1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/opp.h>
16 #include <linux/platform_device.h>
17 #include <linux/regulator/consumer.h>
18 
19 #define PU_SOC_VOLTAGE_NORMAL	1250000
20 #define PU_SOC_VOLTAGE_HIGH	1275000
21 #define FREQ_1P2_GHZ		1200000000
22 
23 static struct regulator *arm_reg;
24 static struct regulator *pu_reg;
25 static struct regulator *soc_reg;
26 
27 static struct clk *arm_clk;
28 static struct clk *pll1_sys_clk;
29 static struct clk *pll1_sw_clk;
30 static struct clk *step_clk;
31 static struct clk *pll2_pfd2_396m_clk;
32 
33 static struct device *cpu_dev;
34 static struct cpufreq_frequency_table *freq_table;
35 static unsigned int transition_latency;
36 
37 static int imx6q_verify_speed(struct cpufreq_policy *policy)
38 {
39 	return cpufreq_frequency_table_verify(policy, freq_table);
40 }
41 
42 static unsigned int imx6q_get_speed(unsigned int cpu)
43 {
44 	return clk_get_rate(arm_clk) / 1000;
45 }
46 
47 static int imx6q_set_target(struct cpufreq_policy *policy,
48 			    unsigned int target_freq, unsigned int relation)
49 {
50 	struct cpufreq_freqs freqs;
51 	struct opp *opp;
52 	unsigned long freq_hz, volt, volt_old;
53 	unsigned int index;
54 	int ret;
55 
56 	ret = cpufreq_frequency_table_target(policy, freq_table, target_freq,
57 					     relation, &index);
58 	if (ret) {
59 		dev_err(cpu_dev, "failed to match target frequency %d: %d\n",
60 			target_freq, ret);
61 		return ret;
62 	}
63 
64 	freqs.new = freq_table[index].frequency;
65 	freq_hz = freqs.new * 1000;
66 	freqs.old = clk_get_rate(arm_clk) / 1000;
67 
68 	if (freqs.old == freqs.new)
69 		return 0;
70 
71 	cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
72 
73 	rcu_read_lock();
74 	opp = opp_find_freq_ceil(cpu_dev, &freq_hz);
75 	if (IS_ERR(opp)) {
76 		rcu_read_unlock();
77 		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
78 		return PTR_ERR(opp);
79 	}
80 
81 	volt = opp_get_voltage(opp);
82 	rcu_read_unlock();
83 	volt_old = regulator_get_voltage(arm_reg);
84 
85 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
86 		freqs.old / 1000, volt_old / 1000,
87 		freqs.new / 1000, volt / 1000);
88 
89 	/* scaling up?  scale voltage before frequency */
90 	if (freqs.new > freqs.old) {
91 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
92 		if (ret) {
93 			dev_err(cpu_dev,
94 				"failed to scale vddarm up: %d\n", ret);
95 			return ret;
96 		}
97 
98 		/*
99 		 * Need to increase vddpu and vddsoc for safety
100 		 * if we are about to run at 1.2 GHz.
101 		 */
102 		if (freqs.new == FREQ_1P2_GHZ / 1000) {
103 			regulator_set_voltage_tol(pu_reg,
104 					PU_SOC_VOLTAGE_HIGH, 0);
105 			regulator_set_voltage_tol(soc_reg,
106 					PU_SOC_VOLTAGE_HIGH, 0);
107 		}
108 	}
109 
110 	/*
111 	 * The setpoints are selected per PLL/PDF frequencies, so we need to
112 	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
113 	 * PLL1 is as below.
114 	 *
115 	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
116 	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
117 	 *  - Disable pll2_pfd2_396m_clk
118 	 */
119 	clk_prepare_enable(pll2_pfd2_396m_clk);
120 	clk_set_parent(step_clk, pll2_pfd2_396m_clk);
121 	clk_set_parent(pll1_sw_clk, step_clk);
122 	if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
123 		clk_set_rate(pll1_sys_clk, freqs.new * 1000);
124 		/*
125 		 * If we are leaving 396 MHz set-point, we need to enable
126 		 * pll1_sys_clk and disable pll2_pfd2_396m_clk to keep
127 		 * their use count correct.
128 		 */
129 		if (freqs.old * 1000 <= clk_get_rate(pll2_pfd2_396m_clk)) {
130 			clk_prepare_enable(pll1_sys_clk);
131 			clk_disable_unprepare(pll2_pfd2_396m_clk);
132 		}
133 		clk_set_parent(pll1_sw_clk, pll1_sys_clk);
134 		clk_disable_unprepare(pll2_pfd2_396m_clk);
135 	} else {
136 		/*
137 		 * Disable pll1_sys_clk if pll2_pfd2_396m_clk is sufficient
138 		 * to provide the frequency.
139 		 */
140 		clk_disable_unprepare(pll1_sys_clk);
141 	}
142 
143 	/* Ensure the arm clock divider is what we expect */
144 	ret = clk_set_rate(arm_clk, freqs.new * 1000);
145 	if (ret) {
146 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
147 		regulator_set_voltage_tol(arm_reg, volt_old, 0);
148 		return ret;
149 	}
150 
151 	/* scaling down?  scale voltage after frequency */
152 	if (freqs.new < freqs.old) {
153 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
154 		if (ret)
155 			dev_warn(cpu_dev,
156 				 "failed to scale vddarm down: %d\n", ret);
157 
158 		if (freqs.old == FREQ_1P2_GHZ / 1000) {
159 			regulator_set_voltage_tol(pu_reg,
160 					PU_SOC_VOLTAGE_NORMAL, 0);
161 			regulator_set_voltage_tol(soc_reg,
162 					PU_SOC_VOLTAGE_NORMAL, 0);
163 		}
164 	}
165 
166 	cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
167 
168 	return 0;
169 }
170 
171 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
172 {
173 	int ret;
174 
175 	ret = cpufreq_frequency_table_cpuinfo(policy, freq_table);
176 	if (ret) {
177 		dev_err(cpu_dev, "invalid frequency table: %d\n", ret);
178 		return ret;
179 	}
180 
181 	policy->cpuinfo.transition_latency = transition_latency;
182 	policy->cur = clk_get_rate(arm_clk) / 1000;
183 	cpumask_setall(policy->cpus);
184 	cpufreq_frequency_table_get_attr(freq_table, policy->cpu);
185 
186 	return 0;
187 }
188 
189 static int imx6q_cpufreq_exit(struct cpufreq_policy *policy)
190 {
191 	cpufreq_frequency_table_put_attr(policy->cpu);
192 	return 0;
193 }
194 
195 static struct freq_attr *imx6q_cpufreq_attr[] = {
196 	&cpufreq_freq_attr_scaling_available_freqs,
197 	NULL,
198 };
199 
200 static struct cpufreq_driver imx6q_cpufreq_driver = {
201 	.verify = imx6q_verify_speed,
202 	.target = imx6q_set_target,
203 	.get = imx6q_get_speed,
204 	.init = imx6q_cpufreq_init,
205 	.exit = imx6q_cpufreq_exit,
206 	.name = "imx6q-cpufreq",
207 	.attr = imx6q_cpufreq_attr,
208 };
209 
210 static int imx6q_cpufreq_probe(struct platform_device *pdev)
211 {
212 	struct device_node *np;
213 	struct opp *opp;
214 	unsigned long min_volt, max_volt;
215 	int num, ret;
216 
217 	cpu_dev = &pdev->dev;
218 
219 	np = of_find_node_by_path("/cpus/cpu@0");
220 	if (!np) {
221 		dev_err(cpu_dev, "failed to find cpu0 node\n");
222 		return -ENOENT;
223 	}
224 
225 	cpu_dev->of_node = np;
226 
227 	arm_clk = devm_clk_get(cpu_dev, "arm");
228 	pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
229 	pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
230 	step_clk = devm_clk_get(cpu_dev, "step");
231 	pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
232 	if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
233 	    IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
234 		dev_err(cpu_dev, "failed to get clocks\n");
235 		ret = -ENOENT;
236 		goto put_node;
237 	}
238 
239 	arm_reg = devm_regulator_get(cpu_dev, "arm");
240 	pu_reg = devm_regulator_get(cpu_dev, "pu");
241 	soc_reg = devm_regulator_get(cpu_dev, "soc");
242 	if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
243 		dev_err(cpu_dev, "failed to get regulators\n");
244 		ret = -ENOENT;
245 		goto put_node;
246 	}
247 
248 	/* We expect an OPP table supplied by platform */
249 	num = opp_get_opp_count(cpu_dev);
250 	if (num < 0) {
251 		ret = num;
252 		dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
253 		goto put_node;
254 	}
255 
256 	ret = opp_init_cpufreq_table(cpu_dev, &freq_table);
257 	if (ret) {
258 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
259 		goto put_node;
260 	}
261 
262 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
263 		transition_latency = CPUFREQ_ETERNAL;
264 
265 	/*
266 	 * OPP is maintained in order of increasing frequency, and
267 	 * freq_table initialised from OPP is therefore sorted in the
268 	 * same order.
269 	 */
270 	rcu_read_lock();
271 	opp = opp_find_freq_exact(cpu_dev,
272 				  freq_table[0].frequency * 1000, true);
273 	min_volt = opp_get_voltage(opp);
274 	opp = opp_find_freq_exact(cpu_dev,
275 				  freq_table[--num].frequency * 1000, true);
276 	max_volt = opp_get_voltage(opp);
277 	rcu_read_unlock();
278 	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
279 	if (ret > 0)
280 		transition_latency += ret * 1000;
281 
282 	/* Count vddpu and vddsoc latency in for 1.2 GHz support */
283 	if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) {
284 		ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL,
285 						 PU_SOC_VOLTAGE_HIGH);
286 		if (ret > 0)
287 			transition_latency += ret * 1000;
288 		ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL,
289 						 PU_SOC_VOLTAGE_HIGH);
290 		if (ret > 0)
291 			transition_latency += ret * 1000;
292 	}
293 
294 	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
295 	if (ret) {
296 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
297 		goto free_freq_table;
298 	}
299 
300 	of_node_put(np);
301 	return 0;
302 
303 free_freq_table:
304 	opp_free_cpufreq_table(cpu_dev, &freq_table);
305 put_node:
306 	of_node_put(np);
307 	return ret;
308 }
309 
310 static int imx6q_cpufreq_remove(struct platform_device *pdev)
311 {
312 	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
313 	opp_free_cpufreq_table(cpu_dev, &freq_table);
314 
315 	return 0;
316 }
317 
318 static struct platform_driver imx6q_cpufreq_platdrv = {
319 	.driver = {
320 		.name	= "imx6q-cpufreq",
321 		.owner	= THIS_MODULE,
322 	},
323 	.probe		= imx6q_cpufreq_probe,
324 	.remove		= imx6q_cpufreq_remove,
325 };
326 module_platform_driver(imx6q_cpufreq_platdrv);
327 
328 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
329 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
330 MODULE_LICENSE("GPL");
331