1 /* 2 * Bluetooth Software UART Qualcomm protocol 3 * 4 * HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management 5 * protocol extension to H4. 6 * 7 * Copyright (C) 2007 Texas Instruments, Inc. 8 * Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved. 9 * 10 * Acknowledgements: 11 * This file is based on hci_ll.c, which was... 12 * Written by Ohad Ben-Cohen <ohad@bencohen.org> 13 * which was in turn based on hci_h4.c, which was written 14 * by Maxim Krasnyansky and Marcel Holtmann. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License version 2 18 * as published by the Free Software Foundation 19 * 20 * This program is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 23 * GNU General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License 26 * along with this program; if not, write to the Free Software 27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 28 * 29 */ 30 31 #include <linux/kernel.h> 32 #include <linux/clk.h> 33 #include <linux/debugfs.h> 34 #include <linux/delay.h> 35 #include <linux/device.h> 36 #include <linux/gpio/consumer.h> 37 #include <linux/mod_devicetable.h> 38 #include <linux/module.h> 39 #include <linux/of_device.h> 40 #include <linux/platform_device.h> 41 #include <linux/regulator/consumer.h> 42 #include <linux/serdev.h> 43 44 #include <net/bluetooth/bluetooth.h> 45 #include <net/bluetooth/hci_core.h> 46 47 #include "hci_uart.h" 48 #include "btqca.h" 49 50 /* HCI_IBS protocol messages */ 51 #define HCI_IBS_SLEEP_IND 0xFE 52 #define HCI_IBS_WAKE_IND 0xFD 53 #define HCI_IBS_WAKE_ACK 0xFC 54 #define HCI_MAX_IBS_SIZE 10 55 56 /* Controller states */ 57 #define STATE_IN_BAND_SLEEP_ENABLED 1 58 59 #define IBS_WAKE_RETRANS_TIMEOUT_MS 100 60 #define IBS_TX_IDLE_TIMEOUT_MS 2000 61 #define BAUDRATE_SETTLE_TIMEOUT_MS 300 62 63 /* susclk rate */ 64 #define SUSCLK_RATE_32KHZ 32768 65 66 /* HCI_IBS transmit side sleep protocol states */ 67 enum tx_ibs_states { 68 HCI_IBS_TX_ASLEEP, 69 HCI_IBS_TX_WAKING, 70 HCI_IBS_TX_AWAKE, 71 }; 72 73 /* HCI_IBS receive side sleep protocol states */ 74 enum rx_states { 75 HCI_IBS_RX_ASLEEP, 76 HCI_IBS_RX_AWAKE, 77 }; 78 79 /* HCI_IBS transmit and receive side clock state vote */ 80 enum hci_ibs_clock_state_vote { 81 HCI_IBS_VOTE_STATS_UPDATE, 82 HCI_IBS_TX_VOTE_CLOCK_ON, 83 HCI_IBS_TX_VOTE_CLOCK_OFF, 84 HCI_IBS_RX_VOTE_CLOCK_ON, 85 HCI_IBS_RX_VOTE_CLOCK_OFF, 86 }; 87 88 struct qca_data { 89 struct hci_uart *hu; 90 struct sk_buff *rx_skb; 91 struct sk_buff_head txq; 92 struct sk_buff_head tx_wait_q; /* HCI_IBS wait queue */ 93 spinlock_t hci_ibs_lock; /* HCI_IBS state lock */ 94 u8 tx_ibs_state; /* HCI_IBS transmit side power state*/ 95 u8 rx_ibs_state; /* HCI_IBS receive side power state */ 96 bool tx_vote; /* Clock must be on for TX */ 97 bool rx_vote; /* Clock must be on for RX */ 98 struct timer_list tx_idle_timer; 99 u32 tx_idle_delay; 100 struct timer_list wake_retrans_timer; 101 u32 wake_retrans; 102 struct workqueue_struct *workqueue; 103 struct work_struct ws_awake_rx; 104 struct work_struct ws_awake_device; 105 struct work_struct ws_rx_vote_off; 106 struct work_struct ws_tx_vote_off; 107 unsigned long flags; 108 109 /* For debugging purpose */ 110 u64 ibs_sent_wacks; 111 u64 ibs_sent_slps; 112 u64 ibs_sent_wakes; 113 u64 ibs_recv_wacks; 114 u64 ibs_recv_slps; 115 u64 ibs_recv_wakes; 116 u64 vote_last_jif; 117 u32 vote_on_ms; 118 u32 vote_off_ms; 119 u64 tx_votes_on; 120 u64 rx_votes_on; 121 u64 tx_votes_off; 122 u64 rx_votes_off; 123 u64 votes_on; 124 u64 votes_off; 125 }; 126 127 enum qca_speed_type { 128 QCA_INIT_SPEED = 1, 129 QCA_OPER_SPEED 130 }; 131 132 /* 133 * Voltage regulator information required for configuring the 134 * QCA Bluetooth chipset 135 */ 136 struct qca_vreg { 137 const char *name; 138 unsigned int min_uV; 139 unsigned int max_uV; 140 unsigned int load_uA; 141 }; 142 143 struct qca_vreg_data { 144 enum qca_btsoc_type soc_type; 145 struct qca_vreg *vregs; 146 size_t num_vregs; 147 }; 148 149 /* 150 * Platform data for the QCA Bluetooth power driver. 151 */ 152 struct qca_power { 153 struct device *dev; 154 const struct qca_vreg_data *vreg_data; 155 struct regulator_bulk_data *vreg_bulk; 156 bool vregs_on; 157 }; 158 159 struct qca_serdev { 160 struct hci_uart serdev_hu; 161 struct gpio_desc *bt_en; 162 struct clk *susclk; 163 enum qca_btsoc_type btsoc_type; 164 struct qca_power *bt_power; 165 u32 init_speed; 166 u32 oper_speed; 167 }; 168 169 static int qca_power_setup(struct hci_uart *hu, bool on); 170 static void qca_power_shutdown(struct hci_dev *hdev); 171 172 static void __serial_clock_on(struct tty_struct *tty) 173 { 174 /* TODO: Some chipset requires to enable UART clock on client 175 * side to save power consumption or manual work is required. 176 * Please put your code to control UART clock here if needed 177 */ 178 } 179 180 static void __serial_clock_off(struct tty_struct *tty) 181 { 182 /* TODO: Some chipset requires to disable UART clock on client 183 * side to save power consumption or manual work is required. 184 * Please put your code to control UART clock off here if needed 185 */ 186 } 187 188 /* serial_clock_vote needs to be called with the ibs lock held */ 189 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu) 190 { 191 struct qca_data *qca = hu->priv; 192 unsigned int diff; 193 194 bool old_vote = (qca->tx_vote | qca->rx_vote); 195 bool new_vote; 196 197 switch (vote) { 198 case HCI_IBS_VOTE_STATS_UPDATE: 199 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif); 200 201 if (old_vote) 202 qca->vote_off_ms += diff; 203 else 204 qca->vote_on_ms += diff; 205 return; 206 207 case HCI_IBS_TX_VOTE_CLOCK_ON: 208 qca->tx_vote = true; 209 qca->tx_votes_on++; 210 new_vote = true; 211 break; 212 213 case HCI_IBS_RX_VOTE_CLOCK_ON: 214 qca->rx_vote = true; 215 qca->rx_votes_on++; 216 new_vote = true; 217 break; 218 219 case HCI_IBS_TX_VOTE_CLOCK_OFF: 220 qca->tx_vote = false; 221 qca->tx_votes_off++; 222 new_vote = qca->rx_vote | qca->tx_vote; 223 break; 224 225 case HCI_IBS_RX_VOTE_CLOCK_OFF: 226 qca->rx_vote = false; 227 qca->rx_votes_off++; 228 new_vote = qca->rx_vote | qca->tx_vote; 229 break; 230 231 default: 232 BT_ERR("Voting irregularity"); 233 return; 234 } 235 236 if (new_vote != old_vote) { 237 if (new_vote) 238 __serial_clock_on(hu->tty); 239 else 240 __serial_clock_off(hu->tty); 241 242 BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false", 243 vote ? "true" : "false"); 244 245 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif); 246 247 if (new_vote) { 248 qca->votes_on++; 249 qca->vote_off_ms += diff; 250 } else { 251 qca->votes_off++; 252 qca->vote_on_ms += diff; 253 } 254 qca->vote_last_jif = jiffies; 255 } 256 } 257 258 /* Builds and sends an HCI_IBS command packet. 259 * These are very simple packets with only 1 cmd byte. 260 */ 261 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu) 262 { 263 int err = 0; 264 struct sk_buff *skb = NULL; 265 struct qca_data *qca = hu->priv; 266 267 BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd); 268 269 skb = bt_skb_alloc(1, GFP_ATOMIC); 270 if (!skb) { 271 BT_ERR("Failed to allocate memory for HCI_IBS packet"); 272 return -ENOMEM; 273 } 274 275 /* Assign HCI_IBS type */ 276 skb_put_u8(skb, cmd); 277 278 skb_queue_tail(&qca->txq, skb); 279 280 return err; 281 } 282 283 static void qca_wq_awake_device(struct work_struct *work) 284 { 285 struct qca_data *qca = container_of(work, struct qca_data, 286 ws_awake_device); 287 struct hci_uart *hu = qca->hu; 288 unsigned long retrans_delay; 289 290 BT_DBG("hu %p wq awake device", hu); 291 292 /* Vote for serial clock */ 293 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu); 294 295 spin_lock(&qca->hci_ibs_lock); 296 297 /* Send wake indication to device */ 298 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) 299 BT_ERR("Failed to send WAKE to device"); 300 301 qca->ibs_sent_wakes++; 302 303 /* Start retransmit timer */ 304 retrans_delay = msecs_to_jiffies(qca->wake_retrans); 305 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay); 306 307 spin_unlock(&qca->hci_ibs_lock); 308 309 /* Actually send the packets */ 310 hci_uart_tx_wakeup(hu); 311 } 312 313 static void qca_wq_awake_rx(struct work_struct *work) 314 { 315 struct qca_data *qca = container_of(work, struct qca_data, 316 ws_awake_rx); 317 struct hci_uart *hu = qca->hu; 318 319 BT_DBG("hu %p wq awake rx", hu); 320 321 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu); 322 323 spin_lock(&qca->hci_ibs_lock); 324 qca->rx_ibs_state = HCI_IBS_RX_AWAKE; 325 326 /* Always acknowledge device wake up, 327 * sending IBS message doesn't count as TX ON. 328 */ 329 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) 330 BT_ERR("Failed to acknowledge device wake up"); 331 332 qca->ibs_sent_wacks++; 333 334 spin_unlock(&qca->hci_ibs_lock); 335 336 /* Actually send the packets */ 337 hci_uart_tx_wakeup(hu); 338 } 339 340 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work) 341 { 342 struct qca_data *qca = container_of(work, struct qca_data, 343 ws_rx_vote_off); 344 struct hci_uart *hu = qca->hu; 345 346 BT_DBG("hu %p rx clock vote off", hu); 347 348 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu); 349 } 350 351 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work) 352 { 353 struct qca_data *qca = container_of(work, struct qca_data, 354 ws_tx_vote_off); 355 struct hci_uart *hu = qca->hu; 356 357 BT_DBG("hu %p tx clock vote off", hu); 358 359 /* Run HCI tx handling unlocked */ 360 hci_uart_tx_wakeup(hu); 361 362 /* Now that message queued to tty driver, vote for tty clocks off. 363 * It is up to the tty driver to pend the clocks off until tx done. 364 */ 365 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu); 366 } 367 368 static void hci_ibs_tx_idle_timeout(struct timer_list *t) 369 { 370 struct qca_data *qca = from_timer(qca, t, tx_idle_timer); 371 struct hci_uart *hu = qca->hu; 372 unsigned long flags; 373 374 BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state); 375 376 spin_lock_irqsave_nested(&qca->hci_ibs_lock, 377 flags, SINGLE_DEPTH_NESTING); 378 379 switch (qca->tx_ibs_state) { 380 case HCI_IBS_TX_AWAKE: 381 /* TX_IDLE, go to SLEEP */ 382 if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) { 383 BT_ERR("Failed to send SLEEP to device"); 384 break; 385 } 386 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; 387 qca->ibs_sent_slps++; 388 queue_work(qca->workqueue, &qca->ws_tx_vote_off); 389 break; 390 391 case HCI_IBS_TX_ASLEEP: 392 case HCI_IBS_TX_WAKING: 393 /* Fall through */ 394 395 default: 396 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state); 397 break; 398 } 399 400 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 401 } 402 403 static void hci_ibs_wake_retrans_timeout(struct timer_list *t) 404 { 405 struct qca_data *qca = from_timer(qca, t, wake_retrans_timer); 406 struct hci_uart *hu = qca->hu; 407 unsigned long flags, retrans_delay; 408 bool retransmit = false; 409 410 BT_DBG("hu %p wake retransmit timeout in %d state", 411 hu, qca->tx_ibs_state); 412 413 spin_lock_irqsave_nested(&qca->hci_ibs_lock, 414 flags, SINGLE_DEPTH_NESTING); 415 416 switch (qca->tx_ibs_state) { 417 case HCI_IBS_TX_WAKING: 418 /* No WAKE_ACK, retransmit WAKE */ 419 retransmit = true; 420 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) { 421 BT_ERR("Failed to acknowledge device wake up"); 422 break; 423 } 424 qca->ibs_sent_wakes++; 425 retrans_delay = msecs_to_jiffies(qca->wake_retrans); 426 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay); 427 break; 428 429 case HCI_IBS_TX_ASLEEP: 430 case HCI_IBS_TX_AWAKE: 431 /* Fall through */ 432 433 default: 434 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state); 435 break; 436 } 437 438 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 439 440 if (retransmit) 441 hci_uart_tx_wakeup(hu); 442 } 443 444 /* Initialize protocol */ 445 static int qca_open(struct hci_uart *hu) 446 { 447 struct qca_serdev *qcadev; 448 struct qca_data *qca; 449 int ret; 450 451 BT_DBG("hu %p qca_open", hu); 452 453 qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL); 454 if (!qca) 455 return -ENOMEM; 456 457 skb_queue_head_init(&qca->txq); 458 skb_queue_head_init(&qca->tx_wait_q); 459 spin_lock_init(&qca->hci_ibs_lock); 460 qca->workqueue = alloc_ordered_workqueue("qca_wq", 0); 461 if (!qca->workqueue) { 462 BT_ERR("QCA Workqueue not initialized properly"); 463 kfree(qca); 464 return -ENOMEM; 465 } 466 467 INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx); 468 INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device); 469 INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off); 470 INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off); 471 472 qca->hu = hu; 473 474 /* Assume we start with both sides asleep -- extra wakes OK */ 475 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; 476 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP; 477 478 /* clocks actually on, but we start votes off */ 479 qca->tx_vote = false; 480 qca->rx_vote = false; 481 qca->flags = 0; 482 483 qca->ibs_sent_wacks = 0; 484 qca->ibs_sent_slps = 0; 485 qca->ibs_sent_wakes = 0; 486 qca->ibs_recv_wacks = 0; 487 qca->ibs_recv_slps = 0; 488 qca->ibs_recv_wakes = 0; 489 qca->vote_last_jif = jiffies; 490 qca->vote_on_ms = 0; 491 qca->vote_off_ms = 0; 492 qca->votes_on = 0; 493 qca->votes_off = 0; 494 qca->tx_votes_on = 0; 495 qca->tx_votes_off = 0; 496 qca->rx_votes_on = 0; 497 qca->rx_votes_off = 0; 498 499 hu->priv = qca; 500 501 if (hu->serdev) { 502 serdev_device_open(hu->serdev); 503 504 qcadev = serdev_device_get_drvdata(hu->serdev); 505 if (qcadev->btsoc_type != QCA_WCN3990) { 506 gpiod_set_value_cansleep(qcadev->bt_en, 1); 507 } else { 508 hu->init_speed = qcadev->init_speed; 509 hu->oper_speed = qcadev->oper_speed; 510 ret = qca_power_setup(hu, true); 511 if (ret) { 512 destroy_workqueue(qca->workqueue); 513 kfree_skb(qca->rx_skb); 514 hu->priv = NULL; 515 kfree(qca); 516 return ret; 517 } 518 } 519 } 520 521 timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0); 522 qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS; 523 524 timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0); 525 qca->tx_idle_delay = IBS_TX_IDLE_TIMEOUT_MS; 526 527 BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u", 528 qca->tx_idle_delay, qca->wake_retrans); 529 530 return 0; 531 } 532 533 static void qca_debugfs_init(struct hci_dev *hdev) 534 { 535 struct hci_uart *hu = hci_get_drvdata(hdev); 536 struct qca_data *qca = hu->priv; 537 struct dentry *ibs_dir; 538 umode_t mode; 539 540 if (!hdev->debugfs) 541 return; 542 543 ibs_dir = debugfs_create_dir("ibs", hdev->debugfs); 544 545 /* read only */ 546 mode = S_IRUGO; 547 debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state); 548 debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state); 549 debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir, 550 &qca->ibs_sent_slps); 551 debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir, 552 &qca->ibs_sent_wakes); 553 debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir, 554 &qca->ibs_sent_wacks); 555 debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir, 556 &qca->ibs_recv_slps); 557 debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir, 558 &qca->ibs_recv_wakes); 559 debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir, 560 &qca->ibs_recv_wacks); 561 debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote); 562 debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on); 563 debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off); 564 debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote); 565 debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on); 566 debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off); 567 debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on); 568 debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off); 569 debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms); 570 debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms); 571 572 /* read/write */ 573 mode = S_IRUGO | S_IWUSR; 574 debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans); 575 debugfs_create_u32("tx_idle_delay", mode, ibs_dir, 576 &qca->tx_idle_delay); 577 } 578 579 /* Flush protocol data */ 580 static int qca_flush(struct hci_uart *hu) 581 { 582 struct qca_data *qca = hu->priv; 583 584 BT_DBG("hu %p qca flush", hu); 585 586 skb_queue_purge(&qca->tx_wait_q); 587 skb_queue_purge(&qca->txq); 588 589 return 0; 590 } 591 592 /* Close protocol */ 593 static int qca_close(struct hci_uart *hu) 594 { 595 struct qca_serdev *qcadev; 596 struct qca_data *qca = hu->priv; 597 598 BT_DBG("hu %p qca close", hu); 599 600 serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu); 601 602 skb_queue_purge(&qca->tx_wait_q); 603 skb_queue_purge(&qca->txq); 604 del_timer(&qca->tx_idle_timer); 605 del_timer(&qca->wake_retrans_timer); 606 destroy_workqueue(qca->workqueue); 607 qca->hu = NULL; 608 609 if (hu->serdev) { 610 qcadev = serdev_device_get_drvdata(hu->serdev); 611 if (qcadev->btsoc_type == QCA_WCN3990) 612 qca_power_shutdown(hu->hdev); 613 else 614 gpiod_set_value_cansleep(qcadev->bt_en, 0); 615 616 serdev_device_close(hu->serdev); 617 } 618 619 kfree_skb(qca->rx_skb); 620 621 hu->priv = NULL; 622 623 kfree(qca); 624 625 return 0; 626 } 627 628 /* Called upon a wake-up-indication from the device. 629 */ 630 static void device_want_to_wakeup(struct hci_uart *hu) 631 { 632 unsigned long flags; 633 struct qca_data *qca = hu->priv; 634 635 BT_DBG("hu %p want to wake up", hu); 636 637 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 638 639 qca->ibs_recv_wakes++; 640 641 switch (qca->rx_ibs_state) { 642 case HCI_IBS_RX_ASLEEP: 643 /* Make sure clock is on - we may have turned clock off since 644 * receiving the wake up indicator awake rx clock. 645 */ 646 queue_work(qca->workqueue, &qca->ws_awake_rx); 647 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 648 return; 649 650 case HCI_IBS_RX_AWAKE: 651 /* Always acknowledge device wake up, 652 * sending IBS message doesn't count as TX ON. 653 */ 654 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) { 655 BT_ERR("Failed to acknowledge device wake up"); 656 break; 657 } 658 qca->ibs_sent_wacks++; 659 break; 660 661 default: 662 /* Any other state is illegal */ 663 BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d", 664 qca->rx_ibs_state); 665 break; 666 } 667 668 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 669 670 /* Actually send the packets */ 671 hci_uart_tx_wakeup(hu); 672 } 673 674 /* Called upon a sleep-indication from the device. 675 */ 676 static void device_want_to_sleep(struct hci_uart *hu) 677 { 678 unsigned long flags; 679 struct qca_data *qca = hu->priv; 680 681 BT_DBG("hu %p want to sleep", hu); 682 683 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 684 685 qca->ibs_recv_slps++; 686 687 switch (qca->rx_ibs_state) { 688 case HCI_IBS_RX_AWAKE: 689 /* Update state */ 690 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP; 691 /* Vote off rx clock under workqueue */ 692 queue_work(qca->workqueue, &qca->ws_rx_vote_off); 693 break; 694 695 case HCI_IBS_RX_ASLEEP: 696 /* Fall through */ 697 698 default: 699 /* Any other state is illegal */ 700 BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d", 701 qca->rx_ibs_state); 702 break; 703 } 704 705 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 706 } 707 708 /* Called upon wake-up-acknowledgement from the device 709 */ 710 static void device_woke_up(struct hci_uart *hu) 711 { 712 unsigned long flags, idle_delay; 713 struct qca_data *qca = hu->priv; 714 struct sk_buff *skb = NULL; 715 716 BT_DBG("hu %p woke up", hu); 717 718 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 719 720 qca->ibs_recv_wacks++; 721 722 switch (qca->tx_ibs_state) { 723 case HCI_IBS_TX_AWAKE: 724 /* Expect one if we send 2 WAKEs */ 725 BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d", 726 qca->tx_ibs_state); 727 break; 728 729 case HCI_IBS_TX_WAKING: 730 /* Send pending packets */ 731 while ((skb = skb_dequeue(&qca->tx_wait_q))) 732 skb_queue_tail(&qca->txq, skb); 733 734 /* Switch timers and change state to HCI_IBS_TX_AWAKE */ 735 del_timer(&qca->wake_retrans_timer); 736 idle_delay = msecs_to_jiffies(qca->tx_idle_delay); 737 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay); 738 qca->tx_ibs_state = HCI_IBS_TX_AWAKE; 739 break; 740 741 case HCI_IBS_TX_ASLEEP: 742 /* Fall through */ 743 744 default: 745 BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d", 746 qca->tx_ibs_state); 747 break; 748 } 749 750 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 751 752 /* Actually send the packets */ 753 hci_uart_tx_wakeup(hu); 754 } 755 756 /* Enqueue frame for transmittion (padding, crc, etc) may be called from 757 * two simultaneous tasklets. 758 */ 759 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb) 760 { 761 unsigned long flags = 0, idle_delay; 762 struct qca_data *qca = hu->priv; 763 764 BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb, 765 qca->tx_ibs_state); 766 767 /* Prepend skb with frame type */ 768 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1); 769 770 /* Don't go to sleep in middle of patch download or 771 * Out-Of-Band(GPIOs control) sleep is selected. 772 */ 773 if (!test_bit(STATE_IN_BAND_SLEEP_ENABLED, &qca->flags)) { 774 skb_queue_tail(&qca->txq, skb); 775 return 0; 776 } 777 778 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 779 780 /* Act according to current state */ 781 switch (qca->tx_ibs_state) { 782 case HCI_IBS_TX_AWAKE: 783 BT_DBG("Device awake, sending normally"); 784 skb_queue_tail(&qca->txq, skb); 785 idle_delay = msecs_to_jiffies(qca->tx_idle_delay); 786 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay); 787 break; 788 789 case HCI_IBS_TX_ASLEEP: 790 BT_DBG("Device asleep, waking up and queueing packet"); 791 /* Save packet for later */ 792 skb_queue_tail(&qca->tx_wait_q, skb); 793 794 qca->tx_ibs_state = HCI_IBS_TX_WAKING; 795 /* Schedule a work queue to wake up device */ 796 queue_work(qca->workqueue, &qca->ws_awake_device); 797 break; 798 799 case HCI_IBS_TX_WAKING: 800 BT_DBG("Device waking up, queueing packet"); 801 /* Transient state; just keep packet for later */ 802 skb_queue_tail(&qca->tx_wait_q, skb); 803 break; 804 805 default: 806 BT_ERR("Illegal tx state: %d (losing packet)", 807 qca->tx_ibs_state); 808 kfree_skb(skb); 809 break; 810 } 811 812 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 813 814 return 0; 815 } 816 817 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb) 818 { 819 struct hci_uart *hu = hci_get_drvdata(hdev); 820 821 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND); 822 823 device_want_to_sleep(hu); 824 825 kfree_skb(skb); 826 return 0; 827 } 828 829 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb) 830 { 831 struct hci_uart *hu = hci_get_drvdata(hdev); 832 833 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND); 834 835 device_want_to_wakeup(hu); 836 837 kfree_skb(skb); 838 return 0; 839 } 840 841 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb) 842 { 843 struct hci_uart *hu = hci_get_drvdata(hdev); 844 845 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK); 846 847 device_woke_up(hu); 848 849 kfree_skb(skb); 850 return 0; 851 } 852 853 #define QCA_IBS_SLEEP_IND_EVENT \ 854 .type = HCI_IBS_SLEEP_IND, \ 855 .hlen = 0, \ 856 .loff = 0, \ 857 .lsize = 0, \ 858 .maxlen = HCI_MAX_IBS_SIZE 859 860 #define QCA_IBS_WAKE_IND_EVENT \ 861 .type = HCI_IBS_WAKE_IND, \ 862 .hlen = 0, \ 863 .loff = 0, \ 864 .lsize = 0, \ 865 .maxlen = HCI_MAX_IBS_SIZE 866 867 #define QCA_IBS_WAKE_ACK_EVENT \ 868 .type = HCI_IBS_WAKE_ACK, \ 869 .hlen = 0, \ 870 .loff = 0, \ 871 .lsize = 0, \ 872 .maxlen = HCI_MAX_IBS_SIZE 873 874 static const struct h4_recv_pkt qca_recv_pkts[] = { 875 { H4_RECV_ACL, .recv = hci_recv_frame }, 876 { H4_RECV_SCO, .recv = hci_recv_frame }, 877 { H4_RECV_EVENT, .recv = hci_recv_frame }, 878 { QCA_IBS_WAKE_IND_EVENT, .recv = qca_ibs_wake_ind }, 879 { QCA_IBS_WAKE_ACK_EVENT, .recv = qca_ibs_wake_ack }, 880 { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind }, 881 }; 882 883 static int qca_recv(struct hci_uart *hu, const void *data, int count) 884 { 885 struct qca_data *qca = hu->priv; 886 887 if (!test_bit(HCI_UART_REGISTERED, &hu->flags)) 888 return -EUNATCH; 889 890 qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count, 891 qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts)); 892 if (IS_ERR(qca->rx_skb)) { 893 int err = PTR_ERR(qca->rx_skb); 894 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err); 895 qca->rx_skb = NULL; 896 return err; 897 } 898 899 return count; 900 } 901 902 static struct sk_buff *qca_dequeue(struct hci_uart *hu) 903 { 904 struct qca_data *qca = hu->priv; 905 906 return skb_dequeue(&qca->txq); 907 } 908 909 static uint8_t qca_get_baudrate_value(int speed) 910 { 911 switch (speed) { 912 case 9600: 913 return QCA_BAUDRATE_9600; 914 case 19200: 915 return QCA_BAUDRATE_19200; 916 case 38400: 917 return QCA_BAUDRATE_38400; 918 case 57600: 919 return QCA_BAUDRATE_57600; 920 case 115200: 921 return QCA_BAUDRATE_115200; 922 case 230400: 923 return QCA_BAUDRATE_230400; 924 case 460800: 925 return QCA_BAUDRATE_460800; 926 case 500000: 927 return QCA_BAUDRATE_500000; 928 case 921600: 929 return QCA_BAUDRATE_921600; 930 case 1000000: 931 return QCA_BAUDRATE_1000000; 932 case 2000000: 933 return QCA_BAUDRATE_2000000; 934 case 3000000: 935 return QCA_BAUDRATE_3000000; 936 case 3200000: 937 return QCA_BAUDRATE_3200000; 938 case 3500000: 939 return QCA_BAUDRATE_3500000; 940 default: 941 return QCA_BAUDRATE_115200; 942 } 943 } 944 945 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate) 946 { 947 struct hci_uart *hu = hci_get_drvdata(hdev); 948 struct qca_data *qca = hu->priv; 949 struct sk_buff *skb; 950 struct qca_serdev *qcadev; 951 u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 }; 952 953 if (baudrate > QCA_BAUDRATE_3200000) 954 return -EINVAL; 955 956 cmd[4] = baudrate; 957 958 skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL); 959 if (!skb) { 960 bt_dev_err(hdev, "Failed to allocate baudrate packet"); 961 return -ENOMEM; 962 } 963 964 /* Disabling hardware flow control is mandatory while 965 * sending change baudrate request to wcn3990 SoC. 966 */ 967 qcadev = serdev_device_get_drvdata(hu->serdev); 968 if (qcadev->btsoc_type == QCA_WCN3990) 969 hci_uart_set_flow_control(hu, true); 970 971 /* Assign commands to change baudrate and packet type. */ 972 skb_put_data(skb, cmd, sizeof(cmd)); 973 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 974 975 skb_queue_tail(&qca->txq, skb); 976 hci_uart_tx_wakeup(hu); 977 978 /* wait 300ms to change new baudrate on controller side 979 * controller will come back after they receive this HCI command 980 * then host can communicate with new baudrate to controller 981 */ 982 set_current_state(TASK_UNINTERRUPTIBLE); 983 schedule_timeout(msecs_to_jiffies(BAUDRATE_SETTLE_TIMEOUT_MS)); 984 set_current_state(TASK_RUNNING); 985 986 if (qcadev->btsoc_type == QCA_WCN3990) 987 hci_uart_set_flow_control(hu, false); 988 989 return 0; 990 } 991 992 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed) 993 { 994 if (hu->serdev) 995 serdev_device_set_baudrate(hu->serdev, speed); 996 else 997 hci_uart_set_baudrate(hu, speed); 998 } 999 1000 static int qca_send_power_pulse(struct hci_dev *hdev, u8 cmd) 1001 { 1002 struct hci_uart *hu = hci_get_drvdata(hdev); 1003 struct qca_data *qca = hu->priv; 1004 struct sk_buff *skb; 1005 1006 /* These power pulses are single byte command which are sent 1007 * at required baudrate to wcn3990. On wcn3990, we have an external 1008 * circuit at Tx pin which decodes the pulse sent at specific baudrate. 1009 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT 1010 * and also we use the same power inputs to turn on and off for 1011 * Wi-Fi/BT. Powering up the power sources will not enable BT, until 1012 * we send a power on pulse at 115200 bps. This algorithm will help to 1013 * save power. Disabling hardware flow control is mandatory while 1014 * sending power pulses to SoC. 1015 */ 1016 bt_dev_dbg(hdev, "sending power pulse %02x to SoC", cmd); 1017 1018 skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL); 1019 if (!skb) 1020 return -ENOMEM; 1021 1022 hci_uart_set_flow_control(hu, true); 1023 1024 skb_put_u8(skb, cmd); 1025 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 1026 1027 skb_queue_tail(&qca->txq, skb); 1028 hci_uart_tx_wakeup(hu); 1029 1030 /* Wait for 100 uS for SoC to settle down */ 1031 usleep_range(100, 200); 1032 hci_uart_set_flow_control(hu, false); 1033 1034 return 0; 1035 } 1036 1037 static unsigned int qca_get_speed(struct hci_uart *hu, 1038 enum qca_speed_type speed_type) 1039 { 1040 unsigned int speed = 0; 1041 1042 if (speed_type == QCA_INIT_SPEED) { 1043 if (hu->init_speed) 1044 speed = hu->init_speed; 1045 else if (hu->proto->init_speed) 1046 speed = hu->proto->init_speed; 1047 } else { 1048 if (hu->oper_speed) 1049 speed = hu->oper_speed; 1050 else if (hu->proto->oper_speed) 1051 speed = hu->proto->oper_speed; 1052 } 1053 1054 return speed; 1055 } 1056 1057 static int qca_check_speeds(struct hci_uart *hu) 1058 { 1059 struct qca_serdev *qcadev; 1060 1061 qcadev = serdev_device_get_drvdata(hu->serdev); 1062 if (qcadev->btsoc_type == QCA_WCN3990) { 1063 if (!qca_get_speed(hu, QCA_INIT_SPEED) && 1064 !qca_get_speed(hu, QCA_OPER_SPEED)) 1065 return -EINVAL; 1066 } else { 1067 if (!qca_get_speed(hu, QCA_INIT_SPEED) || 1068 !qca_get_speed(hu, QCA_OPER_SPEED)) 1069 return -EINVAL; 1070 } 1071 1072 return 0; 1073 } 1074 1075 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type) 1076 { 1077 unsigned int speed, qca_baudrate; 1078 int ret; 1079 1080 if (speed_type == QCA_INIT_SPEED) { 1081 speed = qca_get_speed(hu, QCA_INIT_SPEED); 1082 if (speed) 1083 host_set_baudrate(hu, speed); 1084 } else { 1085 speed = qca_get_speed(hu, QCA_OPER_SPEED); 1086 if (!speed) 1087 return 0; 1088 1089 qca_baudrate = qca_get_baudrate_value(speed); 1090 bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed); 1091 ret = qca_set_baudrate(hu->hdev, qca_baudrate); 1092 if (ret) 1093 return ret; 1094 1095 host_set_baudrate(hu, speed); 1096 } 1097 1098 return 0; 1099 } 1100 1101 static int qca_wcn3990_init(struct hci_uart *hu) 1102 { 1103 struct hci_dev *hdev = hu->hdev; 1104 int ret; 1105 1106 /* Forcefully enable wcn3990 to enter in to boot mode. */ 1107 host_set_baudrate(hu, 2400); 1108 ret = qca_send_power_pulse(hdev, QCA_WCN3990_POWEROFF_PULSE); 1109 if (ret) 1110 return ret; 1111 1112 qca_set_speed(hu, QCA_INIT_SPEED); 1113 ret = qca_send_power_pulse(hdev, QCA_WCN3990_POWERON_PULSE); 1114 if (ret) 1115 return ret; 1116 1117 /* Wait for 100 ms for SoC to boot */ 1118 msleep(100); 1119 1120 /* Now the device is in ready state to communicate with host. 1121 * To sync host with device we need to reopen port. 1122 * Without this, we will have RTS and CTS synchronization 1123 * issues. 1124 */ 1125 serdev_device_close(hu->serdev); 1126 ret = serdev_device_open(hu->serdev); 1127 if (ret) { 1128 bt_dev_err(hu->hdev, "failed to open port"); 1129 return ret; 1130 } 1131 1132 hci_uart_set_flow_control(hu, false); 1133 1134 return 0; 1135 } 1136 1137 static int qca_setup(struct hci_uart *hu) 1138 { 1139 struct hci_dev *hdev = hu->hdev; 1140 struct qca_data *qca = hu->priv; 1141 unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200; 1142 struct qca_serdev *qcadev; 1143 int ret; 1144 int soc_ver = 0; 1145 1146 qcadev = serdev_device_get_drvdata(hu->serdev); 1147 1148 ret = qca_check_speeds(hu); 1149 if (ret) 1150 return ret; 1151 1152 /* Patch downloading has to be done without IBS mode */ 1153 clear_bit(STATE_IN_BAND_SLEEP_ENABLED, &qca->flags); 1154 1155 if (qcadev->btsoc_type == QCA_WCN3990) { 1156 bt_dev_info(hdev, "setting up wcn3990"); 1157 ret = qca_wcn3990_init(hu); 1158 if (ret) 1159 return ret; 1160 1161 ret = qca_read_soc_version(hdev, &soc_ver); 1162 if (ret) 1163 return ret; 1164 } else { 1165 bt_dev_info(hdev, "ROME setup"); 1166 qca_set_speed(hu, QCA_INIT_SPEED); 1167 } 1168 1169 /* Setup user speed if needed */ 1170 speed = qca_get_speed(hu, QCA_OPER_SPEED); 1171 if (speed) { 1172 ret = qca_set_speed(hu, QCA_OPER_SPEED); 1173 if (ret) 1174 return ret; 1175 1176 qca_baudrate = qca_get_baudrate_value(speed); 1177 } 1178 1179 if (qcadev->btsoc_type != QCA_WCN3990) { 1180 /* Get QCA version information */ 1181 ret = qca_read_soc_version(hdev, &soc_ver); 1182 if (ret) 1183 return ret; 1184 } 1185 1186 bt_dev_info(hdev, "QCA controller version 0x%08x", soc_ver); 1187 /* Setup patch / NVM configurations */ 1188 ret = qca_uart_setup(hdev, qca_baudrate, qcadev->btsoc_type, soc_ver); 1189 if (!ret) { 1190 set_bit(STATE_IN_BAND_SLEEP_ENABLED, &qca->flags); 1191 qca_debugfs_init(hdev); 1192 } else if (ret == -ENOENT) { 1193 /* No patch/nvm-config found, run with original fw/config */ 1194 ret = 0; 1195 } else if (ret == -EAGAIN) { 1196 /* 1197 * Userspace firmware loader will return -EAGAIN in case no 1198 * patch/nvm-config is found, so run with original fw/config. 1199 */ 1200 ret = 0; 1201 } 1202 1203 /* Setup bdaddr */ 1204 hu->hdev->set_bdaddr = qca_set_bdaddr_rome; 1205 1206 return ret; 1207 } 1208 1209 static struct hci_uart_proto qca_proto = { 1210 .id = HCI_UART_QCA, 1211 .name = "QCA", 1212 .manufacturer = 29, 1213 .init_speed = 115200, 1214 .oper_speed = 3000000, 1215 .open = qca_open, 1216 .close = qca_close, 1217 .flush = qca_flush, 1218 .setup = qca_setup, 1219 .recv = qca_recv, 1220 .enqueue = qca_enqueue, 1221 .dequeue = qca_dequeue, 1222 }; 1223 1224 static const struct qca_vreg_data qca_soc_data = { 1225 .soc_type = QCA_WCN3990, 1226 .vregs = (struct qca_vreg []) { 1227 { "vddio", 1800000, 1900000, 15000 }, 1228 { "vddxo", 1800000, 1900000, 80000 }, 1229 { "vddrf", 1300000, 1350000, 300000 }, 1230 { "vddch0", 3300000, 3400000, 450000 }, 1231 }, 1232 .num_vregs = 4, 1233 }; 1234 1235 static void qca_power_shutdown(struct hci_dev *hdev) 1236 { 1237 struct hci_uart *hu = hci_get_drvdata(hdev); 1238 1239 host_set_baudrate(hu, 2400); 1240 qca_send_power_pulse(hdev, QCA_WCN3990_POWEROFF_PULSE); 1241 qca_power_setup(hu, false); 1242 } 1243 1244 static int qca_enable_regulator(struct qca_vreg vregs, 1245 struct regulator *regulator) 1246 { 1247 int ret; 1248 1249 ret = regulator_set_voltage(regulator, vregs.min_uV, 1250 vregs.max_uV); 1251 if (ret) 1252 return ret; 1253 1254 if (vregs.load_uA) 1255 ret = regulator_set_load(regulator, 1256 vregs.load_uA); 1257 1258 if (ret) 1259 return ret; 1260 1261 return regulator_enable(regulator); 1262 1263 } 1264 1265 static void qca_disable_regulator(struct qca_vreg vregs, 1266 struct regulator *regulator) 1267 { 1268 regulator_disable(regulator); 1269 regulator_set_voltage(regulator, 0, vregs.max_uV); 1270 if (vregs.load_uA) 1271 regulator_set_load(regulator, 0); 1272 1273 } 1274 1275 static int qca_power_setup(struct hci_uart *hu, bool on) 1276 { 1277 struct qca_vreg *vregs; 1278 struct regulator_bulk_data *vreg_bulk; 1279 struct qca_serdev *qcadev; 1280 int i, num_vregs, ret = 0; 1281 1282 qcadev = serdev_device_get_drvdata(hu->serdev); 1283 if (!qcadev || !qcadev->bt_power || !qcadev->bt_power->vreg_data || 1284 !qcadev->bt_power->vreg_bulk) 1285 return -EINVAL; 1286 1287 vregs = qcadev->bt_power->vreg_data->vregs; 1288 vreg_bulk = qcadev->bt_power->vreg_bulk; 1289 num_vregs = qcadev->bt_power->vreg_data->num_vregs; 1290 BT_DBG("on: %d", on); 1291 if (on && !qcadev->bt_power->vregs_on) { 1292 for (i = 0; i < num_vregs; i++) { 1293 ret = qca_enable_regulator(vregs[i], 1294 vreg_bulk[i].consumer); 1295 if (ret) 1296 break; 1297 } 1298 1299 if (ret) { 1300 BT_ERR("failed to enable regulator:%s", vregs[i].name); 1301 /* turn off regulators which are enabled */ 1302 for (i = i - 1; i >= 0; i--) 1303 qca_disable_regulator(vregs[i], 1304 vreg_bulk[i].consumer); 1305 } else { 1306 qcadev->bt_power->vregs_on = true; 1307 } 1308 } else if (!on && qcadev->bt_power->vregs_on) { 1309 /* turn off regulator in reverse order */ 1310 i = qcadev->bt_power->vreg_data->num_vregs - 1; 1311 for ( ; i >= 0; i--) 1312 qca_disable_regulator(vregs[i], vreg_bulk[i].consumer); 1313 1314 qcadev->bt_power->vregs_on = false; 1315 } 1316 1317 return ret; 1318 } 1319 1320 static int qca_init_regulators(struct qca_power *qca, 1321 const struct qca_vreg *vregs, size_t num_vregs) 1322 { 1323 int i; 1324 1325 qca->vreg_bulk = devm_kzalloc(qca->dev, num_vregs * 1326 sizeof(struct regulator_bulk_data), 1327 GFP_KERNEL); 1328 if (!qca->vreg_bulk) 1329 return -ENOMEM; 1330 1331 for (i = 0; i < num_vregs; i++) 1332 qca->vreg_bulk[i].supply = vregs[i].name; 1333 1334 return devm_regulator_bulk_get(qca->dev, num_vregs, qca->vreg_bulk); 1335 } 1336 1337 static int qca_serdev_probe(struct serdev_device *serdev) 1338 { 1339 struct qca_serdev *qcadev; 1340 const struct qca_vreg_data *data; 1341 int err; 1342 1343 qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL); 1344 if (!qcadev) 1345 return -ENOMEM; 1346 1347 qcadev->serdev_hu.serdev = serdev; 1348 data = of_device_get_match_data(&serdev->dev); 1349 serdev_device_set_drvdata(serdev, qcadev); 1350 if (data && data->soc_type == QCA_WCN3990) { 1351 qcadev->btsoc_type = QCA_WCN3990; 1352 qcadev->bt_power = devm_kzalloc(&serdev->dev, 1353 sizeof(struct qca_power), 1354 GFP_KERNEL); 1355 if (!qcadev->bt_power) 1356 return -ENOMEM; 1357 1358 qcadev->bt_power->dev = &serdev->dev; 1359 qcadev->bt_power->vreg_data = data; 1360 err = qca_init_regulators(qcadev->bt_power, data->vregs, 1361 data->num_vregs); 1362 if (err) { 1363 BT_ERR("Failed to init regulators:%d", err); 1364 goto out; 1365 } 1366 1367 qcadev->bt_power->vregs_on = false; 1368 1369 device_property_read_u32(&serdev->dev, "max-speed", 1370 &qcadev->oper_speed); 1371 if (!qcadev->oper_speed) 1372 BT_DBG("UART will pick default operating speed"); 1373 1374 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto); 1375 if (err) { 1376 BT_ERR("wcn3990 serdev registration failed"); 1377 goto out; 1378 } 1379 } else { 1380 qcadev->btsoc_type = QCA_ROME; 1381 qcadev->bt_en = devm_gpiod_get(&serdev->dev, "enable", 1382 GPIOD_OUT_LOW); 1383 if (IS_ERR(qcadev->bt_en)) { 1384 dev_err(&serdev->dev, "failed to acquire enable gpio\n"); 1385 return PTR_ERR(qcadev->bt_en); 1386 } 1387 1388 qcadev->susclk = devm_clk_get(&serdev->dev, NULL); 1389 if (IS_ERR(qcadev->susclk)) { 1390 dev_err(&serdev->dev, "failed to acquire clk\n"); 1391 return PTR_ERR(qcadev->susclk); 1392 } 1393 1394 err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ); 1395 if (err) 1396 return err; 1397 1398 err = clk_prepare_enable(qcadev->susclk); 1399 if (err) 1400 return err; 1401 1402 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto); 1403 if (err) 1404 clk_disable_unprepare(qcadev->susclk); 1405 } 1406 1407 out: return err; 1408 1409 } 1410 1411 static void qca_serdev_remove(struct serdev_device *serdev) 1412 { 1413 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); 1414 1415 if (qcadev->btsoc_type == QCA_WCN3990) 1416 qca_power_shutdown(qcadev->serdev_hu.hdev); 1417 else 1418 clk_disable_unprepare(qcadev->susclk); 1419 1420 hci_uart_unregister_device(&qcadev->serdev_hu); 1421 } 1422 1423 static const struct of_device_id qca_bluetooth_of_match[] = { 1424 { .compatible = "qcom,qca6174-bt" }, 1425 { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data}, 1426 { /* sentinel */ } 1427 }; 1428 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match); 1429 1430 static struct serdev_device_driver qca_serdev_driver = { 1431 .probe = qca_serdev_probe, 1432 .remove = qca_serdev_remove, 1433 .driver = { 1434 .name = "hci_uart_qca", 1435 .of_match_table = qca_bluetooth_of_match, 1436 }, 1437 }; 1438 1439 int __init qca_init(void) 1440 { 1441 serdev_device_driver_register(&qca_serdev_driver); 1442 1443 return hci_uart_register_proto(&qca_proto); 1444 } 1445 1446 int __exit qca_deinit(void) 1447 { 1448 serdev_device_driver_unregister(&qca_serdev_driver); 1449 1450 return hci_uart_unregister_proto(&qca_proto); 1451 } 1452