1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/delay.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/pm_opp.h>
17 #include <linux/platform_device.h>
18 #include <linux/regulator/consumer.h>
19 
20 #define PU_SOC_VOLTAGE_NORMAL	1250000
21 #define PU_SOC_VOLTAGE_HIGH	1275000
22 #define FREQ_1P2_GHZ		1200000000
23 
24 static struct regulator *arm_reg;
25 static struct regulator *pu_reg;
26 static struct regulator *soc_reg;
27 
28 static struct clk *arm_clk;
29 static struct clk *pll1_sys_clk;
30 static struct clk *pll1_sw_clk;
31 static struct clk *step_clk;
32 static struct clk *pll2_pfd2_396m_clk;
33 
34 static struct device *cpu_dev;
35 static struct cpufreq_frequency_table *freq_table;
36 static unsigned int transition_latency;
37 
38 static unsigned int imx6q_get_speed(unsigned int cpu)
39 {
40 	return clk_get_rate(arm_clk) / 1000;
41 }
42 
43 static int imx6q_set_target(struct cpufreq_policy *policy,
44 			    unsigned int target_freq, unsigned int relation)
45 {
46 	struct cpufreq_freqs freqs;
47 	struct dev_pm_opp *opp;
48 	unsigned long freq_hz, volt, volt_old;
49 	unsigned int index;
50 	int ret;
51 
52 	ret = cpufreq_frequency_table_target(policy, freq_table, target_freq,
53 					     relation, &index);
54 	if (ret) {
55 		dev_err(cpu_dev, "failed to match target frequency %d: %d\n",
56 			target_freq, ret);
57 		return ret;
58 	}
59 
60 	freqs.new = freq_table[index].frequency;
61 	freq_hz = freqs.new * 1000;
62 	freqs.old = clk_get_rate(arm_clk) / 1000;
63 
64 	if (freqs.old == freqs.new)
65 		return 0;
66 
67 	rcu_read_lock();
68 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
69 	if (IS_ERR(opp)) {
70 		rcu_read_unlock();
71 		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
72 		return PTR_ERR(opp);
73 	}
74 
75 	volt = dev_pm_opp_get_voltage(opp);
76 	rcu_read_unlock();
77 	volt_old = regulator_get_voltage(arm_reg);
78 
79 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
80 		freqs.old / 1000, volt_old / 1000,
81 		freqs.new / 1000, volt / 1000);
82 
83 	cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
84 
85 	/* scaling up?  scale voltage before frequency */
86 	if (freqs.new > freqs.old) {
87 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
88 		if (ret) {
89 			dev_err(cpu_dev,
90 				"failed to scale vddarm up: %d\n", ret);
91 			freqs.new = freqs.old;
92 			goto post_notify;
93 		}
94 
95 		/*
96 		 * Need to increase vddpu and vddsoc for safety
97 		 * if we are about to run at 1.2 GHz.
98 		 */
99 		if (freqs.new == FREQ_1P2_GHZ / 1000) {
100 			regulator_set_voltage_tol(pu_reg,
101 					PU_SOC_VOLTAGE_HIGH, 0);
102 			regulator_set_voltage_tol(soc_reg,
103 					PU_SOC_VOLTAGE_HIGH, 0);
104 		}
105 	}
106 
107 	/*
108 	 * The setpoints are selected per PLL/PDF frequencies, so we need to
109 	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
110 	 * PLL1 is as below.
111 	 *
112 	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
113 	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
114 	 *  - Disable pll2_pfd2_396m_clk
115 	 */
116 	clk_set_parent(step_clk, pll2_pfd2_396m_clk);
117 	clk_set_parent(pll1_sw_clk, step_clk);
118 	if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
119 		clk_set_rate(pll1_sys_clk, freqs.new * 1000);
120 		clk_set_parent(pll1_sw_clk, pll1_sys_clk);
121 	}
122 
123 	/* Ensure the arm clock divider is what we expect */
124 	ret = clk_set_rate(arm_clk, freqs.new * 1000);
125 	if (ret) {
126 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
127 		regulator_set_voltage_tol(arm_reg, volt_old, 0);
128 		freqs.new = freqs.old;
129 		goto post_notify;
130 	}
131 
132 	/* scaling down?  scale voltage after frequency */
133 	if (freqs.new < freqs.old) {
134 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
135 		if (ret) {
136 			dev_warn(cpu_dev,
137 				 "failed to scale vddarm down: %d\n", ret);
138 			ret = 0;
139 		}
140 
141 		if (freqs.old == FREQ_1P2_GHZ / 1000) {
142 			regulator_set_voltage_tol(pu_reg,
143 					PU_SOC_VOLTAGE_NORMAL, 0);
144 			regulator_set_voltage_tol(soc_reg,
145 					PU_SOC_VOLTAGE_NORMAL, 0);
146 		}
147 	}
148 
149 post_notify:
150 	cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
151 
152 	return ret;
153 }
154 
155 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
156 {
157 	return cpufreq_generic_init(policy, freq_table, transition_latency);
158 }
159 
160 static struct cpufreq_driver imx6q_cpufreq_driver = {
161 	.verify = cpufreq_generic_frequency_table_verify,
162 	.target = imx6q_set_target,
163 	.get = imx6q_get_speed,
164 	.init = imx6q_cpufreq_init,
165 	.exit = cpufreq_generic_exit,
166 	.name = "imx6q-cpufreq",
167 	.attr = cpufreq_generic_attr,
168 };
169 
170 static int imx6q_cpufreq_probe(struct platform_device *pdev)
171 {
172 	struct device_node *np;
173 	struct dev_pm_opp *opp;
174 	unsigned long min_volt, max_volt;
175 	int num, ret;
176 
177 	cpu_dev = get_cpu_device(0);
178 	if (!cpu_dev) {
179 		pr_err("failed to get cpu0 device\n");
180 		return -ENODEV;
181 	}
182 
183 	np = of_node_get(cpu_dev->of_node);
184 	if (!np) {
185 		dev_err(cpu_dev, "failed to find cpu0 node\n");
186 		return -ENOENT;
187 	}
188 
189 	arm_clk = devm_clk_get(cpu_dev, "arm");
190 	pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
191 	pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
192 	step_clk = devm_clk_get(cpu_dev, "step");
193 	pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
194 	if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
195 	    IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
196 		dev_err(cpu_dev, "failed to get clocks\n");
197 		ret = -ENOENT;
198 		goto put_node;
199 	}
200 
201 	arm_reg = devm_regulator_get(cpu_dev, "arm");
202 	pu_reg = devm_regulator_get(cpu_dev, "pu");
203 	soc_reg = devm_regulator_get(cpu_dev, "soc");
204 	if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
205 		dev_err(cpu_dev, "failed to get regulators\n");
206 		ret = -ENOENT;
207 		goto put_node;
208 	}
209 
210 	/* We expect an OPP table supplied by platform */
211 	num = dev_pm_opp_get_opp_count(cpu_dev);
212 	if (num < 0) {
213 		ret = num;
214 		dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
215 		goto put_node;
216 	}
217 
218 	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
219 	if (ret) {
220 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
221 		goto put_node;
222 	}
223 
224 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
225 		transition_latency = CPUFREQ_ETERNAL;
226 
227 	/*
228 	 * OPP is maintained in order of increasing frequency, and
229 	 * freq_table initialised from OPP is therefore sorted in the
230 	 * same order.
231 	 */
232 	rcu_read_lock();
233 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
234 				  freq_table[0].frequency * 1000, true);
235 	min_volt = dev_pm_opp_get_voltage(opp);
236 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
237 				  freq_table[--num].frequency * 1000, true);
238 	max_volt = dev_pm_opp_get_voltage(opp);
239 	rcu_read_unlock();
240 	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
241 	if (ret > 0)
242 		transition_latency += ret * 1000;
243 
244 	/* Count vddpu and vddsoc latency in for 1.2 GHz support */
245 	if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) {
246 		ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL,
247 						 PU_SOC_VOLTAGE_HIGH);
248 		if (ret > 0)
249 			transition_latency += ret * 1000;
250 		ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL,
251 						 PU_SOC_VOLTAGE_HIGH);
252 		if (ret > 0)
253 			transition_latency += ret * 1000;
254 	}
255 
256 	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
257 	if (ret) {
258 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
259 		goto free_freq_table;
260 	}
261 
262 	of_node_put(np);
263 	return 0;
264 
265 free_freq_table:
266 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
267 put_node:
268 	of_node_put(np);
269 	return ret;
270 }
271 
272 static int imx6q_cpufreq_remove(struct platform_device *pdev)
273 {
274 	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
275 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
276 
277 	return 0;
278 }
279 
280 static struct platform_driver imx6q_cpufreq_platdrv = {
281 	.driver = {
282 		.name	= "imx6q-cpufreq",
283 		.owner	= THIS_MODULE,
284 	},
285 	.probe		= imx6q_cpufreq_probe,
286 	.remove		= imx6q_cpufreq_remove,
287 };
288 module_platform_driver(imx6q_cpufreq_platdrv);
289 
290 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
291 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
292 MODULE_LICENSE("GPL");
293