1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Bluetooth Software UART Qualcomm protocol 4 * 5 * HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management 6 * protocol extension to H4. 7 * 8 * Copyright (C) 2007 Texas Instruments, Inc. 9 * Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved. 10 * 11 * Acknowledgements: 12 * This file is based on hci_ll.c, which was... 13 * Written by Ohad Ben-Cohen <ohad@bencohen.org> 14 * which was in turn based on hci_h4.c, which was written 15 * by Maxim Krasnyansky and Marcel Holtmann. 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/clk.h> 20 #include <linux/completion.h> 21 #include <linux/debugfs.h> 22 #include <linux/delay.h> 23 #include <linux/devcoredump.h> 24 #include <linux/device.h> 25 #include <linux/gpio/consumer.h> 26 #include <linux/mod_devicetable.h> 27 #include <linux/module.h> 28 #include <linux/of_device.h> 29 #include <linux/platform_device.h> 30 #include <linux/regulator/consumer.h> 31 #include <linux/serdev.h> 32 #include <asm/unaligned.h> 33 34 #include <net/bluetooth/bluetooth.h> 35 #include <net/bluetooth/hci_core.h> 36 37 #include "hci_uart.h" 38 #include "btqca.h" 39 40 /* HCI_IBS protocol messages */ 41 #define HCI_IBS_SLEEP_IND 0xFE 42 #define HCI_IBS_WAKE_IND 0xFD 43 #define HCI_IBS_WAKE_ACK 0xFC 44 #define HCI_MAX_IBS_SIZE 10 45 46 #define IBS_WAKE_RETRANS_TIMEOUT_MS 100 47 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS 40 48 #define IBS_HOST_TX_IDLE_TIMEOUT_MS 2000 49 #define CMD_TRANS_TIMEOUT_MS 100 50 #define MEMDUMP_TIMEOUT_MS 8000 51 52 /* susclk rate */ 53 #define SUSCLK_RATE_32KHZ 32768 54 55 /* Controller debug log header */ 56 #define QCA_DEBUG_HANDLE 0x2EDC 57 58 /* max retry count when init fails */ 59 #define MAX_INIT_RETRIES 3 60 61 /* Controller dump header */ 62 #define QCA_SSR_DUMP_HANDLE 0x0108 63 #define QCA_DUMP_PACKET_SIZE 255 64 #define QCA_LAST_SEQUENCE_NUM 0xFFFF 65 #define QCA_CRASHBYTE_PACKET_LEN 1096 66 #define QCA_MEMDUMP_BYTE 0xFB 67 68 enum qca_flags { 69 QCA_IBS_ENABLED, 70 QCA_DROP_VENDOR_EVENT, 71 QCA_SUSPENDING, 72 QCA_MEMDUMP_COLLECTION 73 }; 74 75 76 /* HCI_IBS transmit side sleep protocol states */ 77 enum tx_ibs_states { 78 HCI_IBS_TX_ASLEEP, 79 HCI_IBS_TX_WAKING, 80 HCI_IBS_TX_AWAKE, 81 }; 82 83 /* HCI_IBS receive side sleep protocol states */ 84 enum rx_states { 85 HCI_IBS_RX_ASLEEP, 86 HCI_IBS_RX_AWAKE, 87 }; 88 89 /* HCI_IBS transmit and receive side clock state vote */ 90 enum hci_ibs_clock_state_vote { 91 HCI_IBS_VOTE_STATS_UPDATE, 92 HCI_IBS_TX_VOTE_CLOCK_ON, 93 HCI_IBS_TX_VOTE_CLOCK_OFF, 94 HCI_IBS_RX_VOTE_CLOCK_ON, 95 HCI_IBS_RX_VOTE_CLOCK_OFF, 96 }; 97 98 /* Controller memory dump states */ 99 enum qca_memdump_states { 100 QCA_MEMDUMP_IDLE, 101 QCA_MEMDUMP_COLLECTING, 102 QCA_MEMDUMP_COLLECTED, 103 QCA_MEMDUMP_TIMEOUT, 104 }; 105 106 struct qca_memdump_data { 107 char *memdump_buf_head; 108 char *memdump_buf_tail; 109 u32 current_seq_no; 110 u32 received_dump; 111 }; 112 113 struct qca_memdump_event_hdr { 114 __u8 evt; 115 __u8 plen; 116 __u16 opcode; 117 __u16 seq_no; 118 __u8 reserved; 119 } __packed; 120 121 122 struct qca_dump_size { 123 u32 dump_size; 124 } __packed; 125 126 struct qca_data { 127 struct hci_uart *hu; 128 struct sk_buff *rx_skb; 129 struct sk_buff_head txq; 130 struct sk_buff_head tx_wait_q; /* HCI_IBS wait queue */ 131 struct sk_buff_head rx_memdump_q; /* Memdump wait queue */ 132 spinlock_t hci_ibs_lock; /* HCI_IBS state lock */ 133 u8 tx_ibs_state; /* HCI_IBS transmit side power state*/ 134 u8 rx_ibs_state; /* HCI_IBS receive side power state */ 135 bool tx_vote; /* Clock must be on for TX */ 136 bool rx_vote; /* Clock must be on for RX */ 137 struct timer_list tx_idle_timer; 138 u32 tx_idle_delay; 139 struct timer_list wake_retrans_timer; 140 u32 wake_retrans; 141 struct timer_list memdump_timer; 142 struct workqueue_struct *workqueue; 143 struct work_struct ws_awake_rx; 144 struct work_struct ws_awake_device; 145 struct work_struct ws_rx_vote_off; 146 struct work_struct ws_tx_vote_off; 147 struct work_struct ctrl_memdump_evt; 148 struct qca_memdump_data *qca_memdump; 149 unsigned long flags; 150 struct completion drop_ev_comp; 151 wait_queue_head_t suspend_wait_q; 152 enum qca_memdump_states memdump_state; 153 154 /* For debugging purpose */ 155 u64 ibs_sent_wacks; 156 u64 ibs_sent_slps; 157 u64 ibs_sent_wakes; 158 u64 ibs_recv_wacks; 159 u64 ibs_recv_slps; 160 u64 ibs_recv_wakes; 161 u64 vote_last_jif; 162 u32 vote_on_ms; 163 u32 vote_off_ms; 164 u64 tx_votes_on; 165 u64 rx_votes_on; 166 u64 tx_votes_off; 167 u64 rx_votes_off; 168 u64 votes_on; 169 u64 votes_off; 170 }; 171 172 enum qca_speed_type { 173 QCA_INIT_SPEED = 1, 174 QCA_OPER_SPEED 175 }; 176 177 /* 178 * Voltage regulator information required for configuring the 179 * QCA Bluetooth chipset 180 */ 181 struct qca_vreg { 182 const char *name; 183 unsigned int load_uA; 184 }; 185 186 struct qca_vreg_data { 187 enum qca_btsoc_type soc_type; 188 struct qca_vreg *vregs; 189 size_t num_vregs; 190 }; 191 192 /* 193 * Platform data for the QCA Bluetooth power driver. 194 */ 195 struct qca_power { 196 struct device *dev; 197 struct regulator_bulk_data *vreg_bulk; 198 int num_vregs; 199 bool vregs_on; 200 }; 201 202 struct qca_serdev { 203 struct hci_uart serdev_hu; 204 struct gpio_desc *bt_en; 205 struct clk *susclk; 206 enum qca_btsoc_type btsoc_type; 207 struct qca_power *bt_power; 208 u32 init_speed; 209 u32 oper_speed; 210 const char *firmware_name; 211 }; 212 213 static int qca_regulator_enable(struct qca_serdev *qcadev); 214 static void qca_regulator_disable(struct qca_serdev *qcadev); 215 static void qca_power_shutdown(struct hci_uart *hu); 216 static int qca_power_off(struct hci_dev *hdev); 217 static void qca_controller_memdump(struct work_struct *work); 218 219 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu) 220 { 221 enum qca_btsoc_type soc_type; 222 223 if (hu->serdev) { 224 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev); 225 226 soc_type = qsd->btsoc_type; 227 } else { 228 soc_type = QCA_ROME; 229 } 230 231 return soc_type; 232 } 233 234 static const char *qca_get_firmware_name(struct hci_uart *hu) 235 { 236 if (hu->serdev) { 237 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev); 238 239 return qsd->firmware_name; 240 } else { 241 return NULL; 242 } 243 } 244 245 static void __serial_clock_on(struct tty_struct *tty) 246 { 247 /* TODO: Some chipset requires to enable UART clock on client 248 * side to save power consumption or manual work is required. 249 * Please put your code to control UART clock here if needed 250 */ 251 } 252 253 static void __serial_clock_off(struct tty_struct *tty) 254 { 255 /* TODO: Some chipset requires to disable UART clock on client 256 * side to save power consumption or manual work is required. 257 * Please put your code to control UART clock off here if needed 258 */ 259 } 260 261 /* serial_clock_vote needs to be called with the ibs lock held */ 262 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu) 263 { 264 struct qca_data *qca = hu->priv; 265 unsigned int diff; 266 267 bool old_vote = (qca->tx_vote | qca->rx_vote); 268 bool new_vote; 269 270 switch (vote) { 271 case HCI_IBS_VOTE_STATS_UPDATE: 272 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif); 273 274 if (old_vote) 275 qca->vote_off_ms += diff; 276 else 277 qca->vote_on_ms += diff; 278 return; 279 280 case HCI_IBS_TX_VOTE_CLOCK_ON: 281 qca->tx_vote = true; 282 qca->tx_votes_on++; 283 new_vote = true; 284 break; 285 286 case HCI_IBS_RX_VOTE_CLOCK_ON: 287 qca->rx_vote = true; 288 qca->rx_votes_on++; 289 new_vote = true; 290 break; 291 292 case HCI_IBS_TX_VOTE_CLOCK_OFF: 293 qca->tx_vote = false; 294 qca->tx_votes_off++; 295 new_vote = qca->rx_vote | qca->tx_vote; 296 break; 297 298 case HCI_IBS_RX_VOTE_CLOCK_OFF: 299 qca->rx_vote = false; 300 qca->rx_votes_off++; 301 new_vote = qca->rx_vote | qca->tx_vote; 302 break; 303 304 default: 305 BT_ERR("Voting irregularity"); 306 return; 307 } 308 309 if (new_vote != old_vote) { 310 if (new_vote) 311 __serial_clock_on(hu->tty); 312 else 313 __serial_clock_off(hu->tty); 314 315 BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false", 316 vote ? "true" : "false"); 317 318 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif); 319 320 if (new_vote) { 321 qca->votes_on++; 322 qca->vote_off_ms += diff; 323 } else { 324 qca->votes_off++; 325 qca->vote_on_ms += diff; 326 } 327 qca->vote_last_jif = jiffies; 328 } 329 } 330 331 /* Builds and sends an HCI_IBS command packet. 332 * These are very simple packets with only 1 cmd byte. 333 */ 334 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu) 335 { 336 int err = 0; 337 struct sk_buff *skb = NULL; 338 struct qca_data *qca = hu->priv; 339 340 BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd); 341 342 skb = bt_skb_alloc(1, GFP_ATOMIC); 343 if (!skb) { 344 BT_ERR("Failed to allocate memory for HCI_IBS packet"); 345 return -ENOMEM; 346 } 347 348 /* Assign HCI_IBS type */ 349 skb_put_u8(skb, cmd); 350 351 skb_queue_tail(&qca->txq, skb); 352 353 return err; 354 } 355 356 static void qca_wq_awake_device(struct work_struct *work) 357 { 358 struct qca_data *qca = container_of(work, struct qca_data, 359 ws_awake_device); 360 struct hci_uart *hu = qca->hu; 361 unsigned long retrans_delay; 362 unsigned long flags; 363 364 BT_DBG("hu %p wq awake device", hu); 365 366 /* Vote for serial clock */ 367 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu); 368 369 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 370 371 /* Send wake indication to device */ 372 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) 373 BT_ERR("Failed to send WAKE to device"); 374 375 qca->ibs_sent_wakes++; 376 377 /* Start retransmit timer */ 378 retrans_delay = msecs_to_jiffies(qca->wake_retrans); 379 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay); 380 381 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 382 383 /* Actually send the packets */ 384 hci_uart_tx_wakeup(hu); 385 } 386 387 static void qca_wq_awake_rx(struct work_struct *work) 388 { 389 struct qca_data *qca = container_of(work, struct qca_data, 390 ws_awake_rx); 391 struct hci_uart *hu = qca->hu; 392 unsigned long flags; 393 394 BT_DBG("hu %p wq awake rx", hu); 395 396 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu); 397 398 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 399 qca->rx_ibs_state = HCI_IBS_RX_AWAKE; 400 401 /* Always acknowledge device wake up, 402 * sending IBS message doesn't count as TX ON. 403 */ 404 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) 405 BT_ERR("Failed to acknowledge device wake up"); 406 407 qca->ibs_sent_wacks++; 408 409 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 410 411 /* Actually send the packets */ 412 hci_uart_tx_wakeup(hu); 413 } 414 415 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work) 416 { 417 struct qca_data *qca = container_of(work, struct qca_data, 418 ws_rx_vote_off); 419 struct hci_uart *hu = qca->hu; 420 421 BT_DBG("hu %p rx clock vote off", hu); 422 423 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu); 424 } 425 426 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work) 427 { 428 struct qca_data *qca = container_of(work, struct qca_data, 429 ws_tx_vote_off); 430 struct hci_uart *hu = qca->hu; 431 432 BT_DBG("hu %p tx clock vote off", hu); 433 434 /* Run HCI tx handling unlocked */ 435 hci_uart_tx_wakeup(hu); 436 437 /* Now that message queued to tty driver, vote for tty clocks off. 438 * It is up to the tty driver to pend the clocks off until tx done. 439 */ 440 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu); 441 } 442 443 static void hci_ibs_tx_idle_timeout(struct timer_list *t) 444 { 445 struct qca_data *qca = from_timer(qca, t, tx_idle_timer); 446 struct hci_uart *hu = qca->hu; 447 unsigned long flags; 448 449 BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state); 450 451 spin_lock_irqsave_nested(&qca->hci_ibs_lock, 452 flags, SINGLE_DEPTH_NESTING); 453 454 switch (qca->tx_ibs_state) { 455 case HCI_IBS_TX_AWAKE: 456 /* TX_IDLE, go to SLEEP */ 457 if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) { 458 BT_ERR("Failed to send SLEEP to device"); 459 break; 460 } 461 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; 462 qca->ibs_sent_slps++; 463 queue_work(qca->workqueue, &qca->ws_tx_vote_off); 464 break; 465 466 case HCI_IBS_TX_ASLEEP: 467 case HCI_IBS_TX_WAKING: 468 /* Fall through */ 469 470 default: 471 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state); 472 break; 473 } 474 475 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 476 } 477 478 static void hci_ibs_wake_retrans_timeout(struct timer_list *t) 479 { 480 struct qca_data *qca = from_timer(qca, t, wake_retrans_timer); 481 struct hci_uart *hu = qca->hu; 482 unsigned long flags, retrans_delay; 483 bool retransmit = false; 484 485 BT_DBG("hu %p wake retransmit timeout in %d state", 486 hu, qca->tx_ibs_state); 487 488 spin_lock_irqsave_nested(&qca->hci_ibs_lock, 489 flags, SINGLE_DEPTH_NESTING); 490 491 /* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */ 492 if (test_bit(QCA_SUSPENDING, &qca->flags)) { 493 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 494 return; 495 } 496 497 switch (qca->tx_ibs_state) { 498 case HCI_IBS_TX_WAKING: 499 /* No WAKE_ACK, retransmit WAKE */ 500 retransmit = true; 501 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) { 502 BT_ERR("Failed to acknowledge device wake up"); 503 break; 504 } 505 qca->ibs_sent_wakes++; 506 retrans_delay = msecs_to_jiffies(qca->wake_retrans); 507 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay); 508 break; 509 510 case HCI_IBS_TX_ASLEEP: 511 case HCI_IBS_TX_AWAKE: 512 /* Fall through */ 513 514 default: 515 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state); 516 break; 517 } 518 519 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 520 521 if (retransmit) 522 hci_uart_tx_wakeup(hu); 523 } 524 525 static void hci_memdump_timeout(struct timer_list *t) 526 { 527 struct qca_data *qca = from_timer(qca, t, tx_idle_timer); 528 struct hci_uart *hu = qca->hu; 529 struct qca_memdump_data *qca_memdump = qca->qca_memdump; 530 char *memdump_buf = qca_memdump->memdump_buf_tail; 531 532 bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout"); 533 /* Inject hw error event to reset the device and driver. */ 534 hci_reset_dev(hu->hdev); 535 vfree(memdump_buf); 536 kfree(qca_memdump); 537 qca->memdump_state = QCA_MEMDUMP_TIMEOUT; 538 del_timer(&qca->memdump_timer); 539 cancel_work_sync(&qca->ctrl_memdump_evt); 540 } 541 542 /* Initialize protocol */ 543 static int qca_open(struct hci_uart *hu) 544 { 545 struct qca_serdev *qcadev; 546 struct qca_data *qca; 547 548 BT_DBG("hu %p qca_open", hu); 549 550 if (!hci_uart_has_flow_control(hu)) 551 return -EOPNOTSUPP; 552 553 qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL); 554 if (!qca) 555 return -ENOMEM; 556 557 skb_queue_head_init(&qca->txq); 558 skb_queue_head_init(&qca->tx_wait_q); 559 skb_queue_head_init(&qca->rx_memdump_q); 560 spin_lock_init(&qca->hci_ibs_lock); 561 qca->workqueue = alloc_ordered_workqueue("qca_wq", 0); 562 if (!qca->workqueue) { 563 BT_ERR("QCA Workqueue not initialized properly"); 564 kfree(qca); 565 return -ENOMEM; 566 } 567 568 INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx); 569 INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device); 570 INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off); 571 INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off); 572 INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump); 573 init_waitqueue_head(&qca->suspend_wait_q); 574 575 qca->hu = hu; 576 init_completion(&qca->drop_ev_comp); 577 578 /* Assume we start with both sides asleep -- extra wakes OK */ 579 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; 580 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP; 581 582 qca->vote_last_jif = jiffies; 583 584 hu->priv = qca; 585 586 if (hu->serdev) { 587 qcadev = serdev_device_get_drvdata(hu->serdev); 588 if (qca_is_wcn399x(qcadev->btsoc_type)) { 589 hu->init_speed = qcadev->init_speed; 590 hu->oper_speed = qcadev->oper_speed; 591 } 592 } 593 594 timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0); 595 qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS; 596 597 timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0); 598 qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS; 599 timer_setup(&qca->memdump_timer, hci_memdump_timeout, 0); 600 601 BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u", 602 qca->tx_idle_delay, qca->wake_retrans); 603 604 return 0; 605 } 606 607 static void qca_debugfs_init(struct hci_dev *hdev) 608 { 609 struct hci_uart *hu = hci_get_drvdata(hdev); 610 struct qca_data *qca = hu->priv; 611 struct dentry *ibs_dir; 612 umode_t mode; 613 614 if (!hdev->debugfs) 615 return; 616 617 ibs_dir = debugfs_create_dir("ibs", hdev->debugfs); 618 619 /* read only */ 620 mode = S_IRUGO; 621 debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state); 622 debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state); 623 debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir, 624 &qca->ibs_sent_slps); 625 debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir, 626 &qca->ibs_sent_wakes); 627 debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir, 628 &qca->ibs_sent_wacks); 629 debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir, 630 &qca->ibs_recv_slps); 631 debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir, 632 &qca->ibs_recv_wakes); 633 debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir, 634 &qca->ibs_recv_wacks); 635 debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote); 636 debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on); 637 debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off); 638 debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote); 639 debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on); 640 debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off); 641 debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on); 642 debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off); 643 debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms); 644 debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms); 645 646 /* read/write */ 647 mode = S_IRUGO | S_IWUSR; 648 debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans); 649 debugfs_create_u32("tx_idle_delay", mode, ibs_dir, 650 &qca->tx_idle_delay); 651 } 652 653 /* Flush protocol data */ 654 static int qca_flush(struct hci_uart *hu) 655 { 656 struct qca_data *qca = hu->priv; 657 658 BT_DBG("hu %p qca flush", hu); 659 660 skb_queue_purge(&qca->tx_wait_q); 661 skb_queue_purge(&qca->txq); 662 663 return 0; 664 } 665 666 /* Close protocol */ 667 static int qca_close(struct hci_uart *hu) 668 { 669 struct qca_data *qca = hu->priv; 670 671 BT_DBG("hu %p qca close", hu); 672 673 serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu); 674 675 skb_queue_purge(&qca->tx_wait_q); 676 skb_queue_purge(&qca->txq); 677 skb_queue_purge(&qca->rx_memdump_q); 678 del_timer(&qca->tx_idle_timer); 679 del_timer(&qca->wake_retrans_timer); 680 del_timer(&qca->memdump_timer); 681 destroy_workqueue(qca->workqueue); 682 qca->hu = NULL; 683 684 qca_power_shutdown(hu); 685 686 kfree_skb(qca->rx_skb); 687 688 hu->priv = NULL; 689 690 kfree(qca); 691 692 return 0; 693 } 694 695 /* Called upon a wake-up-indication from the device. 696 */ 697 static void device_want_to_wakeup(struct hci_uart *hu) 698 { 699 unsigned long flags; 700 struct qca_data *qca = hu->priv; 701 702 BT_DBG("hu %p want to wake up", hu); 703 704 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 705 706 qca->ibs_recv_wakes++; 707 708 /* Don't wake the rx up when suspending. */ 709 if (test_bit(QCA_SUSPENDING, &qca->flags)) { 710 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 711 return; 712 } 713 714 switch (qca->rx_ibs_state) { 715 case HCI_IBS_RX_ASLEEP: 716 /* Make sure clock is on - we may have turned clock off since 717 * receiving the wake up indicator awake rx clock. 718 */ 719 queue_work(qca->workqueue, &qca->ws_awake_rx); 720 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 721 return; 722 723 case HCI_IBS_RX_AWAKE: 724 /* Always acknowledge device wake up, 725 * sending IBS message doesn't count as TX ON. 726 */ 727 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) { 728 BT_ERR("Failed to acknowledge device wake up"); 729 break; 730 } 731 qca->ibs_sent_wacks++; 732 break; 733 734 default: 735 /* Any other state is illegal */ 736 BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d", 737 qca->rx_ibs_state); 738 break; 739 } 740 741 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 742 743 /* Actually send the packets */ 744 hci_uart_tx_wakeup(hu); 745 } 746 747 /* Called upon a sleep-indication from the device. 748 */ 749 static void device_want_to_sleep(struct hci_uart *hu) 750 { 751 unsigned long flags; 752 struct qca_data *qca = hu->priv; 753 754 BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state); 755 756 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 757 758 qca->ibs_recv_slps++; 759 760 switch (qca->rx_ibs_state) { 761 case HCI_IBS_RX_AWAKE: 762 /* Update state */ 763 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP; 764 /* Vote off rx clock under workqueue */ 765 queue_work(qca->workqueue, &qca->ws_rx_vote_off); 766 break; 767 768 case HCI_IBS_RX_ASLEEP: 769 break; 770 771 default: 772 /* Any other state is illegal */ 773 BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d", 774 qca->rx_ibs_state); 775 break; 776 } 777 778 wake_up_interruptible(&qca->suspend_wait_q); 779 780 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 781 } 782 783 /* Called upon wake-up-acknowledgement from the device 784 */ 785 static void device_woke_up(struct hci_uart *hu) 786 { 787 unsigned long flags, idle_delay; 788 struct qca_data *qca = hu->priv; 789 struct sk_buff *skb = NULL; 790 791 BT_DBG("hu %p woke up", hu); 792 793 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 794 795 qca->ibs_recv_wacks++; 796 797 /* Don't react to the wake-up-acknowledgment when suspending. */ 798 if (test_bit(QCA_SUSPENDING, &qca->flags)) { 799 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 800 return; 801 } 802 803 switch (qca->tx_ibs_state) { 804 case HCI_IBS_TX_AWAKE: 805 /* Expect one if we send 2 WAKEs */ 806 BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d", 807 qca->tx_ibs_state); 808 break; 809 810 case HCI_IBS_TX_WAKING: 811 /* Send pending packets */ 812 while ((skb = skb_dequeue(&qca->tx_wait_q))) 813 skb_queue_tail(&qca->txq, skb); 814 815 /* Switch timers and change state to HCI_IBS_TX_AWAKE */ 816 del_timer(&qca->wake_retrans_timer); 817 idle_delay = msecs_to_jiffies(qca->tx_idle_delay); 818 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay); 819 qca->tx_ibs_state = HCI_IBS_TX_AWAKE; 820 break; 821 822 case HCI_IBS_TX_ASLEEP: 823 /* Fall through */ 824 825 default: 826 BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d", 827 qca->tx_ibs_state); 828 break; 829 } 830 831 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 832 833 /* Actually send the packets */ 834 hci_uart_tx_wakeup(hu); 835 } 836 837 /* Enqueue frame for transmittion (padding, crc, etc) may be called from 838 * two simultaneous tasklets. 839 */ 840 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb) 841 { 842 unsigned long flags = 0, idle_delay; 843 struct qca_data *qca = hu->priv; 844 845 BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb, 846 qca->tx_ibs_state); 847 848 /* Prepend skb with frame type */ 849 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1); 850 851 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 852 853 /* Don't go to sleep in middle of patch download or 854 * Out-Of-Band(GPIOs control) sleep is selected. 855 * Don't wake the device up when suspending. 856 */ 857 if (!test_bit(QCA_IBS_ENABLED, &qca->flags) || 858 test_bit(QCA_SUSPENDING, &qca->flags)) { 859 skb_queue_tail(&qca->txq, skb); 860 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 861 return 0; 862 } 863 864 /* Act according to current state */ 865 switch (qca->tx_ibs_state) { 866 case HCI_IBS_TX_AWAKE: 867 BT_DBG("Device awake, sending normally"); 868 skb_queue_tail(&qca->txq, skb); 869 idle_delay = msecs_to_jiffies(qca->tx_idle_delay); 870 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay); 871 break; 872 873 case HCI_IBS_TX_ASLEEP: 874 BT_DBG("Device asleep, waking up and queueing packet"); 875 /* Save packet for later */ 876 skb_queue_tail(&qca->tx_wait_q, skb); 877 878 qca->tx_ibs_state = HCI_IBS_TX_WAKING; 879 /* Schedule a work queue to wake up device */ 880 queue_work(qca->workqueue, &qca->ws_awake_device); 881 break; 882 883 case HCI_IBS_TX_WAKING: 884 BT_DBG("Device waking up, queueing packet"); 885 /* Transient state; just keep packet for later */ 886 skb_queue_tail(&qca->tx_wait_q, skb); 887 break; 888 889 default: 890 BT_ERR("Illegal tx state: %d (losing packet)", 891 qca->tx_ibs_state); 892 kfree_skb(skb); 893 break; 894 } 895 896 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 897 898 return 0; 899 } 900 901 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb) 902 { 903 struct hci_uart *hu = hci_get_drvdata(hdev); 904 905 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND); 906 907 device_want_to_sleep(hu); 908 909 kfree_skb(skb); 910 return 0; 911 } 912 913 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb) 914 { 915 struct hci_uart *hu = hci_get_drvdata(hdev); 916 917 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND); 918 919 device_want_to_wakeup(hu); 920 921 kfree_skb(skb); 922 return 0; 923 } 924 925 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb) 926 { 927 struct hci_uart *hu = hci_get_drvdata(hdev); 928 929 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK); 930 931 device_woke_up(hu); 932 933 kfree_skb(skb); 934 return 0; 935 } 936 937 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb) 938 { 939 /* We receive debug logs from chip as an ACL packets. 940 * Instead of sending the data to ACL to decode the 941 * received data, we are pushing them to the above layers 942 * as a diagnostic packet. 943 */ 944 if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE) 945 return hci_recv_diag(hdev, skb); 946 947 return hci_recv_frame(hdev, skb); 948 } 949 950 static void qca_controller_memdump(struct work_struct *work) 951 { 952 struct qca_data *qca = container_of(work, struct qca_data, 953 ctrl_memdump_evt); 954 struct hci_uart *hu = qca->hu; 955 struct sk_buff *skb; 956 struct qca_memdump_event_hdr *cmd_hdr; 957 struct qca_memdump_data *qca_memdump = qca->qca_memdump; 958 struct qca_dump_size *dump; 959 char *memdump_buf; 960 char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 }; 961 u16 seq_no; 962 u32 dump_size; 963 964 while ((skb = skb_dequeue(&qca->rx_memdump_q))) { 965 966 if (!qca_memdump) { 967 qca_memdump = kzalloc(sizeof(struct qca_memdump_data), 968 GFP_ATOMIC); 969 if (!qca_memdump) 970 return; 971 972 qca->qca_memdump = qca_memdump; 973 } 974 975 qca->memdump_state = QCA_MEMDUMP_COLLECTING; 976 cmd_hdr = (void *) skb->data; 977 seq_no = __le16_to_cpu(cmd_hdr->seq_no); 978 skb_pull(skb, sizeof(struct qca_memdump_event_hdr)); 979 980 if (!seq_no) { 981 982 /* This is the first frame of memdump packet from 983 * the controller, Disable IBS to recevie dump 984 * with out any interruption, ideally time required for 985 * the controller to send the dump is 8 seconds. let us 986 * start timer to handle this asynchronous activity. 987 */ 988 clear_bit(QCA_IBS_ENABLED, &qca->flags); 989 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 990 dump = (void *) skb->data; 991 dump_size = __le32_to_cpu(dump->dump_size); 992 if (!(dump_size)) { 993 bt_dev_err(hu->hdev, "Rx invalid memdump size"); 994 kfree_skb(skb); 995 return; 996 } 997 998 bt_dev_info(hu->hdev, "QCA collecting dump of size:%u", 999 dump_size); 1000 mod_timer(&qca->memdump_timer, (jiffies + 1001 msecs_to_jiffies(MEMDUMP_TIMEOUT_MS))); 1002 1003 skb_pull(skb, sizeof(dump_size)); 1004 memdump_buf = vmalloc(dump_size); 1005 qca_memdump->memdump_buf_head = memdump_buf; 1006 qca_memdump->memdump_buf_tail = memdump_buf; 1007 } 1008 1009 memdump_buf = qca_memdump->memdump_buf_tail; 1010 1011 /* If sequence no 0 is missed then there is no point in 1012 * accepting the other sequences. 1013 */ 1014 if (!memdump_buf) { 1015 bt_dev_err(hu->hdev, "QCA: Discarding other packets"); 1016 kfree(qca_memdump); 1017 kfree_skb(skb); 1018 qca->qca_memdump = NULL; 1019 return; 1020 } 1021 1022 /* There could be chance of missing some packets from 1023 * the controller. In such cases let us store the dummy 1024 * packets in the buffer. 1025 */ 1026 while ((seq_no > qca_memdump->current_seq_no + 1) && 1027 seq_no != QCA_LAST_SEQUENCE_NUM) { 1028 bt_dev_err(hu->hdev, "QCA controller missed packet:%d", 1029 qca_memdump->current_seq_no); 1030 memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE); 1031 memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE; 1032 qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE; 1033 qca_memdump->current_seq_no++; 1034 } 1035 1036 memcpy(memdump_buf, (unsigned char *) skb->data, skb->len); 1037 memdump_buf = memdump_buf + skb->len; 1038 qca_memdump->memdump_buf_tail = memdump_buf; 1039 qca_memdump->current_seq_no = seq_no + 1; 1040 qca_memdump->received_dump += skb->len; 1041 qca->qca_memdump = qca_memdump; 1042 kfree_skb(skb); 1043 if (seq_no == QCA_LAST_SEQUENCE_NUM) { 1044 bt_dev_info(hu->hdev, "QCA writing crash dump of size %d bytes", 1045 qca_memdump->received_dump); 1046 memdump_buf = qca_memdump->memdump_buf_head; 1047 dev_coredumpv(&hu->serdev->dev, memdump_buf, 1048 qca_memdump->received_dump, GFP_KERNEL); 1049 del_timer(&qca->memdump_timer); 1050 kfree(qca->qca_memdump); 1051 qca->qca_memdump = NULL; 1052 qca->memdump_state = QCA_MEMDUMP_COLLECTED; 1053 } 1054 } 1055 1056 } 1057 1058 int qca_controller_memdump_event(struct hci_dev *hdev, struct sk_buff *skb) 1059 { 1060 struct hci_uart *hu = hci_get_drvdata(hdev); 1061 struct qca_data *qca = hu->priv; 1062 1063 skb_queue_tail(&qca->rx_memdump_q, skb); 1064 queue_work(qca->workqueue, &qca->ctrl_memdump_evt); 1065 1066 return 0; 1067 } 1068 1069 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb) 1070 { 1071 struct hci_uart *hu = hci_get_drvdata(hdev); 1072 struct qca_data *qca = hu->priv; 1073 1074 if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) { 1075 struct hci_event_hdr *hdr = (void *)skb->data; 1076 1077 /* For the WCN3990 the vendor command for a baudrate change 1078 * isn't sent as synchronous HCI command, because the 1079 * controller sends the corresponding vendor event with the 1080 * new baudrate. The event is received and properly decoded 1081 * after changing the baudrate of the host port. It needs to 1082 * be dropped, otherwise it can be misinterpreted as 1083 * response to a later firmware download command (also a 1084 * vendor command). 1085 */ 1086 1087 if (hdr->evt == HCI_EV_VENDOR) 1088 complete(&qca->drop_ev_comp); 1089 1090 kfree_skb(skb); 1091 1092 return 0; 1093 } 1094 /* We receive chip memory dump as an event packet, With a dedicated 1095 * handler followed by a hardware error event. When this event is 1096 * received we store dump into a file before closing hci. This 1097 * dump will help in triaging the issues. 1098 */ 1099 if ((skb->data[0] == HCI_VENDOR_PKT) && 1100 (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE)) 1101 return qca_controller_memdump_event(hdev, skb); 1102 1103 return hci_recv_frame(hdev, skb); 1104 } 1105 1106 #define QCA_IBS_SLEEP_IND_EVENT \ 1107 .type = HCI_IBS_SLEEP_IND, \ 1108 .hlen = 0, \ 1109 .loff = 0, \ 1110 .lsize = 0, \ 1111 .maxlen = HCI_MAX_IBS_SIZE 1112 1113 #define QCA_IBS_WAKE_IND_EVENT \ 1114 .type = HCI_IBS_WAKE_IND, \ 1115 .hlen = 0, \ 1116 .loff = 0, \ 1117 .lsize = 0, \ 1118 .maxlen = HCI_MAX_IBS_SIZE 1119 1120 #define QCA_IBS_WAKE_ACK_EVENT \ 1121 .type = HCI_IBS_WAKE_ACK, \ 1122 .hlen = 0, \ 1123 .loff = 0, \ 1124 .lsize = 0, \ 1125 .maxlen = HCI_MAX_IBS_SIZE 1126 1127 static const struct h4_recv_pkt qca_recv_pkts[] = { 1128 { H4_RECV_ACL, .recv = qca_recv_acl_data }, 1129 { H4_RECV_SCO, .recv = hci_recv_frame }, 1130 { H4_RECV_EVENT, .recv = qca_recv_event }, 1131 { QCA_IBS_WAKE_IND_EVENT, .recv = qca_ibs_wake_ind }, 1132 { QCA_IBS_WAKE_ACK_EVENT, .recv = qca_ibs_wake_ack }, 1133 { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind }, 1134 }; 1135 1136 static int qca_recv(struct hci_uart *hu, const void *data, int count) 1137 { 1138 struct qca_data *qca = hu->priv; 1139 1140 if (!test_bit(HCI_UART_REGISTERED, &hu->flags)) 1141 return -EUNATCH; 1142 1143 qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count, 1144 qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts)); 1145 if (IS_ERR(qca->rx_skb)) { 1146 int err = PTR_ERR(qca->rx_skb); 1147 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err); 1148 qca->rx_skb = NULL; 1149 return err; 1150 } 1151 1152 return count; 1153 } 1154 1155 static struct sk_buff *qca_dequeue(struct hci_uart *hu) 1156 { 1157 struct qca_data *qca = hu->priv; 1158 1159 return skb_dequeue(&qca->txq); 1160 } 1161 1162 static uint8_t qca_get_baudrate_value(int speed) 1163 { 1164 switch (speed) { 1165 case 9600: 1166 return QCA_BAUDRATE_9600; 1167 case 19200: 1168 return QCA_BAUDRATE_19200; 1169 case 38400: 1170 return QCA_BAUDRATE_38400; 1171 case 57600: 1172 return QCA_BAUDRATE_57600; 1173 case 115200: 1174 return QCA_BAUDRATE_115200; 1175 case 230400: 1176 return QCA_BAUDRATE_230400; 1177 case 460800: 1178 return QCA_BAUDRATE_460800; 1179 case 500000: 1180 return QCA_BAUDRATE_500000; 1181 case 921600: 1182 return QCA_BAUDRATE_921600; 1183 case 1000000: 1184 return QCA_BAUDRATE_1000000; 1185 case 2000000: 1186 return QCA_BAUDRATE_2000000; 1187 case 3000000: 1188 return QCA_BAUDRATE_3000000; 1189 case 3200000: 1190 return QCA_BAUDRATE_3200000; 1191 case 3500000: 1192 return QCA_BAUDRATE_3500000; 1193 default: 1194 return QCA_BAUDRATE_115200; 1195 } 1196 } 1197 1198 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate) 1199 { 1200 struct hci_uart *hu = hci_get_drvdata(hdev); 1201 struct qca_data *qca = hu->priv; 1202 struct sk_buff *skb; 1203 u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 }; 1204 1205 if (baudrate > QCA_BAUDRATE_3200000) 1206 return -EINVAL; 1207 1208 cmd[4] = baudrate; 1209 1210 skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL); 1211 if (!skb) { 1212 bt_dev_err(hdev, "Failed to allocate baudrate packet"); 1213 return -ENOMEM; 1214 } 1215 1216 /* Assign commands to change baudrate and packet type. */ 1217 skb_put_data(skb, cmd, sizeof(cmd)); 1218 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 1219 1220 skb_queue_tail(&qca->txq, skb); 1221 hci_uart_tx_wakeup(hu); 1222 1223 /* Wait for the baudrate change request to be sent */ 1224 1225 while (!skb_queue_empty(&qca->txq)) 1226 usleep_range(100, 200); 1227 1228 if (hu->serdev) 1229 serdev_device_wait_until_sent(hu->serdev, 1230 msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS)); 1231 1232 /* Give the controller time to process the request */ 1233 if (qca_is_wcn399x(qca_soc_type(hu))) 1234 msleep(10); 1235 else 1236 msleep(300); 1237 1238 return 0; 1239 } 1240 1241 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed) 1242 { 1243 if (hu->serdev) 1244 serdev_device_set_baudrate(hu->serdev, speed); 1245 else 1246 hci_uart_set_baudrate(hu, speed); 1247 } 1248 1249 static int qca_send_power_pulse(struct hci_uart *hu, bool on) 1250 { 1251 int ret; 1252 int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS); 1253 u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE; 1254 1255 /* These power pulses are single byte command which are sent 1256 * at required baudrate to wcn3990. On wcn3990, we have an external 1257 * circuit at Tx pin which decodes the pulse sent at specific baudrate. 1258 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT 1259 * and also we use the same power inputs to turn on and off for 1260 * Wi-Fi/BT. Powering up the power sources will not enable BT, until 1261 * we send a power on pulse at 115200 bps. This algorithm will help to 1262 * save power. Disabling hardware flow control is mandatory while 1263 * sending power pulses to SoC. 1264 */ 1265 bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd); 1266 1267 serdev_device_write_flush(hu->serdev); 1268 hci_uart_set_flow_control(hu, true); 1269 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd)); 1270 if (ret < 0) { 1271 bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd); 1272 return ret; 1273 } 1274 1275 serdev_device_wait_until_sent(hu->serdev, timeout); 1276 hci_uart_set_flow_control(hu, false); 1277 1278 /* Give to controller time to boot/shutdown */ 1279 if (on) 1280 msleep(100); 1281 else 1282 msleep(10); 1283 1284 return 0; 1285 } 1286 1287 static unsigned int qca_get_speed(struct hci_uart *hu, 1288 enum qca_speed_type speed_type) 1289 { 1290 unsigned int speed = 0; 1291 1292 if (speed_type == QCA_INIT_SPEED) { 1293 if (hu->init_speed) 1294 speed = hu->init_speed; 1295 else if (hu->proto->init_speed) 1296 speed = hu->proto->init_speed; 1297 } else { 1298 if (hu->oper_speed) 1299 speed = hu->oper_speed; 1300 else if (hu->proto->oper_speed) 1301 speed = hu->proto->oper_speed; 1302 } 1303 1304 return speed; 1305 } 1306 1307 static int qca_check_speeds(struct hci_uart *hu) 1308 { 1309 if (qca_is_wcn399x(qca_soc_type(hu))) { 1310 if (!qca_get_speed(hu, QCA_INIT_SPEED) && 1311 !qca_get_speed(hu, QCA_OPER_SPEED)) 1312 return -EINVAL; 1313 } else { 1314 if (!qca_get_speed(hu, QCA_INIT_SPEED) || 1315 !qca_get_speed(hu, QCA_OPER_SPEED)) 1316 return -EINVAL; 1317 } 1318 1319 return 0; 1320 } 1321 1322 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type) 1323 { 1324 unsigned int speed, qca_baudrate; 1325 struct qca_data *qca = hu->priv; 1326 int ret = 0; 1327 1328 if (speed_type == QCA_INIT_SPEED) { 1329 speed = qca_get_speed(hu, QCA_INIT_SPEED); 1330 if (speed) 1331 host_set_baudrate(hu, speed); 1332 } else { 1333 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1334 1335 speed = qca_get_speed(hu, QCA_OPER_SPEED); 1336 if (!speed) 1337 return 0; 1338 1339 /* Disable flow control for wcn3990 to deassert RTS while 1340 * changing the baudrate of chip and host. 1341 */ 1342 if (qca_is_wcn399x(soc_type)) 1343 hci_uart_set_flow_control(hu, true); 1344 1345 if (soc_type == QCA_WCN3990) { 1346 reinit_completion(&qca->drop_ev_comp); 1347 set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags); 1348 } 1349 1350 qca_baudrate = qca_get_baudrate_value(speed); 1351 bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed); 1352 ret = qca_set_baudrate(hu->hdev, qca_baudrate); 1353 if (ret) 1354 goto error; 1355 1356 host_set_baudrate(hu, speed); 1357 1358 error: 1359 if (qca_is_wcn399x(soc_type)) 1360 hci_uart_set_flow_control(hu, false); 1361 1362 if (soc_type == QCA_WCN3990) { 1363 /* Wait for the controller to send the vendor event 1364 * for the baudrate change command. 1365 */ 1366 if (!wait_for_completion_timeout(&qca->drop_ev_comp, 1367 msecs_to_jiffies(100))) { 1368 bt_dev_err(hu->hdev, 1369 "Failed to change controller baudrate\n"); 1370 ret = -ETIMEDOUT; 1371 } 1372 1373 clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags); 1374 } 1375 } 1376 1377 return ret; 1378 } 1379 1380 static int qca_send_crashbuffer(struct hci_uart *hu) 1381 { 1382 struct qca_data *qca = hu->priv; 1383 struct sk_buff *skb; 1384 1385 skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL); 1386 if (!skb) { 1387 bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet"); 1388 return -ENOMEM; 1389 } 1390 1391 /* We forcefully crash the controller, by sending 0xfb byte for 1392 * 1024 times. We also might have chance of losing data, To be 1393 * on safer side we send 1096 bytes to the SoC. 1394 */ 1395 memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE, 1396 QCA_CRASHBYTE_PACKET_LEN); 1397 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 1398 bt_dev_info(hu->hdev, "crash the soc to collect controller dump"); 1399 skb_queue_tail(&qca->txq, skb); 1400 hci_uart_tx_wakeup(hu); 1401 1402 return 0; 1403 } 1404 1405 static void qca_wait_for_dump_collection(struct hci_dev *hdev) 1406 { 1407 struct hci_uart *hu = hci_get_drvdata(hdev); 1408 struct qca_data *qca = hu->priv; 1409 struct qca_memdump_data *qca_memdump = qca->qca_memdump; 1410 char *memdump_buf = NULL; 1411 1412 wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION, 1413 TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS); 1414 1415 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1416 if (qca->memdump_state == QCA_MEMDUMP_IDLE) { 1417 bt_dev_err(hu->hdev, "Clearing the buffers due to timeout"); 1418 if (qca_memdump) 1419 memdump_buf = qca_memdump->memdump_buf_tail; 1420 vfree(memdump_buf); 1421 kfree(qca_memdump); 1422 qca->memdump_state = QCA_MEMDUMP_TIMEOUT; 1423 del_timer(&qca->memdump_timer); 1424 cancel_work_sync(&qca->ctrl_memdump_evt); 1425 } 1426 } 1427 1428 static void qca_hw_error(struct hci_dev *hdev, u8 code) 1429 { 1430 struct hci_uart *hu = hci_get_drvdata(hdev); 1431 struct qca_data *qca = hu->priv; 1432 1433 bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state); 1434 1435 if (qca->memdump_state == QCA_MEMDUMP_IDLE) { 1436 /* If hardware error event received for other than QCA 1437 * soc memory dump event, then we need to crash the SOC 1438 * and wait here for 8 seconds to get the dump packets. 1439 * This will block main thread to be on hold until we 1440 * collect dump. 1441 */ 1442 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1443 qca_send_crashbuffer(hu); 1444 qca_wait_for_dump_collection(hdev); 1445 } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) { 1446 /* Let us wait here until memory dump collected or 1447 * memory dump timer expired. 1448 */ 1449 bt_dev_info(hdev, "waiting for dump to complete"); 1450 qca_wait_for_dump_collection(hdev); 1451 } 1452 } 1453 1454 static void qca_cmd_timeout(struct hci_dev *hdev) 1455 { 1456 struct hci_uart *hu = hci_get_drvdata(hdev); 1457 struct qca_data *qca = hu->priv; 1458 1459 if (qca->memdump_state == QCA_MEMDUMP_IDLE) 1460 qca_send_crashbuffer(hu); 1461 else 1462 bt_dev_info(hdev, "Dump collection is in process"); 1463 } 1464 1465 static int qca_wcn3990_init(struct hci_uart *hu) 1466 { 1467 struct qca_serdev *qcadev; 1468 int ret; 1469 1470 /* Check for vregs status, may be hci down has turned 1471 * off the voltage regulator. 1472 */ 1473 qcadev = serdev_device_get_drvdata(hu->serdev); 1474 if (!qcadev->bt_power->vregs_on) { 1475 serdev_device_close(hu->serdev); 1476 ret = qca_regulator_enable(qcadev); 1477 if (ret) 1478 return ret; 1479 1480 ret = serdev_device_open(hu->serdev); 1481 if (ret) { 1482 bt_dev_err(hu->hdev, "failed to open port"); 1483 return ret; 1484 } 1485 } 1486 1487 /* Forcefully enable wcn3990 to enter in to boot mode. */ 1488 host_set_baudrate(hu, 2400); 1489 ret = qca_send_power_pulse(hu, false); 1490 if (ret) 1491 return ret; 1492 1493 qca_set_speed(hu, QCA_INIT_SPEED); 1494 ret = qca_send_power_pulse(hu, true); 1495 if (ret) 1496 return ret; 1497 1498 /* Now the device is in ready state to communicate with host. 1499 * To sync host with device we need to reopen port. 1500 * Without this, we will have RTS and CTS synchronization 1501 * issues. 1502 */ 1503 serdev_device_close(hu->serdev); 1504 ret = serdev_device_open(hu->serdev); 1505 if (ret) { 1506 bt_dev_err(hu->hdev, "failed to open port"); 1507 return ret; 1508 } 1509 1510 hci_uart_set_flow_control(hu, false); 1511 1512 return 0; 1513 } 1514 1515 static int qca_power_on(struct hci_dev *hdev) 1516 { 1517 struct hci_uart *hu = hci_get_drvdata(hdev); 1518 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1519 struct qca_serdev *qcadev; 1520 int ret = 0; 1521 1522 /* Non-serdev device usually is powered by external power 1523 * and don't need additional action in driver for power on 1524 */ 1525 if (!hu->serdev) 1526 return 0; 1527 1528 if (qca_is_wcn399x(soc_type)) { 1529 ret = qca_wcn3990_init(hu); 1530 } else { 1531 qcadev = serdev_device_get_drvdata(hu->serdev); 1532 gpiod_set_value_cansleep(qcadev->bt_en, 1); 1533 /* Controller needs time to bootup. */ 1534 msleep(150); 1535 } 1536 1537 return ret; 1538 } 1539 1540 static int qca_setup(struct hci_uart *hu) 1541 { 1542 struct hci_dev *hdev = hu->hdev; 1543 struct qca_data *qca = hu->priv; 1544 unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200; 1545 unsigned int retries = 0; 1546 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1547 const char *firmware_name = qca_get_firmware_name(hu); 1548 int ret; 1549 int soc_ver = 0; 1550 1551 ret = qca_check_speeds(hu); 1552 if (ret) 1553 return ret; 1554 1555 /* Patch downloading has to be done without IBS mode */ 1556 clear_bit(QCA_IBS_ENABLED, &qca->flags); 1557 1558 /* Enable controller to do both LE scan and BR/EDR inquiry 1559 * simultaneously. 1560 */ 1561 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks); 1562 1563 bt_dev_info(hdev, "setting up %s", 1564 qca_is_wcn399x(soc_type) ? "wcn399x" : "ROME"); 1565 1566 retry: 1567 ret = qca_power_on(hdev); 1568 if (ret) 1569 return ret; 1570 1571 if (qca_is_wcn399x(soc_type)) { 1572 set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks); 1573 1574 ret = qca_read_soc_version(hdev, &soc_ver, soc_type); 1575 if (ret) 1576 return ret; 1577 } else { 1578 qca_set_speed(hu, QCA_INIT_SPEED); 1579 } 1580 1581 /* Setup user speed if needed */ 1582 speed = qca_get_speed(hu, QCA_OPER_SPEED); 1583 if (speed) { 1584 ret = qca_set_speed(hu, QCA_OPER_SPEED); 1585 if (ret) 1586 return ret; 1587 1588 qca_baudrate = qca_get_baudrate_value(speed); 1589 } 1590 1591 if (!qca_is_wcn399x(soc_type)) { 1592 /* Get QCA version information */ 1593 ret = qca_read_soc_version(hdev, &soc_ver, soc_type); 1594 if (ret) 1595 return ret; 1596 } 1597 1598 bt_dev_info(hdev, "QCA controller version 0x%08x", soc_ver); 1599 /* Setup patch / NVM configurations */ 1600 ret = qca_uart_setup(hdev, qca_baudrate, soc_type, soc_ver, 1601 firmware_name); 1602 if (!ret) { 1603 set_bit(QCA_IBS_ENABLED, &qca->flags); 1604 qca_debugfs_init(hdev); 1605 hu->hdev->hw_error = qca_hw_error; 1606 hu->hdev->cmd_timeout = qca_cmd_timeout; 1607 } else if (ret == -ENOENT) { 1608 /* No patch/nvm-config found, run with original fw/config */ 1609 ret = 0; 1610 } else if (ret == -EAGAIN) { 1611 /* 1612 * Userspace firmware loader will return -EAGAIN in case no 1613 * patch/nvm-config is found, so run with original fw/config. 1614 */ 1615 ret = 0; 1616 } else { 1617 if (retries < MAX_INIT_RETRIES) { 1618 qca_power_shutdown(hu); 1619 if (hu->serdev) { 1620 serdev_device_close(hu->serdev); 1621 ret = serdev_device_open(hu->serdev); 1622 if (ret) { 1623 bt_dev_err(hdev, "failed to open port"); 1624 return ret; 1625 } 1626 } 1627 retries++; 1628 goto retry; 1629 } 1630 } 1631 1632 /* Setup bdaddr */ 1633 if (qca_is_wcn399x(soc_type)) 1634 hu->hdev->set_bdaddr = qca_set_bdaddr; 1635 else 1636 hu->hdev->set_bdaddr = qca_set_bdaddr_rome; 1637 1638 return ret; 1639 } 1640 1641 static const struct hci_uart_proto qca_proto = { 1642 .id = HCI_UART_QCA, 1643 .name = "QCA", 1644 .manufacturer = 29, 1645 .init_speed = 115200, 1646 .oper_speed = 3000000, 1647 .open = qca_open, 1648 .close = qca_close, 1649 .flush = qca_flush, 1650 .setup = qca_setup, 1651 .recv = qca_recv, 1652 .enqueue = qca_enqueue, 1653 .dequeue = qca_dequeue, 1654 }; 1655 1656 static const struct qca_vreg_data qca_soc_data_wcn3990 = { 1657 .soc_type = QCA_WCN3990, 1658 .vregs = (struct qca_vreg []) { 1659 { "vddio", 15000 }, 1660 { "vddxo", 80000 }, 1661 { "vddrf", 300000 }, 1662 { "vddch0", 450000 }, 1663 }, 1664 .num_vregs = 4, 1665 }; 1666 1667 static const struct qca_vreg_data qca_soc_data_wcn3991 = { 1668 .soc_type = QCA_WCN3991, 1669 .vregs = (struct qca_vreg []) { 1670 { "vddio", 15000 }, 1671 { "vddxo", 80000 }, 1672 { "vddrf", 300000 }, 1673 { "vddch0", 450000 }, 1674 }, 1675 .num_vregs = 4, 1676 }; 1677 1678 static const struct qca_vreg_data qca_soc_data_wcn3998 = { 1679 .soc_type = QCA_WCN3998, 1680 .vregs = (struct qca_vreg []) { 1681 { "vddio", 10000 }, 1682 { "vddxo", 80000 }, 1683 { "vddrf", 300000 }, 1684 { "vddch0", 450000 }, 1685 }, 1686 .num_vregs = 4, 1687 }; 1688 1689 static void qca_power_shutdown(struct hci_uart *hu) 1690 { 1691 struct qca_serdev *qcadev; 1692 struct qca_data *qca = hu->priv; 1693 unsigned long flags; 1694 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1695 1696 qcadev = serdev_device_get_drvdata(hu->serdev); 1697 1698 /* From this point we go into power off state. But serial port is 1699 * still open, stop queueing the IBS data and flush all the buffered 1700 * data in skb's. 1701 */ 1702 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 1703 clear_bit(QCA_IBS_ENABLED, &qca->flags); 1704 qca_flush(hu); 1705 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 1706 1707 hu->hdev->hw_error = NULL; 1708 hu->hdev->cmd_timeout = NULL; 1709 1710 /* Non-serdev device usually is powered by external power 1711 * and don't need additional action in driver for power down 1712 */ 1713 if (!hu->serdev) 1714 return; 1715 1716 if (qca_is_wcn399x(soc_type)) { 1717 host_set_baudrate(hu, 2400); 1718 qca_send_power_pulse(hu, false); 1719 qca_regulator_disable(qcadev); 1720 } else { 1721 gpiod_set_value_cansleep(qcadev->bt_en, 0); 1722 } 1723 } 1724 1725 static int qca_power_off(struct hci_dev *hdev) 1726 { 1727 struct hci_uart *hu = hci_get_drvdata(hdev); 1728 struct qca_data *qca = hu->priv; 1729 1730 /* Stop sending shutdown command if soc crashes. */ 1731 if (qca->memdump_state == QCA_MEMDUMP_IDLE) { 1732 qca_send_pre_shutdown_cmd(hdev); 1733 usleep_range(8000, 10000); 1734 } 1735 1736 qca->memdump_state = QCA_MEMDUMP_IDLE; 1737 qca_power_shutdown(hu); 1738 return 0; 1739 } 1740 1741 static int qca_regulator_enable(struct qca_serdev *qcadev) 1742 { 1743 struct qca_power *power = qcadev->bt_power; 1744 int ret; 1745 1746 /* Already enabled */ 1747 if (power->vregs_on) 1748 return 0; 1749 1750 BT_DBG("enabling %d regulators)", power->num_vregs); 1751 1752 ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk); 1753 if (ret) 1754 return ret; 1755 1756 power->vregs_on = true; 1757 1758 return 0; 1759 } 1760 1761 static void qca_regulator_disable(struct qca_serdev *qcadev) 1762 { 1763 struct qca_power *power; 1764 1765 if (!qcadev) 1766 return; 1767 1768 power = qcadev->bt_power; 1769 1770 /* Already disabled? */ 1771 if (!power->vregs_on) 1772 return; 1773 1774 regulator_bulk_disable(power->num_vregs, power->vreg_bulk); 1775 power->vregs_on = false; 1776 } 1777 1778 static int qca_init_regulators(struct qca_power *qca, 1779 const struct qca_vreg *vregs, size_t num_vregs) 1780 { 1781 struct regulator_bulk_data *bulk; 1782 int ret; 1783 int i; 1784 1785 bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL); 1786 if (!bulk) 1787 return -ENOMEM; 1788 1789 for (i = 0; i < num_vregs; i++) 1790 bulk[i].supply = vregs[i].name; 1791 1792 ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk); 1793 if (ret < 0) 1794 return ret; 1795 1796 for (i = 0; i < num_vregs; i++) { 1797 ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA); 1798 if (ret) 1799 return ret; 1800 } 1801 1802 qca->vreg_bulk = bulk; 1803 qca->num_vregs = num_vregs; 1804 1805 return 0; 1806 } 1807 1808 static int qca_serdev_probe(struct serdev_device *serdev) 1809 { 1810 struct qca_serdev *qcadev; 1811 struct hci_dev *hdev; 1812 const struct qca_vreg_data *data; 1813 int err; 1814 1815 qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL); 1816 if (!qcadev) 1817 return -ENOMEM; 1818 1819 qcadev->serdev_hu.serdev = serdev; 1820 data = device_get_match_data(&serdev->dev); 1821 serdev_device_set_drvdata(serdev, qcadev); 1822 device_property_read_string(&serdev->dev, "firmware-name", 1823 &qcadev->firmware_name); 1824 if (data && qca_is_wcn399x(data->soc_type)) { 1825 qcadev->btsoc_type = data->soc_type; 1826 qcadev->bt_power = devm_kzalloc(&serdev->dev, 1827 sizeof(struct qca_power), 1828 GFP_KERNEL); 1829 if (!qcadev->bt_power) 1830 return -ENOMEM; 1831 1832 qcadev->bt_power->dev = &serdev->dev; 1833 err = qca_init_regulators(qcadev->bt_power, data->vregs, 1834 data->num_vregs); 1835 if (err) { 1836 BT_ERR("Failed to init regulators:%d", err); 1837 return err; 1838 } 1839 1840 qcadev->bt_power->vregs_on = false; 1841 1842 device_property_read_u32(&serdev->dev, "max-speed", 1843 &qcadev->oper_speed); 1844 if (!qcadev->oper_speed) 1845 BT_DBG("UART will pick default operating speed"); 1846 1847 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto); 1848 if (err) { 1849 BT_ERR("wcn3990 serdev registration failed"); 1850 return err; 1851 } 1852 } else { 1853 qcadev->btsoc_type = QCA_ROME; 1854 qcadev->bt_en = devm_gpiod_get(&serdev->dev, "enable", 1855 GPIOD_OUT_LOW); 1856 if (IS_ERR(qcadev->bt_en)) { 1857 dev_err(&serdev->dev, "failed to acquire enable gpio\n"); 1858 return PTR_ERR(qcadev->bt_en); 1859 } 1860 1861 qcadev->susclk = devm_clk_get(&serdev->dev, NULL); 1862 if (IS_ERR(qcadev->susclk)) { 1863 dev_err(&serdev->dev, "failed to acquire clk\n"); 1864 return PTR_ERR(qcadev->susclk); 1865 } 1866 1867 err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ); 1868 if (err) 1869 return err; 1870 1871 err = clk_prepare_enable(qcadev->susclk); 1872 if (err) 1873 return err; 1874 1875 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto); 1876 if (err) { 1877 BT_ERR("Rome serdev registration failed"); 1878 clk_disable_unprepare(qcadev->susclk); 1879 return err; 1880 } 1881 } 1882 1883 hdev = qcadev->serdev_hu.hdev; 1884 set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks); 1885 hdev->shutdown = qca_power_off; 1886 1887 return 0; 1888 } 1889 1890 static void qca_serdev_remove(struct serdev_device *serdev) 1891 { 1892 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); 1893 1894 if (qca_is_wcn399x(qcadev->btsoc_type)) 1895 qca_power_shutdown(&qcadev->serdev_hu); 1896 else 1897 clk_disable_unprepare(qcadev->susclk); 1898 1899 hci_uart_unregister_device(&qcadev->serdev_hu); 1900 } 1901 1902 static int __maybe_unused qca_suspend(struct device *dev) 1903 { 1904 struct hci_dev *hdev = container_of(dev, struct hci_dev, dev); 1905 struct hci_uart *hu = hci_get_drvdata(hdev); 1906 struct qca_data *qca = hu->priv; 1907 unsigned long flags; 1908 int ret = 0; 1909 u8 cmd; 1910 1911 set_bit(QCA_SUSPENDING, &qca->flags); 1912 1913 /* Device is downloading patch or doesn't support in-band sleep. */ 1914 if (!test_bit(QCA_IBS_ENABLED, &qca->flags)) 1915 return 0; 1916 1917 cancel_work_sync(&qca->ws_awake_device); 1918 cancel_work_sync(&qca->ws_awake_rx); 1919 1920 spin_lock_irqsave_nested(&qca->hci_ibs_lock, 1921 flags, SINGLE_DEPTH_NESTING); 1922 1923 switch (qca->tx_ibs_state) { 1924 case HCI_IBS_TX_WAKING: 1925 del_timer(&qca->wake_retrans_timer); 1926 /* Fall through */ 1927 case HCI_IBS_TX_AWAKE: 1928 del_timer(&qca->tx_idle_timer); 1929 1930 serdev_device_write_flush(hu->serdev); 1931 cmd = HCI_IBS_SLEEP_IND; 1932 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd)); 1933 1934 if (ret < 0) { 1935 BT_ERR("Failed to send SLEEP to device"); 1936 break; 1937 } 1938 1939 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; 1940 qca->ibs_sent_slps++; 1941 1942 qca_wq_serial_tx_clock_vote_off(&qca->ws_tx_vote_off); 1943 break; 1944 1945 case HCI_IBS_TX_ASLEEP: 1946 break; 1947 1948 default: 1949 BT_ERR("Spurious tx state %d", qca->tx_ibs_state); 1950 ret = -EINVAL; 1951 break; 1952 } 1953 1954 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 1955 1956 if (ret < 0) 1957 goto error; 1958 1959 serdev_device_wait_until_sent(hu->serdev, 1960 msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS)); 1961 1962 /* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going 1963 * to sleep, so that the packet does not wake the system later. 1964 */ 1965 1966 ret = wait_event_interruptible_timeout(qca->suspend_wait_q, 1967 qca->rx_ibs_state == HCI_IBS_RX_ASLEEP, 1968 msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS)); 1969 1970 if (ret > 0) 1971 return 0; 1972 1973 if (ret == 0) 1974 ret = -ETIMEDOUT; 1975 1976 error: 1977 clear_bit(QCA_SUSPENDING, &qca->flags); 1978 1979 return ret; 1980 } 1981 1982 static int __maybe_unused qca_resume(struct device *dev) 1983 { 1984 struct hci_dev *hdev = container_of(dev, struct hci_dev, dev); 1985 struct hci_uart *hu = hci_get_drvdata(hdev); 1986 struct qca_data *qca = hu->priv; 1987 1988 clear_bit(QCA_SUSPENDING, &qca->flags); 1989 1990 return 0; 1991 } 1992 1993 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume); 1994 1995 static const struct of_device_id qca_bluetooth_of_match[] = { 1996 { .compatible = "qcom,qca6174-bt" }, 1997 { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990}, 1998 { .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991}, 1999 { .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998}, 2000 { /* sentinel */ } 2001 }; 2002 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match); 2003 2004 static struct serdev_device_driver qca_serdev_driver = { 2005 .probe = qca_serdev_probe, 2006 .remove = qca_serdev_remove, 2007 .driver = { 2008 .name = "hci_uart_qca", 2009 .of_match_table = qca_bluetooth_of_match, 2010 .pm = &qca_pm_ops, 2011 }, 2012 }; 2013 2014 int __init qca_init(void) 2015 { 2016 serdev_device_driver_register(&qca_serdev_driver); 2017 2018 return hci_uart_register_proto(&qca_proto); 2019 } 2020 2021 int __exit qca_deinit(void) 2022 { 2023 serdev_device_driver_unregister(&qca_serdev_driver); 2024 2025 return hci_uart_unregister_proto(&qca_proto); 2026 } 2027