1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/opp.h>
16 #include <linux/platform_device.h>
17 #include <linux/regulator/consumer.h>
18 
19 #define PU_SOC_VOLTAGE_NORMAL	1250000
20 #define PU_SOC_VOLTAGE_HIGH	1275000
21 #define FREQ_1P2_GHZ		1200000000
22 
23 static struct regulator *arm_reg;
24 static struct regulator *pu_reg;
25 static struct regulator *soc_reg;
26 
27 static struct clk *arm_clk;
28 static struct clk *pll1_sys_clk;
29 static struct clk *pll1_sw_clk;
30 static struct clk *step_clk;
31 static struct clk *pll2_pfd2_396m_clk;
32 
33 static struct device *cpu_dev;
34 static struct cpufreq_frequency_table *freq_table;
35 static unsigned int transition_latency;
36 
37 static int imx6q_verify_speed(struct cpufreq_policy *policy)
38 {
39 	return cpufreq_frequency_table_verify(policy, freq_table);
40 }
41 
42 static unsigned int imx6q_get_speed(unsigned int cpu)
43 {
44 	return clk_get_rate(arm_clk) / 1000;
45 }
46 
47 static int imx6q_set_target(struct cpufreq_policy *policy,
48 			    unsigned int target_freq, unsigned int relation)
49 {
50 	struct cpufreq_freqs freqs;
51 	struct opp *opp;
52 	unsigned long freq_hz, volt, volt_old;
53 	unsigned int index, cpu;
54 	int ret;
55 
56 	ret = cpufreq_frequency_table_target(policy, freq_table, target_freq,
57 					     relation, &index);
58 	if (ret) {
59 		dev_err(cpu_dev, "failed to match target frequency %d: %d\n",
60 			target_freq, ret);
61 		return ret;
62 	}
63 
64 	freqs.new = freq_table[index].frequency;
65 	freq_hz = freqs.new * 1000;
66 	freqs.old = clk_get_rate(arm_clk) / 1000;
67 
68 	if (freqs.old == freqs.new)
69 		return 0;
70 
71 	for_each_online_cpu(cpu) {
72 		freqs.cpu = cpu;
73 		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
74 	}
75 
76 	rcu_read_lock();
77 	opp = opp_find_freq_ceil(cpu_dev, &freq_hz);
78 	if (IS_ERR(opp)) {
79 		rcu_read_unlock();
80 		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
81 		return PTR_ERR(opp);
82 	}
83 
84 	volt = opp_get_voltage(opp);
85 	rcu_read_unlock();
86 	volt_old = regulator_get_voltage(arm_reg);
87 
88 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
89 		freqs.old / 1000, volt_old / 1000,
90 		freqs.new / 1000, volt / 1000);
91 
92 	/* scaling up?  scale voltage before frequency */
93 	if (freqs.new > freqs.old) {
94 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
95 		if (ret) {
96 			dev_err(cpu_dev,
97 				"failed to scale vddarm up: %d\n", ret);
98 			return ret;
99 		}
100 
101 		/*
102 		 * Need to increase vddpu and vddsoc for safety
103 		 * if we are about to run at 1.2 GHz.
104 		 */
105 		if (freqs.new == FREQ_1P2_GHZ / 1000) {
106 			regulator_set_voltage_tol(pu_reg,
107 					PU_SOC_VOLTAGE_HIGH, 0);
108 			regulator_set_voltage_tol(soc_reg,
109 					PU_SOC_VOLTAGE_HIGH, 0);
110 		}
111 	}
112 
113 	/*
114 	 * The setpoints are selected per PLL/PDF frequencies, so we need to
115 	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
116 	 * PLL1 is as below.
117 	 *
118 	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
119 	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
120 	 *  - Disable pll2_pfd2_396m_clk
121 	 */
122 	clk_prepare_enable(pll2_pfd2_396m_clk);
123 	clk_set_parent(step_clk, pll2_pfd2_396m_clk);
124 	clk_set_parent(pll1_sw_clk, step_clk);
125 	if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
126 		clk_set_rate(pll1_sys_clk, freqs.new * 1000);
127 		/*
128 		 * If we are leaving 396 MHz set-point, we need to enable
129 		 * pll1_sys_clk and disable pll2_pfd2_396m_clk to keep
130 		 * their use count correct.
131 		 */
132 		if (freqs.old * 1000 <= clk_get_rate(pll2_pfd2_396m_clk)) {
133 			clk_prepare_enable(pll1_sys_clk);
134 			clk_disable_unprepare(pll2_pfd2_396m_clk);
135 		}
136 		clk_set_parent(pll1_sw_clk, pll1_sys_clk);
137 		clk_disable_unprepare(pll2_pfd2_396m_clk);
138 	} else {
139 		/*
140 		 * Disable pll1_sys_clk if pll2_pfd2_396m_clk is sufficient
141 		 * to provide the frequency.
142 		 */
143 		clk_disable_unprepare(pll1_sys_clk);
144 	}
145 
146 	/* Ensure the arm clock divider is what we expect */
147 	ret = clk_set_rate(arm_clk, freqs.new * 1000);
148 	if (ret) {
149 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
150 		regulator_set_voltage_tol(arm_reg, volt_old, 0);
151 		return ret;
152 	}
153 
154 	/* scaling down?  scale voltage after frequency */
155 	if (freqs.new < freqs.old) {
156 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
157 		if (ret)
158 			dev_warn(cpu_dev,
159 				 "failed to scale vddarm down: %d\n", ret);
160 
161 		if (freqs.old == FREQ_1P2_GHZ / 1000) {
162 			regulator_set_voltage_tol(pu_reg,
163 					PU_SOC_VOLTAGE_NORMAL, 0);
164 			regulator_set_voltage_tol(soc_reg,
165 					PU_SOC_VOLTAGE_NORMAL, 0);
166 		}
167 	}
168 
169 	for_each_online_cpu(cpu) {
170 		freqs.cpu = cpu;
171 		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
172 	}
173 
174 	return 0;
175 }
176 
177 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
178 {
179 	int ret;
180 
181 	ret = cpufreq_frequency_table_cpuinfo(policy, freq_table);
182 	if (ret) {
183 		dev_err(cpu_dev, "invalid frequency table: %d\n", ret);
184 		return ret;
185 	}
186 
187 	policy->cpuinfo.transition_latency = transition_latency;
188 	policy->cur = clk_get_rate(arm_clk) / 1000;
189 	cpumask_setall(policy->cpus);
190 	cpufreq_frequency_table_get_attr(freq_table, policy->cpu);
191 
192 	return 0;
193 }
194 
195 static int imx6q_cpufreq_exit(struct cpufreq_policy *policy)
196 {
197 	cpufreq_frequency_table_put_attr(policy->cpu);
198 	return 0;
199 }
200 
201 static struct freq_attr *imx6q_cpufreq_attr[] = {
202 	&cpufreq_freq_attr_scaling_available_freqs,
203 	NULL,
204 };
205 
206 static struct cpufreq_driver imx6q_cpufreq_driver = {
207 	.verify = imx6q_verify_speed,
208 	.target = imx6q_set_target,
209 	.get = imx6q_get_speed,
210 	.init = imx6q_cpufreq_init,
211 	.exit = imx6q_cpufreq_exit,
212 	.name = "imx6q-cpufreq",
213 	.attr = imx6q_cpufreq_attr,
214 };
215 
216 static int imx6q_cpufreq_probe(struct platform_device *pdev)
217 {
218 	struct device_node *np;
219 	struct opp *opp;
220 	unsigned long min_volt, max_volt;
221 	int num, ret;
222 
223 	cpu_dev = &pdev->dev;
224 
225 	np = of_find_node_by_path("/cpus/cpu@0");
226 	if (!np) {
227 		dev_err(cpu_dev, "failed to find cpu0 node\n");
228 		return -ENOENT;
229 	}
230 
231 	cpu_dev->of_node = np;
232 
233 	arm_clk = devm_clk_get(cpu_dev, "arm");
234 	pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
235 	pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
236 	step_clk = devm_clk_get(cpu_dev, "step");
237 	pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
238 	if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
239 	    IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
240 		dev_err(cpu_dev, "failed to get clocks\n");
241 		ret = -ENOENT;
242 		goto put_node;
243 	}
244 
245 	arm_reg = devm_regulator_get(cpu_dev, "arm");
246 	pu_reg = devm_regulator_get(cpu_dev, "pu");
247 	soc_reg = devm_regulator_get(cpu_dev, "soc");
248 	if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
249 		dev_err(cpu_dev, "failed to get regulators\n");
250 		ret = -ENOENT;
251 		goto put_node;
252 	}
253 
254 	/* We expect an OPP table supplied by platform */
255 	num = opp_get_opp_count(cpu_dev);
256 	if (num < 0) {
257 		ret = num;
258 		dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
259 		goto put_node;
260 	}
261 
262 	ret = opp_init_cpufreq_table(cpu_dev, &freq_table);
263 	if (ret) {
264 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
265 		goto put_node;
266 	}
267 
268 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
269 		transition_latency = CPUFREQ_ETERNAL;
270 
271 	/*
272 	 * OPP is maintained in order of increasing frequency, and
273 	 * freq_table initialised from OPP is therefore sorted in the
274 	 * same order.
275 	 */
276 	rcu_read_lock();
277 	opp = opp_find_freq_exact(cpu_dev,
278 				  freq_table[0].frequency * 1000, true);
279 	min_volt = opp_get_voltage(opp);
280 	opp = opp_find_freq_exact(cpu_dev,
281 				  freq_table[--num].frequency * 1000, true);
282 	max_volt = opp_get_voltage(opp);
283 	rcu_read_unlock();
284 	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
285 	if (ret > 0)
286 		transition_latency += ret * 1000;
287 
288 	/* Count vddpu and vddsoc latency in for 1.2 GHz support */
289 	if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) {
290 		ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL,
291 						 PU_SOC_VOLTAGE_HIGH);
292 		if (ret > 0)
293 			transition_latency += ret * 1000;
294 		ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL,
295 						 PU_SOC_VOLTAGE_HIGH);
296 		if (ret > 0)
297 			transition_latency += ret * 1000;
298 	}
299 
300 	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
301 	if (ret) {
302 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
303 		goto free_freq_table;
304 	}
305 
306 	of_node_put(np);
307 	return 0;
308 
309 free_freq_table:
310 	opp_free_cpufreq_table(cpu_dev, &freq_table);
311 put_node:
312 	of_node_put(np);
313 	return ret;
314 }
315 
316 static int imx6q_cpufreq_remove(struct platform_device *pdev)
317 {
318 	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
319 	opp_free_cpufreq_table(cpu_dev, &freq_table);
320 
321 	return 0;
322 }
323 
324 static struct platform_driver imx6q_cpufreq_platdrv = {
325 	.driver = {
326 		.name	= "imx6q-cpufreq",
327 		.owner	= THIS_MODULE,
328 	},
329 	.probe		= imx6q_cpufreq_probe,
330 	.remove		= imx6q_cpufreq_remove,
331 };
332 module_platform_driver(imx6q_cpufreq_platdrv);
333 
334 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
335 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
336 MODULE_LICENSE("GPL");
337