1 /* 2 * Copyright (C) 2013 Freescale Semiconductor, Inc. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/cpu.h> 11 #include <linux/cpufreq.h> 12 #include <linux/err.h> 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/pm_opp.h> 16 #include <linux/platform_device.h> 17 #include <linux/regulator/consumer.h> 18 19 #define PU_SOC_VOLTAGE_NORMAL 1250000 20 #define PU_SOC_VOLTAGE_HIGH 1275000 21 #define FREQ_1P2_GHZ 1200000000 22 23 static struct regulator *arm_reg; 24 static struct regulator *pu_reg; 25 static struct regulator *soc_reg; 26 27 static struct clk *arm_clk; 28 static struct clk *pll1_sys_clk; 29 static struct clk *pll1_sw_clk; 30 static struct clk *step_clk; 31 static struct clk *pll2_pfd2_396m_clk; 32 33 static struct device *cpu_dev; 34 static bool free_opp; 35 static struct cpufreq_frequency_table *freq_table; 36 static unsigned int transition_latency; 37 38 static u32 *imx6_soc_volt; 39 static u32 soc_opp_count; 40 41 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index) 42 { 43 struct dev_pm_opp *opp; 44 unsigned long freq_hz, volt, volt_old; 45 unsigned int old_freq, new_freq; 46 int ret; 47 48 new_freq = freq_table[index].frequency; 49 freq_hz = new_freq * 1000; 50 old_freq = clk_get_rate(arm_clk) / 1000; 51 52 rcu_read_lock(); 53 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz); 54 if (IS_ERR(opp)) { 55 rcu_read_unlock(); 56 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz); 57 return PTR_ERR(opp); 58 } 59 60 volt = dev_pm_opp_get_voltage(opp); 61 rcu_read_unlock(); 62 volt_old = regulator_get_voltage(arm_reg); 63 64 dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n", 65 old_freq / 1000, volt_old / 1000, 66 new_freq / 1000, volt / 1000); 67 68 /* scaling up? scale voltage before frequency */ 69 if (new_freq > old_freq) { 70 if (!IS_ERR(pu_reg)) { 71 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0); 72 if (ret) { 73 dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret); 74 return ret; 75 } 76 } 77 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0); 78 if (ret) { 79 dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret); 80 return ret; 81 } 82 ret = regulator_set_voltage_tol(arm_reg, volt, 0); 83 if (ret) { 84 dev_err(cpu_dev, 85 "failed to scale vddarm up: %d\n", ret); 86 return ret; 87 } 88 } 89 90 /* 91 * The setpoints are selected per PLL/PDF frequencies, so we need to 92 * reprogram PLL for frequency scaling. The procedure of reprogramming 93 * PLL1 is as below. 94 * 95 * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it 96 * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it 97 * - Disable pll2_pfd2_396m_clk 98 */ 99 clk_set_parent(step_clk, pll2_pfd2_396m_clk); 100 clk_set_parent(pll1_sw_clk, step_clk); 101 if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) { 102 clk_set_rate(pll1_sys_clk, new_freq * 1000); 103 clk_set_parent(pll1_sw_clk, pll1_sys_clk); 104 } 105 106 /* Ensure the arm clock divider is what we expect */ 107 ret = clk_set_rate(arm_clk, new_freq * 1000); 108 if (ret) { 109 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret); 110 regulator_set_voltage_tol(arm_reg, volt_old, 0); 111 return ret; 112 } 113 114 /* scaling down? scale voltage after frequency */ 115 if (new_freq < old_freq) { 116 ret = regulator_set_voltage_tol(arm_reg, volt, 0); 117 if (ret) { 118 dev_warn(cpu_dev, 119 "failed to scale vddarm down: %d\n", ret); 120 ret = 0; 121 } 122 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0); 123 if (ret) { 124 dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret); 125 ret = 0; 126 } 127 if (!IS_ERR(pu_reg)) { 128 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0); 129 if (ret) { 130 dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret); 131 ret = 0; 132 } 133 } 134 } 135 136 return 0; 137 } 138 139 static int imx6q_cpufreq_init(struct cpufreq_policy *policy) 140 { 141 policy->clk = arm_clk; 142 return cpufreq_generic_init(policy, freq_table, transition_latency); 143 } 144 145 static struct cpufreq_driver imx6q_cpufreq_driver = { 146 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK, 147 .verify = cpufreq_generic_frequency_table_verify, 148 .target_index = imx6q_set_target, 149 .get = cpufreq_generic_get, 150 .init = imx6q_cpufreq_init, 151 .name = "imx6q-cpufreq", 152 .attr = cpufreq_generic_attr, 153 }; 154 155 static int imx6q_cpufreq_probe(struct platform_device *pdev) 156 { 157 struct device_node *np; 158 struct dev_pm_opp *opp; 159 unsigned long min_volt, max_volt; 160 int num, ret; 161 const struct property *prop; 162 const __be32 *val; 163 u32 nr, i, j; 164 165 cpu_dev = get_cpu_device(0); 166 if (!cpu_dev) { 167 pr_err("failed to get cpu0 device\n"); 168 return -ENODEV; 169 } 170 171 np = of_node_get(cpu_dev->of_node); 172 if (!np) { 173 dev_err(cpu_dev, "failed to find cpu0 node\n"); 174 return -ENOENT; 175 } 176 177 arm_clk = clk_get(cpu_dev, "arm"); 178 pll1_sys_clk = clk_get(cpu_dev, "pll1_sys"); 179 pll1_sw_clk = clk_get(cpu_dev, "pll1_sw"); 180 step_clk = clk_get(cpu_dev, "step"); 181 pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m"); 182 if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) || 183 IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) { 184 dev_err(cpu_dev, "failed to get clocks\n"); 185 ret = -ENOENT; 186 goto put_clk; 187 } 188 189 arm_reg = regulator_get(cpu_dev, "arm"); 190 pu_reg = regulator_get_optional(cpu_dev, "pu"); 191 soc_reg = regulator_get(cpu_dev, "soc"); 192 if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) { 193 dev_err(cpu_dev, "failed to get regulators\n"); 194 ret = -ENOENT; 195 goto put_reg; 196 } 197 198 /* 199 * We expect an OPP table supplied by platform. 200 * Just, incase the platform did not supply the OPP 201 * table, it will try to get it. 202 */ 203 num = dev_pm_opp_get_opp_count(cpu_dev); 204 if (num < 0) { 205 ret = of_init_opp_table(cpu_dev); 206 if (ret < 0) { 207 dev_err(cpu_dev, "failed to init OPP table: %d\n", ret); 208 goto put_reg; 209 } 210 211 /* Because we have added the OPPs here, we must free them */ 212 free_opp = true; 213 214 num = dev_pm_opp_get_opp_count(cpu_dev); 215 if (num < 0) { 216 ret = num; 217 dev_err(cpu_dev, "no OPP table is found: %d\n", ret); 218 goto out_free_opp; 219 } 220 } 221 222 ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table); 223 if (ret) { 224 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret); 225 goto put_reg; 226 } 227 228 /* Make imx6_soc_volt array's size same as arm opp number */ 229 imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL); 230 if (imx6_soc_volt == NULL) { 231 ret = -ENOMEM; 232 goto free_freq_table; 233 } 234 235 prop = of_find_property(np, "fsl,soc-operating-points", NULL); 236 if (!prop || !prop->value) 237 goto soc_opp_out; 238 239 /* 240 * Each OPP is a set of tuples consisting of frequency and 241 * voltage like <freq-kHz vol-uV>. 242 */ 243 nr = prop->length / sizeof(u32); 244 if (nr % 2 || (nr / 2) < num) 245 goto soc_opp_out; 246 247 for (j = 0; j < num; j++) { 248 val = prop->value; 249 for (i = 0; i < nr / 2; i++) { 250 unsigned long freq = be32_to_cpup(val++); 251 unsigned long volt = be32_to_cpup(val++); 252 if (freq_table[j].frequency == freq) { 253 imx6_soc_volt[soc_opp_count++] = volt; 254 break; 255 } 256 } 257 } 258 259 soc_opp_out: 260 /* use fixed soc opp volt if no valid soc opp info found in dtb */ 261 if (soc_opp_count != num) { 262 dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n"); 263 for (j = 0; j < num; j++) 264 imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL; 265 if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ) 266 imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH; 267 } 268 269 if (of_property_read_u32(np, "clock-latency", &transition_latency)) 270 transition_latency = CPUFREQ_ETERNAL; 271 272 /* 273 * Calculate the ramp time for max voltage change in the 274 * VDDSOC and VDDPU regulators. 275 */ 276 ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]); 277 if (ret > 0) 278 transition_latency += ret * 1000; 279 if (!IS_ERR(pu_reg)) { 280 ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]); 281 if (ret > 0) 282 transition_latency += ret * 1000; 283 } 284 285 /* 286 * OPP is maintained in order of increasing frequency, and 287 * freq_table initialised from OPP is therefore sorted in the 288 * same order. 289 */ 290 rcu_read_lock(); 291 opp = dev_pm_opp_find_freq_exact(cpu_dev, 292 freq_table[0].frequency * 1000, true); 293 min_volt = dev_pm_opp_get_voltage(opp); 294 opp = dev_pm_opp_find_freq_exact(cpu_dev, 295 freq_table[--num].frequency * 1000, true); 296 max_volt = dev_pm_opp_get_voltage(opp); 297 rcu_read_unlock(); 298 ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt); 299 if (ret > 0) 300 transition_latency += ret * 1000; 301 302 ret = cpufreq_register_driver(&imx6q_cpufreq_driver); 303 if (ret) { 304 dev_err(cpu_dev, "failed register driver: %d\n", ret); 305 goto free_freq_table; 306 } 307 308 of_node_put(np); 309 return 0; 310 311 free_freq_table: 312 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table); 313 out_free_opp: 314 if (free_opp) 315 of_free_opp_table(cpu_dev); 316 put_reg: 317 if (!IS_ERR(arm_reg)) 318 regulator_put(arm_reg); 319 if (!IS_ERR(pu_reg)) 320 regulator_put(pu_reg); 321 if (!IS_ERR(soc_reg)) 322 regulator_put(soc_reg); 323 put_clk: 324 if (!IS_ERR(arm_clk)) 325 clk_put(arm_clk); 326 if (!IS_ERR(pll1_sys_clk)) 327 clk_put(pll1_sys_clk); 328 if (!IS_ERR(pll1_sw_clk)) 329 clk_put(pll1_sw_clk); 330 if (!IS_ERR(step_clk)) 331 clk_put(step_clk); 332 if (!IS_ERR(pll2_pfd2_396m_clk)) 333 clk_put(pll2_pfd2_396m_clk); 334 of_node_put(np); 335 return ret; 336 } 337 338 static int imx6q_cpufreq_remove(struct platform_device *pdev) 339 { 340 cpufreq_unregister_driver(&imx6q_cpufreq_driver); 341 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table); 342 if (free_opp) 343 of_free_opp_table(cpu_dev); 344 regulator_put(arm_reg); 345 if (!IS_ERR(pu_reg)) 346 regulator_put(pu_reg); 347 regulator_put(soc_reg); 348 clk_put(arm_clk); 349 clk_put(pll1_sys_clk); 350 clk_put(pll1_sw_clk); 351 clk_put(step_clk); 352 clk_put(pll2_pfd2_396m_clk); 353 354 return 0; 355 } 356 357 static struct platform_driver imx6q_cpufreq_platdrv = { 358 .driver = { 359 .name = "imx6q-cpufreq", 360 }, 361 .probe = imx6q_cpufreq_probe, 362 .remove = imx6q_cpufreq_remove, 363 }; 364 module_platform_driver(imx6q_cpufreq_platdrv); 365 366 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>"); 367 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver"); 368 MODULE_LICENSE("GPL"); 369