1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/delay.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/opp.h>
17 #include <linux/platform_device.h>
18 #include <linux/regulator/consumer.h>
19 
20 #define PU_SOC_VOLTAGE_NORMAL	1250000
21 #define PU_SOC_VOLTAGE_HIGH	1275000
22 #define FREQ_1P2_GHZ		1200000000
23 
24 static struct regulator *arm_reg;
25 static struct regulator *pu_reg;
26 static struct regulator *soc_reg;
27 
28 static struct clk *arm_clk;
29 static struct clk *pll1_sys_clk;
30 static struct clk *pll1_sw_clk;
31 static struct clk *step_clk;
32 static struct clk *pll2_pfd2_396m_clk;
33 
34 static struct device *cpu_dev;
35 static struct cpufreq_frequency_table *freq_table;
36 static unsigned int transition_latency;
37 
38 static int imx6q_verify_speed(struct cpufreq_policy *policy)
39 {
40 	return cpufreq_frequency_table_verify(policy, freq_table);
41 }
42 
43 static unsigned int imx6q_get_speed(unsigned int cpu)
44 {
45 	return clk_get_rate(arm_clk) / 1000;
46 }
47 
48 static int imx6q_set_target(struct cpufreq_policy *policy,
49 			    unsigned int target_freq, unsigned int relation)
50 {
51 	struct cpufreq_freqs freqs;
52 	struct opp *opp;
53 	unsigned long freq_hz, volt, volt_old;
54 	unsigned int index;
55 	int ret;
56 
57 	ret = cpufreq_frequency_table_target(policy, freq_table, target_freq,
58 					     relation, &index);
59 	if (ret) {
60 		dev_err(cpu_dev, "failed to match target frequency %d: %d\n",
61 			target_freq, ret);
62 		return ret;
63 	}
64 
65 	freqs.new = freq_table[index].frequency;
66 	freq_hz = freqs.new * 1000;
67 	freqs.old = clk_get_rate(arm_clk) / 1000;
68 
69 	if (freqs.old == freqs.new)
70 		return 0;
71 
72 	rcu_read_lock();
73 	opp = opp_find_freq_ceil(cpu_dev, &freq_hz);
74 	if (IS_ERR(opp)) {
75 		rcu_read_unlock();
76 		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
77 		return PTR_ERR(opp);
78 	}
79 
80 	volt = opp_get_voltage(opp);
81 	rcu_read_unlock();
82 	volt_old = regulator_get_voltage(arm_reg);
83 
84 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
85 		freqs.old / 1000, volt_old / 1000,
86 		freqs.new / 1000, volt / 1000);
87 
88 	cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
89 
90 	/* scaling up?  scale voltage before frequency */
91 	if (freqs.new > freqs.old) {
92 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
93 		if (ret) {
94 			dev_err(cpu_dev,
95 				"failed to scale vddarm up: %d\n", ret);
96 			freqs.new = freqs.old;
97 			goto post_notify;
98 		}
99 
100 		/*
101 		 * Need to increase vddpu and vddsoc for safety
102 		 * if we are about to run at 1.2 GHz.
103 		 */
104 		if (freqs.new == FREQ_1P2_GHZ / 1000) {
105 			regulator_set_voltage_tol(pu_reg,
106 					PU_SOC_VOLTAGE_HIGH, 0);
107 			regulator_set_voltage_tol(soc_reg,
108 					PU_SOC_VOLTAGE_HIGH, 0);
109 		}
110 	}
111 
112 	/*
113 	 * The setpoints are selected per PLL/PDF frequencies, so we need to
114 	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
115 	 * PLL1 is as below.
116 	 *
117 	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
118 	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
119 	 *  - Disable pll2_pfd2_396m_clk
120 	 */
121 	clk_set_parent(step_clk, pll2_pfd2_396m_clk);
122 	clk_set_parent(pll1_sw_clk, step_clk);
123 	if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
124 		clk_set_rate(pll1_sys_clk, freqs.new * 1000);
125 		clk_set_parent(pll1_sw_clk, pll1_sys_clk);
126 	}
127 
128 	/* Ensure the arm clock divider is what we expect */
129 	ret = clk_set_rate(arm_clk, freqs.new * 1000);
130 	if (ret) {
131 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
132 		regulator_set_voltage_tol(arm_reg, volt_old, 0);
133 		freqs.new = freqs.old;
134 		goto post_notify;
135 	}
136 
137 	/* scaling down?  scale voltage after frequency */
138 	if (freqs.new < freqs.old) {
139 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
140 		if (ret) {
141 			dev_warn(cpu_dev,
142 				 "failed to scale vddarm down: %d\n", ret);
143 			ret = 0;
144 		}
145 
146 		if (freqs.old == FREQ_1P2_GHZ / 1000) {
147 			regulator_set_voltage_tol(pu_reg,
148 					PU_SOC_VOLTAGE_NORMAL, 0);
149 			regulator_set_voltage_tol(soc_reg,
150 					PU_SOC_VOLTAGE_NORMAL, 0);
151 		}
152 	}
153 
154 post_notify:
155 	cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
156 
157 	return ret;
158 }
159 
160 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
161 {
162 	int ret;
163 
164 	ret = cpufreq_frequency_table_cpuinfo(policy, freq_table);
165 	if (ret) {
166 		dev_err(cpu_dev, "invalid frequency table: %d\n", ret);
167 		return ret;
168 	}
169 
170 	policy->cpuinfo.transition_latency = transition_latency;
171 	policy->cur = clk_get_rate(arm_clk) / 1000;
172 	cpumask_setall(policy->cpus);
173 	cpufreq_frequency_table_get_attr(freq_table, policy->cpu);
174 
175 	return 0;
176 }
177 
178 static int imx6q_cpufreq_exit(struct cpufreq_policy *policy)
179 {
180 	cpufreq_frequency_table_put_attr(policy->cpu);
181 	return 0;
182 }
183 
184 static struct freq_attr *imx6q_cpufreq_attr[] = {
185 	&cpufreq_freq_attr_scaling_available_freqs,
186 	NULL,
187 };
188 
189 static struct cpufreq_driver imx6q_cpufreq_driver = {
190 	.verify = imx6q_verify_speed,
191 	.target = imx6q_set_target,
192 	.get = imx6q_get_speed,
193 	.init = imx6q_cpufreq_init,
194 	.exit = imx6q_cpufreq_exit,
195 	.name = "imx6q-cpufreq",
196 	.attr = imx6q_cpufreq_attr,
197 };
198 
199 static int imx6q_cpufreq_probe(struct platform_device *pdev)
200 {
201 	struct device_node *np;
202 	struct opp *opp;
203 	unsigned long min_volt, max_volt;
204 	int num, ret;
205 
206 	cpu_dev = get_cpu_device(0);
207 	if (!cpu_dev) {
208 		pr_err("failed to get cpu0 device\n");
209 		return -ENODEV;
210 	}
211 
212 	np = of_node_get(cpu_dev->of_node);
213 	if (!np) {
214 		dev_err(cpu_dev, "failed to find cpu0 node\n");
215 		return -ENOENT;
216 	}
217 
218 	arm_clk = devm_clk_get(cpu_dev, "arm");
219 	pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
220 	pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
221 	step_clk = devm_clk_get(cpu_dev, "step");
222 	pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
223 	if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
224 	    IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
225 		dev_err(cpu_dev, "failed to get clocks\n");
226 		ret = -ENOENT;
227 		goto put_node;
228 	}
229 
230 	arm_reg = devm_regulator_get(cpu_dev, "arm");
231 	pu_reg = devm_regulator_get(cpu_dev, "pu");
232 	soc_reg = devm_regulator_get(cpu_dev, "soc");
233 	if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
234 		dev_err(cpu_dev, "failed to get regulators\n");
235 		ret = -ENOENT;
236 		goto put_node;
237 	}
238 
239 	/* We expect an OPP table supplied by platform */
240 	num = opp_get_opp_count(cpu_dev);
241 	if (num < 0) {
242 		ret = num;
243 		dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
244 		goto put_node;
245 	}
246 
247 	ret = opp_init_cpufreq_table(cpu_dev, &freq_table);
248 	if (ret) {
249 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
250 		goto put_node;
251 	}
252 
253 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
254 		transition_latency = CPUFREQ_ETERNAL;
255 
256 	/*
257 	 * OPP is maintained in order of increasing frequency, and
258 	 * freq_table initialised from OPP is therefore sorted in the
259 	 * same order.
260 	 */
261 	rcu_read_lock();
262 	opp = opp_find_freq_exact(cpu_dev,
263 				  freq_table[0].frequency * 1000, true);
264 	min_volt = opp_get_voltage(opp);
265 	opp = opp_find_freq_exact(cpu_dev,
266 				  freq_table[--num].frequency * 1000, true);
267 	max_volt = opp_get_voltage(opp);
268 	rcu_read_unlock();
269 	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
270 	if (ret > 0)
271 		transition_latency += ret * 1000;
272 
273 	/* Count vddpu and vddsoc latency in for 1.2 GHz support */
274 	if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) {
275 		ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL,
276 						 PU_SOC_VOLTAGE_HIGH);
277 		if (ret > 0)
278 			transition_latency += ret * 1000;
279 		ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL,
280 						 PU_SOC_VOLTAGE_HIGH);
281 		if (ret > 0)
282 			transition_latency += ret * 1000;
283 	}
284 
285 	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
286 	if (ret) {
287 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
288 		goto free_freq_table;
289 	}
290 
291 	of_node_put(np);
292 	return 0;
293 
294 free_freq_table:
295 	opp_free_cpufreq_table(cpu_dev, &freq_table);
296 put_node:
297 	of_node_put(np);
298 	return ret;
299 }
300 
301 static int imx6q_cpufreq_remove(struct platform_device *pdev)
302 {
303 	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
304 	opp_free_cpufreq_table(cpu_dev, &freq_table);
305 
306 	return 0;
307 }
308 
309 static struct platform_driver imx6q_cpufreq_platdrv = {
310 	.driver = {
311 		.name	= "imx6q-cpufreq",
312 		.owner	= THIS_MODULE,
313 	},
314 	.probe		= imx6q_cpufreq_probe,
315 	.remove		= imx6q_cpufreq_remove,
316 };
317 module_platform_driver(imx6q_cpufreq_platdrv);
318 
319 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
320 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
321 MODULE_LICENSE("GPL");
322