1 /* 2 * Copyright (C) 2013 Freescale Semiconductor, Inc. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/cpu.h> 11 #include <linux/cpufreq.h> 12 #include <linux/err.h> 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/of_address.h> 16 #include <linux/pm_opp.h> 17 #include <linux/platform_device.h> 18 #include <linux/regulator/consumer.h> 19 20 #define PU_SOC_VOLTAGE_NORMAL 1250000 21 #define PU_SOC_VOLTAGE_HIGH 1275000 22 #define FREQ_1P2_GHZ 1200000000 23 24 static struct regulator *arm_reg; 25 static struct regulator *pu_reg; 26 static struct regulator *soc_reg; 27 28 enum IMX6_CPUFREQ_CLKS { 29 ARM, 30 PLL1_SYS, 31 STEP, 32 PLL1_SW, 33 PLL2_PFD2_396M, 34 /* MX6UL requires two more clks */ 35 PLL2_BUS, 36 SECONDARY_SEL, 37 }; 38 #define IMX6Q_CPUFREQ_CLK_NUM 5 39 #define IMX6UL_CPUFREQ_CLK_NUM 7 40 41 static int num_clks; 42 static struct clk_bulk_data clks[] = { 43 { .id = "arm" }, 44 { .id = "pll1_sys" }, 45 { .id = "step" }, 46 { .id = "pll1_sw" }, 47 { .id = "pll2_pfd2_396m" }, 48 { .id = "pll2_bus" }, 49 { .id = "secondary_sel" }, 50 }; 51 52 static struct device *cpu_dev; 53 static bool free_opp; 54 static struct cpufreq_frequency_table *freq_table; 55 static unsigned int max_freq; 56 static unsigned int transition_latency; 57 58 static u32 *imx6_soc_volt; 59 static u32 soc_opp_count; 60 61 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index) 62 { 63 struct dev_pm_opp *opp; 64 unsigned long freq_hz, volt, volt_old; 65 unsigned int old_freq, new_freq; 66 bool pll1_sys_temp_enabled = false; 67 int ret; 68 69 new_freq = freq_table[index].frequency; 70 freq_hz = new_freq * 1000; 71 old_freq = clk_get_rate(clks[ARM].clk) / 1000; 72 73 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz); 74 if (IS_ERR(opp)) { 75 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz); 76 return PTR_ERR(opp); 77 } 78 79 volt = dev_pm_opp_get_voltage(opp); 80 dev_pm_opp_put(opp); 81 82 volt_old = regulator_get_voltage(arm_reg); 83 84 dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n", 85 old_freq / 1000, volt_old / 1000, 86 new_freq / 1000, volt / 1000); 87 88 /* scaling up? scale voltage before frequency */ 89 if (new_freq > old_freq) { 90 if (!IS_ERR(pu_reg)) { 91 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0); 92 if (ret) { 93 dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret); 94 return ret; 95 } 96 } 97 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0); 98 if (ret) { 99 dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret); 100 return ret; 101 } 102 ret = regulator_set_voltage_tol(arm_reg, volt, 0); 103 if (ret) { 104 dev_err(cpu_dev, 105 "failed to scale vddarm up: %d\n", ret); 106 return ret; 107 } 108 } 109 110 /* 111 * The setpoints are selected per PLL/PDF frequencies, so we need to 112 * reprogram PLL for frequency scaling. The procedure of reprogramming 113 * PLL1 is as below. 114 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change 115 * flow is slightly different from other i.MX6 OSC. 116 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below: 117 * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it 118 * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it 119 * - Disable pll2_pfd2_396m_clk 120 */ 121 if (of_machine_is_compatible("fsl,imx6ul") || 122 of_machine_is_compatible("fsl,imx6ull")) { 123 /* 124 * When changing pll1_sw_clk's parent to pll1_sys_clk, 125 * CPU may run at higher than 528MHz, this will lead to 126 * the system unstable if the voltage is lower than the 127 * voltage of 528MHz, so lower the CPU frequency to one 128 * half before changing CPU frequency. 129 */ 130 clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000); 131 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk); 132 if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) 133 clk_set_parent(clks[SECONDARY_SEL].clk, 134 clks[PLL2_BUS].clk); 135 else 136 clk_set_parent(clks[SECONDARY_SEL].clk, 137 clks[PLL2_PFD2_396M].clk); 138 clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk); 139 clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk); 140 if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) { 141 clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000); 142 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk); 143 } 144 } else { 145 clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk); 146 clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk); 147 if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) { 148 clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000); 149 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk); 150 } else { 151 /* pll1_sys needs to be enabled for divider rate change to work. */ 152 pll1_sys_temp_enabled = true; 153 clk_prepare_enable(clks[PLL1_SYS].clk); 154 } 155 } 156 157 /* Ensure the arm clock divider is what we expect */ 158 ret = clk_set_rate(clks[ARM].clk, new_freq * 1000); 159 if (ret) { 160 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret); 161 regulator_set_voltage_tol(arm_reg, volt_old, 0); 162 return ret; 163 } 164 165 /* PLL1 is only needed until after ARM-PODF is set. */ 166 if (pll1_sys_temp_enabled) 167 clk_disable_unprepare(clks[PLL1_SYS].clk); 168 169 /* scaling down? scale voltage after frequency */ 170 if (new_freq < old_freq) { 171 ret = regulator_set_voltage_tol(arm_reg, volt, 0); 172 if (ret) { 173 dev_warn(cpu_dev, 174 "failed to scale vddarm down: %d\n", ret); 175 ret = 0; 176 } 177 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0); 178 if (ret) { 179 dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret); 180 ret = 0; 181 } 182 if (!IS_ERR(pu_reg)) { 183 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0); 184 if (ret) { 185 dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret); 186 ret = 0; 187 } 188 } 189 } 190 191 return 0; 192 } 193 194 static int imx6q_cpufreq_init(struct cpufreq_policy *policy) 195 { 196 int ret; 197 198 policy->clk = clks[ARM].clk; 199 ret = cpufreq_generic_init(policy, freq_table, transition_latency); 200 policy->suspend_freq = max_freq; 201 202 return ret; 203 } 204 205 static struct cpufreq_driver imx6q_cpufreq_driver = { 206 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK, 207 .verify = cpufreq_generic_frequency_table_verify, 208 .target_index = imx6q_set_target, 209 .get = cpufreq_generic_get, 210 .init = imx6q_cpufreq_init, 211 .name = "imx6q-cpufreq", 212 .attr = cpufreq_generic_attr, 213 .suspend = cpufreq_generic_suspend, 214 }; 215 216 #define OCOTP_CFG3 0x440 217 #define OCOTP_CFG3_SPEED_SHIFT 16 218 #define OCOTP_CFG3_SPEED_1P2GHZ 0x3 219 #define OCOTP_CFG3_SPEED_996MHZ 0x2 220 #define OCOTP_CFG3_SPEED_852MHZ 0x1 221 222 static void imx6q_opp_check_speed_grading(struct device *dev) 223 { 224 struct device_node *np; 225 void __iomem *base; 226 u32 val; 227 228 np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp"); 229 if (!np) 230 return; 231 232 base = of_iomap(np, 0); 233 if (!base) { 234 dev_err(dev, "failed to map ocotp\n"); 235 goto put_node; 236 } 237 238 /* 239 * SPEED_GRADING[1:0] defines the max speed of ARM: 240 * 2b'11: 1200000000Hz; 241 * 2b'10: 996000000Hz; 242 * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz. 243 * 2b'00: 792000000Hz; 244 * We need to set the max speed of ARM according to fuse map. 245 */ 246 val = readl_relaxed(base + OCOTP_CFG3); 247 val >>= OCOTP_CFG3_SPEED_SHIFT; 248 val &= 0x3; 249 250 if (val < OCOTP_CFG3_SPEED_996MHZ) 251 if (dev_pm_opp_disable(dev, 996000000)) 252 dev_warn(dev, "failed to disable 996MHz OPP\n"); 253 254 if (of_machine_is_compatible("fsl,imx6q") || 255 of_machine_is_compatible("fsl,imx6qp")) { 256 if (val != OCOTP_CFG3_SPEED_852MHZ) 257 if (dev_pm_opp_disable(dev, 852000000)) 258 dev_warn(dev, "failed to disable 852MHz OPP\n"); 259 if (val != OCOTP_CFG3_SPEED_1P2GHZ) 260 if (dev_pm_opp_disable(dev, 1200000000)) 261 dev_warn(dev, "failed to disable 1.2GHz OPP\n"); 262 } 263 iounmap(base); 264 put_node: 265 of_node_put(np); 266 } 267 268 #define OCOTP_CFG3_6UL_SPEED_696MHZ 0x2 269 #define OCOTP_CFG3_6ULL_SPEED_792MHZ 0x2 270 #define OCOTP_CFG3_6ULL_SPEED_900MHZ 0x3 271 272 static void imx6ul_opp_check_speed_grading(struct device *dev) 273 { 274 struct device_node *np; 275 void __iomem *base; 276 u32 val; 277 278 np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp"); 279 if (!np) 280 return; 281 282 base = of_iomap(np, 0); 283 if (!base) { 284 dev_err(dev, "failed to map ocotp\n"); 285 goto put_node; 286 } 287 288 /* 289 * Speed GRADING[1:0] defines the max speed of ARM: 290 * 2b'00: Reserved; 291 * 2b'01: 528000000Hz; 292 * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL; 293 * 2b'11: 900000000Hz on i.MX6ULL only; 294 * We need to set the max speed of ARM according to fuse map. 295 */ 296 val = readl_relaxed(base + OCOTP_CFG3); 297 val >>= OCOTP_CFG3_SPEED_SHIFT; 298 val &= 0x3; 299 300 if (of_machine_is_compatible("fsl,imx6ul")) { 301 if (val != OCOTP_CFG3_6UL_SPEED_696MHZ) 302 if (dev_pm_opp_disable(dev, 696000000)) 303 dev_warn(dev, "failed to disable 696MHz OPP\n"); 304 } 305 306 if (of_machine_is_compatible("fsl,imx6ull")) { 307 if (val != OCOTP_CFG3_6ULL_SPEED_792MHZ) 308 if (dev_pm_opp_disable(dev, 792000000)) 309 dev_warn(dev, "failed to disable 792MHz OPP\n"); 310 311 if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ) 312 if (dev_pm_opp_disable(dev, 900000000)) 313 dev_warn(dev, "failed to disable 900MHz OPP\n"); 314 } 315 316 iounmap(base); 317 put_node: 318 of_node_put(np); 319 } 320 321 static int imx6q_cpufreq_probe(struct platform_device *pdev) 322 { 323 struct device_node *np; 324 struct dev_pm_opp *opp; 325 unsigned long min_volt, max_volt; 326 int num, ret; 327 const struct property *prop; 328 const __be32 *val; 329 u32 nr, i, j; 330 331 cpu_dev = get_cpu_device(0); 332 if (!cpu_dev) { 333 pr_err("failed to get cpu0 device\n"); 334 return -ENODEV; 335 } 336 337 np = of_node_get(cpu_dev->of_node); 338 if (!np) { 339 dev_err(cpu_dev, "failed to find cpu0 node\n"); 340 return -ENOENT; 341 } 342 343 if (of_machine_is_compatible("fsl,imx6ul") || 344 of_machine_is_compatible("fsl,imx6ull")) 345 num_clks = IMX6UL_CPUFREQ_CLK_NUM; 346 else 347 num_clks = IMX6Q_CPUFREQ_CLK_NUM; 348 349 ret = clk_bulk_get(cpu_dev, num_clks, clks); 350 if (ret) 351 goto put_node; 352 353 arm_reg = regulator_get(cpu_dev, "arm"); 354 pu_reg = regulator_get_optional(cpu_dev, "pu"); 355 soc_reg = regulator_get(cpu_dev, "soc"); 356 if (PTR_ERR(arm_reg) == -EPROBE_DEFER || 357 PTR_ERR(soc_reg) == -EPROBE_DEFER || 358 PTR_ERR(pu_reg) == -EPROBE_DEFER) { 359 ret = -EPROBE_DEFER; 360 dev_dbg(cpu_dev, "regulators not ready, defer\n"); 361 goto put_reg; 362 } 363 if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) { 364 dev_err(cpu_dev, "failed to get regulators\n"); 365 ret = -ENOENT; 366 goto put_reg; 367 } 368 369 ret = dev_pm_opp_of_add_table(cpu_dev); 370 if (ret < 0) { 371 dev_err(cpu_dev, "failed to init OPP table: %d\n", ret); 372 goto put_reg; 373 } 374 375 if (of_machine_is_compatible("fsl,imx6ul") || 376 of_machine_is_compatible("fsl,imx6ull")) 377 imx6ul_opp_check_speed_grading(cpu_dev); 378 else 379 imx6q_opp_check_speed_grading(cpu_dev); 380 381 /* Because we have added the OPPs here, we must free them */ 382 free_opp = true; 383 num = dev_pm_opp_get_opp_count(cpu_dev); 384 if (num < 0) { 385 ret = num; 386 dev_err(cpu_dev, "no OPP table is found: %d\n", ret); 387 goto out_free_opp; 388 } 389 390 ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table); 391 if (ret) { 392 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret); 393 goto out_free_opp; 394 } 395 396 /* Make imx6_soc_volt array's size same as arm opp number */ 397 imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt), 398 GFP_KERNEL); 399 if (imx6_soc_volt == NULL) { 400 ret = -ENOMEM; 401 goto free_freq_table; 402 } 403 404 prop = of_find_property(np, "fsl,soc-operating-points", NULL); 405 if (!prop || !prop->value) 406 goto soc_opp_out; 407 408 /* 409 * Each OPP is a set of tuples consisting of frequency and 410 * voltage like <freq-kHz vol-uV>. 411 */ 412 nr = prop->length / sizeof(u32); 413 if (nr % 2 || (nr / 2) < num) 414 goto soc_opp_out; 415 416 for (j = 0; j < num; j++) { 417 val = prop->value; 418 for (i = 0; i < nr / 2; i++) { 419 unsigned long freq = be32_to_cpup(val++); 420 unsigned long volt = be32_to_cpup(val++); 421 if (freq_table[j].frequency == freq) { 422 imx6_soc_volt[soc_opp_count++] = volt; 423 break; 424 } 425 } 426 } 427 428 soc_opp_out: 429 /* use fixed soc opp volt if no valid soc opp info found in dtb */ 430 if (soc_opp_count != num) { 431 dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n"); 432 for (j = 0; j < num; j++) 433 imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL; 434 if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ) 435 imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH; 436 } 437 438 if (of_property_read_u32(np, "clock-latency", &transition_latency)) 439 transition_latency = CPUFREQ_ETERNAL; 440 441 /* 442 * Calculate the ramp time for max voltage change in the 443 * VDDSOC and VDDPU regulators. 444 */ 445 ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]); 446 if (ret > 0) 447 transition_latency += ret * 1000; 448 if (!IS_ERR(pu_reg)) { 449 ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]); 450 if (ret > 0) 451 transition_latency += ret * 1000; 452 } 453 454 /* 455 * OPP is maintained in order of increasing frequency, and 456 * freq_table initialised from OPP is therefore sorted in the 457 * same order. 458 */ 459 max_freq = freq_table[--num].frequency; 460 opp = dev_pm_opp_find_freq_exact(cpu_dev, 461 freq_table[0].frequency * 1000, true); 462 min_volt = dev_pm_opp_get_voltage(opp); 463 dev_pm_opp_put(opp); 464 opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true); 465 max_volt = dev_pm_opp_get_voltage(opp); 466 dev_pm_opp_put(opp); 467 468 ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt); 469 if (ret > 0) 470 transition_latency += ret * 1000; 471 472 ret = cpufreq_register_driver(&imx6q_cpufreq_driver); 473 if (ret) { 474 dev_err(cpu_dev, "failed register driver: %d\n", ret); 475 goto free_freq_table; 476 } 477 478 of_node_put(np); 479 return 0; 480 481 free_freq_table: 482 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table); 483 out_free_opp: 484 if (free_opp) 485 dev_pm_opp_of_remove_table(cpu_dev); 486 put_reg: 487 if (!IS_ERR(arm_reg)) 488 regulator_put(arm_reg); 489 if (!IS_ERR(pu_reg)) 490 regulator_put(pu_reg); 491 if (!IS_ERR(soc_reg)) 492 regulator_put(soc_reg); 493 494 clk_bulk_put(num_clks, clks); 495 put_node: 496 of_node_put(np); 497 498 return ret; 499 } 500 501 static int imx6q_cpufreq_remove(struct platform_device *pdev) 502 { 503 cpufreq_unregister_driver(&imx6q_cpufreq_driver); 504 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table); 505 if (free_opp) 506 dev_pm_opp_of_remove_table(cpu_dev); 507 regulator_put(arm_reg); 508 if (!IS_ERR(pu_reg)) 509 regulator_put(pu_reg); 510 regulator_put(soc_reg); 511 512 clk_bulk_put(num_clks, clks); 513 514 return 0; 515 } 516 517 static struct platform_driver imx6q_cpufreq_platdrv = { 518 .driver = { 519 .name = "imx6q-cpufreq", 520 }, 521 .probe = imx6q_cpufreq_probe, 522 .remove = imx6q_cpufreq_remove, 523 }; 524 module_platform_driver(imx6q_cpufreq_platdrv); 525 526 MODULE_ALIAS("platform:imx6q-cpufreq"); 527 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>"); 528 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver"); 529 MODULE_LICENSE("GPL"); 530