to disable 852MHz OPP\n");
266 		if (val != OCOTP_CFG3_SPEED_1P2GHZ)
267 			if (dev_pm_opp_disable(dev, 1200000000))
268 				dev_warn(dev, "failed to disable 1.2GHz OPP\n");
269 	}
270 
271 	return 0;
272 }
273 
274 #define OCOTP_CFG3_6UL_SPEED_696MHZ	0x2
275 #define OCOTP_CFG3_6ULL_SPEED_792MHZ	0x2
276 #define OCOTP_CFG3_6ULL_SPEED_900MHZ	0x3
277 
278 static int imx6ul_opp_check_speed_grading(struct device *dev)
279 {
280 	u32 val;
281 	int ret = 0;
282 
283 	if (of_find_property(dev->of_node, "nvmem-cells", NULL)) {
284 		ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
285 		if (ret)
286 			return ret;
287 	} else {
288 		struct device_node *np;
289 		void __iomem *base;
290 
291 		np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp");
292 		if (!np)
293 			np = of_find_compatible_node(NULL, NULL,
294 						     "fsl,imx6ull-ocotp");
295 		if (!np)
296 			return -ENOENT;
297 
298 		base = of_iomap(np, 0);
299 		of_node_put(np);
300 		if (!base) {
301 			dev_err(dev, "failed to map ocotp\n");
302 			return -EFAULT;
303 		}
304 
305 		val = readl_relaxed(base + OCOTP_CFG3);
306 		iounmap(base);
307 	}
308 
309 	/*
310 	 * Speed GRADING[1:0] defines the max speed of ARM:
311 	 * 2b'00: Reserved;
312 	 * 2b'01: 528000000Hz;
313 	 * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL;
314 	 * 2b'11: 900000000Hz on i.MX6ULL only;
315 	 * We need to set the max speed of ARM according to fuse map.
316 	 */
317 	val >>= OCOTP_CFG3_SPEED_SHIFT;
318 	val &= 0x3;
319 
320 	if (of_machine_is_compatible("fsl,imx6ul")) {
321 		if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
322 			if (dev_pm_opp_disable(dev, 696000000))
323 				dev_warn(dev, "failed to disable 696MHz OPP\n");
324 	}
325 
326 	if (of_machine_is_compatible("fsl,imx6ull")) {
327 		if (val != OCOTP_CFG3_6ULL_SPEED_792MHZ)
328 			if (dev_pm_opp_disable(dev, 792000000))
329 				dev_warn(dev, "failed to disable 792MHz OPP\n");
330 
331 		if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ)
332 			if (dev_pm_opp_disable(dev, 900000000))
333 				dev_warn(dev, "failed to disable 900MHz OPP\n");
334 	}
335 
336 	return ret;
337 }
338 
339 static int imx6q_cpufreq_probe(struct platform_device *pdev)
340 {
341 	struct device_node *np;
342 	struct dev_pm_opp *opp;
343 	unsigned long min_volt, max_volt;
344 	int num, ret;
345 	const struct property *prop;
346 	const __be32 *val;
347 	u32 nr, i, j;
348 
349 	cpu_dev = get_cpu_device(0);
350 	if (!cpu_dev) {
351 		pr_err("failed to get cpu0 device\n");
352 		return -ENODEV;
353 	}
354 
355 	np = of_node_get(cpu_dev->of_node);
356 	if (!np) {
357 		dev_err(cpu_dev, "failed to find cpu0 node\n");
358 		return -ENOENT;
359 	}
360 
361 	if (of_machine_is_compatible("fsl,imx6ul") ||
362 	    of_machine_is_compatible("fsl,imx6ull"))
363 		num_clks = IMX6UL_CPUFREQ_CLK_NUM;
364 	else
365 		num_clks = IMX6Q_CPUFREQ_CLK_NUM;
366 
367 	ret = clk_bulk_get(cpu_dev, num_clks, clks);
368 	if (ret)
369 		goto put_node;
370 
371 	arm_reg = regulator_get(cpu_dev, "arm");
372 	pu_reg = regulator_get_optional(cpu_dev, "pu");
373 	soc_reg = regulator_get(cpu_dev, "soc");
374 	if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
375 			PTR_ERR(soc_reg) == -EPROBE_DEFER ||
376 			PTR_ERR(pu_reg) == -EPROBE_DEFER) {
377 		ret = -EPROBE_DEFER;
378 		dev_dbg(cpu_dev, "regulators not ready, defer\n");
379 		goto put_reg;
380 	}
381 	if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
382 		dev_err(cpu_dev, "failed to get regulators\n");
383 		ret = -ENOENT;
384 		goto put_reg;
385 	}
386 
387 	ret = dev_pm_opp_of_add_table(cpu_dev);
388 	if (ret < 0) {
389 		dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
390 		goto put_reg;
391 	}
392 
393 	/* Because we have added the OPPs here, we must free them */
394 	free_opp = true;
395 
396 	if (of_machine_is_compatible("fsl,imx6ul") ||
397 	    of_machine_is_compatible("fsl,imx6ull")) {
398 		ret = imx6ul_opp_check_speed_grading(cpu_dev);
399 	} else {
400 		ret = imx6q_opp_check_speed_grading(cpu_dev);
401 	}
402 	if (ret) {
403 		if (ret != -EPROBE_DEFER)
404 			dev_err(cpu_dev, "failed to read ocotp: %d\n",
405 				ret);
406 		goto out_free_opp;
407 	}
408 
409 	num = dev_pm_opp_get_opp_count(cpu_dev);
410 	if (num < 0) {
411 		ret = num;
412 		dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
413 		goto out_free_opp;
414 	}
415 
416 	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
417 	if (ret) {
418 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
419 		goto out_free_opp;
420 	}
421 
422 	/* Make imx6_soc_volt array's size same as arm opp number */
423 	imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt),
424 				     GFP_KERNEL);
425 	if (imx6_soc_volt == NULL) {
426 		ret = -ENOMEM;
427 		goto free_freq_table;
428 	}
429 
430 	prop = of_find_property(np, "fsl,soc-operating-points", NULL);
431 	if (!prop || !prop->value)
432 		goto soc_opp_out;
433 
434 	/*
435 	 * Each OPP is a set of tuples consisting of frequency and
436 	 * voltage like <freq-kHz vol-uV>.
437 	 */
438 	nr = prop->length / sizeof(u32);
439 	if (nr % 2 || (nr / 2) < num)
440 		goto soc_opp_out;
441 
442 	for (j = 0; j < num; j++) {
443 		val = prop->value;
444 		for (i = 0; i < nr / 2; i++) {
445 			unsigned long freq = be32_to_cpup(val++);
446 			unsigned long volt = be32_to_cpup(val++);
447 			if (freq_table[j].frequency == freq) {
448 				imx6_soc_volt[soc_opp_count++] = volt;
449 				break;
450 			}
451 		}
452 	}
453 
454 soc_opp_out:
455 	/* use fixed soc opp volt if no valid soc opp info found in dtb */
456 	if (soc_opp_count != num) {
457 		dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
458 		for (j = 0; j < num; j++)
459 			imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
460 		if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
461 			imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
462 	}
463 
464 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
465 		transition_latency = CPUFREQ_ETERNAL;
466 
467 	/*
468 	 * Calculate the ramp time for max voltage change in the
469 	 * VDDSOC and VDDPU regulators.
470 	 */
471 	ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
472 	if (ret > 0)
473 		transition_latency += ret * 1000;
474 	if (!IS_ERR(pu_reg)) {
475 		ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
476 		if (ret > 0)
477 			transition_latency += ret * 1000;
478 	}
479 
480 	/*
481 	 * OPP is maintained in order of increasing frequency, and
482 	 * freq_table initialised from OPP is therefore sorted in the
483 	 * same order.
484 	 */
485 	max_freq = freq_table[--num].frequency;
486 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
487 				  freq_table[0].frequency * 1000, true);
488 	min_volt = dev_pm_opp_get_voltage(opp);
489 	dev_pm_opp_put(opp);
490 	opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
491 	max_volt = dev_pm_opp_get_voltage(opp);
492 	dev_pm_opp_put(opp);
493 
494 	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
495 	if (ret > 0)
496 		transition_latency += ret * 1000;
497 
498 	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
499 	if (ret) {
500 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
501 		goto free_freq_table;
502 	}
503 
504 	of_node_put(np);
505 	return 0;
506 
507 free_freq_table:
508 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
509 out_free_opp:
510 	if (free_opp)
511 		dev_pm_opp_of_remove_table(cpu_dev);
512 put_reg:
513 	if (!IS_ERR(arm_reg))
514 		regulator_put(arm_reg);
515 	if (!IS_ERR(pu_reg))
516 		regulator_put(pu_reg);
517 	if (!IS_ERR(soc_reg))
518 		regulator_put(soc_reg);
519 
520 	clk_bulk_put(num_clks, clks);
521 put_node:
522 	of_node_put(np);
523 
524 	return ret;
525 }
526 
527 static int imx6q_cpufreq_remove(struct platform_device *pdev)
528 {
529 	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
530 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
531 	if (free_opp)
532 		dev_pm_opp_of_remove_table(cpu_dev);
533 	regulator_put(arm_reg);
534 	if (!IS_ERR(pu_reg))
535 		regulator_put(pu_reg);
536 	regulator_put(soc_reg);
537 
538 	clk_bulk_put(num_clks, clks);
539 
540 	return 0;
541 }
542 
543 static struct platform_driver imx6q_cpufreq_platdrv = {
544 	.driver = {
545 		.name	= "imx6q-cpufreq",
546 	},
547 	.probe		= imx6q_cpufreq_probe,
548 	.remove		= imx6q_cpufreq_remove,
549 };
550 module_platform_driver(imx6q_cpufreq_platdrv);
551 
552 MODULE_ALIAS("platform:imx6q-cpufreq");
553 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
554 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
555 MODULE_LICENSE("GPL");
556