xref: /openbmc/linux/drivers/cpufreq/imx6q-cpufreq.c (revision c127f98ba9aba1818a6ca3a1da5a24653a10d966)
1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/pm_opp.h>
17 #include <linux/platform_device.h>
18 #include <linux/regulator/consumer.h>
19 
20 #define PU_SOC_VOLTAGE_NORMAL	1250000
21 #define PU_SOC_VOLTAGE_HIGH	1275000
22 #define FREQ_1P2_GHZ		1200000000
23 
24 static struct regulator *arm_reg;
25 static struct regulator *pu_reg;
26 static struct regulator *soc_reg;
27 
28 static struct clk *arm_clk;
29 static struct clk *pll1_sys_clk;
30 static struct clk *pll1_sw_clk;
31 static struct clk *step_clk;
32 static struct clk *pll2_pfd2_396m_clk;
33 
34 /* clk used by i.MX6UL */
35 static struct clk *pll2_bus_clk;
36 static struct clk *secondary_sel_clk;
37 
38 static struct device *cpu_dev;
39 static bool free_opp;
40 static struct cpufreq_frequency_table *freq_table;
41 static unsigned int transition_latency;
42 
43 static u32 *imx6_soc_volt;
44 static u32 soc_opp_count;
45 
46 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
47 {
48 	struct dev_pm_opp *opp;
49 	unsigned long freq_hz, volt, volt_old;
50 	unsigned int old_freq, new_freq;
51 	bool pll1_sys_temp_enabled = false;
52 	int ret;
53 
54 	new_freq = freq_table[index].frequency;
55 	freq_hz = new_freq * 1000;
56 	old_freq = clk_get_rate(arm_clk) / 1000;
57 
58 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
59 	if (IS_ERR(opp)) {
60 		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
61 		return PTR_ERR(opp);
62 	}
63 
64 	volt = dev_pm_opp_get_voltage(opp);
65 	dev_pm_opp_put(opp);
66 
67 	volt_old = regulator_get_voltage(arm_reg);
68 
69 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
70 		old_freq / 1000, volt_old / 1000,
71 		new_freq / 1000, volt / 1000);
72 
73 	/* scaling up?  scale voltage before frequency */
74 	if (new_freq > old_freq) {
75 		if (!IS_ERR(pu_reg)) {
76 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
77 			if (ret) {
78 				dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
79 				return ret;
80 			}
81 		}
82 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
83 		if (ret) {
84 			dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
85 			return ret;
86 		}
87 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
88 		if (ret) {
89 			dev_err(cpu_dev,
90 				"failed to scale vddarm up: %d\n", ret);
91 			return ret;
92 		}
93 	}
94 
95 	/*
96 	 * The setpoints are selected per PLL/PDF frequencies, so we need to
97 	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
98 	 * PLL1 is as below.
99 	 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
100 	 * flow is slightly different from other i.MX6 OSC.
101 	 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
102 	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
103 	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
104 	 *  - Disable pll2_pfd2_396m_clk
105 	 */
106 	if (of_machine_is_compatible("fsl,imx6ul") ||
107 	    of_machine_is_compatible("fsl,imx6ull")) {
108 		/*
109 		 * When changing pll1_sw_clk's parent to pll1_sys_clk,
110 		 * CPU may run at higher than 528MHz, this will lead to
111 		 * the system unstable if the voltage is lower than the
112 		 * voltage of 528MHz, so lower the CPU frequency to one
113 		 * half before changing CPU frequency.
114 		 */
115 		clk_set_rate(arm_clk, (old_freq >> 1) * 1000);
116 		clk_set_parent(pll1_sw_clk, pll1_sys_clk);
117 		if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk))
118 			clk_set_parent(secondary_sel_clk, pll2_bus_clk);
119 		else
120 			clk_set_parent(secondary_sel_clk, pll2_pfd2_396m_clk);
121 		clk_set_parent(step_clk, secondary_sel_clk);
122 		clk_set_parent(pll1_sw_clk, step_clk);
123 	} else {
124 		clk_set_parent(step_clk, pll2_pfd2_396m_clk);
125 		clk_set_parent(pll1_sw_clk, step_clk);
126 		if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
127 			clk_set_rate(pll1_sys_clk, new_freq * 1000);
128 			clk_set_parent(pll1_sw_clk, pll1_sys_clk);
129 		} else {
130 			/* pll1_sys needs to be enabled for divider rate change to work. */
131 			pll1_sys_temp_enabled = true;
132 			clk_prepare_enable(pll1_sys_clk);
133 		}
134 	}
135 
136 	/* Ensure the arm clock divider is what we expect */
137 	ret = clk_set_rate(arm_clk, new_freq * 1000);
138 	if (ret) {
139 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
140 		regulator_set_voltage_tol(arm_reg, volt_old, 0);
141 		return ret;
142 	}
143 
144 	/* PLL1 is only needed until after ARM-PODF is set. */
145 	if (pll1_sys_temp_enabled)
146 		clk_disable_unprepare(pll1_sys_clk);
147 
148 	/* scaling down?  scale voltage after frequency */
149 	if (new_freq < old_freq) {
150 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
151 		if (ret) {
152 			dev_warn(cpu_dev,
153 				 "failed to scale vddarm down: %d\n", ret);
154 			ret = 0;
155 		}
156 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
157 		if (ret) {
158 			dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
159 			ret = 0;
160 		}
161 		if (!IS_ERR(pu_reg)) {
162 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
163 			if (ret) {
164 				dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
165 				ret = 0;
166 			}
167 		}
168 	}
169 
170 	return 0;
171 }
172 
173 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
174 {
175 	int ret;
176 
177 	policy->clk = arm_clk;
178 	ret = cpufreq_generic_init(policy, freq_table, transition_latency);
179 	policy->suspend_freq = policy->max;
180 
181 	return ret;
182 }
183 
184 static struct cpufreq_driver imx6q_cpufreq_driver = {
185 	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
186 	.verify = cpufreq_generic_frequency_table_verify,
187 	.target_index = imx6q_set_target,
188 	.get = cpufreq_generic_get,
189 	.init = imx6q_cpufreq_init,
190 	.name = "imx6q-cpufreq",
191 	.attr = cpufreq_generic_attr,
192 	.suspend = cpufreq_generic_suspend,
193 };
194 
195 #define OCOTP_CFG3			0x440
196 #define OCOTP_CFG3_SPEED_SHIFT		16
197 #define OCOTP_CFG3_SPEED_1P2GHZ		0x3
198 #define OCOTP_CFG3_SPEED_996MHZ		0x2
199 #define OCOTP_CFG3_SPEED_852MHZ		0x1
200 
201 static void imx6q_opp_check_speed_grading(struct device *dev)
202 {
203 	struct device_node *np;
204 	void __iomem *base;
205 	u32 val;
206 
207 	np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp");
208 	if (!np)
209 		return;
210 
211 	base = of_iomap(np, 0);
212 	if (!base) {
213 		dev_err(dev, "failed to map ocotp\n");
214 		goto put_node;
215 	}
216 
217 	/*
218 	 * SPEED_GRADING[1:0] defines the max speed of ARM:
219 	 * 2b'11: 1200000000Hz;
220 	 * 2b'10: 996000000Hz;
221 	 * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
222 	 * 2b'00: 792000000Hz;
223 	 * We need to set the max speed of ARM according to fuse map.
224 	 */
225 	val = readl_relaxed(base + OCOTP_CFG3);
226 	val >>= OCOTP_CFG3_SPEED_SHIFT;
227 	val &= 0x3;
228 
229 	if (val < OCOTP_CFG3_SPEED_996MHZ)
230 		if (dev_pm_opp_disable(dev, 996000000))
231 			dev_warn(dev, "failed to disable 996MHz OPP\n");
232 
233 	if (of_machine_is_compatible("fsl,imx6q") ||
234 	    of_machine_is_compatible("fsl,imx6qp")) {
235 		if (val != OCOTP_CFG3_SPEED_852MHZ)
236 			if (dev_pm_opp_disable(dev, 852000000))
237 				dev_warn(dev, "failed to disable 852MHz OPP\n");
238 		if (val != OCOTP_CFG3_SPEED_1P2GHZ)
239 			if (dev_pm_opp_disable(dev, 1200000000))
240 				dev_warn(dev, "failed to disable 1.2GHz OPP\n");
241 	}
242 	iounmap(base);
243 put_node:
244 	of_node_put(np);
245 }
246 
247 static int imx6q_cpufreq_probe(struct platform_device *pdev)
248 {
249 	struct device_node *np;
250 	struct dev_pm_opp *opp;
251 	unsigned long min_volt, max_volt;
252 	int num, ret;
253 	const struct property *prop;
254 	const __be32 *val;
255 	u32 nr, i, j;
256 
257 	cpu_dev = get_cpu_device(0);
258 	if (!cpu_dev) {
259 		pr_err("failed to get cpu0 device\n");
260 		return -ENODEV;
261 	}
262 
263 	np = of_node_get(cpu_dev->of_node);
264 	if (!np) {
265 		dev_err(cpu_dev, "failed to find cpu0 node\n");
266 		return -ENOENT;
267 	}
268 
269 	arm_clk = clk_get(cpu_dev, "arm");
270 	pll1_sys_clk = clk_get(cpu_dev, "pll1_sys");
271 	pll1_sw_clk = clk_get(cpu_dev, "pll1_sw");
272 	step_clk = clk_get(cpu_dev, "step");
273 	pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m");
274 	if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
275 	    IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
276 		dev_err(cpu_dev, "failed to get clocks\n");
277 		ret = -ENOENT;
278 		goto put_clk;
279 	}
280 
281 	if (of_machine_is_compatible("fsl,imx6ul") ||
282 	    of_machine_is_compatible("fsl,imx6ull")) {
283 		pll2_bus_clk = clk_get(cpu_dev, "pll2_bus");
284 		secondary_sel_clk = clk_get(cpu_dev, "secondary_sel");
285 		if (IS_ERR(pll2_bus_clk) || IS_ERR(secondary_sel_clk)) {
286 			dev_err(cpu_dev, "failed to get clocks specific to imx6ul\n");
287 			ret = -ENOENT;
288 			goto put_clk;
289 		}
290 	}
291 
292 	arm_reg = regulator_get(cpu_dev, "arm");
293 	pu_reg = regulator_get_optional(cpu_dev, "pu");
294 	soc_reg = regulator_get(cpu_dev, "soc");
295 	if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
296 			PTR_ERR(soc_reg) == -EPROBE_DEFER ||
297 			PTR_ERR(pu_reg) == -EPROBE_DEFER) {
298 		ret = -EPROBE_DEFER;
299 		dev_dbg(cpu_dev, "regulators not ready, defer\n");
300 		goto put_reg;
301 	}
302 	if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
303 		dev_err(cpu_dev, "failed to get regulators\n");
304 		ret = -ENOENT;
305 		goto put_reg;
306 	}
307 
308 	ret = dev_pm_opp_of_add_table(cpu_dev);
309 	if (ret < 0) {
310 		dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
311 		goto put_reg;
312 	}
313 
314 	imx6q_opp_check_speed_grading(cpu_dev);
315 
316 	/* Because we have added the OPPs here, we must free them */
317 	free_opp = true;
318 	num = dev_pm_opp_get_opp_count(cpu_dev);
319 	if (num < 0) {
320 		ret = num;
321 		dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
322 		goto out_free_opp;
323 	}
324 
325 	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
326 	if (ret) {
327 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
328 		goto out_free_opp;
329 	}
330 
331 	/* Make imx6_soc_volt array's size same as arm opp number */
332 	imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
333 	if (imx6_soc_volt == NULL) {
334 		ret = -ENOMEM;
335 		goto free_freq_table;
336 	}
337 
338 	prop = of_find_property(np, "fsl,soc-operating-points", NULL);
339 	if (!prop || !prop->value)
340 		goto soc_opp_out;
341 
342 	/*
343 	 * Each OPP is a set of tuples consisting of frequency and
344 	 * voltage like <freq-kHz vol-uV>.
345 	 */
346 	nr = prop->length / sizeof(u32);
347 	if (nr % 2 || (nr / 2) < num)
348 		goto soc_opp_out;
349 
350 	for (j = 0; j < num; j++) {
351 		val = prop->value;
352 		for (i = 0; i < nr / 2; i++) {
353 			unsigned long freq = be32_to_cpup(val++);
354 			unsigned long volt = be32_to_cpup(val++);
355 			if (freq_table[j].frequency == freq) {
356 				imx6_soc_volt[soc_opp_count++] = volt;
357 				break;
358 			}
359 		}
360 	}
361 
362 soc_opp_out:
363 	/* use fixed soc opp volt if no valid soc opp info found in dtb */
364 	if (soc_opp_count != num) {
365 		dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
366 		for (j = 0; j < num; j++)
367 			imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
368 		if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
369 			imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
370 	}
371 
372 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
373 		transition_latency = CPUFREQ_ETERNAL;
374 
375 	/*
376 	 * Calculate the ramp time for max voltage change in the
377 	 * VDDSOC and VDDPU regulators.
378 	 */
379 	ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
380 	if (ret > 0)
381 		transition_latency += ret * 1000;
382 	if (!IS_ERR(pu_reg)) {
383 		ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
384 		if (ret > 0)
385 			transition_latency += ret * 1000;
386 	}
387 
388 	/*
389 	 * OPP is maintained in order of increasing frequency, and
390 	 * freq_table initialised from OPP is therefore sorted in the
391 	 * same order.
392 	 */
393 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
394 				  freq_table[0].frequency * 1000, true);
395 	min_volt = dev_pm_opp_get_voltage(opp);
396 	dev_pm_opp_put(opp);
397 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
398 				  freq_table[--num].frequency * 1000, true);
399 	max_volt = dev_pm_opp_get_voltage(opp);
400 	dev_pm_opp_put(opp);
401 
402 	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
403 	if (ret > 0)
404 		transition_latency += ret * 1000;
405 
406 	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
407 	if (ret) {
408 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
409 		goto free_freq_table;
410 	}
411 
412 	of_node_put(np);
413 	return 0;
414 
415 free_freq_table:
416 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
417 out_free_opp:
418 	if (free_opp)
419 		dev_pm_opp_of_remove_table(cpu_dev);
420 put_reg:
421 	if (!IS_ERR(arm_reg))
422 		regulator_put(arm_reg);
423 	if (!IS_ERR(pu_reg))
424 		regulator_put(pu_reg);
425 	if (!IS_ERR(soc_reg))
426 		regulator_put(soc_reg);
427 put_clk:
428 	if (!IS_ERR(arm_clk))
429 		clk_put(arm_clk);
430 	if (!IS_ERR(pll1_sys_clk))
431 		clk_put(pll1_sys_clk);
432 	if (!IS_ERR(pll1_sw_clk))
433 		clk_put(pll1_sw_clk);
434 	if (!IS_ERR(step_clk))
435 		clk_put(step_clk);
436 	if (!IS_ERR(pll2_pfd2_396m_clk))
437 		clk_put(pll2_pfd2_396m_clk);
438 	if (!IS_ERR(pll2_bus_clk))
439 		clk_put(pll2_bus_clk);
440 	if (!IS_ERR(secondary_sel_clk))
441 		clk_put(secondary_sel_clk);
442 	of_node_put(np);
443 	return ret;
444 }
445 
446 static int imx6q_cpufreq_remove(struct platform_device *pdev)
447 {
448 	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
449 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
450 	if (free_opp)
451 		dev_pm_opp_of_remove_table(cpu_dev);
452 	regulator_put(arm_reg);
453 	if (!IS_ERR(pu_reg))
454 		regulator_put(pu_reg);
455 	regulator_put(soc_reg);
456 	clk_put(arm_clk);
457 	clk_put(pll1_sys_clk);
458 	clk_put(pll1_sw_clk);
459 	clk_put(step_clk);
460 	clk_put(pll2_pfd2_396m_clk);
461 	clk_put(pll2_bus_clk);
462 	clk_put(secondary_sel_clk);
463 
464 	return 0;
465 }
466 
467 static struct platform_driver imx6q_cpufreq_platdrv = {
468 	.driver = {
469 		.name	= "imx6q-cpufreq",
470 	},
471 	.probe		= imx6q_cpufreq_probe,
472 	.remove		= imx6q_cpufreq_remove,
473 };
474 module_platform_driver(imx6q_cpufreq_platdrv);
475 
476 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
477 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
478 MODULE_LICENSE("GPL");
479