xref: /openbmc/linux/drivers/cpufreq/imx6q-cpufreq.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/nvmem-consumer.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/pm_opp.h>
18 #include <linux/platform_device.h>
19 #include <linux/regulator/consumer.h>
20 
21 #define PU_SOC_VOLTAGE_NORMAL	1250000
22 #define PU_SOC_VOLTAGE_HIGH	1275000
23 #define FREQ_1P2_GHZ		1200000000
24 
25 static struct regulator *arm_reg;
26 static struct regulator *pu_reg;
27 static struct regulator *soc_reg;
28 
29 enum IMX6_CPUFREQ_CLKS {
30 	ARM,
31 	PLL1_SYS,
32 	STEP,
33 	PLL1_SW,
34 	PLL2_PFD2_396M,
35 	/* MX6UL requires two more clks */
36 	PLL2_BUS,
37 	SECONDARY_SEL,
38 };
39 #define IMX6Q_CPUFREQ_CLK_NUM		5
40 #define IMX6UL_CPUFREQ_CLK_NUM		7
41 
42 static int num_clks;
43 static struct clk_bulk_data clks[] = {
44 	{ .id = "arm" },
45 	{ .id = "pll1_sys" },
46 	{ .id = "step" },
47 	{ .id = "pll1_sw" },
48 	{ .id = "pll2_pfd2_396m" },
49 	{ .id = "pll2_bus" },
50 	{ .id = "secondary_sel" },
51 };
52 
53 static struct device *cpu_dev;
54 static bool free_opp;
55 static struct cpufreq_frequency_table *freq_table;
56 static unsigned int max_freq;
57 static unsigned int transition_latency;
58 
59 static u32 *imx6_soc_volt;
60 static u32 soc_opp_count;
61 
62 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
63 {
64 	struct dev_pm_opp *opp;
65 	unsigned long freq_hz, volt, volt_old;
66 	unsigned int old_freq, new_freq;
67 	bool pll1_sys_temp_enabled = false;
68 	int ret;
69 
70 	new_freq = freq_table[index].frequency;
71 	freq_hz = new_freq * 1000;
72 	old_freq = clk_get_rate(clks[ARM].clk) / 1000;
73 
74 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
75 	if (IS_ERR(opp)) {
76 		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
77 		return PTR_ERR(opp);
78 	}
79 
80 	volt = dev_pm_opp_get_voltage(opp);
81 	dev_pm_opp_put(opp);
82 
83 	volt_old = regulator_get_voltage(arm_reg);
84 
85 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
86 		old_freq / 1000, volt_old / 1000,
87 		new_freq / 1000, volt / 1000);
88 
89 	/* scaling up?  scale voltage before frequency */
90 	if (new_freq > old_freq) {
91 		if (!IS_ERR(pu_reg)) {
92 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
93 			if (ret) {
94 				dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
95 				return ret;
96 			}
97 		}
98 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
99 		if (ret) {
100 			dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
101 			return ret;
102 		}
103 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
104 		if (ret) {
105 			dev_err(cpu_dev,
106 				"failed to scale vddarm up: %d\n", ret);
107 			return ret;
108 		}
109 	}
110 
111 	/*
112 	 * The setpoints are selected per PLL/PDF frequencies, so we need to
113 	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
114 	 * PLL1 is as below.
115 	 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
116 	 * flow is slightly different from other i.MX6 OSC.
117 	 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
118 	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
119 	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
120 	 *  - Disable pll2_pfd2_396m_clk
121 	 */
122 	if (of_machine_is_compatible("fsl,imx6ul") ||
123 	    of_machine_is_compatible("fsl,imx6ull")) {
124 		/*
125 		 * When changing pll1_sw_clk's parent to pll1_sys_clk,
126 		 * CPU may run at higher than 528MHz, this will lead to
127 		 * the system unstable if the voltage is lower than the
128 		 * voltage of 528MHz, so lower the CPU frequency to one
129 		 * half before changing CPU frequency.
130 		 */
131 		clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
132 		clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
133 		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
134 			clk_set_parent(clks[SECONDARY_SEL].clk,
135 				       clks[PLL2_BUS].clk);
136 		else
137 			clk_set_parent(clks[SECONDARY_SEL].clk,
138 				       clks[PLL2_PFD2_396M].clk);
139 		clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
140 		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
141 		if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
142 			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
143 			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
144 		}
145 	} else {
146 		clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
147 		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
148 		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
149 			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
150 			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
151 		} else {
152 			/* pll1_sys needs to be enabled for divider rate change to work. */
153 			pll1_sys_temp_enabled = true;
154 			clk_prepare_enable(clks[PLL1_SYS].clk);
155 		}
156 	}
157 
158 	/* Ensure the arm clock divider is what we expect */
159 	ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
160 	if (ret) {
161 		int ret1;
162 
163 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
164 		ret1 = regulator_set_voltage_tol(arm_reg, volt_old, 0);
165 		if (ret1)
166 			dev_warn(cpu_dev,
167 				 "failed to restore vddarm voltage: %d\n", ret1);
168 		return ret;
169 	}
170 
171 	/* PLL1 is only needed until after ARM-PODF is set. */
172 	if (pll1_sys_temp_enabled)
173 		clk_disable_unprepare(clks[PLL1_SYS].clk);
174 
175 	/* scaling down?  scale voltage after frequency */
176 	if (new_freq < old_freq) {
177 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
178 		if (ret)
179 			dev_warn(cpu_dev,
180 				 "failed to scale vddarm down: %d\n", ret);
181 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
182 		if (ret)
183 			dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
184 		if (!IS_ERR(pu_reg)) {
185 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
186 			if (ret)
187 				dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
188 		}
189 	}
190 
191 	return 0;
192 }
193 
194 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
195 {
196 	int ret;
197 
198 	policy->clk = clks[ARM].clk;
199 	ret = cpufreq_generic_init(policy, freq_table, transition_latency);
200 	policy->suspend_freq = max_freq;
201 	dev_pm_opp_of_register_em(policy->cpus);
202 
203 	return ret;
204 }
205 
206 static struct cpufreq_driver imx6q_cpufreq_driver = {
207 	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
208 		 CPUFREQ_IS_COOLING_DEV,
209 	.verify = cpufreq_generic_frequency_table_verify,
210 	.target_index = imx6q_set_target,
211 	.get = cpufreq_generic_get,
212 	.init = imx6q_cpufreq_init,
213 	.name = "imx6q-cpufreq",
214 	.attr = cpufreq_generic_attr,
215 	.suspend = cpufreq_generic_suspend,
216 };
217 
218 #define OCOTP_CFG3			0x440
219 #define OCOTP_CFG3_SPEED_SHIFT		16
220 #define OCOTP_CFG3_SPEED_1P2GHZ		0x3
221 #define OCOTP_CFG3_SPEED_996MHZ		0x2
222 #define OCOTP_CFG3_SPEED_852MHZ		0x1
223 
224 static void imx6q_opp_check_speed_grading(struct device *dev)
225 {
226 	struct device_node *np;
227 	void __iomem *base;
228 	u32 val;
229 
230 	np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp");
231 	if (!np)
232 		return;
233 
234 	base = of_iomap(np, 0);
235 	if (!base) {
236 		dev_err(dev, "failed to map ocotp\n");
237 		goto put_node;
238 	}
239 
240 	/*
241 	 * SPEED_GRADING[1:0] defines the max speed of ARM:
242 	 * 2b'11: 1200000000Hz;
243 	 * 2b'10: 996000000Hz;
244 	 * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
245 	 * 2b'00: 792000000Hz;
246 	 * We need to set the max speed of ARM according to fuse map.
247 	 */
248 	val = readl_relaxed(base + OCOTP_CFG3);
249 	val >>= OCOTP_CFG3_SPEED_SHIFT;
250 	val &= 0x3;
251 
252 	if (val < OCOTP_CFG3_SPEED_996MHZ)
253 		if (dev_pm_opp_disable(dev, 996000000))
254 			dev_warn(dev, "failed to disable 996MHz OPP\n");
255 
256 	if (of_machine_is_compatible("fsl,imx6q") ||
257 	    of_machine_is_compatible("fsl,imx6qp")) {
258 		if (val != OCOTP_CFG3_SPEED_852MHZ)
259 			if (dev_pm_opp_disable(dev, 852000000))
260 				dev_warn(dev, "failed to disable 852MHz OPP\n");
261 		if (val != OCOTP_CFG3_SPEED_1P2GHZ)
262 			if (dev_pm_opp_disable(dev, 1200000000))
263 				dev_warn(dev, "failed to disable 1.2GHz OPP\n");
264 	}
265 	iounmap(base);
266 put_node:
267 	of_node_put(np);
268 }
269 
270 #define OCOTP_CFG3_6UL_SPEED_696MHZ	0x2
271 #define OCOTP_CFG3_6ULL_SPEED_792MHZ	0x2
272 #define OCOTP_CFG3_6ULL_SPEED_900MHZ	0x3
273 
274 static int imx6ul_opp_check_speed_grading(struct device *dev)
275 {
276 	u32 val;
277 	int ret = 0;
278 
279 	if (of_find_property(dev->of_node, "nvmem-cells", NULL)) {
280 		ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
281 		if (ret)
282 			return ret;
283 	} else {
284 		struct device_node *np;
285 		void __iomem *base;
286 
287 		np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp");
288 		if (!np)
289 			return -ENOENT;
290 
291 		base = of_iomap(np, 0);
292 		of_node_put(np);
293 		if (!base) {
294 			dev_err(dev, "failed to map ocotp\n");
295 			return -EFAULT;
296 		}
297 
298 		val = readl_relaxed(base + OCOTP_CFG3);
299 		iounmap(base);
300 	}
301 
302 	/*
303 	 * Speed GRADING[1:0] defines the max speed of ARM:
304 	 * 2b'00: Reserved;
305 	 * 2b'01: 528000000Hz;
306 	 * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL;
307 	 * 2b'11: 900000000Hz on i.MX6ULL only;
308 	 * We need to set the max speed of ARM according to fuse map.
309 	 */
310 	val >>= OCOTP_CFG3_SPEED_SHIFT;
311 	val &= 0x3;
312 
313 	if (of_machine_is_compatible("fsl,imx6ul")) {
314 		if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
315 			if (dev_pm_opp_disable(dev, 696000000))
316 				dev_warn(dev, "failed to disable 696MHz OPP\n");
317 	}
318 
319 	if (of_machine_is_compatible("fsl,imx6ull")) {
320 		if (val != OCOTP_CFG3_6ULL_SPEED_792MHZ)
321 			if (dev_pm_opp_disable(dev, 792000000))
322 				dev_warn(dev, "failed to disable 792MHz OPP\n");
323 
324 		if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ)
325 			if (dev_pm_opp_disable(dev, 900000000))
326 				dev_warn(dev, "failed to disable 900MHz OPP\n");
327 	}
328 
329 	return ret;
330 }
331 
332 static int imx6q_cpufreq_probe(struct platform_device *pdev)
333 {
334 	struct device_node *np;
335 	struct dev_pm_opp *opp;
336 	unsigned long min_volt, max_volt;
337 	int num, ret;
338 	const struct property *prop;
339 	const __be32 *val;
340 	u32 nr, i, j;
341 
342 	cpu_dev = get_cpu_device(0);
343 	if (!cpu_dev) {
344 		pr_err("failed to get cpu0 device\n");
345 		return -ENODEV;
346 	}
347 
348 	np = of_node_get(cpu_dev->of_node);
349 	if (!np) {
350 		dev_err(cpu_dev, "failed to find cpu0 node\n");
351 		return -ENOENT;
352 	}
353 
354 	if (of_machine_is_compatible("fsl,imx6ul") ||
355 	    of_machine_is_compatible("fsl,imx6ull"))
356 		num_clks = IMX6UL_CPUFREQ_CLK_NUM;
357 	else
358 		num_clks = IMX6Q_CPUFREQ_CLK_NUM;
359 
360 	ret = clk_bulk_get(cpu_dev, num_clks, clks);
361 	if (ret)
362 		goto put_node;
363 
364 	arm_reg = regulator_get(cpu_dev, "arm");
365 	pu_reg = regulator_get_optional(cpu_dev, "pu");
366 	soc_reg = regulator_get(cpu_dev, "soc");
367 	if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
368 			PTR_ERR(soc_reg) == -EPROBE_DEFER ||
369 			PTR_ERR(pu_reg) == -EPROBE_DEFER) {
370 		ret = -EPROBE_DEFER;
371 		dev_dbg(cpu_dev, "regulators not ready, defer\n");
372 		goto put_reg;
373 	}
374 	if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
375 		dev_err(cpu_dev, "failed to get regulators\n");
376 		ret = -ENOENT;
377 		goto put_reg;
378 	}
379 
380 	ret = dev_pm_opp_of_add_table(cpu_dev);
381 	if (ret < 0) {
382 		dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
383 		goto put_reg;
384 	}
385 
386 	if (of_machine_is_compatible("fsl,imx6ul") ||
387 	    of_machine_is_compatible("fsl,imx6ull")) {
388 		ret = imx6ul_opp_check_speed_grading(cpu_dev);
389 		if (ret) {
390 			if (ret == -EPROBE_DEFER)
391 				return ret;
392 
393 			dev_err(cpu_dev, "failed to read ocotp: %d\n",
394 				ret);
395 			return ret;
396 		}
397 	} else {
398 		imx6q_opp_check_speed_grading(cpu_dev);
399 	}
400 
401 	/* Because we have added the OPPs here, we must free them */
402 	free_opp = true;
403 	num = dev_pm_opp_get_opp_count(cpu_dev);
404 	if (num < 0) {
405 		ret = num;
406 		dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
407 		goto out_free_opp;
408 	}
409 
410 	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
411 	if (ret) {
412 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
413 		goto out_free_opp;
414 	}
415 
416 	/* Make imx6_soc_volt array's size same as arm opp number */
417 	imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt),
418 				     GFP_KERNEL);
419 	if (imx6_soc_volt == NULL) {
420 		ret = -ENOMEM;
421 		goto free_freq_table;
422 	}
423 
424 	prop = of_find_property(np, "fsl,soc-operating-points", NULL);
425 	if (!prop || !prop->value)
426 		goto soc_opp_out;
427 
428 	/*
429 	 * Each OPP is a set of tuples consisting of frequency and
430 	 * voltage like <freq-kHz vol-uV>.
431 	 */
432 	nr = prop->length / sizeof(u32);
433 	if (nr % 2 || (nr / 2) < num)
434 		goto soc_opp_out;
435 
436 	for (j = 0; j < num; j++) {
437 		val = prop->value;
438 		for (i = 0; i < nr / 2; i++) {
439 			unsigned long freq = be32_to_cpup(val++);
440 			unsigned long volt = be32_to_cpup(val++);
441 			if (freq_table[j].frequency == freq) {
442 				imx6_soc_volt[soc_opp_count++] = volt;
443 				break;
444 			}
445 		}
446 	}
447 
448 soc_opp_out:
449 	/* use fixed soc opp volt if no valid soc opp info found in dtb */
450 	if (soc_opp_count != num) {
451 		dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
452 		for (j = 0; j < num; j++)
453 			imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
454 		if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
455 			imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
456 	}
457 
458 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
459 		transition_latency = CPUFREQ_ETERNAL;
460 
461 	/*
462 	 * Calculate the ramp time for max voltage change in the
463 	 * VDDSOC and VDDPU regulators.
464 	 */
465 	ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
466 	if (ret > 0)
467 		transition_latency += ret * 1000;
468 	if (!IS_ERR(pu_reg)) {
469 		ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
470 		if (ret > 0)
471 			transition_latency += ret * 1000;
472 	}
473 
474 	/*
475 	 * OPP is maintained in order of increasing frequency, and
476 	 * freq_table initialised from OPP is therefore sorted in the
477 	 * same order.
478 	 */
479 	max_freq = freq_table[--num].frequency;
480 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
481 				  freq_table[0].frequency * 1000, true);
482 	min_volt = dev_pm_opp_get_voltage(opp);
483 	dev_pm_opp_put(opp);
484 	opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
485 	max_volt = dev_pm_opp_get_voltage(opp);
486 	dev_pm_opp_put(opp);
487 
488 	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
489 	if (ret > 0)
490 		transition_latency += ret * 1000;
491 
492 	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
493 	if (ret) {
494 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
495 		goto free_freq_table;
496 	}
497 
498 	of_node_put(np);
499 	return 0;
500 
501 free_freq_table:
502 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
503 out_free_opp:
504 	if (free_opp)
505 		dev_pm_opp_of_remove_table(cpu_dev);
506 put_reg:
507 	if (!IS_ERR(arm_reg))
508 		regulator_put(arm_reg);
509 	if (!IS_ERR(pu_reg))
510 		regulator_put(pu_reg);
511 	if (!IS_ERR(soc_reg))
512 		regulator_put(soc_reg);
513 
514 	clk_bulk_put(num_clks, clks);
515 put_node:
516 	of_node_put(np);
517 
518 	return ret;
519 }
520 
521 static int imx6q_cpufreq_remove(struct platform_device *pdev)
522 {
523 	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
524 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
525 	if (free_opp)
526 		dev_pm_opp_of_remove_table(cpu_dev);
527 	regulator_put(arm_reg);
528 	if (!IS_ERR(pu_reg))
529 		regulator_put(pu_reg);
530 	regulator_put(soc_reg);
531 
532 	clk_bulk_put(num_clks, clks);
533 
534 	return 0;
535 }
536 
537 static struct platform_driver imx6q_cpufreq_platdrv = {
538 	.driver = {
539 		.name	= "imx6q-cpufreq",
540 	},
541 	.probe		= imx6q_cpufreq_probe,
542 	.remove		= imx6q_cpufreq_remove,
543 };
544 module_platform_driver(imx6q_cpufreq_platdrv);
545 
546 MODULE_ALIAS("platform:imx6q-cpufreq");
547 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
548 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
549 MODULE_LICENSE("GPL");
550