1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013 Freescale Semiconductor, Inc. 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/cpu.h> 8 #include <linux/cpufreq.h> 9 #include <linux/err.h> 10 #include <linux/module.h> 11 #include <linux/nvmem-consumer.h> 12 #include <linux/of.h> 13 #include <linux/of_address.h> 14 #include <linux/pm_opp.h> 15 #include <linux/platform_device.h> 16 #include <linux/regulator/consumer.h> 17 18 #define PU_SOC_VOLTAGE_NORMAL 1250000 19 #define PU_SOC_VOLTAGE_HIGH 1275000 20 #define FREQ_1P2_GHZ 1200000000 21 22 static struct regulator *arm_reg; 23 static struct regulator *pu_reg; 24 static struct regulator *soc_reg; 25 26 enum IMX6_CPUFREQ_CLKS { 27 ARM, 28 PLL1_SYS, 29 STEP, 30 PLL1_SW, 31 PLL2_PFD2_396M, 32 /* MX6UL requires two more clks */ 33 PLL2_BUS, 34 SECONDARY_SEL, 35 }; 36 #define IMX6Q_CPUFREQ_CLK_NUM 5 37 #define IMX6UL_CPUFREQ_CLK_NUM 7 38 39 static int num_clks; 40 static struct clk_bulk_data clks[] = { 41 { .id = "arm" }, 42 { .id = "pll1_sys" }, 43 { .id = "step" }, 44 { .id = "pll1_sw" }, 45 { .id = "pll2_pfd2_396m" }, 46 { .id = "pll2_bus" }, 47 { .id = "secondary_sel" }, 48 }; 49 50 static struct device *cpu_dev; 51 static struct cpufreq_frequency_table *freq_table; 52 static unsigned int max_freq; 53 static unsigned int transition_latency; 54 55 static u32 *imx6_soc_volt; 56 static u32 soc_opp_count; 57 58 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index) 59 { 60 struct dev_pm_opp *opp; 61 unsigned long freq_hz, volt, volt_old; 62 unsigned int old_freq, new_freq; 63 bool pll1_sys_temp_enabled = false; 64 int ret; 65 66 new_freq = freq_table[index].frequency; 67 freq_hz = new_freq * 1000; 68 old_freq = clk_get_rate(clks[ARM].clk) / 1000; 69 70 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz); 71 if (IS_ERR(opp)) { 72 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz); 73 return PTR_ERR(opp); 74 } 75 76 volt = dev_pm_opp_get_voltage(opp); 77 dev_pm_opp_put(opp); 78 79 volt_old = regulator_get_voltage(arm_reg); 80 81 dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n", 82 old_freq / 1000, volt_old / 1000, 83 new_freq / 1000, volt / 1000); 84 85 /* scaling up? scale voltage before frequency */ 86 if (new_freq > old_freq) { 87 if (!IS_ERR(pu_reg)) { 88 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0); 89 if (ret) { 90 dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret); 91 return ret; 92 } 93 } 94 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0); 95 if (ret) { 96 dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret); 97 return ret; 98 } 99 ret = regulator_set_voltage_tol(arm_reg, volt, 0); 100 if (ret) { 101 dev_err(cpu_dev, 102 "failed to scale vddarm up: %d\n", ret); 103 return ret; 104 } 105 } 106 107 /* 108 * The setpoints are selected per PLL/PDF frequencies, so we need to 109 * reprogram PLL for frequency scaling. The procedure of reprogramming 110 * PLL1 is as below. 111 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change 112 * flow is slightly different from other i.MX6 OSC. 113 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below: 114 * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it 115 * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it 116 * - Disable pll2_pfd2_396m_clk 117 */ 118 if (of_machine_is_compatible("fsl,imx6ul") || 119 of_machine_is_compatible("fsl,imx6ull")) { 120 /* 121 * When changing pll1_sw_clk's parent to pll1_sys_clk, 122 * CPU may run at higher than 528MHz, this will lead to 123 * the system unstable if the voltage is lower than the 124 * voltage of 528MHz, so lower the CPU frequency to one 125 * half before changing CPU frequency. 126 */ 127 clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000); 128 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk); 129 if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) 130 clk_set_parent(clks[SECONDARY_SEL].clk, 131 clks[PLL2_BUS].clk); 132 else 133 clk_set_parent(clks[SECONDARY_SEL].clk, 134 clks[PLL2_PFD2_396M].clk); 135 clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk); 136 clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk); 137 if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) { 138 clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000); 139 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk); 140 } 141 } else { 142 clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk); 143 clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk); 144 if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) { 145 clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000); 146 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk); 147 } else { 148 /* pll1_sys needs to be enabled for divider rate change to work. */ 149 pll1_sys_temp_enabled = true; 150 clk_prepare_enable(clks[PLL1_SYS].clk); 151 } 152 } 153 154 /* Ensure the arm clock divider is what we expect */ 155 ret = clk_set_rate(clks[ARM].clk, new_freq * 1000); 156 if (ret) { 157 int ret1; 158 159 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret); 160 ret1 = regulator_set_voltage_tol(arm_reg, volt_old, 0); 161 if (ret1) 162 dev_warn(cpu_dev, 163 "failed to restore vddarm voltage: %d\n", ret1); 164 return ret; 165 } 166 167 /* PLL1 is only needed until after ARM-PODF is set. */ 168 if (pll1_sys_temp_enabled) 169 clk_disable_unprepare(clks[PLL1_SYS].clk); 170 171 /* scaling down? scale voltage after frequency */ 172 if (new_freq < old_freq) { 173 ret = regulator_set_voltage_tol(arm_reg, volt, 0); 174 if (ret) 175 dev_warn(cpu_dev, 176 "failed to scale vddarm down: %d\n", ret); 177 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0); 178 if (ret) 179 dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret); 180 if (!IS_ERR(pu_reg)) { 181 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0); 182 if (ret) 183 dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret); 184 } 185 } 186 187 return 0; 188 } 189 190 static int imx6q_cpufreq_init(struct cpufreq_policy *policy) 191 { 192 policy->clk = clks[ARM].clk; 193 cpufreq_generic_init(policy, freq_table, transition_latency); 194 policy->suspend_freq = max_freq; 195 196 return 0; 197 } 198 199 static struct cpufreq_driver imx6q_cpufreq_driver = { 200 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK | 201 CPUFREQ_IS_COOLING_DEV, 202 .verify = cpufreq_generic_frequency_table_verify, 203 .target_index = imx6q_set_target, 204 .get = cpufreq_generic_get, 205 .init = imx6q_cpufreq_init, 206 .register_em = cpufreq_register_em_with_opp, 207 .name = "imx6q-cpufreq", 208 .attr = cpufreq_generic_attr, 209 .suspend = cpufreq_generic_suspend, 210 }; 211 212 static void imx6x_disable_freq_in_opp(struct device *dev, unsigned long freq) 213 { 214 int ret = dev_pm_opp_disable(dev, freq); 215 216 if (ret < 0 && ret != -ENODEV) 217 dev_warn(dev, "failed to disable %ldMHz OPP\n", freq / 1000000); 218 } 219 220 #define OCOTP_CFG3 0x440 221 #define OCOTP_CFG3_SPEED_SHIFT 16 222 #define OCOTP_CFG3_SPEED_1P2GHZ 0x3 223 #define OCOTP_CFG3_SPEED_996MHZ 0x2 224 #define OCOTP_CFG3_SPEED_852MHZ 0x1 225 226 static int imx6q_opp_check_speed_grading(struct device *dev) 227 { 228 struct device_node *np; 229 void __iomem *base; 230 u32 val; 231 int ret; 232 233 if (of_property_present(dev->of_node, "nvmem-cells")) { 234 ret = nvmem_cell_read_u32(dev, "speed_grade", &val); 235 if (ret) 236 return ret; 237 } else { 238 np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp"); 239 if (!np) 240 return -ENOENT; 241 242 base = of_iomap(np, 0); 243 of_node_put(np); 244 if (!base) { 245 dev_err(dev, "failed to map ocotp\n"); 246 return -EFAULT; 247 } 248 249 /* 250 * SPEED_GRADING[1:0] defines the max speed of ARM: 251 * 2b'11: 1200000000Hz; 252 * 2b'10: 996000000Hz; 253 * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz. 254 * 2b'00: 792000000Hz; 255 * We need to set the max speed of ARM according to fuse map. 256 */ 257 val = readl_relaxed(base + OCOTP_CFG3); 258 iounmap(base); 259 } 260 261 val >>= OCOTP_CFG3_SPEED_SHIFT; 262 val &= 0x3; 263 264 if (val < OCOTP_CFG3_SPEED_996MHZ) 265 imx6x_disable_freq_in_opp(dev, 996000000); 266 267 if (of_machine_is_compatible("fsl,imx6q") || 268 of_machine_is_compatible("fsl,imx6qp")) { 269 if (val != OCOTP_CFG3_SPEED_852MHZ) 270 imx6x_disable_freq_in_opp(dev, 852000000); 271 272 if (val != OCOTP_CFG3_SPEED_1P2GHZ) 273 imx6x_disable_freq_in_opp(dev, 1200000000); 274 } 275 276 return 0; 277 } 278 279 #define OCOTP_CFG3_6UL_SPEED_696MHZ 0x2 280 #define OCOTP_CFG3_6ULL_SPEED_792MHZ 0x2 281 #define OCOTP_CFG3_6ULL_SPEED_900MHZ 0x3 282 283 static int imx6ul_opp_check_speed_grading(struct device *dev) 284 { 285 u32 val; 286 int ret = 0; 287 288 if (of_property_present(dev->of_node, "nvmem-cells")) { 289 ret = nvmem_cell_read_u32(dev, "speed_grade", &val); 290 if (ret) 291 return ret; 292 } else { 293 struct device_node *np; 294 void __iomem *base; 295 296 np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp"); 297 if (!np) 298 np = of_find_compatible_node(NULL, NULL, 299 "fsl,imx6ull-ocotp"); 300 if (!np) 301 return -ENOENT; 302 303 base = of_iomap(np, 0); 304 of_node_put(np); 305 if (!base) { 306 dev_err(dev, "failed to map ocotp\n"); 307 return -EFAULT; 308 } 309 310 val = readl_relaxed(base + OCOTP_CFG3); 311 iounmap(base); 312 } 313 314 /* 315 * Speed GRADING[1:0] defines the max speed of ARM: 316 * 2b'00: Reserved; 317 * 2b'01: 528000000Hz; 318 * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL; 319 * 2b'11: 900000000Hz on i.MX6ULL only; 320 * We need to set the max speed of ARM according to fuse map. 321 */ 322 val >>= OCOTP_CFG3_SPEED_SHIFT; 323 val &= 0x3; 324 325 if (of_machine_is_compatible("fsl,imx6ul")) 326 if (val != OCOTP_CFG3_6UL_SPEED_696MHZ) 327 imx6x_disable_freq_in_opp(dev, 696000000); 328 329 if (of_machine_is_compatible("fsl,imx6ull")) { 330 if (val != OCOTP_CFG3_6ULL_SPEED_792MHZ) 331 imx6x_disable_freq_in_opp(dev, 792000000); 332 333 if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ) 334 imx6x_disable_freq_in_opp(dev, 900000000); 335 } 336 337 return ret; 338 } 339 340 static int imx6q_cpufreq_probe(struct platform_device *pdev) 341 { 342 struct device_node *np; 343 struct dev_pm_opp *opp; 344 unsigned long min_volt, max_volt; 345 int num, ret; 346 const struct property *prop; 347 const __be32 *val; 348 u32 nr, i, j; 349 350 cpu_dev = get_cpu_device(0); 351 if (!cpu_dev) { 352 pr_err("failed to get cpu0 device\n"); 353 return -ENODEV; 354 } 355 356 np = of_node_get(cpu_dev->of_node); 357 if (!np) { 358 dev_err(cpu_dev, "failed to find cpu0 node\n"); 359 return -ENOENT; 360 } 361 362 if (of_machine_is_compatible("fsl,imx6ul") || 363 of_machine_is_compatible("fsl,imx6ull")) 364 num_clks = IMX6UL_CPUFREQ_CLK_NUM; 365 else 366 num_clks = IMX6Q_CPUFREQ_CLK_NUM; 367 368 ret = clk_bulk_get(cpu_dev, num_clks, clks); 369 if (ret) 370 goto put_node; 371 372 arm_reg = regulator_get(cpu_dev, "arm"); 373 pu_reg = regulator_get_optional(cpu_dev, "pu"); 374 soc_reg = regulator_get(cpu_dev, "soc"); 375 if (PTR_ERR(arm_reg) == -EPROBE_DEFER || 376 PTR_ERR(soc_reg) == -EPROBE_DEFER || 377 PTR_ERR(pu_reg) == -EPROBE_DEFER) { 378 ret = -EPROBE_DEFER; 379 dev_dbg(cpu_dev, "regulators not ready, defer\n"); 380 goto put_reg; 381 } 382 if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) { 383 dev_err(cpu_dev, "failed to get regulators\n"); 384 ret = -ENOENT; 385 goto put_reg; 386 } 387 388 ret = dev_pm_opp_of_add_table(cpu_dev); 389 if (ret < 0) { 390 dev_err(cpu_dev, "failed to init OPP table: %d\n", ret); 391 goto put_reg; 392 } 393 394 if (of_machine_is_compatible("fsl,imx6ul") || 395 of_machine_is_compatible("fsl,imx6ull")) { 396 ret = imx6ul_opp_check_speed_grading(cpu_dev); 397 } else { 398 ret = imx6q_opp_check_speed_grading(cpu_dev); 399 } 400 if (ret) { 401 dev_err_probe(cpu_dev, ret, "failed to read ocotp\n"); 402 goto out_free_opp; 403 } 404 405 num = dev_pm_opp_get_opp_count(cpu_dev); 406 if (num < 0) { 407 ret = num; 408 dev_err(cpu_dev, "no OPP table is found: %d\n", ret); 409 goto out_free_opp; 410 } 411 412 ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table); 413 if (ret) { 414 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret); 415 goto out_free_opp; 416 } 417 418 /* Make imx6_soc_volt array's size same as arm opp number */ 419 imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt), 420 GFP_KERNEL); 421 if (imx6_soc_volt == NULL) { 422 ret = -ENOMEM; 423 goto free_freq_table; 424 } 425 426 prop = of_find_property(np, "fsl,soc-operating-points", NULL); 427 if (!prop || !prop->value) 428 goto soc_opp_out; 429 430 /* 431 * Each OPP is a set of tuples consisting of frequency and 432 * voltage like <freq-kHz vol-uV>. 433 */ 434 nr = prop->length / sizeof(u32); 435 if (nr % 2 || (nr / 2) < num) 436 goto soc_opp_out; 437 438 for (j = 0; j < num; j++) { 439 val = prop->value; 440 for (i = 0; i < nr / 2; i++) { 441 unsigned long freq = be32_to_cpup(val++); 442 unsigned long volt = be32_to_cpup(val++); 443 if (freq_table[j].frequency == freq) { 444 imx6_soc_volt[soc_opp_count++] = volt; 445 break; 446 } 447 } 448 } 449 450 soc_opp_out: 451 /* use fixed soc opp volt if no valid soc opp info found in dtb */ 452 if (soc_opp_count != num) { 453 dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n"); 454 for (j = 0; j < num; j++) 455 imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL; 456 if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ) 457 imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH; 458 } 459 460 if (of_property_read_u32(np, "clock-latency", &transition_latency)) 461 transition_latency = CPUFREQ_ETERNAL; 462 463 /* 464 * Calculate the ramp time for max voltage change in the 465 * VDDSOC and VDDPU regulators. 466 */ 467 ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]); 468 if (ret > 0) 469 transition_latency += ret * 1000; 470 if (!IS_ERR(pu_reg)) { 471 ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]); 472 if (ret > 0) 473 transition_latency += ret * 1000; 474 } 475 476 /* 477 * OPP is maintained in order of increasing frequency, and 478 * freq_table initialised from OPP is therefore sorted in the 479 * same order. 480 */ 481 max_freq = freq_table[--num].frequency; 482 opp = dev_pm_opp_find_freq_exact(cpu_dev, 483 freq_table[0].frequency * 1000, true); 484 min_volt = dev_pm_opp_get_voltage(opp); 485 dev_pm_opp_put(opp); 486 opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true); 487 max_volt = dev_pm_opp_get_voltage(opp); 488 dev_pm_opp_put(opp); 489 490 ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt); 491 if (ret > 0) 492 transition_latency += ret * 1000; 493 494 ret = cpufreq_register_driver(&imx6q_cpufreq_driver); 495 if (ret) { 496 dev_err(cpu_dev, "failed register driver: %d\n", ret); 497 goto free_freq_table; 498 } 499 500 of_node_put(np); 501 return 0; 502 503 free_freq_table: 504 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table); 505 out_free_opp: 506 dev_pm_opp_of_remove_table(cpu_dev); 507 put_reg: 508 if (!IS_ERR(arm_reg)) 509 regulator_put(arm_reg); 510 if (!IS_ERR(pu_reg)) 511 regulator_put(pu_reg); 512 if (!IS_ERR(soc_reg)) 513 regulator_put(soc_reg); 514 515 clk_bulk_put(num_clks, clks); 516 put_node: 517 of_node_put(np); 518 519 return ret; 520 } 521 522 static void imx6q_cpufreq_remove(struct platform_device *pdev) 523 { 524 cpufreq_unregister_driver(&imx6q_cpufreq_driver); 525 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table); 526 dev_pm_opp_of_remove_table(cpu_dev); 527 regulator_put(arm_reg); 528 if (!IS_ERR(pu_reg)) 529 regulator_put(pu_reg); 530 regulator_put(soc_reg); 531 532 clk_bulk_put(num_clks, clks); 533 } 534 535 static struct platform_driver imx6q_cpufreq_platdrv = { 536 .driver = { 537 .name = "imx6q-cpufreq", 538 }, 539 .probe = imx6q_cpufreq_probe, 540 .remove_new = imx6q_cpufreq_remove, 541 }; 542 module_platform_driver(imx6q_cpufreq_platdrv); 543 544 MODULE_ALIAS("platform:imx6q-cpufreq"); 545 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>"); 546 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver"); 547 MODULE_LICENSE("GPL"); 548