1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/pm_opp.h>
17 #include <linux/platform_device.h>
18 #include <linux/regulator/consumer.h>
19 
20 #define PU_SOC_VOLTAGE_NORMAL	1250000
21 #define PU_SOC_VOLTAGE_HIGH	1275000
22 #define FREQ_1P2_GHZ		1200000000
23 
24 static struct regulator *arm_reg;
25 static struct regulator *pu_reg;
26 static struct regulator *soc_reg;
27 
28 static struct clk *arm_clk;
29 static struct clk *pll1_sys_clk;
30 static struct clk *pll1_sw_clk;
31 static struct clk *step_clk;
32 static struct clk *pll2_pfd2_396m_clk;
33 
34 /* clk used by i.MX6UL */
35 static struct clk *pll2_bus_clk;
36 static struct clk *secondary_sel_clk;
37 
38 static struct device *cpu_dev;
39 static bool free_opp;
40 static struct cpufreq_frequency_table *freq_table;
41 static unsigned int transition_latency;
42 
43 static u32 *imx6_soc_volt;
44 static u32 soc_opp_count;
45 
46 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
47 {
48 	struct dev_pm_opp *opp;
49 	unsigned long freq_hz, volt, volt_old;
50 	unsigned int old_freq, new_freq;
51 	bool pll1_sys_temp_enabled = false;
52 	int ret;
53 
54 	new_freq = freq_table[index].frequency;
55 	freq_hz = new_freq * 1000;
56 	old_freq = clk_get_rate(arm_clk) / 1000;
57 
58 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
59 	if (IS_ERR(opp)) {
60 		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
61 		return PTR_ERR(opp);
62 	}
63 
64 	volt = dev_pm_opp_get_voltage(opp);
65 	dev_pm_opp_put(opp);
66 
67 	volt_old = regulator_get_voltage(arm_reg);
68 
69 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
70 		old_freq / 1000, volt_old / 1000,
71 		new_freq / 1000, volt / 1000);
72 
73 	/* scaling up?  scale voltage before frequency */
74 	if (new_freq > old_freq) {
75 		if (!IS_ERR(pu_reg)) {
76 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
77 			if (ret) {
78 				dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
79 				return ret;
80 			}
81 		}
82 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
83 		if (ret) {
84 			dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
85 			return ret;
86 		}
87 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
88 		if (ret) {
89 			dev_err(cpu_dev,
90 				"failed to scale vddarm up: %d\n", ret);
91 			return ret;
92 		}
93 	}
94 
95 	/*
96 	 * The setpoints are selected per PLL/PDF frequencies, so we need to
97 	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
98 	 * PLL1 is as below.
99 	 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
100 	 * flow is slightly different from other i.MX6 OSC.
101 	 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
102 	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
103 	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
104 	 *  - Disable pll2_pfd2_396m_clk
105 	 */
106 	if (of_machine_is_compatible("fsl,imx6ul") ||
107 	    of_machine_is_compatible("fsl,imx6ull")) {
108 		/*
109 		 * When changing pll1_sw_clk's parent to pll1_sys_clk,
110 		 * CPU may run at higher than 528MHz, this will lead to
111 		 * the system unstable if the voltage is lower than the
112 		 * voltage of 528MHz, so lower the CPU frequency to one
113 		 * half before changing CPU frequency.
114 		 */
115 		clk_set_rate(arm_clk, (old_freq >> 1) * 1000);
116 		clk_set_parent(pll1_sw_clk, pll1_sys_clk);
117 		if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk))
118 			clk_set_parent(secondary_sel_clk, pll2_bus_clk);
119 		else
120 			clk_set_parent(secondary_sel_clk, pll2_pfd2_396m_clk);
121 		clk_set_parent(step_clk, secondary_sel_clk);
122 		clk_set_parent(pll1_sw_clk, step_clk);
123 	} else {
124 		clk_set_parent(step_clk, pll2_pfd2_396m_clk);
125 		clk_set_parent(pll1_sw_clk, step_clk);
126 		if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
127 			clk_set_rate(pll1_sys_clk, new_freq * 1000);
128 			clk_set_parent(pll1_sw_clk, pll1_sys_clk);
129 		} else {
130 			/* pll1_sys needs to be enabled for divider rate change to work. */
131 			pll1_sys_temp_enabled = true;
132 			clk_prepare_enable(pll1_sys_clk);
133 		}
134 	}
135 
136 	/* Ensure the arm clock divider is what we expect */
137 	ret = clk_set_rate(arm_clk, new_freq * 1000);
138 	if (ret) {
139 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
140 		regulator_set_voltage_tol(arm_reg, volt_old, 0);
141 		return ret;
142 	}
143 
144 	/* PLL1 is only needed until after ARM-PODF is set. */
145 	if (pll1_sys_temp_enabled)
146 		clk_disable_unprepare(pll1_sys_clk);
147 
148 	/* scaling down?  scale voltage after frequency */
149 	if (new_freq < old_freq) {
150 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
151 		if (ret) {
152 			dev_warn(cpu_dev,
153 				 "failed to scale vddarm down: %d\n", ret);
154 			ret = 0;
155 		}
156 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
157 		if (ret) {
158 			dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
159 			ret = 0;
160 		}
161 		if (!IS_ERR(pu_reg)) {
162 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
163 			if (ret) {
164 				dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
165 				ret = 0;
166 			}
167 		}
168 	}
169 
170 	return 0;
171 }
172 
173 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
174 {
175 	int ret;
176 
177 	policy->clk = arm_clk;
178 	ret = cpufreq_generic_init(policy, freq_table, transition_latency);
179 	policy->suspend_freq = policy->max;
180 
181 	return ret;
182 }
183 
184 static struct cpufreq_driver imx6q_cpufreq_driver = {
185 	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
186 	.verify = cpufreq_generic_frequency_table_verify,
187 	.target_index = imx6q_set_target,
188 	.get = cpufreq_generic_get,
189 	.init = imx6q_cpufreq_init,
190 	.name = "imx6q-cpufreq",
191 	.attr = cpufreq_generic_attr,
192 	.suspend = cpufreq_generic_suspend,
193 };
194 
195 #define OCOTP_CFG3			0x440
196 #define OCOTP_CFG3_SPEED_SHIFT		16
197 #define OCOTP_CFG3_SPEED_1P2GHZ		0x3
198 #define OCOTP_CFG3_SPEED_996MHZ		0x2
199 #define OCOTP_CFG3_SPEED_852MHZ		0x1
200 
201 static void imx6q_opp_check_speed_grading(struct device *dev)
202 {
203 	struct device_node *np;
204 	void __iomem *base;
205 	u32 val;
206 
207 	np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp");
208 	if (!np)
209 		return;
210 
211 	base = of_iomap(np, 0);
212 	if (!base) {
213 		dev_err(dev, "failed to map ocotp\n");
214 		goto put_node;
215 	}
216 
217 	/*
218 	 * SPEED_GRADING[1:0] defines the max speed of ARM:
219 	 * 2b'11: 1200000000Hz;
220 	 * 2b'10: 996000000Hz;
221 	 * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
222 	 * 2b'00: 792000000Hz;
223 	 * We need to set the max speed of ARM according to fuse map.
224 	 */
225 	val = readl_relaxed(base + OCOTP_CFG3);
226 	val >>= OCOTP_CFG3_SPEED_SHIFT;
227 	val &= 0x3;
228 
229 	if ((val != OCOTP_CFG3_SPEED_1P2GHZ) &&
230 	     of_machine_is_compatible("fsl,imx6q"))
231 		if (dev_pm_opp_disable(dev, 1200000000))
232 			dev_warn(dev, "failed to disable 1.2GHz OPP\n");
233 	if (val < OCOTP_CFG3_SPEED_996MHZ)
234 		if (dev_pm_opp_disable(dev, 996000000))
235 			dev_warn(dev, "failed to disable 996MHz OPP\n");
236 	if (of_machine_is_compatible("fsl,imx6q")) {
237 		if (val != OCOTP_CFG3_SPEED_852MHZ)
238 			if (dev_pm_opp_disable(dev, 852000000))
239 				dev_warn(dev, "failed to disable 852MHz OPP\n");
240 	}
241 	iounmap(base);
242 put_node:
243 	of_node_put(np);
244 }
245 
246 static int imx6q_cpufreq_probe(struct platform_device *pdev)
247 {
248 	struct device_node *np;
249 	struct dev_pm_opp *opp;
250 	unsigned long min_volt, max_volt;
251 	int num, ret;
252 	const struct property *prop;
253 	const __be32 *val;
254 	u32 nr, i, j;
255 
256 	cpu_dev = get_cpu_device(0);
257 	if (!cpu_dev) {
258 		pr_err("failed to get cpu0 device\n");
259 		return -ENODEV;
260 	}
261 
262 	np = of_node_get(cpu_dev->of_node);
263 	if (!np) {
264 		dev_err(cpu_dev, "failed to find cpu0 node\n");
265 		return -ENOENT;
266 	}
267 
268 	arm_clk = clk_get(cpu_dev, "arm");
269 	pll1_sys_clk = clk_get(cpu_dev, "pll1_sys");
270 	pll1_sw_clk = clk_get(cpu_dev, "pll1_sw");
271 	step_clk = clk_get(cpu_dev, "step");
272 	pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m");
273 	if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
274 	    IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
275 		dev_err(cpu_dev, "failed to get clocks\n");
276 		ret = -ENOENT;
277 		goto put_clk;
278 	}
279 
280 	if (of_machine_is_compatible("fsl,imx6ul") ||
281 	    of_machine_is_compatible("fsl,imx6ull")) {
282 		pll2_bus_clk = clk_get(cpu_dev, "pll2_bus");
283 		secondary_sel_clk = clk_get(cpu_dev, "secondary_sel");
284 		if (IS_ERR(pll2_bus_clk) || IS_ERR(secondary_sel_clk)) {
285 			dev_err(cpu_dev, "failed to get clocks specific to imx6ul\n");
286 			ret = -ENOENT;
287 			goto put_clk;
288 		}
289 	}
290 
291 	arm_reg = regulator_get(cpu_dev, "arm");
292 	pu_reg = regulator_get_optional(cpu_dev, "pu");
293 	soc_reg = regulator_get(cpu_dev, "soc");
294 	if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
295 			PTR_ERR(soc_reg) == -EPROBE_DEFER ||
296 			PTR_ERR(pu_reg) == -EPROBE_DEFER) {
297 		ret = -EPROBE_DEFER;
298 		dev_dbg(cpu_dev, "regulators not ready, defer\n");
299 		goto put_reg;
300 	}
301 	if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
302 		dev_err(cpu_dev, "failed to get regulators\n");
303 		ret = -ENOENT;
304 		goto put_reg;
305 	}
306 
307 	ret = dev_pm_opp_of_add_table(cpu_dev);
308 	if (ret < 0) {
309 		dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
310 		goto put_reg;
311 	}
312 
313 	imx6q_opp_check_speed_grading(cpu_dev);
314 
315 	/* Because we have added the OPPs here, we must free them */
316 	free_opp = true;
317 	num = dev_pm_opp_get_opp_count(cpu_dev);
318 	if (num < 0) {
319 		ret = num;
320 		dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
321 		goto out_free_opp;
322 	}
323 
324 	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
325 	if (ret) {
326 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
327 		goto out_free_opp;
328 	}
329 
330 	/* Make imx6_soc_volt array's size same as arm opp number */
331 	imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
332 	if (imx6_soc_volt == NULL) {
333 		ret = -ENOMEM;
334 		goto free_freq_table;
335 	}
336 
337 	prop = of_find_property(np, "fsl,soc-operating-points", NULL);
338 	if (!prop || !prop->value)
339 		goto soc_opp_out;
340 
341 	/*
342 	 * Each OPP is a set of tuples consisting of frequency and
343 	 * voltage like <freq-kHz vol-uV>.
344 	 */
345 	nr = prop->length / sizeof(u32);
346 	if (nr % 2 || (nr / 2) < num)
347 		goto soc_opp_out;
348 
349 	for (j = 0; j < num; j++) {
350 		val = prop->value;
351 		for (i = 0; i < nr / 2; i++) {
352 			unsigned long freq = be32_to_cpup(val++);
353 			unsigned long volt = be32_to_cpup(val++);
354 			if (freq_table[j].frequency == freq) {
355 				imx6_soc_volt[soc_opp_count++] = volt;
356 				break;
357 			}
358 		}
359 	}
360 
361 soc_opp_out:
362 	/* use fixed soc opp volt if no valid soc opp info found in dtb */
363 	if (soc_opp_count != num) {
364 		dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
365 		for (j = 0; j < num; j++)
366 			imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
367 		if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
368 			imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
369 	}
370 
371 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
372 		transition_latency = CPUFREQ_ETERNAL;
373 
374 	/*
375 	 * Calculate the ramp time for max voltage change in the
376 	 * VDDSOC and VDDPU regulators.
377 	 */
378 	ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
379 	if (ret > 0)
380 		transition_latency += ret * 1000;
381 	if (!IS_ERR(pu_reg)) {
382 		ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
383 		if (ret > 0)
384 			transition_latency += ret * 1000;
385 	}
386 
387 	/*
388 	 * OPP is maintained in order of increasing frequency, and
389 	 * freq_table initialised from OPP is therefore sorted in the
390 	 * same order.
391 	 */
392 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
393 				  freq_table[0].frequency * 1000, true);
394 	min_volt = dev_pm_opp_get_voltage(opp);
395 	dev_pm_opp_put(opp);
396 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
397 				  freq_table[--num].frequency * 1000, true);
398 	max_volt = dev_pm_opp_get_voltage(opp);
399 	dev_pm_opp_put(opp);
400 
401 	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
402 	if (ret > 0)
403 		transition_latency += ret * 1000;
404 
405 	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
406 	if (ret) {
407 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
408 		goto free_freq_table;
409 	}
410 
411 	of_node_put(np);
412 	return 0;
413 
414 free_freq_table:
415 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
416 out_free_opp:
417 	if (free_opp)
418 		dev_pm_opp_of_remove_table(cpu_dev);
419 put_reg:
420 	if (!IS_ERR(arm_reg))
421 		regulator_put(arm_reg);
422 	if (!IS_ERR(pu_reg))
423 		regulator_put(pu_reg);
424 	if (!IS_ERR(soc_reg))
425 		regulator_put(soc_reg);
426 put_clk:
427 	if (!IS_ERR(arm_clk))
428 		clk_put(arm_clk);
429 	if (!IS_ERR(pll1_sys_clk))
430 		clk_put(pll1_sys_clk);
431 	if (!IS_ERR(pll1_sw_clk))
432 		clk_put(pll1_sw_clk);
433 	if (!IS_ERR(step_clk))
434 		clk_put(step_clk);
435 	if (!IS_ERR(pll2_pfd2_396m_clk))
436 		clk_put(pll2_pfd2_396m_clk);
437 	if (!IS_ERR(pll2_bus_clk))
438 		clk_put(pll2_bus_clk);
439 	if (!IS_ERR(secondary_sel_clk))
440 		clk_put(secondary_sel_clk);
441 	of_node_put(np);
442 	return ret;
443 }
444 
445 static int imx6q_cpufreq_remove(struct platform_device *pdev)
446 {
447 	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
448 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
449 	if (free_opp)
450 		dev_pm_opp_of_remove_table(cpu_dev);
451 	regulator_put(arm_reg);
452 	if (!IS_ERR(pu_reg))
453 		regulator_put(pu_reg);
454 	regulator_put(soc_reg);
455 	clk_put(arm_clk);
456 	clk_put(pll1_sys_clk);
457 	clk_put(pll1_sw_clk);
458 	clk_put(step_clk);
459 	clk_put(pll2_pfd2_396m_clk);
460 	clk_put(pll2_bus_clk);
461 	clk_put(secondary_sel_clk);
462 
463 	return 0;
464 }
465 
466 static struct platform_driver imx6q_cpufreq_platdrv = {
467 	.driver = {
468 		.name	= "imx6q-cpufreq",
469 	},
470 	.probe		= imx6q_cpufreq_probe,
471 	.remove		= imx6q_cpufreq_remove,
472 };
473 module_platform_driver(imx6q_cpufreq_platdrv);
474 
475 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
476 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
477 MODULE_LICENSE("GPL");
478