xref: /openbmc/linux/drivers/bluetooth/hci_qca.c (revision 3019a9d3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Bluetooth Software UART Qualcomm protocol
4  *
5  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10  *
11  *  Acknowledgements:
12  *  This file is based on hci_ll.c, which was...
13  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14  *  which was in turn based on hci_h4.c, which was written
15  *  by Maxim Krasnyansky and Marcel Holtmann.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/serdev.h>
33 #include <linux/mutex.h>
34 #include <asm/unaligned.h>
35 
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38 
39 #include "hci_uart.h"
40 #include "btqca.h"
41 
42 /* HCI_IBS protocol messages */
43 #define HCI_IBS_SLEEP_IND	0xFE
44 #define HCI_IBS_WAKE_IND	0xFD
45 #define HCI_IBS_WAKE_ACK	0xFC
46 #define HCI_MAX_IBS_SIZE	10
47 
48 #define IBS_WAKE_RETRANS_TIMEOUT_MS	100
49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS	200
50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS	2000
51 #define CMD_TRANS_TIMEOUT_MS		100
52 #define MEMDUMP_TIMEOUT_MS		8000
53 #define IBS_DISABLE_SSR_TIMEOUT_MS \
54 	(MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS)
55 #define FW_DOWNLOAD_TIMEOUT_MS		3000
56 
57 /* susclk rate */
58 #define SUSCLK_RATE_32KHZ	32768
59 
60 /* Controller debug log header */
61 #define QCA_DEBUG_HANDLE	0x2EDC
62 
63 /* max retry count when init fails */
64 #define MAX_INIT_RETRIES 3
65 
66 /* Controller dump header */
67 #define QCA_SSR_DUMP_HANDLE		0x0108
68 #define QCA_DUMP_PACKET_SIZE		255
69 #define QCA_LAST_SEQUENCE_NUM		0xFFFF
70 #define QCA_CRASHBYTE_PACKET_LEN	1096
71 #define QCA_MEMDUMP_BYTE		0xFB
72 
73 enum qca_flags {
74 	QCA_IBS_DISABLED,
75 	QCA_DROP_VENDOR_EVENT,
76 	QCA_SUSPENDING,
77 	QCA_MEMDUMP_COLLECTION,
78 	QCA_HW_ERROR_EVENT,
79 	QCA_SSR_TRIGGERED,
80 	QCA_BT_OFF,
81 	QCA_ROM_FW,
82 	QCA_DEBUGFS_CREATED,
83 };
84 
85 enum qca_capabilities {
86 	QCA_CAP_WIDEBAND_SPEECH = BIT(0),
87 	QCA_CAP_VALID_LE_STATES = BIT(1),
88 };
89 
90 /* HCI_IBS transmit side sleep protocol states */
91 enum tx_ibs_states {
92 	HCI_IBS_TX_ASLEEP,
93 	HCI_IBS_TX_WAKING,
94 	HCI_IBS_TX_AWAKE,
95 };
96 
97 /* HCI_IBS receive side sleep protocol states */
98 enum rx_states {
99 	HCI_IBS_RX_ASLEEP,
100 	HCI_IBS_RX_AWAKE,
101 };
102 
103 /* HCI_IBS transmit and receive side clock state vote */
104 enum hci_ibs_clock_state_vote {
105 	HCI_IBS_VOTE_STATS_UPDATE,
106 	HCI_IBS_TX_VOTE_CLOCK_ON,
107 	HCI_IBS_TX_VOTE_CLOCK_OFF,
108 	HCI_IBS_RX_VOTE_CLOCK_ON,
109 	HCI_IBS_RX_VOTE_CLOCK_OFF,
110 };
111 
112 /* Controller memory dump states */
113 enum qca_memdump_states {
114 	QCA_MEMDUMP_IDLE,
115 	QCA_MEMDUMP_COLLECTING,
116 	QCA_MEMDUMP_COLLECTED,
117 	QCA_MEMDUMP_TIMEOUT,
118 };
119 
120 struct qca_memdump_info {
121 	u32 current_seq_no;
122 	u32 received_dump;
123 	u32 ram_dump_size;
124 };
125 
126 struct qca_memdump_event_hdr {
127 	__u8    evt;
128 	__u8    plen;
129 	__u16   opcode;
130 	__le16   seq_no;
131 	__u8    reserved;
132 } __packed;
133 
134 
135 struct qca_dump_size {
136 	__le32 dump_size;
137 } __packed;
138 
139 struct qca_data {
140 	struct hci_uart *hu;
141 	struct sk_buff *rx_skb;
142 	struct sk_buff_head txq;
143 	struct sk_buff_head tx_wait_q;	/* HCI_IBS wait queue	*/
144 	struct sk_buff_head rx_memdump_q;	/* Memdump wait queue	*/
145 	spinlock_t hci_ibs_lock;	/* HCI_IBS state lock	*/
146 	u8 tx_ibs_state;	/* HCI_IBS transmit side power state*/
147 	u8 rx_ibs_state;	/* HCI_IBS receive side power state */
148 	bool tx_vote;		/* Clock must be on for TX */
149 	bool rx_vote;		/* Clock must be on for RX */
150 	struct timer_list tx_idle_timer;
151 	u32 tx_idle_delay;
152 	struct timer_list wake_retrans_timer;
153 	u32 wake_retrans;
154 	struct workqueue_struct *workqueue;
155 	struct work_struct ws_awake_rx;
156 	struct work_struct ws_awake_device;
157 	struct work_struct ws_rx_vote_off;
158 	struct work_struct ws_tx_vote_off;
159 	struct work_struct ctrl_memdump_evt;
160 	struct delayed_work ctrl_memdump_timeout;
161 	struct qca_memdump_info *qca_memdump;
162 	unsigned long flags;
163 	struct completion drop_ev_comp;
164 	wait_queue_head_t suspend_wait_q;
165 	enum qca_memdump_states memdump_state;
166 	struct mutex hci_memdump_lock;
167 
168 	u16 fw_version;
169 	u16 controller_id;
170 	/* For debugging purpose */
171 	u64 ibs_sent_wacks;
172 	u64 ibs_sent_slps;
173 	u64 ibs_sent_wakes;
174 	u64 ibs_recv_wacks;
175 	u64 ibs_recv_slps;
176 	u64 ibs_recv_wakes;
177 	u64 vote_last_jif;
178 	u32 vote_on_ms;
179 	u32 vote_off_ms;
180 	u64 tx_votes_on;
181 	u64 rx_votes_on;
182 	u64 tx_votes_off;
183 	u64 rx_votes_off;
184 	u64 votes_on;
185 	u64 votes_off;
186 };
187 
188 enum qca_speed_type {
189 	QCA_INIT_SPEED = 1,
190 	QCA_OPER_SPEED
191 };
192 
193 /*
194  * Voltage regulator information required for configuring the
195  * QCA Bluetooth chipset
196  */
197 struct qca_vreg {
198 	const char *name;
199 	unsigned int load_uA;
200 };
201 
202 struct qca_device_data {
203 	enum qca_btsoc_type soc_type;
204 	struct qca_vreg *vregs;
205 	size_t num_vregs;
206 	uint32_t capabilities;
207 };
208 
209 /*
210  * Platform data for the QCA Bluetooth power driver.
211  */
212 struct qca_power {
213 	struct device *dev;
214 	struct regulator_bulk_data *vreg_bulk;
215 	int num_vregs;
216 	bool vregs_on;
217 };
218 
219 struct qca_serdev {
220 	struct hci_uart	 serdev_hu;
221 	struct gpio_desc *bt_en;
222 	struct gpio_desc *sw_ctrl;
223 	struct clk	 *susclk;
224 	enum qca_btsoc_type btsoc_type;
225 	struct qca_power *bt_power;
226 	u32 init_speed;
227 	u32 oper_speed;
228 	bool bdaddr_property_broken;
229 	const char *firmware_name;
230 };
231 
232 static int qca_regulator_enable(struct qca_serdev *qcadev);
233 static void qca_regulator_disable(struct qca_serdev *qcadev);
234 static void qca_power_shutdown(struct hci_uart *hu);
235 static int qca_power_off(struct hci_dev *hdev);
236 static void qca_controller_memdump(struct work_struct *work);
237 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb);
238 
qca_soc_type(struct hci_uart * hu)239 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
240 {
241 	enum qca_btsoc_type soc_type;
242 
243 	if (hu->serdev) {
244 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
245 
246 		soc_type = qsd->btsoc_type;
247 	} else {
248 		soc_type = QCA_ROME;
249 	}
250 
251 	return soc_type;
252 }
253 
qca_get_firmware_name(struct hci_uart * hu)254 static const char *qca_get_firmware_name(struct hci_uart *hu)
255 {
256 	if (hu->serdev) {
257 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
258 
259 		return qsd->firmware_name;
260 	} else {
261 		return NULL;
262 	}
263 }
264 
__serial_clock_on(struct tty_struct * tty)265 static void __serial_clock_on(struct tty_struct *tty)
266 {
267 	/* TODO: Some chipset requires to enable UART clock on client
268 	 * side to save power consumption or manual work is required.
269 	 * Please put your code to control UART clock here if needed
270 	 */
271 }
272 
__serial_clock_off(struct tty_struct * tty)273 static void __serial_clock_off(struct tty_struct *tty)
274 {
275 	/* TODO: Some chipset requires to disable UART clock on client
276 	 * side to save power consumption or manual work is required.
277 	 * Please put your code to control UART clock off here if needed
278 	 */
279 }
280 
281 /* serial_clock_vote needs to be called with the ibs lock held */
serial_clock_vote(unsigned long vote,struct hci_uart * hu)282 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
283 {
284 	struct qca_data *qca = hu->priv;
285 	unsigned int diff;
286 
287 	bool old_vote = (qca->tx_vote | qca->rx_vote);
288 	bool new_vote;
289 
290 	switch (vote) {
291 	case HCI_IBS_VOTE_STATS_UPDATE:
292 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
293 
294 		if (old_vote)
295 			qca->vote_off_ms += diff;
296 		else
297 			qca->vote_on_ms += diff;
298 		return;
299 
300 	case HCI_IBS_TX_VOTE_CLOCK_ON:
301 		qca->tx_vote = true;
302 		qca->tx_votes_on++;
303 		break;
304 
305 	case HCI_IBS_RX_VOTE_CLOCK_ON:
306 		qca->rx_vote = true;
307 		qca->rx_votes_on++;
308 		break;
309 
310 	case HCI_IBS_TX_VOTE_CLOCK_OFF:
311 		qca->tx_vote = false;
312 		qca->tx_votes_off++;
313 		break;
314 
315 	case HCI_IBS_RX_VOTE_CLOCK_OFF:
316 		qca->rx_vote = false;
317 		qca->rx_votes_off++;
318 		break;
319 
320 	default:
321 		BT_ERR("Voting irregularity");
322 		return;
323 	}
324 
325 	new_vote = qca->rx_vote | qca->tx_vote;
326 
327 	if (new_vote != old_vote) {
328 		if (new_vote)
329 			__serial_clock_on(hu->tty);
330 		else
331 			__serial_clock_off(hu->tty);
332 
333 		BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
334 		       vote ? "true" : "false");
335 
336 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
337 
338 		if (new_vote) {
339 			qca->votes_on++;
340 			qca->vote_off_ms += diff;
341 		} else {
342 			qca->votes_off++;
343 			qca->vote_on_ms += diff;
344 		}
345 		qca->vote_last_jif = jiffies;
346 	}
347 }
348 
349 /* Builds and sends an HCI_IBS command packet.
350  * These are very simple packets with only 1 cmd byte.
351  */
send_hci_ibs_cmd(u8 cmd,struct hci_uart * hu)352 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
353 {
354 	int err = 0;
355 	struct sk_buff *skb = NULL;
356 	struct qca_data *qca = hu->priv;
357 
358 	BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
359 
360 	skb = bt_skb_alloc(1, GFP_ATOMIC);
361 	if (!skb) {
362 		BT_ERR("Failed to allocate memory for HCI_IBS packet");
363 		return -ENOMEM;
364 	}
365 
366 	/* Assign HCI_IBS type */
367 	skb_put_u8(skb, cmd);
368 
369 	skb_queue_tail(&qca->txq, skb);
370 
371 	return err;
372 }
373 
qca_wq_awake_device(struct work_struct * work)374 static void qca_wq_awake_device(struct work_struct *work)
375 {
376 	struct qca_data *qca = container_of(work, struct qca_data,
377 					    ws_awake_device);
378 	struct hci_uart *hu = qca->hu;
379 	unsigned long retrans_delay;
380 	unsigned long flags;
381 
382 	BT_DBG("hu %p wq awake device", hu);
383 
384 	/* Vote for serial clock */
385 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
386 
387 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
388 
389 	/* Send wake indication to device */
390 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
391 		BT_ERR("Failed to send WAKE to device");
392 
393 	qca->ibs_sent_wakes++;
394 
395 	/* Start retransmit timer */
396 	retrans_delay = msecs_to_jiffies(qca->wake_retrans);
397 	mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
398 
399 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
400 
401 	/* Actually send the packets */
402 	hci_uart_tx_wakeup(hu);
403 }
404 
qca_wq_awake_rx(struct work_struct * work)405 static void qca_wq_awake_rx(struct work_struct *work)
406 {
407 	struct qca_data *qca = container_of(work, struct qca_data,
408 					    ws_awake_rx);
409 	struct hci_uart *hu = qca->hu;
410 	unsigned long flags;
411 
412 	BT_DBG("hu %p wq awake rx", hu);
413 
414 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
415 
416 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
417 	qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
418 
419 	/* Always acknowledge device wake up,
420 	 * sending IBS message doesn't count as TX ON.
421 	 */
422 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
423 		BT_ERR("Failed to acknowledge device wake up");
424 
425 	qca->ibs_sent_wacks++;
426 
427 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
428 
429 	/* Actually send the packets */
430 	hci_uart_tx_wakeup(hu);
431 }
432 
qca_wq_serial_rx_clock_vote_off(struct work_struct * work)433 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
434 {
435 	struct qca_data *qca = container_of(work, struct qca_data,
436 					    ws_rx_vote_off);
437 	struct hci_uart *hu = qca->hu;
438 
439 	BT_DBG("hu %p rx clock vote off", hu);
440 
441 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
442 }
443 
qca_wq_serial_tx_clock_vote_off(struct work_struct * work)444 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
445 {
446 	struct qca_data *qca = container_of(work, struct qca_data,
447 					    ws_tx_vote_off);
448 	struct hci_uart *hu = qca->hu;
449 
450 	BT_DBG("hu %p tx clock vote off", hu);
451 
452 	/* Run HCI tx handling unlocked */
453 	hci_uart_tx_wakeup(hu);
454 
455 	/* Now that message queued to tty driver, vote for tty clocks off.
456 	 * It is up to the tty driver to pend the clocks off until tx done.
457 	 */
458 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
459 }
460 
hci_ibs_tx_idle_timeout(struct timer_list * t)461 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
462 {
463 	struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
464 	struct hci_uart *hu = qca->hu;
465 	unsigned long flags;
466 
467 	BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
468 
469 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
470 				 flags, SINGLE_DEPTH_NESTING);
471 
472 	switch (qca->tx_ibs_state) {
473 	case HCI_IBS_TX_AWAKE:
474 		/* TX_IDLE, go to SLEEP */
475 		if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
476 			BT_ERR("Failed to send SLEEP to device");
477 			break;
478 		}
479 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
480 		qca->ibs_sent_slps++;
481 		queue_work(qca->workqueue, &qca->ws_tx_vote_off);
482 		break;
483 
484 	case HCI_IBS_TX_ASLEEP:
485 	case HCI_IBS_TX_WAKING:
486 	default:
487 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
488 		break;
489 	}
490 
491 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
492 }
493 
hci_ibs_wake_retrans_timeout(struct timer_list * t)494 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
495 {
496 	struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
497 	struct hci_uart *hu = qca->hu;
498 	unsigned long flags, retrans_delay;
499 	bool retransmit = false;
500 
501 	BT_DBG("hu %p wake retransmit timeout in %d state",
502 		hu, qca->tx_ibs_state);
503 
504 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
505 				 flags, SINGLE_DEPTH_NESTING);
506 
507 	/* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
508 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
509 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
510 		return;
511 	}
512 
513 	switch (qca->tx_ibs_state) {
514 	case HCI_IBS_TX_WAKING:
515 		/* No WAKE_ACK, retransmit WAKE */
516 		retransmit = true;
517 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
518 			BT_ERR("Failed to acknowledge device wake up");
519 			break;
520 		}
521 		qca->ibs_sent_wakes++;
522 		retrans_delay = msecs_to_jiffies(qca->wake_retrans);
523 		mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
524 		break;
525 
526 	case HCI_IBS_TX_ASLEEP:
527 	case HCI_IBS_TX_AWAKE:
528 	default:
529 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
530 		break;
531 	}
532 
533 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
534 
535 	if (retransmit)
536 		hci_uart_tx_wakeup(hu);
537 }
538 
539 
qca_controller_memdump_timeout(struct work_struct * work)540 static void qca_controller_memdump_timeout(struct work_struct *work)
541 {
542 	struct qca_data *qca = container_of(work, struct qca_data,
543 					ctrl_memdump_timeout.work);
544 	struct hci_uart *hu = qca->hu;
545 
546 	mutex_lock(&qca->hci_memdump_lock);
547 	if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
548 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
549 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
550 			/* Inject hw error event to reset the device
551 			 * and driver.
552 			 */
553 			hci_reset_dev(hu->hdev);
554 		}
555 	}
556 
557 	mutex_unlock(&qca->hci_memdump_lock);
558 }
559 
560 
561 /* Initialize protocol */
qca_open(struct hci_uart * hu)562 static int qca_open(struct hci_uart *hu)
563 {
564 	struct qca_serdev *qcadev;
565 	struct qca_data *qca;
566 
567 	BT_DBG("hu %p qca_open", hu);
568 
569 	if (!hci_uart_has_flow_control(hu))
570 		return -EOPNOTSUPP;
571 
572 	qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
573 	if (!qca)
574 		return -ENOMEM;
575 
576 	skb_queue_head_init(&qca->txq);
577 	skb_queue_head_init(&qca->tx_wait_q);
578 	skb_queue_head_init(&qca->rx_memdump_q);
579 	spin_lock_init(&qca->hci_ibs_lock);
580 	mutex_init(&qca->hci_memdump_lock);
581 	qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
582 	if (!qca->workqueue) {
583 		BT_ERR("QCA Workqueue not initialized properly");
584 		kfree(qca);
585 		return -ENOMEM;
586 	}
587 
588 	INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
589 	INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
590 	INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
591 	INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
592 	INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
593 	INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
594 			  qca_controller_memdump_timeout);
595 	init_waitqueue_head(&qca->suspend_wait_q);
596 
597 	qca->hu = hu;
598 	init_completion(&qca->drop_ev_comp);
599 
600 	/* Assume we start with both sides asleep -- extra wakes OK */
601 	qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
602 	qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
603 
604 	qca->vote_last_jif = jiffies;
605 
606 	hu->priv = qca;
607 
608 	if (hu->serdev) {
609 		qcadev = serdev_device_get_drvdata(hu->serdev);
610 
611 		switch (qcadev->btsoc_type) {
612 		case QCA_WCN3988:
613 		case QCA_WCN3990:
614 		case QCA_WCN3991:
615 		case QCA_WCN3998:
616 		case QCA_WCN6750:
617 			hu->init_speed = qcadev->init_speed;
618 			break;
619 
620 		default:
621 			break;
622 		}
623 
624 		if (qcadev->oper_speed)
625 			hu->oper_speed = qcadev->oper_speed;
626 	}
627 
628 	timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
629 	qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
630 
631 	timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
632 	qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
633 
634 	BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
635 	       qca->tx_idle_delay, qca->wake_retrans);
636 
637 	return 0;
638 }
639 
qca_debugfs_init(struct hci_dev * hdev)640 static void qca_debugfs_init(struct hci_dev *hdev)
641 {
642 	struct hci_uart *hu = hci_get_drvdata(hdev);
643 	struct qca_data *qca = hu->priv;
644 	struct dentry *ibs_dir;
645 	umode_t mode;
646 
647 	if (!hdev->debugfs)
648 		return;
649 
650 	if (test_and_set_bit(QCA_DEBUGFS_CREATED, &qca->flags))
651 		return;
652 
653 	ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
654 
655 	/* read only */
656 	mode = 0444;
657 	debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
658 	debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
659 	debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
660 			   &qca->ibs_sent_slps);
661 	debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
662 			   &qca->ibs_sent_wakes);
663 	debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
664 			   &qca->ibs_sent_wacks);
665 	debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
666 			   &qca->ibs_recv_slps);
667 	debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
668 			   &qca->ibs_recv_wakes);
669 	debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
670 			   &qca->ibs_recv_wacks);
671 	debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
672 	debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
673 	debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
674 	debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
675 	debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
676 	debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
677 	debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
678 	debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
679 	debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
680 	debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
681 
682 	/* read/write */
683 	mode = 0644;
684 	debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
685 	debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
686 			   &qca->tx_idle_delay);
687 }
688 
689 /* Flush protocol data */
qca_flush(struct hci_uart * hu)690 static int qca_flush(struct hci_uart *hu)
691 {
692 	struct qca_data *qca = hu->priv;
693 
694 	BT_DBG("hu %p qca flush", hu);
695 
696 	skb_queue_purge(&qca->tx_wait_q);
697 	skb_queue_purge(&qca->txq);
698 
699 	return 0;
700 }
701 
702 /* Close protocol */
qca_close(struct hci_uart * hu)703 static int qca_close(struct hci_uart *hu)
704 {
705 	struct qca_data *qca = hu->priv;
706 
707 	BT_DBG("hu %p qca close", hu);
708 
709 	serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
710 
711 	skb_queue_purge(&qca->tx_wait_q);
712 	skb_queue_purge(&qca->txq);
713 	skb_queue_purge(&qca->rx_memdump_q);
714 	/*
715 	 * Shut the timers down so they can't be rearmed when
716 	 * destroy_workqueue() drains pending work which in turn might try
717 	 * to arm a timer.  After shutdown rearm attempts are silently
718 	 * ignored by the timer core code.
719 	 */
720 	timer_shutdown_sync(&qca->tx_idle_timer);
721 	timer_shutdown_sync(&qca->wake_retrans_timer);
722 	destroy_workqueue(qca->workqueue);
723 	qca->hu = NULL;
724 
725 	kfree_skb(qca->rx_skb);
726 
727 	hu->priv = NULL;
728 
729 	kfree(qca);
730 
731 	return 0;
732 }
733 
734 /* Called upon a wake-up-indication from the device.
735  */
device_want_to_wakeup(struct hci_uart * hu)736 static void device_want_to_wakeup(struct hci_uart *hu)
737 {
738 	unsigned long flags;
739 	struct qca_data *qca = hu->priv;
740 
741 	BT_DBG("hu %p want to wake up", hu);
742 
743 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
744 
745 	qca->ibs_recv_wakes++;
746 
747 	/* Don't wake the rx up when suspending. */
748 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
749 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
750 		return;
751 	}
752 
753 	switch (qca->rx_ibs_state) {
754 	case HCI_IBS_RX_ASLEEP:
755 		/* Make sure clock is on - we may have turned clock off since
756 		 * receiving the wake up indicator awake rx clock.
757 		 */
758 		queue_work(qca->workqueue, &qca->ws_awake_rx);
759 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
760 		return;
761 
762 	case HCI_IBS_RX_AWAKE:
763 		/* Always acknowledge device wake up,
764 		 * sending IBS message doesn't count as TX ON.
765 		 */
766 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
767 			BT_ERR("Failed to acknowledge device wake up");
768 			break;
769 		}
770 		qca->ibs_sent_wacks++;
771 		break;
772 
773 	default:
774 		/* Any other state is illegal */
775 		BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
776 		       qca->rx_ibs_state);
777 		break;
778 	}
779 
780 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
781 
782 	/* Actually send the packets */
783 	hci_uart_tx_wakeup(hu);
784 }
785 
786 /* Called upon a sleep-indication from the device.
787  */
device_want_to_sleep(struct hci_uart * hu)788 static void device_want_to_sleep(struct hci_uart *hu)
789 {
790 	unsigned long flags;
791 	struct qca_data *qca = hu->priv;
792 
793 	BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
794 
795 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
796 
797 	qca->ibs_recv_slps++;
798 
799 	switch (qca->rx_ibs_state) {
800 	case HCI_IBS_RX_AWAKE:
801 		/* Update state */
802 		qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
803 		/* Vote off rx clock under workqueue */
804 		queue_work(qca->workqueue, &qca->ws_rx_vote_off);
805 		break;
806 
807 	case HCI_IBS_RX_ASLEEP:
808 		break;
809 
810 	default:
811 		/* Any other state is illegal */
812 		BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
813 		       qca->rx_ibs_state);
814 		break;
815 	}
816 
817 	wake_up_interruptible(&qca->suspend_wait_q);
818 
819 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
820 }
821 
822 /* Called upon wake-up-acknowledgement from the device
823  */
device_woke_up(struct hci_uart * hu)824 static void device_woke_up(struct hci_uart *hu)
825 {
826 	unsigned long flags, idle_delay;
827 	struct qca_data *qca = hu->priv;
828 	struct sk_buff *skb = NULL;
829 
830 	BT_DBG("hu %p woke up", hu);
831 
832 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
833 
834 	qca->ibs_recv_wacks++;
835 
836 	/* Don't react to the wake-up-acknowledgment when suspending. */
837 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
838 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
839 		return;
840 	}
841 
842 	switch (qca->tx_ibs_state) {
843 	case HCI_IBS_TX_AWAKE:
844 		/* Expect one if we send 2 WAKEs */
845 		BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
846 		       qca->tx_ibs_state);
847 		break;
848 
849 	case HCI_IBS_TX_WAKING:
850 		/* Send pending packets */
851 		while ((skb = skb_dequeue(&qca->tx_wait_q)))
852 			skb_queue_tail(&qca->txq, skb);
853 
854 		/* Switch timers and change state to HCI_IBS_TX_AWAKE */
855 		del_timer(&qca->wake_retrans_timer);
856 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
857 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
858 		qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
859 		break;
860 
861 	case HCI_IBS_TX_ASLEEP:
862 	default:
863 		BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
864 		       qca->tx_ibs_state);
865 		break;
866 	}
867 
868 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
869 
870 	/* Actually send the packets */
871 	hci_uart_tx_wakeup(hu);
872 }
873 
874 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
875  * two simultaneous tasklets.
876  */
qca_enqueue(struct hci_uart * hu,struct sk_buff * skb)877 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
878 {
879 	unsigned long flags = 0, idle_delay;
880 	struct qca_data *qca = hu->priv;
881 
882 	BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
883 	       qca->tx_ibs_state);
884 
885 	if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
886 		/* As SSR is in progress, ignore the packets */
887 		bt_dev_dbg(hu->hdev, "SSR is in progress");
888 		kfree_skb(skb);
889 		return 0;
890 	}
891 
892 	/* Prepend skb with frame type */
893 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
894 
895 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
896 
897 	/* Don't go to sleep in middle of patch download or
898 	 * Out-Of-Band(GPIOs control) sleep is selected.
899 	 * Don't wake the device up when suspending.
900 	 */
901 	if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
902 	    test_bit(QCA_SUSPENDING, &qca->flags)) {
903 		skb_queue_tail(&qca->txq, skb);
904 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
905 		return 0;
906 	}
907 
908 	/* Act according to current state */
909 	switch (qca->tx_ibs_state) {
910 	case HCI_IBS_TX_AWAKE:
911 		BT_DBG("Device awake, sending normally");
912 		skb_queue_tail(&qca->txq, skb);
913 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
914 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
915 		break;
916 
917 	case HCI_IBS_TX_ASLEEP:
918 		BT_DBG("Device asleep, waking up and queueing packet");
919 		/* Save packet for later */
920 		skb_queue_tail(&qca->tx_wait_q, skb);
921 
922 		qca->tx_ibs_state = HCI_IBS_TX_WAKING;
923 		/* Schedule a work queue to wake up device */
924 		queue_work(qca->workqueue, &qca->ws_awake_device);
925 		break;
926 
927 	case HCI_IBS_TX_WAKING:
928 		BT_DBG("Device waking up, queueing packet");
929 		/* Transient state; just keep packet for later */
930 		skb_queue_tail(&qca->tx_wait_q, skb);
931 		break;
932 
933 	default:
934 		BT_ERR("Illegal tx state: %d (losing packet)",
935 		       qca->tx_ibs_state);
936 		dev_kfree_skb_irq(skb);
937 		break;
938 	}
939 
940 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
941 
942 	return 0;
943 }
944 
qca_ibs_sleep_ind(struct hci_dev * hdev,struct sk_buff * skb)945 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
946 {
947 	struct hci_uart *hu = hci_get_drvdata(hdev);
948 
949 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
950 
951 	device_want_to_sleep(hu);
952 
953 	kfree_skb(skb);
954 	return 0;
955 }
956 
qca_ibs_wake_ind(struct hci_dev * hdev,struct sk_buff * skb)957 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
958 {
959 	struct hci_uart *hu = hci_get_drvdata(hdev);
960 
961 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
962 
963 	device_want_to_wakeup(hu);
964 
965 	kfree_skb(skb);
966 	return 0;
967 }
968 
qca_ibs_wake_ack(struct hci_dev * hdev,struct sk_buff * skb)969 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
970 {
971 	struct hci_uart *hu = hci_get_drvdata(hdev);
972 
973 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
974 
975 	device_woke_up(hu);
976 
977 	kfree_skb(skb);
978 	return 0;
979 }
980 
qca_recv_acl_data(struct hci_dev * hdev,struct sk_buff * skb)981 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
982 {
983 	/* We receive debug logs from chip as an ACL packets.
984 	 * Instead of sending the data to ACL to decode the
985 	 * received data, we are pushing them to the above layers
986 	 * as a diagnostic packet.
987 	 */
988 	if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
989 		return hci_recv_diag(hdev, skb);
990 
991 	return hci_recv_frame(hdev, skb);
992 }
993 
qca_dmp_hdr(struct hci_dev * hdev,struct sk_buff * skb)994 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb)
995 {
996 	struct hci_uart *hu = hci_get_drvdata(hdev);
997 	struct qca_data *qca = hu->priv;
998 	char buf[80];
999 
1000 	snprintf(buf, sizeof(buf), "Controller Name: 0x%x\n",
1001 		qca->controller_id);
1002 	skb_put_data(skb, buf, strlen(buf));
1003 
1004 	snprintf(buf, sizeof(buf), "Firmware Version: 0x%x\n",
1005 		qca->fw_version);
1006 	skb_put_data(skb, buf, strlen(buf));
1007 
1008 	snprintf(buf, sizeof(buf), "Vendor:Qualcomm\n");
1009 	skb_put_data(skb, buf, strlen(buf));
1010 
1011 	snprintf(buf, sizeof(buf), "Driver: %s\n",
1012 		hu->serdev->dev.driver->name);
1013 	skb_put_data(skb, buf, strlen(buf));
1014 }
1015 
qca_controller_memdump(struct work_struct * work)1016 static void qca_controller_memdump(struct work_struct *work)
1017 {
1018 	struct qca_data *qca = container_of(work, struct qca_data,
1019 					    ctrl_memdump_evt);
1020 	struct hci_uart *hu = qca->hu;
1021 	struct sk_buff *skb;
1022 	struct qca_memdump_event_hdr *cmd_hdr;
1023 	struct qca_memdump_info *qca_memdump = qca->qca_memdump;
1024 	struct qca_dump_size *dump;
1025 	u16 seq_no;
1026 	u32 rx_size;
1027 	int ret = 0;
1028 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1029 
1030 	while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
1031 
1032 		mutex_lock(&qca->hci_memdump_lock);
1033 		/* Skip processing the received packets if timeout detected
1034 		 * or memdump collection completed.
1035 		 */
1036 		if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1037 		    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1038 			mutex_unlock(&qca->hci_memdump_lock);
1039 			return;
1040 		}
1041 
1042 		if (!qca_memdump) {
1043 			qca_memdump = kzalloc(sizeof(struct qca_memdump_info),
1044 					      GFP_ATOMIC);
1045 			if (!qca_memdump) {
1046 				mutex_unlock(&qca->hci_memdump_lock);
1047 				return;
1048 			}
1049 
1050 			qca->qca_memdump = qca_memdump;
1051 		}
1052 
1053 		qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1054 		cmd_hdr = (void *) skb->data;
1055 		seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1056 		skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1057 
1058 		if (!seq_no) {
1059 
1060 			/* This is the first frame of memdump packet from
1061 			 * the controller, Disable IBS to recevie dump
1062 			 * with out any interruption, ideally time required for
1063 			 * the controller to send the dump is 8 seconds. let us
1064 			 * start timer to handle this asynchronous activity.
1065 			 */
1066 			set_bit(QCA_IBS_DISABLED, &qca->flags);
1067 			set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1068 			dump = (void *) skb->data;
1069 			qca_memdump->ram_dump_size = __le32_to_cpu(dump->dump_size);
1070 			if (!(qca_memdump->ram_dump_size)) {
1071 				bt_dev_err(hu->hdev, "Rx invalid memdump size");
1072 				kfree(qca_memdump);
1073 				kfree_skb(skb);
1074 				mutex_unlock(&qca->hci_memdump_lock);
1075 				return;
1076 			}
1077 
1078 			queue_delayed_work(qca->workqueue,
1079 					   &qca->ctrl_memdump_timeout,
1080 					   msecs_to_jiffies(MEMDUMP_TIMEOUT_MS));
1081 			skb_pull(skb, sizeof(qca_memdump->ram_dump_size));
1082 			qca_memdump->current_seq_no = 0;
1083 			qca_memdump->received_dump = 0;
1084 			ret = hci_devcd_init(hu->hdev, qca_memdump->ram_dump_size);
1085 			bt_dev_info(hu->hdev, "hci_devcd_init Return:%d",
1086 				    ret);
1087 			if (ret < 0) {
1088 				kfree(qca->qca_memdump);
1089 				qca->qca_memdump = NULL;
1090 				qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1091 				cancel_delayed_work(&qca->ctrl_memdump_timeout);
1092 				clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1093 				mutex_unlock(&qca->hci_memdump_lock);
1094 				return;
1095 			}
1096 
1097 			bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1098 				    qca_memdump->ram_dump_size);
1099 
1100 		}
1101 
1102 		/* If sequence no 0 is missed then there is no point in
1103 		 * accepting the other sequences.
1104 		 */
1105 		if (!test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
1106 			bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1107 			kfree(qca_memdump);
1108 			kfree_skb(skb);
1109 			mutex_unlock(&qca->hci_memdump_lock);
1110 			return;
1111 		}
1112 		/* There could be chance of missing some packets from
1113 		 * the controller. In such cases let us store the dummy
1114 		 * packets in the buffer.
1115 		 */
1116 		/* For QCA6390, controller does not lost packets but
1117 		 * sequence number field of packet sometimes has error
1118 		 * bits, so skip this checking for missing packet.
1119 		 */
1120 		while ((seq_no > qca_memdump->current_seq_no + 1) &&
1121 			(soc_type != QCA_QCA6390) &&
1122 			seq_no != QCA_LAST_SEQUENCE_NUM) {
1123 			bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1124 				   qca_memdump->current_seq_no);
1125 			rx_size = qca_memdump->received_dump;
1126 			rx_size += QCA_DUMP_PACKET_SIZE;
1127 			if (rx_size > qca_memdump->ram_dump_size) {
1128 				bt_dev_err(hu->hdev,
1129 					   "QCA memdump received %d, no space for missed packet",
1130 					   qca_memdump->received_dump);
1131 				break;
1132 			}
1133 			hci_devcd_append_pattern(hu->hdev, 0x00,
1134 				QCA_DUMP_PACKET_SIZE);
1135 			qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1136 			qca_memdump->current_seq_no++;
1137 		}
1138 
1139 		rx_size = qca_memdump->received_dump  + skb->len;
1140 		if (rx_size <= qca_memdump->ram_dump_size) {
1141 			if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1142 			    (seq_no != qca_memdump->current_seq_no)) {
1143 				bt_dev_err(hu->hdev,
1144 					   "QCA memdump unexpected packet %d",
1145 					   seq_no);
1146 			}
1147 			bt_dev_dbg(hu->hdev,
1148 				   "QCA memdump packet %d with length %d",
1149 				   seq_no, skb->len);
1150 			hci_devcd_append(hu->hdev, skb);
1151 			qca_memdump->current_seq_no += 1;
1152 			qca_memdump->received_dump = rx_size;
1153 		} else {
1154 			bt_dev_err(hu->hdev,
1155 				   "QCA memdump received no space for packet %d",
1156 				    qca_memdump->current_seq_no);
1157 		}
1158 
1159 		if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1160 			bt_dev_info(hu->hdev,
1161 				"QCA memdump Done, received %d, total %d",
1162 				qca_memdump->received_dump,
1163 				qca_memdump->ram_dump_size);
1164 			hci_devcd_complete(hu->hdev);
1165 			cancel_delayed_work(&qca->ctrl_memdump_timeout);
1166 			kfree(qca->qca_memdump);
1167 			qca->qca_memdump = NULL;
1168 			qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1169 			clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1170 		}
1171 
1172 		mutex_unlock(&qca->hci_memdump_lock);
1173 	}
1174 
1175 }
1176 
qca_controller_memdump_event(struct hci_dev * hdev,struct sk_buff * skb)1177 static int qca_controller_memdump_event(struct hci_dev *hdev,
1178 					struct sk_buff *skb)
1179 {
1180 	struct hci_uart *hu = hci_get_drvdata(hdev);
1181 	struct qca_data *qca = hu->priv;
1182 
1183 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1184 	skb_queue_tail(&qca->rx_memdump_q, skb);
1185 	queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1186 
1187 	return 0;
1188 }
1189 
qca_recv_event(struct hci_dev * hdev,struct sk_buff * skb)1190 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1191 {
1192 	struct hci_uart *hu = hci_get_drvdata(hdev);
1193 	struct qca_data *qca = hu->priv;
1194 
1195 	if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1196 		struct hci_event_hdr *hdr = (void *)skb->data;
1197 
1198 		/* For the WCN3990 the vendor command for a baudrate change
1199 		 * isn't sent as synchronous HCI command, because the
1200 		 * controller sends the corresponding vendor event with the
1201 		 * new baudrate. The event is received and properly decoded
1202 		 * after changing the baudrate of the host port. It needs to
1203 		 * be dropped, otherwise it can be misinterpreted as
1204 		 * response to a later firmware download command (also a
1205 		 * vendor command).
1206 		 */
1207 
1208 		if (hdr->evt == HCI_EV_VENDOR)
1209 			complete(&qca->drop_ev_comp);
1210 
1211 		kfree_skb(skb);
1212 
1213 		return 0;
1214 	}
1215 	/* We receive chip memory dump as an event packet, With a dedicated
1216 	 * handler followed by a hardware error event. When this event is
1217 	 * received we store dump into a file before closing hci. This
1218 	 * dump will help in triaging the issues.
1219 	 */
1220 	if ((skb->data[0] == HCI_VENDOR_PKT) &&
1221 	    (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1222 		return qca_controller_memdump_event(hdev, skb);
1223 
1224 	return hci_recv_frame(hdev, skb);
1225 }
1226 
1227 #define QCA_IBS_SLEEP_IND_EVENT \
1228 	.type = HCI_IBS_SLEEP_IND, \
1229 	.hlen = 0, \
1230 	.loff = 0, \
1231 	.lsize = 0, \
1232 	.maxlen = HCI_MAX_IBS_SIZE
1233 
1234 #define QCA_IBS_WAKE_IND_EVENT \
1235 	.type = HCI_IBS_WAKE_IND, \
1236 	.hlen = 0, \
1237 	.loff = 0, \
1238 	.lsize = 0, \
1239 	.maxlen = HCI_MAX_IBS_SIZE
1240 
1241 #define QCA_IBS_WAKE_ACK_EVENT \
1242 	.type = HCI_IBS_WAKE_ACK, \
1243 	.hlen = 0, \
1244 	.loff = 0, \
1245 	.lsize = 0, \
1246 	.maxlen = HCI_MAX_IBS_SIZE
1247 
1248 static const struct h4_recv_pkt qca_recv_pkts[] = {
1249 	{ H4_RECV_ACL,             .recv = qca_recv_acl_data },
1250 	{ H4_RECV_SCO,             .recv = hci_recv_frame    },
1251 	{ H4_RECV_EVENT,           .recv = qca_recv_event    },
1252 	{ QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1253 	{ QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1254 	{ QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1255 };
1256 
qca_recv(struct hci_uart * hu,const void * data,int count)1257 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1258 {
1259 	struct qca_data *qca = hu->priv;
1260 
1261 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1262 		return -EUNATCH;
1263 
1264 	qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1265 				  qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1266 	if (IS_ERR(qca->rx_skb)) {
1267 		int err = PTR_ERR(qca->rx_skb);
1268 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1269 		qca->rx_skb = NULL;
1270 		return err;
1271 	}
1272 
1273 	return count;
1274 }
1275 
qca_dequeue(struct hci_uart * hu)1276 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1277 {
1278 	struct qca_data *qca = hu->priv;
1279 
1280 	return skb_dequeue(&qca->txq);
1281 }
1282 
qca_get_baudrate_value(int speed)1283 static uint8_t qca_get_baudrate_value(int speed)
1284 {
1285 	switch (speed) {
1286 	case 9600:
1287 		return QCA_BAUDRATE_9600;
1288 	case 19200:
1289 		return QCA_BAUDRATE_19200;
1290 	case 38400:
1291 		return QCA_BAUDRATE_38400;
1292 	case 57600:
1293 		return QCA_BAUDRATE_57600;
1294 	case 115200:
1295 		return QCA_BAUDRATE_115200;
1296 	case 230400:
1297 		return QCA_BAUDRATE_230400;
1298 	case 460800:
1299 		return QCA_BAUDRATE_460800;
1300 	case 500000:
1301 		return QCA_BAUDRATE_500000;
1302 	case 921600:
1303 		return QCA_BAUDRATE_921600;
1304 	case 1000000:
1305 		return QCA_BAUDRATE_1000000;
1306 	case 2000000:
1307 		return QCA_BAUDRATE_2000000;
1308 	case 3000000:
1309 		return QCA_BAUDRATE_3000000;
1310 	case 3200000:
1311 		return QCA_BAUDRATE_3200000;
1312 	case 3500000:
1313 		return QCA_BAUDRATE_3500000;
1314 	default:
1315 		return QCA_BAUDRATE_115200;
1316 	}
1317 }
1318 
qca_set_baudrate(struct hci_dev * hdev,uint8_t baudrate)1319 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1320 {
1321 	struct hci_uart *hu = hci_get_drvdata(hdev);
1322 	struct qca_data *qca = hu->priv;
1323 	struct sk_buff *skb;
1324 	u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1325 
1326 	if (baudrate > QCA_BAUDRATE_3200000)
1327 		return -EINVAL;
1328 
1329 	cmd[4] = baudrate;
1330 
1331 	skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1332 	if (!skb) {
1333 		bt_dev_err(hdev, "Failed to allocate baudrate packet");
1334 		return -ENOMEM;
1335 	}
1336 
1337 	/* Assign commands to change baudrate and packet type. */
1338 	skb_put_data(skb, cmd, sizeof(cmd));
1339 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1340 
1341 	skb_queue_tail(&qca->txq, skb);
1342 	hci_uart_tx_wakeup(hu);
1343 
1344 	/* Wait for the baudrate change request to be sent */
1345 
1346 	while (!skb_queue_empty(&qca->txq))
1347 		usleep_range(100, 200);
1348 
1349 	if (hu->serdev)
1350 		serdev_device_wait_until_sent(hu->serdev,
1351 		      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1352 
1353 	/* Give the controller time to process the request */
1354 	switch (qca_soc_type(hu)) {
1355 	case QCA_WCN3988:
1356 	case QCA_WCN3990:
1357 	case QCA_WCN3991:
1358 	case QCA_WCN3998:
1359 	case QCA_WCN6750:
1360 	case QCA_WCN6855:
1361 	case QCA_WCN7850:
1362 		usleep_range(1000, 10000);
1363 		break;
1364 
1365 	default:
1366 		msleep(300);
1367 	}
1368 
1369 	return 0;
1370 }
1371 
host_set_baudrate(struct hci_uart * hu,unsigned int speed)1372 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1373 {
1374 	if (hu->serdev)
1375 		serdev_device_set_baudrate(hu->serdev, speed);
1376 	else
1377 		hci_uart_set_baudrate(hu, speed);
1378 }
1379 
qca_send_power_pulse(struct hci_uart * hu,bool on)1380 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1381 {
1382 	int ret;
1383 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1384 	u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1385 
1386 	/* These power pulses are single byte command which are sent
1387 	 * at required baudrate to wcn3990. On wcn3990, we have an external
1388 	 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1389 	 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1390 	 * and also we use the same power inputs to turn on and off for
1391 	 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1392 	 * we send a power on pulse at 115200 bps. This algorithm will help to
1393 	 * save power. Disabling hardware flow control is mandatory while
1394 	 * sending power pulses to SoC.
1395 	 */
1396 	bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1397 
1398 	serdev_device_write_flush(hu->serdev);
1399 	hci_uart_set_flow_control(hu, true);
1400 	ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1401 	if (ret < 0) {
1402 		bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1403 		return ret;
1404 	}
1405 
1406 	serdev_device_wait_until_sent(hu->serdev, timeout);
1407 	hci_uart_set_flow_control(hu, false);
1408 
1409 	/* Give to controller time to boot/shutdown */
1410 	if (on)
1411 		msleep(100);
1412 	else
1413 		usleep_range(1000, 10000);
1414 
1415 	return 0;
1416 }
1417 
qca_get_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1418 static unsigned int qca_get_speed(struct hci_uart *hu,
1419 				  enum qca_speed_type speed_type)
1420 {
1421 	unsigned int speed = 0;
1422 
1423 	if (speed_type == QCA_INIT_SPEED) {
1424 		if (hu->init_speed)
1425 			speed = hu->init_speed;
1426 		else if (hu->proto->init_speed)
1427 			speed = hu->proto->init_speed;
1428 	} else {
1429 		if (hu->oper_speed)
1430 			speed = hu->oper_speed;
1431 		else if (hu->proto->oper_speed)
1432 			speed = hu->proto->oper_speed;
1433 	}
1434 
1435 	return speed;
1436 }
1437 
qca_check_speeds(struct hci_uart * hu)1438 static int qca_check_speeds(struct hci_uart *hu)
1439 {
1440 	switch (qca_soc_type(hu)) {
1441 	case QCA_WCN3988:
1442 	case QCA_WCN3990:
1443 	case QCA_WCN3991:
1444 	case QCA_WCN3998:
1445 	case QCA_WCN6750:
1446 	case QCA_WCN6855:
1447 	case QCA_WCN7850:
1448 		if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1449 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1450 			return -EINVAL;
1451 		break;
1452 
1453 	default:
1454 		if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1455 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1456 			return -EINVAL;
1457 	}
1458 
1459 	return 0;
1460 }
1461 
qca_set_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1462 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1463 {
1464 	unsigned int speed, qca_baudrate;
1465 	struct qca_data *qca = hu->priv;
1466 	int ret = 0;
1467 
1468 	if (speed_type == QCA_INIT_SPEED) {
1469 		speed = qca_get_speed(hu, QCA_INIT_SPEED);
1470 		if (speed)
1471 			host_set_baudrate(hu, speed);
1472 	} else {
1473 		enum qca_btsoc_type soc_type = qca_soc_type(hu);
1474 
1475 		speed = qca_get_speed(hu, QCA_OPER_SPEED);
1476 		if (!speed)
1477 			return 0;
1478 
1479 		/* Disable flow control for wcn3990 to deassert RTS while
1480 		 * changing the baudrate of chip and host.
1481 		 */
1482 		switch (soc_type) {
1483 		case QCA_WCN3988:
1484 		case QCA_WCN3990:
1485 		case QCA_WCN3991:
1486 		case QCA_WCN3998:
1487 		case QCA_WCN6750:
1488 		case QCA_WCN6855:
1489 		case QCA_WCN7850:
1490 			hci_uart_set_flow_control(hu, true);
1491 			break;
1492 
1493 		default:
1494 			break;
1495 		}
1496 
1497 		switch (soc_type) {
1498 		case QCA_WCN3990:
1499 			reinit_completion(&qca->drop_ev_comp);
1500 			set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1501 			break;
1502 
1503 		default:
1504 			break;
1505 		}
1506 
1507 		qca_baudrate = qca_get_baudrate_value(speed);
1508 		bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1509 		ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1510 		if (ret)
1511 			goto error;
1512 
1513 		host_set_baudrate(hu, speed);
1514 
1515 error:
1516 		switch (soc_type) {
1517 		case QCA_WCN3988:
1518 		case QCA_WCN3990:
1519 		case QCA_WCN3991:
1520 		case QCA_WCN3998:
1521 		case QCA_WCN6750:
1522 		case QCA_WCN6855:
1523 		case QCA_WCN7850:
1524 			hci_uart_set_flow_control(hu, false);
1525 			break;
1526 
1527 		default:
1528 			break;
1529 		}
1530 
1531 		switch (soc_type) {
1532 		case QCA_WCN3990:
1533 			/* Wait for the controller to send the vendor event
1534 			 * for the baudrate change command.
1535 			 */
1536 			if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1537 						 msecs_to_jiffies(100))) {
1538 				bt_dev_err(hu->hdev,
1539 					   "Failed to change controller baudrate\n");
1540 				ret = -ETIMEDOUT;
1541 			}
1542 
1543 			clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1544 			break;
1545 
1546 		default:
1547 			break;
1548 		}
1549 	}
1550 
1551 	return ret;
1552 }
1553 
qca_send_crashbuffer(struct hci_uart * hu)1554 static int qca_send_crashbuffer(struct hci_uart *hu)
1555 {
1556 	struct qca_data *qca = hu->priv;
1557 	struct sk_buff *skb;
1558 
1559 	skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1560 	if (!skb) {
1561 		bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1562 		return -ENOMEM;
1563 	}
1564 
1565 	/* We forcefully crash the controller, by sending 0xfb byte for
1566 	 * 1024 times. We also might have chance of losing data, To be
1567 	 * on safer side we send 1096 bytes to the SoC.
1568 	 */
1569 	memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1570 	       QCA_CRASHBYTE_PACKET_LEN);
1571 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1572 	bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1573 	skb_queue_tail(&qca->txq, skb);
1574 	hci_uart_tx_wakeup(hu);
1575 
1576 	return 0;
1577 }
1578 
qca_wait_for_dump_collection(struct hci_dev * hdev)1579 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1580 {
1581 	struct hci_uart *hu = hci_get_drvdata(hdev);
1582 	struct qca_data *qca = hu->priv;
1583 
1584 	wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1585 			    TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1586 
1587 	clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1588 }
1589 
qca_hw_error(struct hci_dev * hdev,u8 code)1590 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1591 {
1592 	struct hci_uart *hu = hci_get_drvdata(hdev);
1593 	struct qca_data *qca = hu->priv;
1594 
1595 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1596 	set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1597 	bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1598 
1599 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1600 		/* If hardware error event received for other than QCA
1601 		 * soc memory dump event, then we need to crash the SOC
1602 		 * and wait here for 8 seconds to get the dump packets.
1603 		 * This will block main thread to be on hold until we
1604 		 * collect dump.
1605 		 */
1606 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1607 		qca_send_crashbuffer(hu);
1608 		qca_wait_for_dump_collection(hdev);
1609 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1610 		/* Let us wait here until memory dump collected or
1611 		 * memory dump timer expired.
1612 		 */
1613 		bt_dev_info(hdev, "waiting for dump to complete");
1614 		qca_wait_for_dump_collection(hdev);
1615 	}
1616 
1617 	mutex_lock(&qca->hci_memdump_lock);
1618 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1619 		bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1620 		hci_devcd_abort(hu->hdev);
1621 		if (qca->qca_memdump) {
1622 			kfree(qca->qca_memdump);
1623 			qca->qca_memdump = NULL;
1624 		}
1625 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1626 		cancel_delayed_work(&qca->ctrl_memdump_timeout);
1627 	}
1628 	mutex_unlock(&qca->hci_memdump_lock);
1629 
1630 	if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1631 	    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1632 		cancel_work_sync(&qca->ctrl_memdump_evt);
1633 		skb_queue_purge(&qca->rx_memdump_q);
1634 	}
1635 
1636 	clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1637 }
1638 
qca_cmd_timeout(struct hci_dev * hdev)1639 static void qca_cmd_timeout(struct hci_dev *hdev)
1640 {
1641 	struct hci_uart *hu = hci_get_drvdata(hdev);
1642 	struct qca_data *qca = hu->priv;
1643 
1644 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1645 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1646 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1647 		qca_send_crashbuffer(hu);
1648 		qca_wait_for_dump_collection(hdev);
1649 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1650 		/* Let us wait here until memory dump collected or
1651 		 * memory dump timer expired.
1652 		 */
1653 		bt_dev_info(hdev, "waiting for dump to complete");
1654 		qca_wait_for_dump_collection(hdev);
1655 	}
1656 
1657 	mutex_lock(&qca->hci_memdump_lock);
1658 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1659 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1660 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1661 			/* Inject hw error event to reset the device
1662 			 * and driver.
1663 			 */
1664 			hci_reset_dev(hu->hdev);
1665 		}
1666 	}
1667 	mutex_unlock(&qca->hci_memdump_lock);
1668 }
1669 
qca_wakeup(struct hci_dev * hdev)1670 static bool qca_wakeup(struct hci_dev *hdev)
1671 {
1672 	struct hci_uart *hu = hci_get_drvdata(hdev);
1673 	bool wakeup;
1674 
1675 	if (!hu->serdev)
1676 		return true;
1677 
1678 	/* BT SoC attached through the serial bus is handled by the serdev driver.
1679 	 * So we need to use the device handle of the serdev driver to get the
1680 	 * status of device may wakeup.
1681 	 */
1682 	wakeup = device_may_wakeup(&hu->serdev->ctrl->dev);
1683 	bt_dev_dbg(hu->hdev, "wakeup status : %d", wakeup);
1684 
1685 	return wakeup;
1686 }
1687 
qca_regulator_init(struct hci_uart * hu)1688 static int qca_regulator_init(struct hci_uart *hu)
1689 {
1690 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1691 	struct qca_serdev *qcadev;
1692 	int ret;
1693 	bool sw_ctrl_state;
1694 
1695 	/* Check for vregs status, may be hci down has turned
1696 	 * off the voltage regulator.
1697 	 */
1698 	qcadev = serdev_device_get_drvdata(hu->serdev);
1699 	if (!qcadev->bt_power->vregs_on) {
1700 		serdev_device_close(hu->serdev);
1701 		ret = qca_regulator_enable(qcadev);
1702 		if (ret)
1703 			return ret;
1704 
1705 		ret = serdev_device_open(hu->serdev);
1706 		if (ret) {
1707 			bt_dev_err(hu->hdev, "failed to open port");
1708 			return ret;
1709 		}
1710 	}
1711 
1712 	switch (soc_type) {
1713 	case QCA_WCN3988:
1714 	case QCA_WCN3990:
1715 	case QCA_WCN3991:
1716 	case QCA_WCN3998:
1717 		/* Forcefully enable wcn399x to enter in to boot mode. */
1718 		host_set_baudrate(hu, 2400);
1719 		ret = qca_send_power_pulse(hu, false);
1720 		if (ret)
1721 			return ret;
1722 		break;
1723 
1724 	default:
1725 		break;
1726 	}
1727 
1728 	/* For wcn6750 need to enable gpio bt_en */
1729 	if (qcadev->bt_en) {
1730 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
1731 		msleep(50);
1732 		gpiod_set_value_cansleep(qcadev->bt_en, 1);
1733 		msleep(50);
1734 		if (qcadev->sw_ctrl) {
1735 			sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1736 			bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1737 		}
1738 	}
1739 
1740 	qca_set_speed(hu, QCA_INIT_SPEED);
1741 
1742 	switch (soc_type) {
1743 	case QCA_WCN3988:
1744 	case QCA_WCN3990:
1745 	case QCA_WCN3991:
1746 	case QCA_WCN3998:
1747 		ret = qca_send_power_pulse(hu, true);
1748 		if (ret)
1749 			return ret;
1750 		break;
1751 
1752 	default:
1753 		break;
1754 	}
1755 
1756 	/* Now the device is in ready state to communicate with host.
1757 	 * To sync host with device we need to reopen port.
1758 	 * Without this, we will have RTS and CTS synchronization
1759 	 * issues.
1760 	 */
1761 	serdev_device_close(hu->serdev);
1762 	ret = serdev_device_open(hu->serdev);
1763 	if (ret) {
1764 		bt_dev_err(hu->hdev, "failed to open port");
1765 		return ret;
1766 	}
1767 
1768 	hci_uart_set_flow_control(hu, false);
1769 
1770 	return 0;
1771 }
1772 
qca_power_on(struct hci_dev * hdev)1773 static int qca_power_on(struct hci_dev *hdev)
1774 {
1775 	struct hci_uart *hu = hci_get_drvdata(hdev);
1776 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1777 	struct qca_serdev *qcadev;
1778 	struct qca_data *qca = hu->priv;
1779 	int ret = 0;
1780 
1781 	/* Non-serdev device usually is powered by external power
1782 	 * and don't need additional action in driver for power on
1783 	 */
1784 	if (!hu->serdev)
1785 		return 0;
1786 
1787 	switch (soc_type) {
1788 	case QCA_WCN3988:
1789 	case QCA_WCN3990:
1790 	case QCA_WCN3991:
1791 	case QCA_WCN3998:
1792 	case QCA_WCN6750:
1793 	case QCA_WCN6855:
1794 	case QCA_WCN7850:
1795 		ret = qca_regulator_init(hu);
1796 		break;
1797 
1798 	default:
1799 		qcadev = serdev_device_get_drvdata(hu->serdev);
1800 		if (qcadev->bt_en) {
1801 			gpiod_set_value_cansleep(qcadev->bt_en, 1);
1802 			/* Controller needs time to bootup. */
1803 			msleep(150);
1804 		}
1805 	}
1806 
1807 	clear_bit(QCA_BT_OFF, &qca->flags);
1808 	return ret;
1809 }
1810 
hci_coredump_qca(struct hci_dev * hdev)1811 static void hci_coredump_qca(struct hci_dev *hdev)
1812 {
1813 	int err;
1814 	static const u8 param[] = { 0x26 };
1815 
1816 	err = __hci_cmd_send(hdev, 0xfc0c, 1, param);
1817 	if (err < 0)
1818 		bt_dev_err(hdev, "%s: trigger crash failed (%d)", __func__, err);
1819 }
1820 
qca_setup(struct hci_uart * hu)1821 static int qca_setup(struct hci_uart *hu)
1822 {
1823 	struct hci_dev *hdev = hu->hdev;
1824 	struct qca_data *qca = hu->priv;
1825 	unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1826 	unsigned int retries = 0;
1827 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1828 	const char *firmware_name = qca_get_firmware_name(hu);
1829 	int ret;
1830 	struct qca_btsoc_version ver;
1831 	struct qca_serdev *qcadev;
1832 	const char *soc_name;
1833 
1834 	ret = qca_check_speeds(hu);
1835 	if (ret)
1836 		return ret;
1837 
1838 	clear_bit(QCA_ROM_FW, &qca->flags);
1839 	/* Patch downloading has to be done without IBS mode */
1840 	set_bit(QCA_IBS_DISABLED, &qca->flags);
1841 
1842 	/* Enable controller to do both LE scan and BR/EDR inquiry
1843 	 * simultaneously.
1844 	 */
1845 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1846 
1847 	switch (soc_type) {
1848 	case QCA_QCA2066:
1849 		soc_name = "qca2066";
1850 		break;
1851 
1852 	case QCA_WCN3988:
1853 	case QCA_WCN3990:
1854 	case QCA_WCN3991:
1855 	case QCA_WCN3998:
1856 		soc_name = "wcn399x";
1857 		break;
1858 
1859 	case QCA_WCN6750:
1860 		soc_name = "wcn6750";
1861 		break;
1862 
1863 	case QCA_WCN6855:
1864 		soc_name = "wcn6855";
1865 		break;
1866 
1867 	case QCA_WCN7850:
1868 		soc_name = "wcn7850";
1869 		break;
1870 
1871 	default:
1872 		soc_name = "ROME/QCA6390";
1873 	}
1874 	bt_dev_info(hdev, "setting up %s", soc_name);
1875 
1876 	qca->memdump_state = QCA_MEMDUMP_IDLE;
1877 
1878 retry:
1879 	ret = qca_power_on(hdev);
1880 	if (ret)
1881 		goto out;
1882 
1883 	clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1884 
1885 	switch (soc_type) {
1886 	case QCA_WCN3988:
1887 	case QCA_WCN3990:
1888 	case QCA_WCN3991:
1889 	case QCA_WCN3998:
1890 	case QCA_WCN6750:
1891 	case QCA_WCN6855:
1892 	case QCA_WCN7850:
1893 		qcadev = serdev_device_get_drvdata(hu->serdev);
1894 		if (qcadev->bdaddr_property_broken)
1895 			set_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks);
1896 
1897 		hci_set_aosp_capable(hdev);
1898 
1899 		ret = qca_read_soc_version(hdev, &ver, soc_type);
1900 		if (ret)
1901 			goto out;
1902 		break;
1903 
1904 	default:
1905 		qca_set_speed(hu, QCA_INIT_SPEED);
1906 	}
1907 
1908 	/* Setup user speed if needed */
1909 	speed = qca_get_speed(hu, QCA_OPER_SPEED);
1910 	if (speed) {
1911 		ret = qca_set_speed(hu, QCA_OPER_SPEED);
1912 		if (ret)
1913 			goto out;
1914 
1915 		qca_baudrate = qca_get_baudrate_value(speed);
1916 	}
1917 
1918 	switch (soc_type) {
1919 	case QCA_WCN3988:
1920 	case QCA_WCN3990:
1921 	case QCA_WCN3991:
1922 	case QCA_WCN3998:
1923 	case QCA_WCN6750:
1924 	case QCA_WCN6855:
1925 	case QCA_WCN7850:
1926 		break;
1927 
1928 	default:
1929 		/* Get QCA version information */
1930 		ret = qca_read_soc_version(hdev, &ver, soc_type);
1931 		if (ret)
1932 			goto out;
1933 	}
1934 
1935 	/* Setup patch / NVM configurations */
1936 	ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver,
1937 			firmware_name);
1938 	if (!ret) {
1939 		clear_bit(QCA_IBS_DISABLED, &qca->flags);
1940 		qca_debugfs_init(hdev);
1941 		hu->hdev->hw_error = qca_hw_error;
1942 		hu->hdev->cmd_timeout = qca_cmd_timeout;
1943 		if (hu->serdev) {
1944 			if (device_can_wakeup(hu->serdev->ctrl->dev.parent))
1945 				hu->hdev->wakeup = qca_wakeup;
1946 		}
1947 	} else if (ret == -ENOENT) {
1948 		/* No patch/nvm-config found, run with original fw/config */
1949 		set_bit(QCA_ROM_FW, &qca->flags);
1950 		ret = 0;
1951 	} else if (ret == -EAGAIN) {
1952 		/*
1953 		 * Userspace firmware loader will return -EAGAIN in case no
1954 		 * patch/nvm-config is found, so run with original fw/config.
1955 		 */
1956 		set_bit(QCA_ROM_FW, &qca->flags);
1957 		ret = 0;
1958 	}
1959 
1960 out:
1961 	if (ret && retries < MAX_INIT_RETRIES) {
1962 		bt_dev_warn(hdev, "Retry BT power ON:%d", retries);
1963 		qca_power_shutdown(hu);
1964 		if (hu->serdev) {
1965 			serdev_device_close(hu->serdev);
1966 			ret = serdev_device_open(hu->serdev);
1967 			if (ret) {
1968 				bt_dev_err(hdev, "failed to open port");
1969 				return ret;
1970 			}
1971 		}
1972 		retries++;
1973 		goto retry;
1974 	}
1975 
1976 	/* Setup bdaddr */
1977 	if (soc_type == QCA_ROME)
1978 		hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1979 	else
1980 		hu->hdev->set_bdaddr = qca_set_bdaddr;
1981 	qca->fw_version = le16_to_cpu(ver.patch_ver);
1982 	qca->controller_id = le16_to_cpu(ver.rom_ver);
1983 	hci_devcd_register(hdev, hci_coredump_qca, qca_dmp_hdr, NULL);
1984 
1985 	return ret;
1986 }
1987 
1988 static const struct hci_uart_proto qca_proto = {
1989 	.id		= HCI_UART_QCA,
1990 	.name		= "QCA",
1991 	.manufacturer	= 29,
1992 	.init_speed	= 115200,
1993 	.oper_speed	= 3000000,
1994 	.open		= qca_open,
1995 	.close		= qca_close,
1996 	.flush		= qca_flush,
1997 	.setup		= qca_setup,
1998 	.recv		= qca_recv,
1999 	.enqueue	= qca_enqueue,
2000 	.dequeue	= qca_dequeue,
2001 };
2002 
2003 static const struct qca_device_data qca_soc_data_wcn3988 __maybe_unused = {
2004 	.soc_type = QCA_WCN3988,
2005 	.vregs = (struct qca_vreg []) {
2006 		{ "vddio", 15000  },
2007 		{ "vddxo", 80000  },
2008 		{ "vddrf", 300000 },
2009 		{ "vddch0", 450000 },
2010 	},
2011 	.num_vregs = 4,
2012 };
2013 
2014 static const struct qca_device_data qca_soc_data_wcn3990 __maybe_unused = {
2015 	.soc_type = QCA_WCN3990,
2016 	.vregs = (struct qca_vreg []) {
2017 		{ "vddio", 15000  },
2018 		{ "vddxo", 80000  },
2019 		{ "vddrf", 300000 },
2020 		{ "vddch0", 450000 },
2021 	},
2022 	.num_vregs = 4,
2023 };
2024 
2025 static const struct qca_device_data qca_soc_data_wcn3991 __maybe_unused = {
2026 	.soc_type = QCA_WCN3991,
2027 	.vregs = (struct qca_vreg []) {
2028 		{ "vddio", 15000  },
2029 		{ "vddxo", 80000  },
2030 		{ "vddrf", 300000 },
2031 		{ "vddch0", 450000 },
2032 	},
2033 	.num_vregs = 4,
2034 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2035 };
2036 
2037 static const struct qca_device_data qca_soc_data_wcn3998 __maybe_unused = {
2038 	.soc_type = QCA_WCN3998,
2039 	.vregs = (struct qca_vreg []) {
2040 		{ "vddio", 10000  },
2041 		{ "vddxo", 80000  },
2042 		{ "vddrf", 300000 },
2043 		{ "vddch0", 450000 },
2044 	},
2045 	.num_vregs = 4,
2046 };
2047 
2048 static const struct qca_device_data qca_soc_data_qca2066 __maybe_unused = {
2049 	.soc_type = QCA_QCA2066,
2050 	.num_vregs = 0,
2051 };
2052 
2053 static const struct qca_device_data qca_soc_data_qca6390 __maybe_unused = {
2054 	.soc_type = QCA_QCA6390,
2055 	.num_vregs = 0,
2056 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2057 };
2058 
2059 static const struct qca_device_data qca_soc_data_wcn6750 __maybe_unused = {
2060 	.soc_type = QCA_WCN6750,
2061 	.vregs = (struct qca_vreg []) {
2062 		{ "vddio", 5000 },
2063 		{ "vddaon", 26000 },
2064 		{ "vddbtcxmx", 126000 },
2065 		{ "vddrfacmn", 12500 },
2066 		{ "vddrfa0p8", 102000 },
2067 		{ "vddrfa1p7", 302000 },
2068 		{ "vddrfa1p2", 257000 },
2069 		{ "vddrfa2p2", 1700000 },
2070 		{ "vddasd", 200 },
2071 	},
2072 	.num_vregs = 9,
2073 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2074 };
2075 
2076 static const struct qca_device_data qca_soc_data_wcn6855 __maybe_unused = {
2077 	.soc_type = QCA_WCN6855,
2078 	.vregs = (struct qca_vreg []) {
2079 		{ "vddio", 5000 },
2080 		{ "vddbtcxmx", 126000 },
2081 		{ "vddrfacmn", 12500 },
2082 		{ "vddrfa0p8", 102000 },
2083 		{ "vddrfa1p7", 302000 },
2084 		{ "vddrfa1p2", 257000 },
2085 	},
2086 	.num_vregs = 6,
2087 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2088 };
2089 
2090 static const struct qca_device_data qca_soc_data_wcn7850 __maybe_unused = {
2091 	.soc_type = QCA_WCN7850,
2092 	.vregs = (struct qca_vreg []) {
2093 		{ "vddio", 5000 },
2094 		{ "vddaon", 26000 },
2095 		{ "vdddig", 126000 },
2096 		{ "vddrfa0p8", 102000 },
2097 		{ "vddrfa1p2", 257000 },
2098 		{ "vddrfa1p9", 302000 },
2099 	},
2100 	.num_vregs = 6,
2101 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2102 };
2103 
qca_power_shutdown(struct hci_uart * hu)2104 static void qca_power_shutdown(struct hci_uart *hu)
2105 {
2106 	struct qca_serdev *qcadev;
2107 	struct qca_data *qca = hu->priv;
2108 	unsigned long flags;
2109 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
2110 	bool sw_ctrl_state;
2111 
2112 	/* From this point we go into power off state. But serial port is
2113 	 * still open, stop queueing the IBS data and flush all the buffered
2114 	 * data in skb's.
2115 	 */
2116 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
2117 	set_bit(QCA_IBS_DISABLED, &qca->flags);
2118 	qca_flush(hu);
2119 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2120 
2121 	/* Non-serdev device usually is powered by external power
2122 	 * and don't need additional action in driver for power down
2123 	 */
2124 	if (!hu->serdev)
2125 		return;
2126 
2127 	qcadev = serdev_device_get_drvdata(hu->serdev);
2128 
2129 	switch (soc_type) {
2130 	case QCA_WCN3988:
2131 	case QCA_WCN3990:
2132 	case QCA_WCN3991:
2133 	case QCA_WCN3998:
2134 		host_set_baudrate(hu, 2400);
2135 		qca_send_power_pulse(hu, false);
2136 		qca_regulator_disable(qcadev);
2137 		break;
2138 
2139 	case QCA_WCN6750:
2140 	case QCA_WCN6855:
2141 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
2142 		msleep(100);
2143 		qca_regulator_disable(qcadev);
2144 		if (qcadev->sw_ctrl) {
2145 			sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
2146 			bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
2147 		}
2148 		break;
2149 
2150 	default:
2151 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
2152 	}
2153 
2154 	set_bit(QCA_BT_OFF, &qca->flags);
2155 }
2156 
qca_power_off(struct hci_dev * hdev)2157 static int qca_power_off(struct hci_dev *hdev)
2158 {
2159 	struct hci_uart *hu = hci_get_drvdata(hdev);
2160 	struct qca_data *qca = hu->priv;
2161 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
2162 
2163 	hu->hdev->hw_error = NULL;
2164 	hu->hdev->cmd_timeout = NULL;
2165 
2166 	del_timer_sync(&qca->wake_retrans_timer);
2167 	del_timer_sync(&qca->tx_idle_timer);
2168 
2169 	/* Stop sending shutdown command if soc crashes. */
2170 	if (soc_type != QCA_ROME
2171 		&& qca->memdump_state == QCA_MEMDUMP_IDLE) {
2172 		qca_send_pre_shutdown_cmd(hdev);
2173 		usleep_range(8000, 10000);
2174 	}
2175 
2176 	qca_power_shutdown(hu);
2177 	return 0;
2178 }
2179 
qca_regulator_enable(struct qca_serdev * qcadev)2180 static int qca_regulator_enable(struct qca_serdev *qcadev)
2181 {
2182 	struct qca_power *power = qcadev->bt_power;
2183 	int ret;
2184 
2185 	/* Already enabled */
2186 	if (power->vregs_on)
2187 		return 0;
2188 
2189 	BT_DBG("enabling %d regulators)", power->num_vregs);
2190 
2191 	ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
2192 	if (ret)
2193 		return ret;
2194 
2195 	power->vregs_on = true;
2196 
2197 	ret = clk_prepare_enable(qcadev->susclk);
2198 	if (ret)
2199 		qca_regulator_disable(qcadev);
2200 
2201 	return ret;
2202 }
2203 
qca_regulator_disable(struct qca_serdev * qcadev)2204 static void qca_regulator_disable(struct qca_serdev *qcadev)
2205 {
2206 	struct qca_power *power;
2207 
2208 	if (!qcadev)
2209 		return;
2210 
2211 	power = qcadev->bt_power;
2212 
2213 	/* Already disabled? */
2214 	if (!power->vregs_on)
2215 		return;
2216 
2217 	regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
2218 	power->vregs_on = false;
2219 
2220 	clk_disable_unprepare(qcadev->susclk);
2221 }
2222 
qca_init_regulators(struct qca_power * qca,const struct qca_vreg * vregs,size_t num_vregs)2223 static int qca_init_regulators(struct qca_power *qca,
2224 				const struct qca_vreg *vregs, size_t num_vregs)
2225 {
2226 	struct regulator_bulk_data *bulk;
2227 	int ret;
2228 	int i;
2229 
2230 	bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
2231 	if (!bulk)
2232 		return -ENOMEM;
2233 
2234 	for (i = 0; i < num_vregs; i++)
2235 		bulk[i].supply = vregs[i].name;
2236 
2237 	ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
2238 	if (ret < 0)
2239 		return ret;
2240 
2241 	for (i = 0; i < num_vregs; i++) {
2242 		ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
2243 		if (ret)
2244 			return ret;
2245 	}
2246 
2247 	qca->vreg_bulk = bulk;
2248 	qca->num_vregs = num_vregs;
2249 
2250 	return 0;
2251 }
2252 
qca_serdev_probe(struct serdev_device * serdev)2253 static int qca_serdev_probe(struct serdev_device *serdev)
2254 {
2255 	struct qca_serdev *qcadev;
2256 	struct hci_dev *hdev;
2257 	const struct qca_device_data *data;
2258 	int err;
2259 	bool power_ctrl_enabled = true;
2260 
2261 	qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
2262 	if (!qcadev)
2263 		return -ENOMEM;
2264 
2265 	qcadev->serdev_hu.serdev = serdev;
2266 	data = device_get_match_data(&serdev->dev);
2267 	serdev_device_set_drvdata(serdev, qcadev);
2268 	device_property_read_string(&serdev->dev, "firmware-name",
2269 					 &qcadev->firmware_name);
2270 	device_property_read_u32(&serdev->dev, "max-speed",
2271 				 &qcadev->oper_speed);
2272 	if (!qcadev->oper_speed)
2273 		BT_DBG("UART will pick default operating speed");
2274 
2275 	qcadev->bdaddr_property_broken = device_property_read_bool(&serdev->dev,
2276 			"qcom,local-bd-address-broken");
2277 
2278 	if (data)
2279 		qcadev->btsoc_type = data->soc_type;
2280 	else
2281 		qcadev->btsoc_type = QCA_ROME;
2282 
2283 	switch (qcadev->btsoc_type) {
2284 	case QCA_WCN3988:
2285 	case QCA_WCN3990:
2286 	case QCA_WCN3991:
2287 	case QCA_WCN3998:
2288 	case QCA_WCN6750:
2289 	case QCA_WCN6855:
2290 	case QCA_WCN7850:
2291 		qcadev->bt_power = devm_kzalloc(&serdev->dev,
2292 						sizeof(struct qca_power),
2293 						GFP_KERNEL);
2294 		if (!qcadev->bt_power)
2295 			return -ENOMEM;
2296 
2297 		qcadev->bt_power->dev = &serdev->dev;
2298 		err = qca_init_regulators(qcadev->bt_power, data->vregs,
2299 					  data->num_vregs);
2300 		if (err) {
2301 			BT_ERR("Failed to init regulators:%d", err);
2302 			return err;
2303 		}
2304 
2305 		qcadev->bt_power->vregs_on = false;
2306 
2307 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2308 					       GPIOD_OUT_LOW);
2309 		if (IS_ERR(qcadev->bt_en) &&
2310 		    (data->soc_type == QCA_WCN6750 ||
2311 		     data->soc_type == QCA_WCN6855)) {
2312 			dev_err(&serdev->dev, "failed to acquire BT_EN gpio\n");
2313 			return PTR_ERR(qcadev->bt_en);
2314 		}
2315 
2316 		if (!qcadev->bt_en)
2317 			power_ctrl_enabled = false;
2318 
2319 		qcadev->sw_ctrl = devm_gpiod_get_optional(&serdev->dev, "swctrl",
2320 					       GPIOD_IN);
2321 		if (IS_ERR(qcadev->sw_ctrl) &&
2322 		    (data->soc_type == QCA_WCN6750 ||
2323 		     data->soc_type == QCA_WCN6855 ||
2324 		     data->soc_type == QCA_WCN7850)) {
2325 			dev_err(&serdev->dev, "failed to acquire SW_CTRL gpio\n");
2326 			return PTR_ERR(qcadev->sw_ctrl);
2327 		}
2328 
2329 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2330 		if (IS_ERR(qcadev->susclk)) {
2331 			dev_err(&serdev->dev, "failed to acquire clk\n");
2332 			return PTR_ERR(qcadev->susclk);
2333 		}
2334 
2335 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2336 		if (err) {
2337 			BT_ERR("wcn3990 serdev registration failed");
2338 			return err;
2339 		}
2340 		break;
2341 
2342 	default:
2343 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2344 					       GPIOD_OUT_LOW);
2345 		if (IS_ERR(qcadev->bt_en)) {
2346 			dev_err(&serdev->dev, "failed to acquire enable gpio\n");
2347 			return PTR_ERR(qcadev->bt_en);
2348 		}
2349 
2350 		if (!qcadev->bt_en)
2351 			power_ctrl_enabled = false;
2352 
2353 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2354 		if (IS_ERR(qcadev->susclk)) {
2355 			dev_warn(&serdev->dev, "failed to acquire clk\n");
2356 			return PTR_ERR(qcadev->susclk);
2357 		}
2358 		err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
2359 		if (err)
2360 			return err;
2361 
2362 		err = clk_prepare_enable(qcadev->susclk);
2363 		if (err)
2364 			return err;
2365 
2366 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2367 		if (err) {
2368 			BT_ERR("Rome serdev registration failed");
2369 			clk_disable_unprepare(qcadev->susclk);
2370 			return err;
2371 		}
2372 	}
2373 
2374 	hdev = qcadev->serdev_hu.hdev;
2375 
2376 	if (power_ctrl_enabled) {
2377 		set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2378 		hdev->shutdown = qca_power_off;
2379 	}
2380 
2381 	if (data) {
2382 		/* Wideband speech support must be set per driver since it can't
2383 		 * be queried via hci. Same with the valid le states quirk.
2384 		 */
2385 		if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
2386 			set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2387 				&hdev->quirks);
2388 
2389 		if (data->capabilities & QCA_CAP_VALID_LE_STATES)
2390 			set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2391 	}
2392 
2393 	return 0;
2394 }
2395 
qca_serdev_remove(struct serdev_device * serdev)2396 static void qca_serdev_remove(struct serdev_device *serdev)
2397 {
2398 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2399 	struct qca_power *power = qcadev->bt_power;
2400 
2401 	switch (qcadev->btsoc_type) {
2402 	case QCA_WCN3988:
2403 	case QCA_WCN3990:
2404 	case QCA_WCN3991:
2405 	case QCA_WCN3998:
2406 	case QCA_WCN6750:
2407 	case QCA_WCN6855:
2408 	case QCA_WCN7850:
2409 		if (power->vregs_on) {
2410 			qca_power_shutdown(&qcadev->serdev_hu);
2411 			break;
2412 		}
2413 		fallthrough;
2414 
2415 	default:
2416 		if (qcadev->susclk)
2417 			clk_disable_unprepare(qcadev->susclk);
2418 	}
2419 
2420 	hci_uart_unregister_device(&qcadev->serdev_hu);
2421 }
2422 
qca_serdev_shutdown(struct device * dev)2423 static void qca_serdev_shutdown(struct device *dev)
2424 {
2425 	int ret;
2426 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2427 	struct serdev_device *serdev = to_serdev_device(dev);
2428 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2429 	struct hci_uart *hu = &qcadev->serdev_hu;
2430 	struct hci_dev *hdev = hu->hdev;
2431 	struct qca_data *qca = hu->priv;
2432 	const u8 ibs_wake_cmd[] = { 0xFD };
2433 	const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2434 
2435 	if (qcadev->btsoc_type == QCA_QCA6390) {
2436 		if (test_bit(QCA_BT_OFF, &qca->flags) ||
2437 		    !test_bit(HCI_RUNNING, &hdev->flags))
2438 			return;
2439 
2440 		serdev_device_write_flush(serdev);
2441 		ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2442 					      sizeof(ibs_wake_cmd));
2443 		if (ret < 0) {
2444 			BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2445 			return;
2446 		}
2447 		serdev_device_wait_until_sent(serdev, timeout);
2448 		usleep_range(8000, 10000);
2449 
2450 		serdev_device_write_flush(serdev);
2451 		ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2452 					      sizeof(edl_reset_soc_cmd));
2453 		if (ret < 0) {
2454 			BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2455 			return;
2456 		}
2457 		serdev_device_wait_until_sent(serdev, timeout);
2458 		usleep_range(8000, 10000);
2459 	}
2460 }
2461 
qca_suspend(struct device * dev)2462 static int __maybe_unused qca_suspend(struct device *dev)
2463 {
2464 	struct serdev_device *serdev = to_serdev_device(dev);
2465 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2466 	struct hci_uart *hu = &qcadev->serdev_hu;
2467 	struct qca_data *qca = hu->priv;
2468 	unsigned long flags;
2469 	bool tx_pending = false;
2470 	int ret = 0;
2471 	u8 cmd;
2472 	u32 wait_timeout = 0;
2473 
2474 	set_bit(QCA_SUSPENDING, &qca->flags);
2475 
2476 	/* if BT SoC is running with default firmware then it does not
2477 	 * support in-band sleep
2478 	 */
2479 	if (test_bit(QCA_ROM_FW, &qca->flags))
2480 		return 0;
2481 
2482 	/* During SSR after memory dump collection, controller will be
2483 	 * powered off and then powered on.If controller is powered off
2484 	 * during SSR then we should wait until SSR is completed.
2485 	 */
2486 	if (test_bit(QCA_BT_OFF, &qca->flags) &&
2487 	    !test_bit(QCA_SSR_TRIGGERED, &qca->flags))
2488 		return 0;
2489 
2490 	if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
2491 	    test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
2492 		wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ?
2493 					IBS_DISABLE_SSR_TIMEOUT_MS :
2494 					FW_DOWNLOAD_TIMEOUT_MS;
2495 
2496 		/* QCA_IBS_DISABLED flag is set to true, During FW download
2497 		 * and during memory dump collection. It is reset to false,
2498 		 * After FW download complete.
2499 		 */
2500 		wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED,
2501 			    TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout));
2502 
2503 		if (test_bit(QCA_IBS_DISABLED, &qca->flags)) {
2504 			bt_dev_err(hu->hdev, "SSR or FW download time out");
2505 			ret = -ETIMEDOUT;
2506 			goto error;
2507 		}
2508 	}
2509 
2510 	cancel_work_sync(&qca->ws_awake_device);
2511 	cancel_work_sync(&qca->ws_awake_rx);
2512 
2513 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2514 				 flags, SINGLE_DEPTH_NESTING);
2515 
2516 	switch (qca->tx_ibs_state) {
2517 	case HCI_IBS_TX_WAKING:
2518 		del_timer(&qca->wake_retrans_timer);
2519 		fallthrough;
2520 	case HCI_IBS_TX_AWAKE:
2521 		del_timer(&qca->tx_idle_timer);
2522 
2523 		serdev_device_write_flush(hu->serdev);
2524 		cmd = HCI_IBS_SLEEP_IND;
2525 		ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2526 
2527 		if (ret < 0) {
2528 			BT_ERR("Failed to send SLEEP to device");
2529 			break;
2530 		}
2531 
2532 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2533 		qca->ibs_sent_slps++;
2534 		tx_pending = true;
2535 		break;
2536 
2537 	case HCI_IBS_TX_ASLEEP:
2538 		break;
2539 
2540 	default:
2541 		BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2542 		ret = -EINVAL;
2543 		break;
2544 	}
2545 
2546 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2547 
2548 	if (ret < 0)
2549 		goto error;
2550 
2551 	if (tx_pending) {
2552 		serdev_device_wait_until_sent(hu->serdev,
2553 					      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2554 		serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2555 	}
2556 
2557 	/* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2558 	 * to sleep, so that the packet does not wake the system later.
2559 	 */
2560 	ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2561 			qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2562 			msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2563 	if (ret == 0) {
2564 		ret = -ETIMEDOUT;
2565 		goto error;
2566 	}
2567 
2568 	return 0;
2569 
2570 error:
2571 	clear_bit(QCA_SUSPENDING, &qca->flags);
2572 
2573 	return ret;
2574 }
2575 
qca_resume(struct device * dev)2576 static int __maybe_unused qca_resume(struct device *dev)
2577 {
2578 	struct serdev_device *serdev = to_serdev_device(dev);
2579 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2580 	struct hci_uart *hu = &qcadev->serdev_hu;
2581 	struct qca_data *qca = hu->priv;
2582 
2583 	clear_bit(QCA_SUSPENDING, &qca->flags);
2584 
2585 	return 0;
2586 }
2587 
2588 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2589 
2590 #ifdef CONFIG_OF
2591 static const struct of_device_id qca_bluetooth_of_match[] = {
2592 	{ .compatible = "qcom,qca2066-bt", .data = &qca_soc_data_qca2066},
2593 	{ .compatible = "qcom,qca6174-bt" },
2594 	{ .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2595 	{ .compatible = "qcom,qca9377-bt" },
2596 	{ .compatible = "qcom,wcn3988-bt", .data = &qca_soc_data_wcn3988},
2597 	{ .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2598 	{ .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2599 	{ .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2600 	{ .compatible = "qcom,wcn6750-bt", .data = &qca_soc_data_wcn6750},
2601 	{ .compatible = "qcom,wcn6855-bt", .data = &qca_soc_data_wcn6855},
2602 	{ .compatible = "qcom,wcn7850-bt", .data = &qca_soc_data_wcn7850},
2603 	{ /* sentinel */ }
2604 };
2605 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2606 #endif
2607 
2608 #ifdef CONFIG_ACPI
2609 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2610 	{ "QCOM2066", (kernel_ulong_t)&qca_soc_data_qca2066 },
2611 	{ "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2612 	{ "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2613 	{ "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2614 	{ "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2615 	{ },
2616 };
2617 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2618 #endif
2619 
2620 #ifdef CONFIG_DEV_COREDUMP
hciqca_coredump(struct device * dev)2621 static void hciqca_coredump(struct device *dev)
2622 {
2623 	struct serdev_device *serdev = to_serdev_device(dev);
2624 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2625 	struct hci_uart *hu = &qcadev->serdev_hu;
2626 	struct hci_dev  *hdev = hu->hdev;
2627 
2628 	if (hdev->dump.coredump)
2629 		hdev->dump.coredump(hdev);
2630 }
2631 #endif
2632 
2633 static struct serdev_device_driver qca_serdev_driver = {
2634 	.probe = qca_serdev_probe,
2635 	.remove = qca_serdev_remove,
2636 	.driver = {
2637 		.name = "hci_uart_qca",
2638 		.of_match_table = of_match_ptr(qca_bluetooth_of_match),
2639 		.acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2640 		.shutdown = qca_serdev_shutdown,
2641 		.pm = &qca_pm_ops,
2642 #ifdef CONFIG_DEV_COREDUMP
2643 		.coredump = hciqca_coredump,
2644 #endif
2645 	},
2646 };
2647 
qca_init(void)2648 int __init qca_init(void)
2649 {
2650 	serdev_device_driver_register(&qca_serdev_driver);
2651 
2652 	return hci_uart_register_proto(&qca_proto);
2653 }
2654 
qca_deinit(void)2655 int __exit qca_deinit(void)
2656 {
2657 	serdev_device_driver_unregister(&qca_serdev_driver);
2658 
2659 	return hci_uart_unregister_proto(&qca_proto);
2660 }
2661