xref: /openbmc/linux/drivers/cpufreq/imx6q-cpufreq.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/pm_opp.h>
17 #include <linux/platform_device.h>
18 #include <linux/regulator/consumer.h>
19 
20 #define PU_SOC_VOLTAGE_NORMAL	1250000
21 #define PU_SOC_VOLTAGE_HIGH	1275000
22 #define FREQ_1P2_GHZ		1200000000
23 
24 static struct regulator *arm_reg;
25 static struct regulator *pu_reg;
26 static struct regulator *soc_reg;
27 
28 enum IMX6_CPUFREQ_CLKS {
29 	ARM,
30 	PLL1_SYS,
31 	STEP,
32 	PLL1_SW,
33 	PLL2_PFD2_396M,
34 	/* MX6UL requires two more clks */
35 	PLL2_BUS,
36 	SECONDARY_SEL,
37 };
38 #define IMX6Q_CPUFREQ_CLK_NUM		5
39 #define IMX6UL_CPUFREQ_CLK_NUM		7
40 
41 static int num_clks;
42 static struct clk_bulk_data clks[] = {
43 	{ .id = "arm" },
44 	{ .id = "pll1_sys" },
45 	{ .id = "step" },
46 	{ .id = "pll1_sw" },
47 	{ .id = "pll2_pfd2_396m" },
48 	{ .id = "pll2_bus" },
49 	{ .id = "secondary_sel" },
50 };
51 
52 static struct device *cpu_dev;
53 static bool free_opp;
54 static struct cpufreq_frequency_table *freq_table;
55 static unsigned int transition_latency;
56 
57 static u32 *imx6_soc_volt;
58 static u32 soc_opp_count;
59 
60 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
61 {
62 	struct dev_pm_opp *opp;
63 	unsigned long freq_hz, volt, volt_old;
64 	unsigned int old_freq, new_freq;
65 	bool pll1_sys_temp_enabled = false;
66 	int ret;
67 
68 	new_freq = freq_table[index].frequency;
69 	freq_hz = new_freq * 1000;
70 	old_freq = clk_get_rate(clks[ARM].clk) / 1000;
71 
72 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
73 	if (IS_ERR(opp)) {
74 		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
75 		return PTR_ERR(opp);
76 	}
77 
78 	volt = dev_pm_opp_get_voltage(opp);
79 	dev_pm_opp_put(opp);
80 
81 	volt_old = regulator_get_voltage(arm_reg);
82 
83 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
84 		old_freq / 1000, volt_old / 1000,
85 		new_freq / 1000, volt / 1000);
86 
87 	/* scaling up?  scale voltage before frequency */
88 	if (new_freq > old_freq) {
89 		if (!IS_ERR(pu_reg)) {
90 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
91 			if (ret) {
92 				dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
93 				return ret;
94 			}
95 		}
96 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
97 		if (ret) {
98 			dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
99 			return ret;
100 		}
101 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
102 		if (ret) {
103 			dev_err(cpu_dev,
104 				"failed to scale vddarm up: %d\n", ret);
105 			return ret;
106 		}
107 	}
108 
109 	/*
110 	 * The setpoints are selected per PLL/PDF frequencies, so we need to
111 	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
112 	 * PLL1 is as below.
113 	 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
114 	 * flow is slightly different from other i.MX6 OSC.
115 	 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
116 	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
117 	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
118 	 *  - Disable pll2_pfd2_396m_clk
119 	 */
120 	if (of_machine_is_compatible("fsl,imx6ul") ||
121 	    of_machine_is_compatible("fsl,imx6ull")) {
122 		/*
123 		 * When changing pll1_sw_clk's parent to pll1_sys_clk,
124 		 * CPU may run at higher than 528MHz, this will lead to
125 		 * the system unstable if the voltage is lower than the
126 		 * voltage of 528MHz, so lower the CPU frequency to one
127 		 * half before changing CPU frequency.
128 		 */
129 		clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
130 		clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
131 		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
132 			clk_set_parent(clks[SECONDARY_SEL].clk,
133 				       clks[PLL2_BUS].clk);
134 		else
135 			clk_set_parent(clks[SECONDARY_SEL].clk,
136 				       clks[PLL2_PFD2_396M].clk);
137 		clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
138 		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
139 		if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
140 			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
141 			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
142 		}
143 	} else {
144 		clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
145 		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
146 		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
147 			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
148 			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
149 		} else {
150 			/* pll1_sys needs to be enabled for divider rate change to work. */
151 			pll1_sys_temp_enabled = true;
152 			clk_prepare_enable(clks[PLL1_SYS].clk);
153 		}
154 	}
155 
156 	/* Ensure the arm clock divider is what we expect */
157 	ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
158 	if (ret) {
159 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
160 		regulator_set_voltage_tol(arm_reg, volt_old, 0);
161 		return ret;
162 	}
163 
164 	/* PLL1 is only needed until after ARM-PODF is set. */
165 	if (pll1_sys_temp_enabled)
166 		clk_disable_unprepare(clks[PLL1_SYS].clk);
167 
168 	/* scaling down?  scale voltage after frequency */
169 	if (new_freq < old_freq) {
170 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
171 		if (ret) {
172 			dev_warn(cpu_dev,
173 				 "failed to scale vddarm down: %d\n", ret);
174 			ret = 0;
175 		}
176 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
177 		if (ret) {
178 			dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
179 			ret = 0;
180 		}
181 		if (!IS_ERR(pu_reg)) {
182 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
183 			if (ret) {
184 				dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
185 				ret = 0;
186 			}
187 		}
188 	}
189 
190 	return 0;
191 }
192 
193 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
194 {
195 	int ret;
196 
197 	policy->clk = clks[ARM].clk;
198 	ret = cpufreq_generic_init(policy, freq_table, transition_latency);
199 	policy->suspend_freq = policy->max;
200 
201 	return ret;
202 }
203 
204 static struct cpufreq_driver imx6q_cpufreq_driver = {
205 	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
206 	.verify = cpufreq_generic_frequency_table_verify,
207 	.target_index = imx6q_set_target,
208 	.get = cpufreq_generic_get,
209 	.init = imx6q_cpufreq_init,
210 	.name = "imx6q-cpufreq",
211 	.attr = cpufreq_generic_attr,
212 	.suspend = cpufreq_generic_suspend,
213 };
214 
215 #define OCOTP_CFG3			0x440
216 #define OCOTP_CFG3_SPEED_SHIFT		16
217 #define OCOTP_CFG3_SPEED_1P2GHZ		0x3
218 #define OCOTP_CFG3_SPEED_996MHZ		0x2
219 #define OCOTP_CFG3_SPEED_852MHZ		0x1
220 
221 static void imx6q_opp_check_speed_grading(struct device *dev)
222 {
223 	struct device_node *np;
224 	void __iomem *base;
225 	u32 val;
226 
227 	np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp");
228 	if (!np)
229 		return;
230 
231 	base = of_iomap(np, 0);
232 	if (!base) {
233 		dev_err(dev, "failed to map ocotp\n");
234 		goto put_node;
235 	}
236 
237 	/*
238 	 * SPEED_GRADING[1:0] defines the max speed of ARM:
239 	 * 2b'11: 1200000000Hz;
240 	 * 2b'10: 996000000Hz;
241 	 * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
242 	 * 2b'00: 792000000Hz;
243 	 * We need to set the max speed of ARM according to fuse map.
244 	 */
245 	val = readl_relaxed(base + OCOTP_CFG3);
246 	val >>= OCOTP_CFG3_SPEED_SHIFT;
247 	val &= 0x3;
248 
249 	if (val < OCOTP_CFG3_SPEED_996MHZ)
250 		if (dev_pm_opp_disable(dev, 996000000))
251 			dev_warn(dev, "failed to disable 996MHz OPP\n");
252 
253 	if (of_machine_is_compatible("fsl,imx6q") ||
254 	    of_machine_is_compatible("fsl,imx6qp")) {
255 		if (val != OCOTP_CFG3_SPEED_852MHZ)
256 			if (dev_pm_opp_disable(dev, 852000000))
257 				dev_warn(dev, "failed to disable 852MHz OPP\n");
258 		if (val != OCOTP_CFG3_SPEED_1P2GHZ)
259 			if (dev_pm_opp_disable(dev, 1200000000))
260 				dev_warn(dev, "failed to disable 1.2GHz OPP\n");
261 	}
262 	iounmap(base);
263 put_node:
264 	of_node_put(np);
265 }
266 
267 #define OCOTP_CFG3_6UL_SPEED_696MHZ	0x2
268 
269 static void imx6ul_opp_check_speed_grading(struct device *dev)
270 {
271 	struct device_node *np;
272 	void __iomem *base;
273 	u32 val;
274 
275 	np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp");
276 	if (!np)
277 		return;
278 
279 	base = of_iomap(np, 0);
280 	if (!base) {
281 		dev_err(dev, "failed to map ocotp\n");
282 		goto put_node;
283 	}
284 
285 	/*
286 	 * Speed GRADING[1:0] defines the max speed of ARM:
287 	 * 2b'00: Reserved;
288 	 * 2b'01: 528000000Hz;
289 	 * 2b'10: 696000000Hz;
290 	 * 2b'11: Reserved;
291 	 * We need to set the max speed of ARM according to fuse map.
292 	 */
293 	val = readl_relaxed(base + OCOTP_CFG3);
294 	val >>= OCOTP_CFG3_SPEED_SHIFT;
295 	val &= 0x3;
296 	if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
297 		if (dev_pm_opp_disable(dev, 696000000))
298 			dev_warn(dev, "failed to disable 696MHz OPP\n");
299 	iounmap(base);
300 put_node:
301 	of_node_put(np);
302 }
303 
304 static int imx6q_cpufreq_probe(struct platform_device *pdev)
305 {
306 	struct device_node *np;
307 	struct dev_pm_opp *opp;
308 	unsigned long min_volt, max_volt;
309 	int num, ret;
310 	const struct property *prop;
311 	const __be32 *val;
312 	u32 nr, i, j;
313 
314 	cpu_dev = get_cpu_device(0);
315 	if (!cpu_dev) {
316 		pr_err("failed to get cpu0 device\n");
317 		return -ENODEV;
318 	}
319 
320 	np = of_node_get(cpu_dev->of_node);
321 	if (!np) {
322 		dev_err(cpu_dev, "failed to find cpu0 node\n");
323 		return -ENOENT;
324 	}
325 
326 	if (of_machine_is_compatible("fsl,imx6ul") ||
327 	    of_machine_is_compatible("fsl,imx6ull"))
328 		num_clks = IMX6UL_CPUFREQ_CLK_NUM;
329 	else
330 		num_clks = IMX6Q_CPUFREQ_CLK_NUM;
331 
332 	ret = clk_bulk_get(cpu_dev, num_clks, clks);
333 	if (ret)
334 		goto put_node;
335 
336 	arm_reg = regulator_get(cpu_dev, "arm");
337 	pu_reg = regulator_get_optional(cpu_dev, "pu");
338 	soc_reg = regulator_get(cpu_dev, "soc");
339 	if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
340 			PTR_ERR(soc_reg) == -EPROBE_DEFER ||
341 			PTR_ERR(pu_reg) == -EPROBE_DEFER) {
342 		ret = -EPROBE_DEFER;
343 		dev_dbg(cpu_dev, "regulators not ready, defer\n");
344 		goto put_reg;
345 	}
346 	if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
347 		dev_err(cpu_dev, "failed to get regulators\n");
348 		ret = -ENOENT;
349 		goto put_reg;
350 	}
351 
352 	ret = dev_pm_opp_of_add_table(cpu_dev);
353 	if (ret < 0) {
354 		dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
355 		goto put_reg;
356 	}
357 
358 	if (of_machine_is_compatible("fsl,imx6ul"))
359 		imx6ul_opp_check_speed_grading(cpu_dev);
360 	else
361 		imx6q_opp_check_speed_grading(cpu_dev);
362 
363 	/* Because we have added the OPPs here, we must free them */
364 	free_opp = true;
365 	num = dev_pm_opp_get_opp_count(cpu_dev);
366 	if (num < 0) {
367 		ret = num;
368 		dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
369 		goto out_free_opp;
370 	}
371 
372 	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
373 	if (ret) {
374 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
375 		goto out_free_opp;
376 	}
377 
378 	/* Make imx6_soc_volt array's size same as arm opp number */
379 	imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
380 	if (imx6_soc_volt == NULL) {
381 		ret = -ENOMEM;
382 		goto free_freq_table;
383 	}
384 
385 	prop = of_find_property(np, "fsl,soc-operating-points", NULL);
386 	if (!prop || !prop->value)
387 		goto soc_opp_out;
388 
389 	/*
390 	 * Each OPP is a set of tuples consisting of frequency and
391 	 * voltage like <freq-kHz vol-uV>.
392 	 */
393 	nr = prop->length / sizeof(u32);
394 	if (nr % 2 || (nr / 2) < num)
395 		goto soc_opp_out;
396 
397 	for (j = 0; j < num; j++) {
398 		val = prop->value;
399 		for (i = 0; i < nr / 2; i++) {
400 			unsigned long freq = be32_to_cpup(val++);
401 			unsigned long volt = be32_to_cpup(val++);
402 			if (freq_table[j].frequency == freq) {
403 				imx6_soc_volt[soc_opp_count++] = volt;
404 				break;
405 			}
406 		}
407 	}
408 
409 soc_opp_out:
410 	/* use fixed soc opp volt if no valid soc opp info found in dtb */
411 	if (soc_opp_count != num) {
412 		dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
413 		for (j = 0; j < num; j++)
414 			imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
415 		if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
416 			imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
417 	}
418 
419 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
420 		transition_latency = CPUFREQ_ETERNAL;
421 
422 	/*
423 	 * Calculate the ramp time for max voltage change in the
424 	 * VDDSOC and VDDPU regulators.
425 	 */
426 	ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
427 	if (ret > 0)
428 		transition_latency += ret * 1000;
429 	if (!IS_ERR(pu_reg)) {
430 		ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
431 		if (ret > 0)
432 			transition_latency += ret * 1000;
433 	}
434 
435 	/*
436 	 * OPP is maintained in order of increasing frequency, and
437 	 * freq_table initialised from OPP is therefore sorted in the
438 	 * same order.
439 	 */
440 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
441 				  freq_table[0].frequency * 1000, true);
442 	min_volt = dev_pm_opp_get_voltage(opp);
443 	dev_pm_opp_put(opp);
444 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
445 				  freq_table[--num].frequency * 1000, true);
446 	max_volt = dev_pm_opp_get_voltage(opp);
447 	dev_pm_opp_put(opp);
448 
449 	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
450 	if (ret > 0)
451 		transition_latency += ret * 1000;
452 
453 	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
454 	if (ret) {
455 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
456 		goto free_freq_table;
457 	}
458 
459 	of_node_put(np);
460 	return 0;
461 
462 free_freq_table:
463 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
464 out_free_opp:
465 	if (free_opp)
466 		dev_pm_opp_of_remove_table(cpu_dev);
467 put_reg:
468 	if (!IS_ERR(arm_reg))
469 		regulator_put(arm_reg);
470 	if (!IS_ERR(pu_reg))
471 		regulator_put(pu_reg);
472 	if (!IS_ERR(soc_reg))
473 		regulator_put(soc_reg);
474 
475 	clk_bulk_put(num_clks, clks);
476 put_node:
477 	of_node_put(np);
478 
479 	return ret;
480 }
481 
482 static int imx6q_cpufreq_remove(struct platform_device *pdev)
483 {
484 	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
485 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
486 	if (free_opp)
487 		dev_pm_opp_of_remove_table(cpu_dev);
488 	regulator_put(arm_reg);
489 	if (!IS_ERR(pu_reg))
490 		regulator_put(pu_reg);
491 	regulator_put(soc_reg);
492 
493 	clk_bulk_put(num_clks, clks);
494 
495 	return 0;
496 }
497 
498 static struct platform_driver imx6q_cpufreq_platdrv = {
499 	.driver = {
500 		.name	= "imx6q-cpufreq",
501 	},
502 	.probe		= imx6q_cpufreq_probe,
503 	.remove		= imx6q_cpufreq_remove,
504 };
505 module_platform_driver(imx6q_cpufreq_platdrv);
506 
507 MODULE_ALIAS("platform:imx6q-cpufreq");
508 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
509 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
510 MODULE_LICENSE("GPL");
511