1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/pm_opp.h>
16 #include <linux/platform_device.h>
17 #include <linux/regulator/consumer.h>
18 
19 #define PU_SOC_VOLTAGE_NORMAL	1250000
20 #define PU_SOC_VOLTAGE_HIGH	1275000
21 #define FREQ_1P2_GHZ		1200000000
22 
23 static struct regulator *arm_reg;
24 static struct regulator *pu_reg;
25 static struct regulator *soc_reg;
26 
27 static struct clk *arm_clk;
28 static struct clk *pll1_sys_clk;
29 static struct clk *pll1_sw_clk;
30 static struct clk *step_clk;
31 static struct clk *pll2_pfd2_396m_clk;
32 
33 /* clk used by i.MX6UL */
34 static struct clk *pll2_bus_clk;
35 static struct clk *secondary_sel_clk;
36 
37 static struct device *cpu_dev;
38 static bool free_opp;
39 static struct cpufreq_frequency_table *freq_table;
40 static unsigned int transition_latency;
41 
42 static u32 *imx6_soc_volt;
43 static u32 soc_opp_count;
44 
45 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
46 {
47 	struct dev_pm_opp *opp;
48 	unsigned long freq_hz, volt, volt_old;
49 	unsigned int old_freq, new_freq;
50 	int ret;
51 
52 	new_freq = freq_table[index].frequency;
53 	freq_hz = new_freq * 1000;
54 	old_freq = clk_get_rate(arm_clk) / 1000;
55 
56 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
57 	if (IS_ERR(opp)) {
58 		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
59 		return PTR_ERR(opp);
60 	}
61 
62 	volt = dev_pm_opp_get_voltage(opp);
63 	dev_pm_opp_put(opp);
64 
65 	volt_old = regulator_get_voltage(arm_reg);
66 
67 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
68 		old_freq / 1000, volt_old / 1000,
69 		new_freq / 1000, volt / 1000);
70 
71 	/* scaling up?  scale voltage before frequency */
72 	if (new_freq > old_freq) {
73 		if (!IS_ERR(pu_reg)) {
74 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
75 			if (ret) {
76 				dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
77 				return ret;
78 			}
79 		}
80 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
81 		if (ret) {
82 			dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
83 			return ret;
84 		}
85 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
86 		if (ret) {
87 			dev_err(cpu_dev,
88 				"failed to scale vddarm up: %d\n", ret);
89 			return ret;
90 		}
91 	}
92 
93 	/*
94 	 * The setpoints are selected per PLL/PDF frequencies, so we need to
95 	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
96 	 * PLL1 is as below.
97 	 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
98 	 * flow is slightly different from other i.MX6 OSC.
99 	 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
100 	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
101 	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
102 	 *  - Disable pll2_pfd2_396m_clk
103 	 */
104 	if (of_machine_is_compatible("fsl,imx6ul") ||
105 	    of_machine_is_compatible("fsl,imx6ull")) {
106 		/*
107 		 * When changing pll1_sw_clk's parent to pll1_sys_clk,
108 		 * CPU may run at higher than 528MHz, this will lead to
109 		 * the system unstable if the voltage is lower than the
110 		 * voltage of 528MHz, so lower the CPU frequency to one
111 		 * half before changing CPU frequency.
112 		 */
113 		clk_set_rate(arm_clk, (old_freq >> 1) * 1000);
114 		clk_set_parent(pll1_sw_clk, pll1_sys_clk);
115 		if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk))
116 			clk_set_parent(secondary_sel_clk, pll2_bus_clk);
117 		else
118 			clk_set_parent(secondary_sel_clk, pll2_pfd2_396m_clk);
119 		clk_set_parent(step_clk, secondary_sel_clk);
120 		clk_set_parent(pll1_sw_clk, step_clk);
121 	} else {
122 		clk_set_parent(step_clk, pll2_pfd2_396m_clk);
123 		clk_set_parent(pll1_sw_clk, step_clk);
124 		if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
125 			clk_set_rate(pll1_sys_clk, new_freq * 1000);
126 			clk_set_parent(pll1_sw_clk, pll1_sys_clk);
127 		}
128 	}
129 
130 	/* Ensure the arm clock divider is what we expect */
131 	ret = clk_set_rate(arm_clk, new_freq * 1000);
132 	if (ret) {
133 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
134 		regulator_set_voltage_tol(arm_reg, volt_old, 0);
135 		return ret;
136 	}
137 
138 	/* scaling down?  scale voltage after frequency */
139 	if (new_freq < old_freq) {
140 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
141 		if (ret) {
142 			dev_warn(cpu_dev,
143 				 "failed to scale vddarm down: %d\n", ret);
144 			ret = 0;
145 		}
146 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
147 		if (ret) {
148 			dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
149 			ret = 0;
150 		}
151 		if (!IS_ERR(pu_reg)) {
152 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
153 			if (ret) {
154 				dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
155 				ret = 0;
156 			}
157 		}
158 	}
159 
160 	return 0;
161 }
162 
163 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
164 {
165 	int ret;
166 
167 	policy->clk = arm_clk;
168 	ret = cpufreq_generic_init(policy, freq_table, transition_latency);
169 	policy->suspend_freq = policy->max;
170 
171 	return ret;
172 }
173 
174 static struct cpufreq_driver imx6q_cpufreq_driver = {
175 	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
176 	.verify = cpufreq_generic_frequency_table_verify,
177 	.target_index = imx6q_set_target,
178 	.get = cpufreq_generic_get,
179 	.init = imx6q_cpufreq_init,
180 	.name = "imx6q-cpufreq",
181 	.attr = cpufreq_generic_attr,
182 	.suspend = cpufreq_generic_suspend,
183 };
184 
185 static int imx6q_cpufreq_probe(struct platform_device *pdev)
186 {
187 	struct device_node *np;
188 	struct dev_pm_opp *opp;
189 	unsigned long min_volt, max_volt;
190 	int num, ret;
191 	const struct property *prop;
192 	const __be32 *val;
193 	u32 nr, i, j;
194 
195 	cpu_dev = get_cpu_device(0);
196 	if (!cpu_dev) {
197 		pr_err("failed to get cpu0 device\n");
198 		return -ENODEV;
199 	}
200 
201 	np = of_node_get(cpu_dev->of_node);
202 	if (!np) {
203 		dev_err(cpu_dev, "failed to find cpu0 node\n");
204 		return -ENOENT;
205 	}
206 
207 	arm_clk = clk_get(cpu_dev, "arm");
208 	pll1_sys_clk = clk_get(cpu_dev, "pll1_sys");
209 	pll1_sw_clk = clk_get(cpu_dev, "pll1_sw");
210 	step_clk = clk_get(cpu_dev, "step");
211 	pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m");
212 	if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
213 	    IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
214 		dev_err(cpu_dev, "failed to get clocks\n");
215 		ret = -ENOENT;
216 		goto put_clk;
217 	}
218 
219 	if (of_machine_is_compatible("fsl,imx6ul") ||
220 	    of_machine_is_compatible("fsl,imx6ull")) {
221 		pll2_bus_clk = clk_get(cpu_dev, "pll2_bus");
222 		secondary_sel_clk = clk_get(cpu_dev, "secondary_sel");
223 		if (IS_ERR(pll2_bus_clk) || IS_ERR(secondary_sel_clk)) {
224 			dev_err(cpu_dev, "failed to get clocks specific to imx6ul\n");
225 			ret = -ENOENT;
226 			goto put_clk;
227 		}
228 	}
229 
230 	arm_reg = regulator_get(cpu_dev, "arm");
231 	pu_reg = regulator_get_optional(cpu_dev, "pu");
232 	soc_reg = regulator_get(cpu_dev, "soc");
233 	if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
234 			PTR_ERR(soc_reg) == -EPROBE_DEFER ||
235 			PTR_ERR(pu_reg) == -EPROBE_DEFER) {
236 		ret = -EPROBE_DEFER;
237 		dev_dbg(cpu_dev, "regulators not ready, defer\n");
238 		goto put_reg;
239 	}
240 	if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
241 		dev_err(cpu_dev, "failed to get regulators\n");
242 		ret = -ENOENT;
243 		goto put_reg;
244 	}
245 
246 	/*
247 	 * We expect an OPP table supplied by platform.
248 	 * Just, incase the platform did not supply the OPP
249 	 * table, it will try to get it.
250 	 */
251 	num = dev_pm_opp_get_opp_count(cpu_dev);
252 	if (num < 0) {
253 		ret = dev_pm_opp_of_add_table(cpu_dev);
254 		if (ret < 0) {
255 			dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
256 			goto put_reg;
257 		}
258 
259 		/* Because we have added the OPPs here, we must free them */
260 		free_opp = true;
261 
262 		num = dev_pm_opp_get_opp_count(cpu_dev);
263 		if (num < 0) {
264 			ret = num;
265 			dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
266 			goto out_free_opp;
267 		}
268 	}
269 
270 	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
271 	if (ret) {
272 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
273 		goto out_free_opp;
274 	}
275 
276 	/* Make imx6_soc_volt array's size same as arm opp number */
277 	imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
278 	if (imx6_soc_volt == NULL) {
279 		ret = -ENOMEM;
280 		goto free_freq_table;
281 	}
282 
283 	prop = of_find_property(np, "fsl,soc-operating-points", NULL);
284 	if (!prop || !prop->value)
285 		goto soc_opp_out;
286 
287 	/*
288 	 * Each OPP is a set of tuples consisting of frequency and
289 	 * voltage like <freq-kHz vol-uV>.
290 	 */
291 	nr = prop->length / sizeof(u32);
292 	if (nr % 2 || (nr / 2) < num)
293 		goto soc_opp_out;
294 
295 	for (j = 0; j < num; j++) {
296 		val = prop->value;
297 		for (i = 0; i < nr / 2; i++) {
298 			unsigned long freq = be32_to_cpup(val++);
299 			unsigned long volt = be32_to_cpup(val++);
300 			if (freq_table[j].frequency == freq) {
301 				imx6_soc_volt[soc_opp_count++] = volt;
302 				break;
303 			}
304 		}
305 	}
306 
307 soc_opp_out:
308 	/* use fixed soc opp volt if no valid soc opp info found in dtb */
309 	if (soc_opp_count != num) {
310 		dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
311 		for (j = 0; j < num; j++)
312 			imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
313 		if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
314 			imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
315 	}
316 
317 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
318 		transition_latency = CPUFREQ_ETERNAL;
319 
320 	/*
321 	 * Calculate the ramp time for max voltage change in the
322 	 * VDDSOC and VDDPU regulators.
323 	 */
324 	ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
325 	if (ret > 0)
326 		transition_latency += ret * 1000;
327 	if (!IS_ERR(pu_reg)) {
328 		ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
329 		if (ret > 0)
330 			transition_latency += ret * 1000;
331 	}
332 
333 	/*
334 	 * OPP is maintained in order of increasing frequency, and
335 	 * freq_table initialised from OPP is therefore sorted in the
336 	 * same order.
337 	 */
338 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
339 				  freq_table[0].frequency * 1000, true);
340 	min_volt = dev_pm_opp_get_voltage(opp);
341 	dev_pm_opp_put(opp);
342 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
343 				  freq_table[--num].frequency * 1000, true);
344 	max_volt = dev_pm_opp_get_voltage(opp);
345 	dev_pm_opp_put(opp);
346 
347 	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
348 	if (ret > 0)
349 		transition_latency += ret * 1000;
350 
351 	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
352 	if (ret) {
353 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
354 		goto free_freq_table;
355 	}
356 
357 	of_node_put(np);
358 	return 0;
359 
360 free_freq_table:
361 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
362 out_free_opp:
363 	if (free_opp)
364 		dev_pm_opp_of_remove_table(cpu_dev);
365 put_reg:
366 	if (!IS_ERR(arm_reg))
367 		regulator_put(arm_reg);
368 	if (!IS_ERR(pu_reg))
369 		regulator_put(pu_reg);
370 	if (!IS_ERR(soc_reg))
371 		regulator_put(soc_reg);
372 put_clk:
373 	if (!IS_ERR(arm_clk))
374 		clk_put(arm_clk);
375 	if (!IS_ERR(pll1_sys_clk))
376 		clk_put(pll1_sys_clk);
377 	if (!IS_ERR(pll1_sw_clk))
378 		clk_put(pll1_sw_clk);
379 	if (!IS_ERR(step_clk))
380 		clk_put(step_clk);
381 	if (!IS_ERR(pll2_pfd2_396m_clk))
382 		clk_put(pll2_pfd2_396m_clk);
383 	if (!IS_ERR(pll2_bus_clk))
384 		clk_put(pll2_bus_clk);
385 	if (!IS_ERR(secondary_sel_clk))
386 		clk_put(secondary_sel_clk);
387 	of_node_put(np);
388 	return ret;
389 }
390 
391 static int imx6q_cpufreq_remove(struct platform_device *pdev)
392 {
393 	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
394 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
395 	if (free_opp)
396 		dev_pm_opp_of_remove_table(cpu_dev);
397 	regulator_put(arm_reg);
398 	if (!IS_ERR(pu_reg))
399 		regulator_put(pu_reg);
400 	regulator_put(soc_reg);
401 	clk_put(arm_clk);
402 	clk_put(pll1_sys_clk);
403 	clk_put(pll1_sw_clk);
404 	clk_put(step_clk);
405 	clk_put(pll2_pfd2_396m_clk);
406 	clk_put(pll2_bus_clk);
407 	clk_put(secondary_sel_clk);
408 
409 	return 0;
410 }
411 
412 static struct platform_driver imx6q_cpufreq_platdrv = {
413 	.driver = {
414 		.name	= "imx6q-cpufreq",
415 	},
416 	.probe		= imx6q_cpufreq_probe,
417 	.remove		= imx6q_cpufreq_remove,
418 };
419 module_platform_driver(imx6q_cpufreq_platdrv);
420 
421 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
422 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
423 MODULE_LICENSE("GPL");
424