xref: /openbmc/linux/drivers/cpufreq/imx6q-cpufreq.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/pm_opp.h>
17 #include <linux/platform_device.h>
18 #include <linux/regulator/consumer.h>
19 
20 #define PU_SOC_VOLTAGE_NORMAL	1250000
21 #define PU_SOC_VOLTAGE_HIGH	1275000
22 #define FREQ_1P2_GHZ		1200000000
23 
24 static struct regulator *arm_reg;
25 static struct regulator *pu_reg;
26 static struct regulator *soc_reg;
27 
28 enum IMX6_CPUFREQ_CLKS {
29 	ARM,
30 	PLL1_SYS,
31 	STEP,
32 	PLL1_SW,
33 	PLL2_PFD2_396M,
34 	/* MX6UL requires two more clks */
35 	PLL2_BUS,
36 	SECONDARY_SEL,
37 };
38 #define IMX6Q_CPUFREQ_CLK_NUM		5
39 #define IMX6UL_CPUFREQ_CLK_NUM		7
40 
41 static int num_clks;
42 static struct clk_bulk_data clks[] = {
43 	{ .id = "arm" },
44 	{ .id = "pll1_sys" },
45 	{ .id = "step" },
46 	{ .id = "pll1_sw" },
47 	{ .id = "pll2_pfd2_396m" },
48 	{ .id = "pll2_bus" },
49 	{ .id = "secondary_sel" },
50 };
51 
52 static struct device *cpu_dev;
53 static bool free_opp;
54 static struct cpufreq_frequency_table *freq_table;
55 static unsigned int max_freq;
56 static unsigned int transition_latency;
57 
58 static u32 *imx6_soc_volt;
59 static u32 soc_opp_count;
60 
61 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
62 {
63 	struct dev_pm_opp *opp;
64 	unsigned long freq_hz, volt, volt_old;
65 	unsigned int old_freq, new_freq;
66 	bool pll1_sys_temp_enabled = false;
67 	int ret;
68 
69 	new_freq = freq_table[index].frequency;
70 	freq_hz = new_freq * 1000;
71 	old_freq = clk_get_rate(clks[ARM].clk) / 1000;
72 
73 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
74 	if (IS_ERR(opp)) {
75 		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
76 		return PTR_ERR(opp);
77 	}
78 
79 	volt = dev_pm_opp_get_voltage(opp);
80 	dev_pm_opp_put(opp);
81 
82 	volt_old = regulator_get_voltage(arm_reg);
83 
84 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
85 		old_freq / 1000, volt_old / 1000,
86 		new_freq / 1000, volt / 1000);
87 
88 	/* scaling up?  scale voltage before frequency */
89 	if (new_freq > old_freq) {
90 		if (!IS_ERR(pu_reg)) {
91 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
92 			if (ret) {
93 				dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
94 				return ret;
95 			}
96 		}
97 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
98 		if (ret) {
99 			dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
100 			return ret;
101 		}
102 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
103 		if (ret) {
104 			dev_err(cpu_dev,
105 				"failed to scale vddarm up: %d\n", ret);
106 			return ret;
107 		}
108 	}
109 
110 	/*
111 	 * The setpoints are selected per PLL/PDF frequencies, so we need to
112 	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
113 	 * PLL1 is as below.
114 	 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
115 	 * flow is slightly different from other i.MX6 OSC.
116 	 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
117 	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
118 	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
119 	 *  - Disable pll2_pfd2_396m_clk
120 	 */
121 	if (of_machine_is_compatible("fsl,imx6ul") ||
122 	    of_machine_is_compatible("fsl,imx6ull")) {
123 		/*
124 		 * When changing pll1_sw_clk's parent to pll1_sys_clk,
125 		 * CPU may run at higher than 528MHz, this will lead to
126 		 * the system unstable if the voltage is lower than the
127 		 * voltage of 528MHz, so lower the CPU frequency to one
128 		 * half before changing CPU frequency.
129 		 */
130 		clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
131 		clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
132 		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
133 			clk_set_parent(clks[SECONDARY_SEL].clk,
134 				       clks[PLL2_BUS].clk);
135 		else
136 			clk_set_parent(clks[SECONDARY_SEL].clk,
137 				       clks[PLL2_PFD2_396M].clk);
138 		clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
139 		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
140 		if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
141 			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
142 			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
143 		}
144 	} else {
145 		clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
146 		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
147 		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
148 			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
149 			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
150 		} else {
151 			/* pll1_sys needs to be enabled for divider rate change to work. */
152 			pll1_sys_temp_enabled = true;
153 			clk_prepare_enable(clks[PLL1_SYS].clk);
154 		}
155 	}
156 
157 	/* Ensure the arm clock divider is what we expect */
158 	ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
159 	if (ret) {
160 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
161 		regulator_set_voltage_tol(arm_reg, volt_old, 0);
162 		return ret;
163 	}
164 
165 	/* PLL1 is only needed until after ARM-PODF is set. */
166 	if (pll1_sys_temp_enabled)
167 		clk_disable_unprepare(clks[PLL1_SYS].clk);
168 
169 	/* scaling down?  scale voltage after frequency */
170 	if (new_freq < old_freq) {
171 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
172 		if (ret) {
173 			dev_warn(cpu_dev,
174 				 "failed to scale vddarm down: %d\n", ret);
175 			ret = 0;
176 		}
177 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
178 		if (ret) {
179 			dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
180 			ret = 0;
181 		}
182 		if (!IS_ERR(pu_reg)) {
183 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
184 			if (ret) {
185 				dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
186 				ret = 0;
187 			}
188 		}
189 	}
190 
191 	return 0;
192 }
193 
194 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
195 {
196 	int ret;
197 
198 	policy->clk = clks[ARM].clk;
199 	ret = cpufreq_generic_init(policy, freq_table, transition_latency);
200 	policy->suspend_freq = max_freq;
201 
202 	return ret;
203 }
204 
205 static struct cpufreq_driver imx6q_cpufreq_driver = {
206 	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
207 	.verify = cpufreq_generic_frequency_table_verify,
208 	.target_index = imx6q_set_target,
209 	.get = cpufreq_generic_get,
210 	.init = imx6q_cpufreq_init,
211 	.name = "imx6q-cpufreq",
212 	.attr = cpufreq_generic_attr,
213 	.suspend = cpufreq_generic_suspend,
214 };
215 
216 #define OCOTP_CFG3			0x440
217 #define OCOTP_CFG3_SPEED_SHIFT		16
218 #define OCOTP_CFG3_SPEED_1P2GHZ		0x3
219 #define OCOTP_CFG3_SPEED_996MHZ		0x2
220 #define OCOTP_CFG3_SPEED_852MHZ		0x1
221 
222 static void imx6q_opp_check_speed_grading(struct device *dev)
223 {
224 	struct device_node *np;
225 	void __iomem *base;
226 	u32 val;
227 
228 	np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp");
229 	if (!np)
230 		return;
231 
232 	base = of_iomap(np, 0);
233 	if (!base) {
234 		dev_err(dev, "failed to map ocotp\n");
235 		goto put_node;
236 	}
237 
238 	/*
239 	 * SPEED_GRADING[1:0] defines the max speed of ARM:
240 	 * 2b'11: 1200000000Hz;
241 	 * 2b'10: 996000000Hz;
242 	 * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
243 	 * 2b'00: 792000000Hz;
244 	 * We need to set the max speed of ARM according to fuse map.
245 	 */
246 	val = readl_relaxed(base + OCOTP_CFG3);
247 	val >>= OCOTP_CFG3_SPEED_SHIFT;
248 	val &= 0x3;
249 
250 	if (val < OCOTP_CFG3_SPEED_996MHZ)
251 		if (dev_pm_opp_disable(dev, 996000000))
252 			dev_warn(dev, "failed to disable 996MHz OPP\n");
253 
254 	if (of_machine_is_compatible("fsl,imx6q") ||
255 	    of_machine_is_compatible("fsl,imx6qp")) {
256 		if (val != OCOTP_CFG3_SPEED_852MHZ)
257 			if (dev_pm_opp_disable(dev, 852000000))
258 				dev_warn(dev, "failed to disable 852MHz OPP\n");
259 		if (val != OCOTP_CFG3_SPEED_1P2GHZ)
260 			if (dev_pm_opp_disable(dev, 1200000000))
261 				dev_warn(dev, "failed to disable 1.2GHz OPP\n");
262 	}
263 	iounmap(base);
264 put_node:
265 	of_node_put(np);
266 }
267 
268 #define OCOTP_CFG3_6UL_SPEED_696MHZ	0x2
269 
270 static void imx6ul_opp_check_speed_grading(struct device *dev)
271 {
272 	struct device_node *np;
273 	void __iomem *base;
274 	u32 val;
275 
276 	np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp");
277 	if (!np)
278 		return;
279 
280 	base = of_iomap(np, 0);
281 	if (!base) {
282 		dev_err(dev, "failed to map ocotp\n");
283 		goto put_node;
284 	}
285 
286 	/*
287 	 * Speed GRADING[1:0] defines the max speed of ARM:
288 	 * 2b'00: Reserved;
289 	 * 2b'01: 528000000Hz;
290 	 * 2b'10: 696000000Hz;
291 	 * 2b'11: Reserved;
292 	 * We need to set the max speed of ARM according to fuse map.
293 	 */
294 	val = readl_relaxed(base + OCOTP_CFG3);
295 	val >>= OCOTP_CFG3_SPEED_SHIFT;
296 	val &= 0x3;
297 	if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
298 		if (dev_pm_opp_disable(dev, 696000000))
299 			dev_warn(dev, "failed to disable 696MHz OPP\n");
300 	iounmap(base);
301 put_node:
302 	of_node_put(np);
303 }
304 
305 static int imx6q_cpufreq_probe(struct platform_device *pdev)
306 {
307 	struct device_node *np;
308 	struct dev_pm_opp *opp;
309 	unsigned long min_volt, max_volt;
310 	int num, ret;
311 	const struct property *prop;
312 	const __be32 *val;
313 	u32 nr, i, j;
314 
315 	cpu_dev = get_cpu_device(0);
316 	if (!cpu_dev) {
317 		pr_err("failed to get cpu0 device\n");
318 		return -ENODEV;
319 	}
320 
321 	np = of_node_get(cpu_dev->of_node);
322 	if (!np) {
323 		dev_err(cpu_dev, "failed to find cpu0 node\n");
324 		return -ENOENT;
325 	}
326 
327 	if (of_machine_is_compatible("fsl,imx6ul") ||
328 	    of_machine_is_compatible("fsl,imx6ull"))
329 		num_clks = IMX6UL_CPUFREQ_CLK_NUM;
330 	else
331 		num_clks = IMX6Q_CPUFREQ_CLK_NUM;
332 
333 	ret = clk_bulk_get(cpu_dev, num_clks, clks);
334 	if (ret)
335 		goto put_node;
336 
337 	arm_reg = regulator_get(cpu_dev, "arm");
338 	pu_reg = regulator_get_optional(cpu_dev, "pu");
339 	soc_reg = regulator_get(cpu_dev, "soc");
340 	if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
341 			PTR_ERR(soc_reg) == -EPROBE_DEFER ||
342 			PTR_ERR(pu_reg) == -EPROBE_DEFER) {
343 		ret = -EPROBE_DEFER;
344 		dev_dbg(cpu_dev, "regulators not ready, defer\n");
345 		goto put_reg;
346 	}
347 	if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
348 		dev_err(cpu_dev, "failed to get regulators\n");
349 		ret = -ENOENT;
350 		goto put_reg;
351 	}
352 
353 	ret = dev_pm_opp_of_add_table(cpu_dev);
354 	if (ret < 0) {
355 		dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
356 		goto put_reg;
357 	}
358 
359 	if (of_machine_is_compatible("fsl,imx6ul"))
360 		imx6ul_opp_check_speed_grading(cpu_dev);
361 	else
362 		imx6q_opp_check_speed_grading(cpu_dev);
363 
364 	/* Because we have added the OPPs here, we must free them */
365 	free_opp = true;
366 	num = dev_pm_opp_get_opp_count(cpu_dev);
367 	if (num < 0) {
368 		ret = num;
369 		dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
370 		goto out_free_opp;
371 	}
372 
373 	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
374 	if (ret) {
375 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
376 		goto out_free_opp;
377 	}
378 
379 	/* Make imx6_soc_volt array's size same as arm opp number */
380 	imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
381 	if (imx6_soc_volt == NULL) {
382 		ret = -ENOMEM;
383 		goto free_freq_table;
384 	}
385 
386 	prop = of_find_property(np, "fsl,soc-operating-points", NULL);
387 	if (!prop || !prop->value)
388 		goto soc_opp_out;
389 
390 	/*
391 	 * Each OPP is a set of tuples consisting of frequency and
392 	 * voltage like <freq-kHz vol-uV>.
393 	 */
394 	nr = prop->length / sizeof(u32);
395 	if (nr % 2 || (nr / 2) < num)
396 		goto soc_opp_out;
397 
398 	for (j = 0; j < num; j++) {
399 		val = prop->value;
400 		for (i = 0; i < nr / 2; i++) {
401 			unsigned long freq = be32_to_cpup(val++);
402 			unsigned long volt = be32_to_cpup(val++);
403 			if (freq_table[j].frequency == freq) {
404 				imx6_soc_volt[soc_opp_count++] = volt;
405 				break;
406 			}
407 		}
408 	}
409 
410 soc_opp_out:
411 	/* use fixed soc opp volt if no valid soc opp info found in dtb */
412 	if (soc_opp_count != num) {
413 		dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
414 		for (j = 0; j < num; j++)
415 			imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
416 		if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
417 			imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
418 	}
419 
420 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
421 		transition_latency = CPUFREQ_ETERNAL;
422 
423 	/*
424 	 * Calculate the ramp time for max voltage change in the
425 	 * VDDSOC and VDDPU regulators.
426 	 */
427 	ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
428 	if (ret > 0)
429 		transition_latency += ret * 1000;
430 	if (!IS_ERR(pu_reg)) {
431 		ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
432 		if (ret > 0)
433 			transition_latency += ret * 1000;
434 	}
435 
436 	/*
437 	 * OPP is maintained in order of increasing frequency, and
438 	 * freq_table initialised from OPP is therefore sorted in the
439 	 * same order.
440 	 */
441 	max_freq = freq_table[--num].frequency;
442 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
443 				  freq_table[0].frequency * 1000, true);
444 	min_volt = dev_pm_opp_get_voltage(opp);
445 	dev_pm_opp_put(opp);
446 	opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
447 	max_volt = dev_pm_opp_get_voltage(opp);
448 	dev_pm_opp_put(opp);
449 
450 	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
451 	if (ret > 0)
452 		transition_latency += ret * 1000;
453 
454 	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
455 	if (ret) {
456 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
457 		goto free_freq_table;
458 	}
459 
460 	of_node_put(np);
461 	return 0;
462 
463 free_freq_table:
464 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
465 out_free_opp:
466 	if (free_opp)
467 		dev_pm_opp_of_remove_table(cpu_dev);
468 put_reg:
469 	if (!IS_ERR(arm_reg))
470 		regulator_put(arm_reg);
471 	if (!IS_ERR(pu_reg))
472 		regulator_put(pu_reg);
473 	if (!IS_ERR(soc_reg))
474 		regulator_put(soc_reg);
475 
476 	clk_bulk_put(num_clks, clks);
477 put_node:
478 	of_node_put(np);
479 
480 	return ret;
481 }
482 
483 static int imx6q_cpufreq_remove(struct platform_device *pdev)
484 {
485 	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
486 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
487 	if (free_opp)
488 		dev_pm_opp_of_remove_table(cpu_dev);
489 	regulator_put(arm_reg);
490 	if (!IS_ERR(pu_reg))
491 		regulator_put(pu_reg);
492 	regulator_put(soc_reg);
493 
494 	clk_bulk_put(num_clks, clks);
495 
496 	return 0;
497 }
498 
499 static struct platform_driver imx6q_cpufreq_platdrv = {
500 	.driver = {
501 		.name	= "imx6q-cpufreq",
502 	},
503 	.probe		= imx6q_cpufreq_probe,
504 	.remove		= imx6q_cpufreq_remove,
505 };
506 module_platform_driver(imx6q_cpufreq_platdrv);
507 
508 MODULE_ALIAS("platform:imx6q-cpufreq");
509 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
510 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
511 MODULE_LICENSE("GPL");
512