1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/delay.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/pm_opp.h>
17 #include <linux/platform_device.h>
18 #include <linux/regulator/consumer.h>
19 
20 #define PU_SOC_VOLTAGE_NORMAL	1250000
21 #define PU_SOC_VOLTAGE_HIGH	1275000
22 #define FREQ_1P2_GHZ		1200000000
23 
24 static struct regulator *arm_reg;
25 static struct regulator *pu_reg;
26 static struct regulator *soc_reg;
27 
28 static struct clk *arm_clk;
29 static struct clk *pll1_sys_clk;
30 static struct clk *pll1_sw_clk;
31 static struct clk *step_clk;
32 static struct clk *pll2_pfd2_396m_clk;
33 
34 static struct device *cpu_dev;
35 static struct cpufreq_frequency_table *freq_table;
36 static unsigned int transition_latency;
37 
38 static u32 *imx6_soc_volt;
39 static u32 soc_opp_count;
40 
41 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
42 {
43 	struct dev_pm_opp *opp;
44 	unsigned long freq_hz, volt, volt_old;
45 	unsigned int old_freq, new_freq;
46 	int ret;
47 
48 	new_freq = freq_table[index].frequency;
49 	freq_hz = new_freq * 1000;
50 	old_freq = clk_get_rate(arm_clk) / 1000;
51 
52 	rcu_read_lock();
53 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
54 	if (IS_ERR(opp)) {
55 		rcu_read_unlock();
56 		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
57 		return PTR_ERR(opp);
58 	}
59 
60 	volt = dev_pm_opp_get_voltage(opp);
61 	rcu_read_unlock();
62 	volt_old = regulator_get_voltage(arm_reg);
63 
64 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
65 		old_freq / 1000, volt_old / 1000,
66 		new_freq / 1000, volt / 1000);
67 
68 	/* scaling up?  scale voltage before frequency */
69 	if (new_freq > old_freq) {
70 		ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
71 		if (ret) {
72 			dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
73 			return ret;
74 		}
75 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
76 		if (ret) {
77 			dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
78 			return ret;
79 		}
80 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
81 		if (ret) {
82 			dev_err(cpu_dev,
83 				"failed to scale vddarm up: %d\n", ret);
84 			return ret;
85 		}
86 	}
87 
88 	/*
89 	 * The setpoints are selected per PLL/PDF frequencies, so we need to
90 	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
91 	 * PLL1 is as below.
92 	 *
93 	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
94 	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
95 	 *  - Disable pll2_pfd2_396m_clk
96 	 */
97 	clk_set_parent(step_clk, pll2_pfd2_396m_clk);
98 	clk_set_parent(pll1_sw_clk, step_clk);
99 	if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
100 		clk_set_rate(pll1_sys_clk, new_freq * 1000);
101 		clk_set_parent(pll1_sw_clk, pll1_sys_clk);
102 	}
103 
104 	/* Ensure the arm clock divider is what we expect */
105 	ret = clk_set_rate(arm_clk, new_freq * 1000);
106 	if (ret) {
107 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
108 		regulator_set_voltage_tol(arm_reg, volt_old, 0);
109 		return ret;
110 	}
111 
112 	/* scaling down?  scale voltage after frequency */
113 	if (new_freq < old_freq) {
114 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
115 		if (ret) {
116 			dev_warn(cpu_dev,
117 				 "failed to scale vddarm down: %d\n", ret);
118 			ret = 0;
119 		}
120 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
121 		if (ret) {
122 			dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
123 			ret = 0;
124 		}
125 		ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
126 		if (ret) {
127 			dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
128 			ret = 0;
129 		}
130 	}
131 
132 	return 0;
133 }
134 
135 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
136 {
137 	policy->clk = arm_clk;
138 	return cpufreq_generic_init(policy, freq_table, transition_latency);
139 }
140 
141 static struct cpufreq_driver imx6q_cpufreq_driver = {
142 	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
143 	.verify = cpufreq_generic_frequency_table_verify,
144 	.target_index = imx6q_set_target,
145 	.get = cpufreq_generic_get,
146 	.init = imx6q_cpufreq_init,
147 	.name = "imx6q-cpufreq",
148 	.attr = cpufreq_generic_attr,
149 };
150 
151 static int imx6q_cpufreq_probe(struct platform_device *pdev)
152 {
153 	struct device_node *np;
154 	struct dev_pm_opp *opp;
155 	unsigned long min_volt, max_volt;
156 	int num, ret;
157 	const struct property *prop;
158 	const __be32 *val;
159 	u32 nr, i, j;
160 
161 	cpu_dev = get_cpu_device(0);
162 	if (!cpu_dev) {
163 		pr_err("failed to get cpu0 device\n");
164 		return -ENODEV;
165 	}
166 
167 	np = of_node_get(cpu_dev->of_node);
168 	if (!np) {
169 		dev_err(cpu_dev, "failed to find cpu0 node\n");
170 		return -ENOENT;
171 	}
172 
173 	arm_clk = devm_clk_get(cpu_dev, "arm");
174 	pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
175 	pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
176 	step_clk = devm_clk_get(cpu_dev, "step");
177 	pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
178 	if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
179 	    IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
180 		dev_err(cpu_dev, "failed to get clocks\n");
181 		ret = -ENOENT;
182 		goto put_node;
183 	}
184 
185 	arm_reg = devm_regulator_get(cpu_dev, "arm");
186 	pu_reg = devm_regulator_get(cpu_dev, "pu");
187 	soc_reg = devm_regulator_get(cpu_dev, "soc");
188 	if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
189 		dev_err(cpu_dev, "failed to get regulators\n");
190 		ret = -ENOENT;
191 		goto put_node;
192 	}
193 
194 	/*
195 	 * We expect an OPP table supplied by platform.
196 	 * Just, incase the platform did not supply the OPP
197 	 * table, it will try to get it.
198 	 */
199 	num = dev_pm_opp_get_opp_count(cpu_dev);
200 	if (num < 0) {
201 		ret = of_init_opp_table(cpu_dev);
202 		if (ret < 0) {
203 			dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
204 			goto put_node;
205 		}
206 
207 		num = dev_pm_opp_get_opp_count(cpu_dev);
208 		if (num < 0) {
209 			ret = num;
210 			dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
211 			goto put_node;
212 		}
213 	}
214 
215 	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
216 	if (ret) {
217 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
218 		goto put_node;
219 	}
220 
221 	/* Make imx6_soc_volt array's size same as arm opp number */
222 	imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
223 	if (imx6_soc_volt == NULL) {
224 		ret = -ENOMEM;
225 		goto free_freq_table;
226 	}
227 
228 	prop = of_find_property(np, "fsl,soc-operating-points", NULL);
229 	if (!prop || !prop->value)
230 		goto soc_opp_out;
231 
232 	/*
233 	 * Each OPP is a set of tuples consisting of frequency and
234 	 * voltage like <freq-kHz vol-uV>.
235 	 */
236 	nr = prop->length / sizeof(u32);
237 	if (nr % 2 || (nr / 2) < num)
238 		goto soc_opp_out;
239 
240 	for (j = 0; j < num; j++) {
241 		val = prop->value;
242 		for (i = 0; i < nr / 2; i++) {
243 			unsigned long freq = be32_to_cpup(val++);
244 			unsigned long volt = be32_to_cpup(val++);
245 			if (freq_table[j].frequency == freq) {
246 				imx6_soc_volt[soc_opp_count++] = volt;
247 				break;
248 			}
249 		}
250 	}
251 
252 soc_opp_out:
253 	/* use fixed soc opp volt if no valid soc opp info found in dtb */
254 	if (soc_opp_count != num) {
255 		dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
256 		for (j = 0; j < num; j++)
257 			imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
258 		if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
259 			imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
260 	}
261 
262 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
263 		transition_latency = CPUFREQ_ETERNAL;
264 
265 	/*
266 	 * Calculate the ramp time for max voltage change in the
267 	 * VDDSOC and VDDPU regulators.
268 	 */
269 	ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
270 	if (ret > 0)
271 		transition_latency += ret * 1000;
272 	ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
273 	if (ret > 0)
274 		transition_latency += ret * 1000;
275 
276 	/*
277 	 * OPP is maintained in order of increasing frequency, and
278 	 * freq_table initialised from OPP is therefore sorted in the
279 	 * same order.
280 	 */
281 	rcu_read_lock();
282 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
283 				  freq_table[0].frequency * 1000, true);
284 	min_volt = dev_pm_opp_get_voltage(opp);
285 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
286 				  freq_table[--num].frequency * 1000, true);
287 	max_volt = dev_pm_opp_get_voltage(opp);
288 	rcu_read_unlock();
289 	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
290 	if (ret > 0)
291 		transition_latency += ret * 1000;
292 
293 	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
294 	if (ret) {
295 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
296 		goto free_freq_table;
297 	}
298 
299 	of_node_put(np);
300 	return 0;
301 
302 free_freq_table:
303 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
304 put_node:
305 	of_node_put(np);
306 	return ret;
307 }
308 
309 static int imx6q_cpufreq_remove(struct platform_device *pdev)
310 {
311 	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
312 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
313 
314 	return 0;
315 }
316 
317 static struct platform_driver imx6q_cpufreq_platdrv = {
318 	.driver = {
319 		.name	= "imx6q-cpufreq",
320 		.owner	= THIS_MODULE,
321 	},
322 	.probe		= imx6q_cpufreq_probe,
323 	.remove		= imx6q_cpufreq_remove,
324 };
325 module_platform_driver(imx6q_cpufreq_platdrv);
326 
327 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
328 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
329 MODULE_LICENSE("GPL");
330