xref: /openbmc/linux/drivers/cpufreq/imx6q-cpufreq.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/pm_opp.h>
16 #include <linux/platform_device.h>
17 #include <linux/regulator/consumer.h>
18 
19 #define PU_SOC_VOLTAGE_NORMAL	1250000
20 #define PU_SOC_VOLTAGE_HIGH	1275000
21 #define FREQ_1P2_GHZ		1200000000
22 
23 static struct regulator *arm_reg;
24 static struct regulator *pu_reg;
25 static struct regulator *soc_reg;
26 
27 static struct clk *arm_clk;
28 static struct clk *pll1_sys_clk;
29 static struct clk *pll1_sw_clk;
30 static struct clk *step_clk;
31 static struct clk *pll2_pfd2_396m_clk;
32 
33 /* clk used by i.MX6UL */
34 static struct clk *pll2_bus_clk;
35 static struct clk *secondary_sel_clk;
36 
37 static struct device *cpu_dev;
38 static bool free_opp;
39 static struct cpufreq_frequency_table *freq_table;
40 static unsigned int transition_latency;
41 
42 static u32 *imx6_soc_volt;
43 static u32 soc_opp_count;
44 
45 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
46 {
47 	struct dev_pm_opp *opp;
48 	unsigned long freq_hz, volt, volt_old;
49 	unsigned int old_freq, new_freq;
50 	bool pll1_sys_temp_enabled = false;
51 	int ret;
52 
53 	new_freq = freq_table[index].frequency;
54 	freq_hz = new_freq * 1000;
55 	old_freq = clk_get_rate(arm_clk) / 1000;
56 
57 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
58 	if (IS_ERR(opp)) {
59 		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
60 		return PTR_ERR(opp);
61 	}
62 
63 	volt = dev_pm_opp_get_voltage(opp);
64 	dev_pm_opp_put(opp);
65 
66 	volt_old = regulator_get_voltage(arm_reg);
67 
68 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
69 		old_freq / 1000, volt_old / 1000,
70 		new_freq / 1000, volt / 1000);
71 
72 	/* scaling up?  scale voltage before frequency */
73 	if (new_freq > old_freq) {
74 		if (!IS_ERR(pu_reg)) {
75 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
76 			if (ret) {
77 				dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
78 				return ret;
79 			}
80 		}
81 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
82 		if (ret) {
83 			dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
84 			return ret;
85 		}
86 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
87 		if (ret) {
88 			dev_err(cpu_dev,
89 				"failed to scale vddarm up: %d\n", ret);
90 			return ret;
91 		}
92 	}
93 
94 	/*
95 	 * The setpoints are selected per PLL/PDF frequencies, so we need to
96 	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
97 	 * PLL1 is as below.
98 	 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
99 	 * flow is slightly different from other i.MX6 OSC.
100 	 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
101 	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
102 	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
103 	 *  - Disable pll2_pfd2_396m_clk
104 	 */
105 	if (of_machine_is_compatible("fsl,imx6ul") ||
106 	    of_machine_is_compatible("fsl,imx6ull")) {
107 		/*
108 		 * When changing pll1_sw_clk's parent to pll1_sys_clk,
109 		 * CPU may run at higher than 528MHz, this will lead to
110 		 * the system unstable if the voltage is lower than the
111 		 * voltage of 528MHz, so lower the CPU frequency to one
112 		 * half before changing CPU frequency.
113 		 */
114 		clk_set_rate(arm_clk, (old_freq >> 1) * 1000);
115 		clk_set_parent(pll1_sw_clk, pll1_sys_clk);
116 		if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk))
117 			clk_set_parent(secondary_sel_clk, pll2_bus_clk);
118 		else
119 			clk_set_parent(secondary_sel_clk, pll2_pfd2_396m_clk);
120 		clk_set_parent(step_clk, secondary_sel_clk);
121 		clk_set_parent(pll1_sw_clk, step_clk);
122 	} else {
123 		clk_set_parent(step_clk, pll2_pfd2_396m_clk);
124 		clk_set_parent(pll1_sw_clk, step_clk);
125 		if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
126 			clk_set_rate(pll1_sys_clk, new_freq * 1000);
127 			clk_set_parent(pll1_sw_clk, pll1_sys_clk);
128 		} else {
129 			/* pll1_sys needs to be enabled for divider rate change to work. */
130 			pll1_sys_temp_enabled = true;
131 			clk_prepare_enable(pll1_sys_clk);
132 		}
133 	}
134 
135 	/* Ensure the arm clock divider is what we expect */
136 	ret = clk_set_rate(arm_clk, new_freq * 1000);
137 	if (ret) {
138 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
139 		regulator_set_voltage_tol(arm_reg, volt_old, 0);
140 		return ret;
141 	}
142 
143 	/* PLL1 is only needed until after ARM-PODF is set. */
144 	if (pll1_sys_temp_enabled)
145 		clk_disable_unprepare(pll1_sys_clk);
146 
147 	/* scaling down?  scale voltage after frequency */
148 	if (new_freq < old_freq) {
149 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
150 		if (ret) {
151 			dev_warn(cpu_dev,
152 				 "failed to scale vddarm down: %d\n", ret);
153 			ret = 0;
154 		}
155 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
156 		if (ret) {
157 			dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
158 			ret = 0;
159 		}
160 		if (!IS_ERR(pu_reg)) {
161 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
162 			if (ret) {
163 				dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
164 				ret = 0;
165 			}
166 		}
167 	}
168 
169 	return 0;
170 }
171 
172 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
173 {
174 	int ret;
175 
176 	policy->clk = arm_clk;
177 	ret = cpufreq_generic_init(policy, freq_table, transition_latency);
178 	policy->suspend_freq = policy->max;
179 
180 	return ret;
181 }
182 
183 static struct cpufreq_driver imx6q_cpufreq_driver = {
184 	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
185 	.verify = cpufreq_generic_frequency_table_verify,
186 	.target_index = imx6q_set_target,
187 	.get = cpufreq_generic_get,
188 	.init = imx6q_cpufreq_init,
189 	.name = "imx6q-cpufreq",
190 	.attr = cpufreq_generic_attr,
191 	.suspend = cpufreq_generic_suspend,
192 };
193 
194 static int imx6q_cpufreq_probe(struct platform_device *pdev)
195 {
196 	struct device_node *np;
197 	struct dev_pm_opp *opp;
198 	unsigned long min_volt, max_volt;
199 	int num, ret;
200 	const struct property *prop;
201 	const __be32 *val;
202 	u32 nr, i, j;
203 
204 	cpu_dev = get_cpu_device(0);
205 	if (!cpu_dev) {
206 		pr_err("failed to get cpu0 device\n");
207 		return -ENODEV;
208 	}
209 
210 	np = of_node_get(cpu_dev->of_node);
211 	if (!np) {
212 		dev_err(cpu_dev, "failed to find cpu0 node\n");
213 		return -ENOENT;
214 	}
215 
216 	arm_clk = clk_get(cpu_dev, "arm");
217 	pll1_sys_clk = clk_get(cpu_dev, "pll1_sys");
218 	pll1_sw_clk = clk_get(cpu_dev, "pll1_sw");
219 	step_clk = clk_get(cpu_dev, "step");
220 	pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m");
221 	if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
222 	    IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
223 		dev_err(cpu_dev, "failed to get clocks\n");
224 		ret = -ENOENT;
225 		goto put_clk;
226 	}
227 
228 	if (of_machine_is_compatible("fsl,imx6ul") ||
229 	    of_machine_is_compatible("fsl,imx6ull")) {
230 		pll2_bus_clk = clk_get(cpu_dev, "pll2_bus");
231 		secondary_sel_clk = clk_get(cpu_dev, "secondary_sel");
232 		if (IS_ERR(pll2_bus_clk) || IS_ERR(secondary_sel_clk)) {
233 			dev_err(cpu_dev, "failed to get clocks specific to imx6ul\n");
234 			ret = -ENOENT;
235 			goto put_clk;
236 		}
237 	}
238 
239 	arm_reg = regulator_get(cpu_dev, "arm");
240 	pu_reg = regulator_get_optional(cpu_dev, "pu");
241 	soc_reg = regulator_get(cpu_dev, "soc");
242 	if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
243 			PTR_ERR(soc_reg) == -EPROBE_DEFER ||
244 			PTR_ERR(pu_reg) == -EPROBE_DEFER) {
245 		ret = -EPROBE_DEFER;
246 		dev_dbg(cpu_dev, "regulators not ready, defer\n");
247 		goto put_reg;
248 	}
249 	if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
250 		dev_err(cpu_dev, "failed to get regulators\n");
251 		ret = -ENOENT;
252 		goto put_reg;
253 	}
254 
255 	/*
256 	 * We expect an OPP table supplied by platform.
257 	 * Just, incase the platform did not supply the OPP
258 	 * table, it will try to get it.
259 	 */
260 	num = dev_pm_opp_get_opp_count(cpu_dev);
261 	if (num < 0) {
262 		ret = dev_pm_opp_of_add_table(cpu_dev);
263 		if (ret < 0) {
264 			dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
265 			goto put_reg;
266 		}
267 
268 		/* Because we have added the OPPs here, we must free them */
269 		free_opp = true;
270 
271 		num = dev_pm_opp_get_opp_count(cpu_dev);
272 		if (num < 0) {
273 			ret = num;
274 			dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
275 			goto out_free_opp;
276 		}
277 	}
278 
279 	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
280 	if (ret) {
281 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
282 		goto out_free_opp;
283 	}
284 
285 	/* Make imx6_soc_volt array's size same as arm opp number */
286 	imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
287 	if (imx6_soc_volt == NULL) {
288 		ret = -ENOMEM;
289 		goto free_freq_table;
290 	}
291 
292 	prop = of_find_property(np, "fsl,soc-operating-points", NULL);
293 	if (!prop || !prop->value)
294 		goto soc_opp_out;
295 
296 	/*
297 	 * Each OPP is a set of tuples consisting of frequency and
298 	 * voltage like <freq-kHz vol-uV>.
299 	 */
300 	nr = prop->length / sizeof(u32);
301 	if (nr % 2 || (nr / 2) < num)
302 		goto soc_opp_out;
303 
304 	for (j = 0; j < num; j++) {
305 		val = prop->value;
306 		for (i = 0; i < nr / 2; i++) {
307 			unsigned long freq = be32_to_cpup(val++);
308 			unsigned long volt = be32_to_cpup(val++);
309 			if (freq_table[j].frequency == freq) {
310 				imx6_soc_volt[soc_opp_count++] = volt;
311 				break;
312 			}
313 		}
314 	}
315 
316 soc_opp_out:
317 	/* use fixed soc opp volt if no valid soc opp info found in dtb */
318 	if (soc_opp_count != num) {
319 		dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
320 		for (j = 0; j < num; j++)
321 			imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
322 		if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
323 			imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
324 	}
325 
326 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
327 		transition_latency = CPUFREQ_ETERNAL;
328 
329 	/*
330 	 * Calculate the ramp time for max voltage change in the
331 	 * VDDSOC and VDDPU regulators.
332 	 */
333 	ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
334 	if (ret > 0)
335 		transition_latency += ret * 1000;
336 	if (!IS_ERR(pu_reg)) {
337 		ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
338 		if (ret > 0)
339 			transition_latency += ret * 1000;
340 	}
341 
342 	/*
343 	 * OPP is maintained in order of increasing frequency, and
344 	 * freq_table initialised from OPP is therefore sorted in the
345 	 * same order.
346 	 */
347 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
348 				  freq_table[0].frequency * 1000, true);
349 	min_volt = dev_pm_opp_get_voltage(opp);
350 	dev_pm_opp_put(opp);
351 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
352 				  freq_table[--num].frequency * 1000, true);
353 	max_volt = dev_pm_opp_get_voltage(opp);
354 	dev_pm_opp_put(opp);
355 
356 	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
357 	if (ret > 0)
358 		transition_latency += ret * 1000;
359 
360 	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
361 	if (ret) {
362 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
363 		goto free_freq_table;
364 	}
365 
366 	of_node_put(np);
367 	return 0;
368 
369 free_freq_table:
370 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
371 out_free_opp:
372 	if (free_opp)
373 		dev_pm_opp_of_remove_table(cpu_dev);
374 put_reg:
375 	if (!IS_ERR(arm_reg))
376 		regulator_put(arm_reg);
377 	if (!IS_ERR(pu_reg))
378 		regulator_put(pu_reg);
379 	if (!IS_ERR(soc_reg))
380 		regulator_put(soc_reg);
381 put_clk:
382 	if (!IS_ERR(arm_clk))
383 		clk_put(arm_clk);
384 	if (!IS_ERR(pll1_sys_clk))
385 		clk_put(pll1_sys_clk);
386 	if (!IS_ERR(pll1_sw_clk))
387 		clk_put(pll1_sw_clk);
388 	if (!IS_ERR(step_clk))
389 		clk_put(step_clk);
390 	if (!IS_ERR(pll2_pfd2_396m_clk))
391 		clk_put(pll2_pfd2_396m_clk);
392 	if (!IS_ERR(pll2_bus_clk))
393 		clk_put(pll2_bus_clk);
394 	if (!IS_ERR(secondary_sel_clk))
395 		clk_put(secondary_sel_clk);
396 	of_node_put(np);
397 	return ret;
398 }
399 
400 static int imx6q_cpufreq_remove(struct platform_device *pdev)
401 {
402 	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
403 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
404 	if (free_opp)
405 		dev_pm_opp_of_remove_table(cpu_dev);
406 	regulator_put(arm_reg);
407 	if (!IS_ERR(pu_reg))
408 		regulator_put(pu_reg);
409 	regulator_put(soc_reg);
410 	clk_put(arm_clk);
411 	clk_put(pll1_sys_clk);
412 	clk_put(pll1_sw_clk);
413 	clk_put(step_clk);
414 	clk_put(pll2_pfd2_396m_clk);
415 	clk_put(pll2_bus_clk);
416 	clk_put(secondary_sel_clk);
417 
418 	return 0;
419 }
420 
421 static struct platform_driver imx6q_cpufreq_platdrv = {
422 	.driver = {
423 		.name	= "imx6q-cpufreq",
424 	},
425 	.probe		= imx6q_cpufreq_probe,
426 	.remove		= imx6q_cpufreq_remove,
427 };
428 module_platform_driver(imx6q_cpufreq_platdrv);
429 
430 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
431 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
432 MODULE_LICENSE("GPL");
433