xref: /openbmc/linux/drivers/bluetooth/hci_qca.c (revision c0d3b83100c896e1b0909023df58a0ebdd428d61)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Bluetooth Software UART Qualcomm protocol
4  *
5  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10  *
11  *  Acknowledgements:
12  *  This file is based on hci_ll.c, which was...
13  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14  *  which was in turn based on hci_h4.c, which was written
15  *  by Maxim Krasnyansky and Marcel Holtmann.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/serdev.h>
33 #include <linux/mutex.h>
34 #include <asm/unaligned.h>
35 
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38 
39 #include "hci_uart.h"
40 #include "btqca.h"
41 
42 /* HCI_IBS protocol messages */
43 #define HCI_IBS_SLEEP_IND	0xFE
44 #define HCI_IBS_WAKE_IND	0xFD
45 #define HCI_IBS_WAKE_ACK	0xFC
46 #define HCI_MAX_IBS_SIZE	10
47 
48 #define IBS_WAKE_RETRANS_TIMEOUT_MS	100
49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS	200
50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS	2000
51 #define CMD_TRANS_TIMEOUT_MS		100
52 #define MEMDUMP_TIMEOUT_MS		8000
53 #define IBS_DISABLE_SSR_TIMEOUT_MS \
54 	(MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS)
55 #define FW_DOWNLOAD_TIMEOUT_MS		3000
56 
57 /* susclk rate */
58 #define SUSCLK_RATE_32KHZ	32768
59 
60 /* Controller debug log header */
61 #define QCA_DEBUG_HANDLE	0x2EDC
62 
63 /* max retry count when init fails */
64 #define MAX_INIT_RETRIES 3
65 
66 /* Controller dump header */
67 #define QCA_SSR_DUMP_HANDLE		0x0108
68 #define QCA_DUMP_PACKET_SIZE		255
69 #define QCA_LAST_SEQUENCE_NUM		0xFFFF
70 #define QCA_CRASHBYTE_PACKET_LEN	1096
71 #define QCA_MEMDUMP_BYTE		0xFB
72 
73 enum qca_flags {
74 	QCA_IBS_DISABLED,
75 	QCA_DROP_VENDOR_EVENT,
76 	QCA_SUSPENDING,
77 	QCA_MEMDUMP_COLLECTION,
78 	QCA_HW_ERROR_EVENT,
79 	QCA_SSR_TRIGGERED,
80 	QCA_BT_OFF,
81 	QCA_ROM_FW
82 };
83 
84 enum qca_capabilities {
85 	QCA_CAP_WIDEBAND_SPEECH = BIT(0),
86 	QCA_CAP_VALID_LE_STATES = BIT(1),
87 };
88 
89 /* HCI_IBS transmit side sleep protocol states */
90 enum tx_ibs_states {
91 	HCI_IBS_TX_ASLEEP,
92 	HCI_IBS_TX_WAKING,
93 	HCI_IBS_TX_AWAKE,
94 };
95 
96 /* HCI_IBS receive side sleep protocol states */
97 enum rx_states {
98 	HCI_IBS_RX_ASLEEP,
99 	HCI_IBS_RX_AWAKE,
100 };
101 
102 /* HCI_IBS transmit and receive side clock state vote */
103 enum hci_ibs_clock_state_vote {
104 	HCI_IBS_VOTE_STATS_UPDATE,
105 	HCI_IBS_TX_VOTE_CLOCK_ON,
106 	HCI_IBS_TX_VOTE_CLOCK_OFF,
107 	HCI_IBS_RX_VOTE_CLOCK_ON,
108 	HCI_IBS_RX_VOTE_CLOCK_OFF,
109 };
110 
111 /* Controller memory dump states */
112 enum qca_memdump_states {
113 	QCA_MEMDUMP_IDLE,
114 	QCA_MEMDUMP_COLLECTING,
115 	QCA_MEMDUMP_COLLECTED,
116 	QCA_MEMDUMP_TIMEOUT,
117 };
118 
119 struct qca_memdump_data {
120 	char *memdump_buf_head;
121 	char *memdump_buf_tail;
122 	u32 current_seq_no;
123 	u32 received_dump;
124 	u32 ram_dump_size;
125 };
126 
127 struct qca_memdump_event_hdr {
128 	__u8    evt;
129 	__u8    plen;
130 	__u16   opcode;
131 	__u16   seq_no;
132 	__u8    reserved;
133 } __packed;
134 
135 
136 struct qca_dump_size {
137 	u32 dump_size;
138 } __packed;
139 
140 struct qca_data {
141 	struct hci_uart *hu;
142 	struct sk_buff *rx_skb;
143 	struct sk_buff_head txq;
144 	struct sk_buff_head tx_wait_q;	/* HCI_IBS wait queue	*/
145 	struct sk_buff_head rx_memdump_q;	/* Memdump wait queue	*/
146 	spinlock_t hci_ibs_lock;	/* HCI_IBS state lock	*/
147 	u8 tx_ibs_state;	/* HCI_IBS transmit side power state*/
148 	u8 rx_ibs_state;	/* HCI_IBS receive side power state */
149 	bool tx_vote;		/* Clock must be on for TX */
150 	bool rx_vote;		/* Clock must be on for RX */
151 	struct timer_list tx_idle_timer;
152 	u32 tx_idle_delay;
153 	struct timer_list wake_retrans_timer;
154 	u32 wake_retrans;
155 	struct workqueue_struct *workqueue;
156 	struct work_struct ws_awake_rx;
157 	struct work_struct ws_awake_device;
158 	struct work_struct ws_rx_vote_off;
159 	struct work_struct ws_tx_vote_off;
160 	struct work_struct ctrl_memdump_evt;
161 	struct delayed_work ctrl_memdump_timeout;
162 	struct qca_memdump_data *qca_memdump;
163 	unsigned long flags;
164 	struct completion drop_ev_comp;
165 	wait_queue_head_t suspend_wait_q;
166 	enum qca_memdump_states memdump_state;
167 	struct mutex hci_memdump_lock;
168 
169 	/* For debugging purpose */
170 	u64 ibs_sent_wacks;
171 	u64 ibs_sent_slps;
172 	u64 ibs_sent_wakes;
173 	u64 ibs_recv_wacks;
174 	u64 ibs_recv_slps;
175 	u64 ibs_recv_wakes;
176 	u64 vote_last_jif;
177 	u32 vote_on_ms;
178 	u32 vote_off_ms;
179 	u64 tx_votes_on;
180 	u64 rx_votes_on;
181 	u64 tx_votes_off;
182 	u64 rx_votes_off;
183 	u64 votes_on;
184 	u64 votes_off;
185 };
186 
187 enum qca_speed_type {
188 	QCA_INIT_SPEED = 1,
189 	QCA_OPER_SPEED
190 };
191 
192 /*
193  * Voltage regulator information required for configuring the
194  * QCA Bluetooth chipset
195  */
196 struct qca_vreg {
197 	const char *name;
198 	unsigned int load_uA;
199 };
200 
201 struct qca_device_data {
202 	enum qca_btsoc_type soc_type;
203 	struct qca_vreg *vregs;
204 	size_t num_vregs;
205 	uint32_t capabilities;
206 };
207 
208 /*
209  * Platform data for the QCA Bluetooth power driver.
210  */
211 struct qca_power {
212 	struct device *dev;
213 	struct regulator_bulk_data *vreg_bulk;
214 	int num_vregs;
215 	bool vregs_on;
216 };
217 
218 struct qca_serdev {
219 	struct hci_uart	 serdev_hu;
220 	struct gpio_desc *bt_en;
221 	struct gpio_desc *sw_ctrl;
222 	struct clk	 *susclk;
223 	enum qca_btsoc_type btsoc_type;
224 	struct qca_power *bt_power;
225 	u32 init_speed;
226 	u32 oper_speed;
227 	const char *firmware_name;
228 };
229 
230 static int qca_regulator_enable(struct qca_serdev *qcadev);
231 static void qca_regulator_disable(struct qca_serdev *qcadev);
232 static void qca_power_shutdown(struct hci_uart *hu);
233 static int qca_power_off(struct hci_dev *hdev);
234 static void qca_controller_memdump(struct work_struct *work);
235 
236 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
237 {
238 	enum qca_btsoc_type soc_type;
239 
240 	if (hu->serdev) {
241 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
242 
243 		soc_type = qsd->btsoc_type;
244 	} else {
245 		soc_type = QCA_ROME;
246 	}
247 
248 	return soc_type;
249 }
250 
251 static const char *qca_get_firmware_name(struct hci_uart *hu)
252 {
253 	if (hu->serdev) {
254 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
255 
256 		return qsd->firmware_name;
257 	} else {
258 		return NULL;
259 	}
260 }
261 
262 static void __serial_clock_on(struct tty_struct *tty)
263 {
264 	/* TODO: Some chipset requires to enable UART clock on client
265 	 * side to save power consumption or manual work is required.
266 	 * Please put your code to control UART clock here if needed
267 	 */
268 }
269 
270 static void __serial_clock_off(struct tty_struct *tty)
271 {
272 	/* TODO: Some chipset requires to disable UART clock on client
273 	 * side to save power consumption or manual work is required.
274 	 * Please put your code to control UART clock off here if needed
275 	 */
276 }
277 
278 /* serial_clock_vote needs to be called with the ibs lock held */
279 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
280 {
281 	struct qca_data *qca = hu->priv;
282 	unsigned int diff;
283 
284 	bool old_vote = (qca->tx_vote | qca->rx_vote);
285 	bool new_vote;
286 
287 	switch (vote) {
288 	case HCI_IBS_VOTE_STATS_UPDATE:
289 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
290 
291 		if (old_vote)
292 			qca->vote_off_ms += diff;
293 		else
294 			qca->vote_on_ms += diff;
295 		return;
296 
297 	case HCI_IBS_TX_VOTE_CLOCK_ON:
298 		qca->tx_vote = true;
299 		qca->tx_votes_on++;
300 		break;
301 
302 	case HCI_IBS_RX_VOTE_CLOCK_ON:
303 		qca->rx_vote = true;
304 		qca->rx_votes_on++;
305 		break;
306 
307 	case HCI_IBS_TX_VOTE_CLOCK_OFF:
308 		qca->tx_vote = false;
309 		qca->tx_votes_off++;
310 		break;
311 
312 	case HCI_IBS_RX_VOTE_CLOCK_OFF:
313 		qca->rx_vote = false;
314 		qca->rx_votes_off++;
315 		break;
316 
317 	default:
318 		BT_ERR("Voting irregularity");
319 		return;
320 	}
321 
322 	new_vote = qca->rx_vote | qca->tx_vote;
323 
324 	if (new_vote != old_vote) {
325 		if (new_vote)
326 			__serial_clock_on(hu->tty);
327 		else
328 			__serial_clock_off(hu->tty);
329 
330 		BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
331 		       vote ? "true" : "false");
332 
333 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
334 
335 		if (new_vote) {
336 			qca->votes_on++;
337 			qca->vote_off_ms += diff;
338 		} else {
339 			qca->votes_off++;
340 			qca->vote_on_ms += diff;
341 		}
342 		qca->vote_last_jif = jiffies;
343 	}
344 }
345 
346 /* Builds and sends an HCI_IBS command packet.
347  * These are very simple packets with only 1 cmd byte.
348  */
349 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
350 {
351 	int err = 0;
352 	struct sk_buff *skb = NULL;
353 	struct qca_data *qca = hu->priv;
354 
355 	BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
356 
357 	skb = bt_skb_alloc(1, GFP_ATOMIC);
358 	if (!skb) {
359 		BT_ERR("Failed to allocate memory for HCI_IBS packet");
360 		return -ENOMEM;
361 	}
362 
363 	/* Assign HCI_IBS type */
364 	skb_put_u8(skb, cmd);
365 
366 	skb_queue_tail(&qca->txq, skb);
367 
368 	return err;
369 }
370 
371 static void qca_wq_awake_device(struct work_struct *work)
372 {
373 	struct qca_data *qca = container_of(work, struct qca_data,
374 					    ws_awake_device);
375 	struct hci_uart *hu = qca->hu;
376 	unsigned long retrans_delay;
377 	unsigned long flags;
378 
379 	BT_DBG("hu %p wq awake device", hu);
380 
381 	/* Vote for serial clock */
382 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
383 
384 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
385 
386 	/* Send wake indication to device */
387 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
388 		BT_ERR("Failed to send WAKE to device");
389 
390 	qca->ibs_sent_wakes++;
391 
392 	/* Start retransmit timer */
393 	retrans_delay = msecs_to_jiffies(qca->wake_retrans);
394 	mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
395 
396 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
397 
398 	/* Actually send the packets */
399 	hci_uart_tx_wakeup(hu);
400 }
401 
402 static void qca_wq_awake_rx(struct work_struct *work)
403 {
404 	struct qca_data *qca = container_of(work, struct qca_data,
405 					    ws_awake_rx);
406 	struct hci_uart *hu = qca->hu;
407 	unsigned long flags;
408 
409 	BT_DBG("hu %p wq awake rx", hu);
410 
411 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
412 
413 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
414 	qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
415 
416 	/* Always acknowledge device wake up,
417 	 * sending IBS message doesn't count as TX ON.
418 	 */
419 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
420 		BT_ERR("Failed to acknowledge device wake up");
421 
422 	qca->ibs_sent_wacks++;
423 
424 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
425 
426 	/* Actually send the packets */
427 	hci_uart_tx_wakeup(hu);
428 }
429 
430 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
431 {
432 	struct qca_data *qca = container_of(work, struct qca_data,
433 					    ws_rx_vote_off);
434 	struct hci_uart *hu = qca->hu;
435 
436 	BT_DBG("hu %p rx clock vote off", hu);
437 
438 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
439 }
440 
441 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
442 {
443 	struct qca_data *qca = container_of(work, struct qca_data,
444 					    ws_tx_vote_off);
445 	struct hci_uart *hu = qca->hu;
446 
447 	BT_DBG("hu %p tx clock vote off", hu);
448 
449 	/* Run HCI tx handling unlocked */
450 	hci_uart_tx_wakeup(hu);
451 
452 	/* Now that message queued to tty driver, vote for tty clocks off.
453 	 * It is up to the tty driver to pend the clocks off until tx done.
454 	 */
455 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
456 }
457 
458 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
459 {
460 	struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
461 	struct hci_uart *hu = qca->hu;
462 	unsigned long flags;
463 
464 	BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
465 
466 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
467 				 flags, SINGLE_DEPTH_NESTING);
468 
469 	switch (qca->tx_ibs_state) {
470 	case HCI_IBS_TX_AWAKE:
471 		/* TX_IDLE, go to SLEEP */
472 		if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
473 			BT_ERR("Failed to send SLEEP to device");
474 			break;
475 		}
476 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
477 		qca->ibs_sent_slps++;
478 		queue_work(qca->workqueue, &qca->ws_tx_vote_off);
479 		break;
480 
481 	case HCI_IBS_TX_ASLEEP:
482 	case HCI_IBS_TX_WAKING:
483 	default:
484 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
485 		break;
486 	}
487 
488 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
489 }
490 
491 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
492 {
493 	struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
494 	struct hci_uart *hu = qca->hu;
495 	unsigned long flags, retrans_delay;
496 	bool retransmit = false;
497 
498 	BT_DBG("hu %p wake retransmit timeout in %d state",
499 		hu, qca->tx_ibs_state);
500 
501 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
502 				 flags, SINGLE_DEPTH_NESTING);
503 
504 	/* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
505 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
506 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
507 		return;
508 	}
509 
510 	switch (qca->tx_ibs_state) {
511 	case HCI_IBS_TX_WAKING:
512 		/* No WAKE_ACK, retransmit WAKE */
513 		retransmit = true;
514 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
515 			BT_ERR("Failed to acknowledge device wake up");
516 			break;
517 		}
518 		qca->ibs_sent_wakes++;
519 		retrans_delay = msecs_to_jiffies(qca->wake_retrans);
520 		mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
521 		break;
522 
523 	case HCI_IBS_TX_ASLEEP:
524 	case HCI_IBS_TX_AWAKE:
525 	default:
526 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
527 		break;
528 	}
529 
530 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
531 
532 	if (retransmit)
533 		hci_uart_tx_wakeup(hu);
534 }
535 
536 
537 static void qca_controller_memdump_timeout(struct work_struct *work)
538 {
539 	struct qca_data *qca = container_of(work, struct qca_data,
540 					ctrl_memdump_timeout.work);
541 	struct hci_uart *hu = qca->hu;
542 
543 	mutex_lock(&qca->hci_memdump_lock);
544 	if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
545 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
546 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
547 			/* Inject hw error event to reset the device
548 			 * and driver.
549 			 */
550 			hci_reset_dev(hu->hdev);
551 		}
552 	}
553 
554 	mutex_unlock(&qca->hci_memdump_lock);
555 }
556 
557 
558 /* Initialize protocol */
559 static int qca_open(struct hci_uart *hu)
560 {
561 	struct qca_serdev *qcadev;
562 	struct qca_data *qca;
563 
564 	BT_DBG("hu %p qca_open", hu);
565 
566 	if (!hci_uart_has_flow_control(hu))
567 		return -EOPNOTSUPP;
568 
569 	qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
570 	if (!qca)
571 		return -ENOMEM;
572 
573 	skb_queue_head_init(&qca->txq);
574 	skb_queue_head_init(&qca->tx_wait_q);
575 	skb_queue_head_init(&qca->rx_memdump_q);
576 	spin_lock_init(&qca->hci_ibs_lock);
577 	mutex_init(&qca->hci_memdump_lock);
578 	qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
579 	if (!qca->workqueue) {
580 		BT_ERR("QCA Workqueue not initialized properly");
581 		kfree(qca);
582 		return -ENOMEM;
583 	}
584 
585 	INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
586 	INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
587 	INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
588 	INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
589 	INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
590 	INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
591 			  qca_controller_memdump_timeout);
592 	init_waitqueue_head(&qca->suspend_wait_q);
593 
594 	qca->hu = hu;
595 	init_completion(&qca->drop_ev_comp);
596 
597 	/* Assume we start with both sides asleep -- extra wakes OK */
598 	qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
599 	qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
600 
601 	qca->vote_last_jif = jiffies;
602 
603 	hu->priv = qca;
604 
605 	if (hu->serdev) {
606 		qcadev = serdev_device_get_drvdata(hu->serdev);
607 
608 		if (qca_is_wcn399x(qcadev->btsoc_type) ||
609 		    qca_is_wcn6750(qcadev->btsoc_type))
610 			hu->init_speed = qcadev->init_speed;
611 
612 		if (qcadev->oper_speed)
613 			hu->oper_speed = qcadev->oper_speed;
614 	}
615 
616 	timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
617 	qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
618 
619 	timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
620 	qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
621 
622 	BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
623 	       qca->tx_idle_delay, qca->wake_retrans);
624 
625 	return 0;
626 }
627 
628 static void qca_debugfs_init(struct hci_dev *hdev)
629 {
630 	struct hci_uart *hu = hci_get_drvdata(hdev);
631 	struct qca_data *qca = hu->priv;
632 	struct dentry *ibs_dir;
633 	umode_t mode;
634 
635 	if (!hdev->debugfs)
636 		return;
637 
638 	ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
639 
640 	/* read only */
641 	mode = 0444;
642 	debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
643 	debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
644 	debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
645 			   &qca->ibs_sent_slps);
646 	debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
647 			   &qca->ibs_sent_wakes);
648 	debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
649 			   &qca->ibs_sent_wacks);
650 	debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
651 			   &qca->ibs_recv_slps);
652 	debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
653 			   &qca->ibs_recv_wakes);
654 	debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
655 			   &qca->ibs_recv_wacks);
656 	debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
657 	debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
658 	debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
659 	debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
660 	debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
661 	debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
662 	debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
663 	debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
664 	debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
665 	debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
666 
667 	/* read/write */
668 	mode = 0644;
669 	debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
670 	debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
671 			   &qca->tx_idle_delay);
672 }
673 
674 /* Flush protocol data */
675 static int qca_flush(struct hci_uart *hu)
676 {
677 	struct qca_data *qca = hu->priv;
678 
679 	BT_DBG("hu %p qca flush", hu);
680 
681 	skb_queue_purge(&qca->tx_wait_q);
682 	skb_queue_purge(&qca->txq);
683 
684 	return 0;
685 }
686 
687 /* Close protocol */
688 static int qca_close(struct hci_uart *hu)
689 {
690 	struct qca_data *qca = hu->priv;
691 
692 	BT_DBG("hu %p qca close", hu);
693 
694 	serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
695 
696 	skb_queue_purge(&qca->tx_wait_q);
697 	skb_queue_purge(&qca->txq);
698 	skb_queue_purge(&qca->rx_memdump_q);
699 	/*
700 	 * Shut the timers down so they can't be rearmed when
701 	 * destroy_workqueue() drains pending work which in turn might try
702 	 * to arm a timer.  After shutdown rearm attempts are silently
703 	 * ignored by the timer core code.
704 	 */
705 	timer_shutdown_sync(&qca->tx_idle_timer);
706 	timer_shutdown_sync(&qca->wake_retrans_timer);
707 	destroy_workqueue(qca->workqueue);
708 	qca->hu = NULL;
709 
710 	kfree_skb(qca->rx_skb);
711 
712 	hu->priv = NULL;
713 
714 	kfree(qca);
715 
716 	return 0;
717 }
718 
719 /* Called upon a wake-up-indication from the device.
720  */
721 static void device_want_to_wakeup(struct hci_uart *hu)
722 {
723 	unsigned long flags;
724 	struct qca_data *qca = hu->priv;
725 
726 	BT_DBG("hu %p want to wake up", hu);
727 
728 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
729 
730 	qca->ibs_recv_wakes++;
731 
732 	/* Don't wake the rx up when suspending. */
733 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
734 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
735 		return;
736 	}
737 
738 	switch (qca->rx_ibs_state) {
739 	case HCI_IBS_RX_ASLEEP:
740 		/* Make sure clock is on - we may have turned clock off since
741 		 * receiving the wake up indicator awake rx clock.
742 		 */
743 		queue_work(qca->workqueue, &qca->ws_awake_rx);
744 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
745 		return;
746 
747 	case HCI_IBS_RX_AWAKE:
748 		/* Always acknowledge device wake up,
749 		 * sending IBS message doesn't count as TX ON.
750 		 */
751 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
752 			BT_ERR("Failed to acknowledge device wake up");
753 			break;
754 		}
755 		qca->ibs_sent_wacks++;
756 		break;
757 
758 	default:
759 		/* Any other state is illegal */
760 		BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
761 		       qca->rx_ibs_state);
762 		break;
763 	}
764 
765 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
766 
767 	/* Actually send the packets */
768 	hci_uart_tx_wakeup(hu);
769 }
770 
771 /* Called upon a sleep-indication from the device.
772  */
773 static void device_want_to_sleep(struct hci_uart *hu)
774 {
775 	unsigned long flags;
776 	struct qca_data *qca = hu->priv;
777 
778 	BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
779 
780 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
781 
782 	qca->ibs_recv_slps++;
783 
784 	switch (qca->rx_ibs_state) {
785 	case HCI_IBS_RX_AWAKE:
786 		/* Update state */
787 		qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
788 		/* Vote off rx clock under workqueue */
789 		queue_work(qca->workqueue, &qca->ws_rx_vote_off);
790 		break;
791 
792 	case HCI_IBS_RX_ASLEEP:
793 		break;
794 
795 	default:
796 		/* Any other state is illegal */
797 		BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
798 		       qca->rx_ibs_state);
799 		break;
800 	}
801 
802 	wake_up_interruptible(&qca->suspend_wait_q);
803 
804 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
805 }
806 
807 /* Called upon wake-up-acknowledgement from the device
808  */
809 static void device_woke_up(struct hci_uart *hu)
810 {
811 	unsigned long flags, idle_delay;
812 	struct qca_data *qca = hu->priv;
813 	struct sk_buff *skb = NULL;
814 
815 	BT_DBG("hu %p woke up", hu);
816 
817 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
818 
819 	qca->ibs_recv_wacks++;
820 
821 	/* Don't react to the wake-up-acknowledgment when suspending. */
822 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
823 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
824 		return;
825 	}
826 
827 	switch (qca->tx_ibs_state) {
828 	case HCI_IBS_TX_AWAKE:
829 		/* Expect one if we send 2 WAKEs */
830 		BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
831 		       qca->tx_ibs_state);
832 		break;
833 
834 	case HCI_IBS_TX_WAKING:
835 		/* Send pending packets */
836 		while ((skb = skb_dequeue(&qca->tx_wait_q)))
837 			skb_queue_tail(&qca->txq, skb);
838 
839 		/* Switch timers and change state to HCI_IBS_TX_AWAKE */
840 		del_timer(&qca->wake_retrans_timer);
841 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
842 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
843 		qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
844 		break;
845 
846 	case HCI_IBS_TX_ASLEEP:
847 	default:
848 		BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
849 		       qca->tx_ibs_state);
850 		break;
851 	}
852 
853 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
854 
855 	/* Actually send the packets */
856 	hci_uart_tx_wakeup(hu);
857 }
858 
859 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
860  * two simultaneous tasklets.
861  */
862 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
863 {
864 	unsigned long flags = 0, idle_delay;
865 	struct qca_data *qca = hu->priv;
866 
867 	BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
868 	       qca->tx_ibs_state);
869 
870 	if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
871 		/* As SSR is in progress, ignore the packets */
872 		bt_dev_dbg(hu->hdev, "SSR is in progress");
873 		kfree_skb(skb);
874 		return 0;
875 	}
876 
877 	/* Prepend skb with frame type */
878 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
879 
880 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
881 
882 	/* Don't go to sleep in middle of patch download or
883 	 * Out-Of-Band(GPIOs control) sleep is selected.
884 	 * Don't wake the device up when suspending.
885 	 */
886 	if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
887 	    test_bit(QCA_SUSPENDING, &qca->flags)) {
888 		skb_queue_tail(&qca->txq, skb);
889 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
890 		return 0;
891 	}
892 
893 	/* Act according to current state */
894 	switch (qca->tx_ibs_state) {
895 	case HCI_IBS_TX_AWAKE:
896 		BT_DBG("Device awake, sending normally");
897 		skb_queue_tail(&qca->txq, skb);
898 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
899 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
900 		break;
901 
902 	case HCI_IBS_TX_ASLEEP:
903 		BT_DBG("Device asleep, waking up and queueing packet");
904 		/* Save packet for later */
905 		skb_queue_tail(&qca->tx_wait_q, skb);
906 
907 		qca->tx_ibs_state = HCI_IBS_TX_WAKING;
908 		/* Schedule a work queue to wake up device */
909 		queue_work(qca->workqueue, &qca->ws_awake_device);
910 		break;
911 
912 	case HCI_IBS_TX_WAKING:
913 		BT_DBG("Device waking up, queueing packet");
914 		/* Transient state; just keep packet for later */
915 		skb_queue_tail(&qca->tx_wait_q, skb);
916 		break;
917 
918 	default:
919 		BT_ERR("Illegal tx state: %d (losing packet)",
920 		       qca->tx_ibs_state);
921 		dev_kfree_skb_irq(skb);
922 		break;
923 	}
924 
925 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
926 
927 	return 0;
928 }
929 
930 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
931 {
932 	struct hci_uart *hu = hci_get_drvdata(hdev);
933 
934 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
935 
936 	device_want_to_sleep(hu);
937 
938 	kfree_skb(skb);
939 	return 0;
940 }
941 
942 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
943 {
944 	struct hci_uart *hu = hci_get_drvdata(hdev);
945 
946 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
947 
948 	device_want_to_wakeup(hu);
949 
950 	kfree_skb(skb);
951 	return 0;
952 }
953 
954 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
955 {
956 	struct hci_uart *hu = hci_get_drvdata(hdev);
957 
958 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
959 
960 	device_woke_up(hu);
961 
962 	kfree_skb(skb);
963 	return 0;
964 }
965 
966 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
967 {
968 	/* We receive debug logs from chip as an ACL packets.
969 	 * Instead of sending the data to ACL to decode the
970 	 * received data, we are pushing them to the above layers
971 	 * as a diagnostic packet.
972 	 */
973 	if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
974 		return hci_recv_diag(hdev, skb);
975 
976 	return hci_recv_frame(hdev, skb);
977 }
978 
979 static void qca_controller_memdump(struct work_struct *work)
980 {
981 	struct qca_data *qca = container_of(work, struct qca_data,
982 					    ctrl_memdump_evt);
983 	struct hci_uart *hu = qca->hu;
984 	struct sk_buff *skb;
985 	struct qca_memdump_event_hdr *cmd_hdr;
986 	struct qca_memdump_data *qca_memdump = qca->qca_memdump;
987 	struct qca_dump_size *dump;
988 	char *memdump_buf;
989 	char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 };
990 	u16 seq_no;
991 	u32 dump_size;
992 	u32 rx_size;
993 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
994 
995 	while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
996 
997 		mutex_lock(&qca->hci_memdump_lock);
998 		/* Skip processing the received packets if timeout detected
999 		 * or memdump collection completed.
1000 		 */
1001 		if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1002 		    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1003 			mutex_unlock(&qca->hci_memdump_lock);
1004 			return;
1005 		}
1006 
1007 		if (!qca_memdump) {
1008 			qca_memdump = kzalloc(sizeof(struct qca_memdump_data),
1009 					      GFP_ATOMIC);
1010 			if (!qca_memdump) {
1011 				mutex_unlock(&qca->hci_memdump_lock);
1012 				return;
1013 			}
1014 
1015 			qca->qca_memdump = qca_memdump;
1016 		}
1017 
1018 		qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1019 		cmd_hdr = (void *) skb->data;
1020 		seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1021 		skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1022 
1023 		if (!seq_no) {
1024 
1025 			/* This is the first frame of memdump packet from
1026 			 * the controller, Disable IBS to recevie dump
1027 			 * with out any interruption, ideally time required for
1028 			 * the controller to send the dump is 8 seconds. let us
1029 			 * start timer to handle this asynchronous activity.
1030 			 */
1031 			set_bit(QCA_IBS_DISABLED, &qca->flags);
1032 			set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1033 			dump = (void *) skb->data;
1034 			dump_size = __le32_to_cpu(dump->dump_size);
1035 			if (!(dump_size)) {
1036 				bt_dev_err(hu->hdev, "Rx invalid memdump size");
1037 				kfree(qca_memdump);
1038 				kfree_skb(skb);
1039 				qca->qca_memdump = NULL;
1040 				mutex_unlock(&qca->hci_memdump_lock);
1041 				return;
1042 			}
1043 
1044 			bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1045 				    dump_size);
1046 			queue_delayed_work(qca->workqueue,
1047 					   &qca->ctrl_memdump_timeout,
1048 					   msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)
1049 					  );
1050 
1051 			skb_pull(skb, sizeof(dump_size));
1052 			memdump_buf = vmalloc(dump_size);
1053 			qca_memdump->ram_dump_size = dump_size;
1054 			qca_memdump->memdump_buf_head = memdump_buf;
1055 			qca_memdump->memdump_buf_tail = memdump_buf;
1056 		}
1057 
1058 		memdump_buf = qca_memdump->memdump_buf_tail;
1059 
1060 		/* If sequence no 0 is missed then there is no point in
1061 		 * accepting the other sequences.
1062 		 */
1063 		if (!memdump_buf) {
1064 			bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1065 			kfree(qca_memdump);
1066 			kfree_skb(skb);
1067 			qca->qca_memdump = NULL;
1068 			mutex_unlock(&qca->hci_memdump_lock);
1069 			return;
1070 		}
1071 
1072 		/* There could be chance of missing some packets from
1073 		 * the controller. In such cases let us store the dummy
1074 		 * packets in the buffer.
1075 		 */
1076 		/* For QCA6390, controller does not lost packets but
1077 		 * sequence number field of packet sometimes has error
1078 		 * bits, so skip this checking for missing packet.
1079 		 */
1080 		while ((seq_no > qca_memdump->current_seq_no + 1) &&
1081 		       (soc_type != QCA_QCA6390) &&
1082 		       seq_no != QCA_LAST_SEQUENCE_NUM) {
1083 			bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1084 				   qca_memdump->current_seq_no);
1085 			rx_size = qca_memdump->received_dump;
1086 			rx_size += QCA_DUMP_PACKET_SIZE;
1087 			if (rx_size > qca_memdump->ram_dump_size) {
1088 				bt_dev_err(hu->hdev,
1089 					   "QCA memdump received %d, no space for missed packet",
1090 					   qca_memdump->received_dump);
1091 				break;
1092 			}
1093 			memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE);
1094 			memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE;
1095 			qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1096 			qca_memdump->current_seq_no++;
1097 		}
1098 
1099 		rx_size = qca_memdump->received_dump + skb->len;
1100 		if (rx_size <= qca_memdump->ram_dump_size) {
1101 			if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1102 			    (seq_no != qca_memdump->current_seq_no))
1103 				bt_dev_err(hu->hdev,
1104 					   "QCA memdump unexpected packet %d",
1105 					   seq_no);
1106 			bt_dev_dbg(hu->hdev,
1107 				   "QCA memdump packet %d with length %d",
1108 				   seq_no, skb->len);
1109 			memcpy(memdump_buf, (unsigned char *)skb->data,
1110 			       skb->len);
1111 			memdump_buf = memdump_buf + skb->len;
1112 			qca_memdump->memdump_buf_tail = memdump_buf;
1113 			qca_memdump->current_seq_no = seq_no + 1;
1114 			qca_memdump->received_dump += skb->len;
1115 		} else {
1116 			bt_dev_err(hu->hdev,
1117 				   "QCA memdump received %d, no space for packet %d",
1118 				   qca_memdump->received_dump, seq_no);
1119 		}
1120 		qca->qca_memdump = qca_memdump;
1121 		kfree_skb(skb);
1122 		if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1123 			bt_dev_info(hu->hdev,
1124 				    "QCA memdump Done, received %d, total %d",
1125 				    qca_memdump->received_dump,
1126 				    qca_memdump->ram_dump_size);
1127 			memdump_buf = qca_memdump->memdump_buf_head;
1128 			dev_coredumpv(&hu->serdev->dev, memdump_buf,
1129 				      qca_memdump->received_dump, GFP_KERNEL);
1130 			cancel_delayed_work(&qca->ctrl_memdump_timeout);
1131 			kfree(qca->qca_memdump);
1132 			qca->qca_memdump = NULL;
1133 			qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1134 			clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1135 		}
1136 
1137 		mutex_unlock(&qca->hci_memdump_lock);
1138 	}
1139 
1140 }
1141 
1142 static int qca_controller_memdump_event(struct hci_dev *hdev,
1143 					struct sk_buff *skb)
1144 {
1145 	struct hci_uart *hu = hci_get_drvdata(hdev);
1146 	struct qca_data *qca = hu->priv;
1147 
1148 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1149 	skb_queue_tail(&qca->rx_memdump_q, skb);
1150 	queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1151 
1152 	return 0;
1153 }
1154 
1155 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1156 {
1157 	struct hci_uart *hu = hci_get_drvdata(hdev);
1158 	struct qca_data *qca = hu->priv;
1159 
1160 	if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1161 		struct hci_event_hdr *hdr = (void *)skb->data;
1162 
1163 		/* For the WCN3990 the vendor command for a baudrate change
1164 		 * isn't sent as synchronous HCI command, because the
1165 		 * controller sends the corresponding vendor event with the
1166 		 * new baudrate. The event is received and properly decoded
1167 		 * after changing the baudrate of the host port. It needs to
1168 		 * be dropped, otherwise it can be misinterpreted as
1169 		 * response to a later firmware download command (also a
1170 		 * vendor command).
1171 		 */
1172 
1173 		if (hdr->evt == HCI_EV_VENDOR)
1174 			complete(&qca->drop_ev_comp);
1175 
1176 		kfree_skb(skb);
1177 
1178 		return 0;
1179 	}
1180 	/* We receive chip memory dump as an event packet, With a dedicated
1181 	 * handler followed by a hardware error event. When this event is
1182 	 * received we store dump into a file before closing hci. This
1183 	 * dump will help in triaging the issues.
1184 	 */
1185 	if ((skb->data[0] == HCI_VENDOR_PKT) &&
1186 	    (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1187 		return qca_controller_memdump_event(hdev, skb);
1188 
1189 	return hci_recv_frame(hdev, skb);
1190 }
1191 
1192 #define QCA_IBS_SLEEP_IND_EVENT \
1193 	.type = HCI_IBS_SLEEP_IND, \
1194 	.hlen = 0, \
1195 	.loff = 0, \
1196 	.lsize = 0, \
1197 	.maxlen = HCI_MAX_IBS_SIZE
1198 
1199 #define QCA_IBS_WAKE_IND_EVENT \
1200 	.type = HCI_IBS_WAKE_IND, \
1201 	.hlen = 0, \
1202 	.loff = 0, \
1203 	.lsize = 0, \
1204 	.maxlen = HCI_MAX_IBS_SIZE
1205 
1206 #define QCA_IBS_WAKE_ACK_EVENT \
1207 	.type = HCI_IBS_WAKE_ACK, \
1208 	.hlen = 0, \
1209 	.loff = 0, \
1210 	.lsize = 0, \
1211 	.maxlen = HCI_MAX_IBS_SIZE
1212 
1213 static const struct h4_recv_pkt qca_recv_pkts[] = {
1214 	{ H4_RECV_ACL,             .recv = qca_recv_acl_data },
1215 	{ H4_RECV_SCO,             .recv = hci_recv_frame    },
1216 	{ H4_RECV_EVENT,           .recv = qca_recv_event    },
1217 	{ QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1218 	{ QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1219 	{ QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1220 };
1221 
1222 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1223 {
1224 	struct qca_data *qca = hu->priv;
1225 
1226 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1227 		return -EUNATCH;
1228 
1229 	qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1230 				  qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1231 	if (IS_ERR(qca->rx_skb)) {
1232 		int err = PTR_ERR(qca->rx_skb);
1233 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1234 		qca->rx_skb = NULL;
1235 		return err;
1236 	}
1237 
1238 	return count;
1239 }
1240 
1241 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1242 {
1243 	struct qca_data *qca = hu->priv;
1244 
1245 	return skb_dequeue(&qca->txq);
1246 }
1247 
1248 static uint8_t qca_get_baudrate_value(int speed)
1249 {
1250 	switch (speed) {
1251 	case 9600:
1252 		return QCA_BAUDRATE_9600;
1253 	case 19200:
1254 		return QCA_BAUDRATE_19200;
1255 	case 38400:
1256 		return QCA_BAUDRATE_38400;
1257 	case 57600:
1258 		return QCA_BAUDRATE_57600;
1259 	case 115200:
1260 		return QCA_BAUDRATE_115200;
1261 	case 230400:
1262 		return QCA_BAUDRATE_230400;
1263 	case 460800:
1264 		return QCA_BAUDRATE_460800;
1265 	case 500000:
1266 		return QCA_BAUDRATE_500000;
1267 	case 921600:
1268 		return QCA_BAUDRATE_921600;
1269 	case 1000000:
1270 		return QCA_BAUDRATE_1000000;
1271 	case 2000000:
1272 		return QCA_BAUDRATE_2000000;
1273 	case 3000000:
1274 		return QCA_BAUDRATE_3000000;
1275 	case 3200000:
1276 		return QCA_BAUDRATE_3200000;
1277 	case 3500000:
1278 		return QCA_BAUDRATE_3500000;
1279 	default:
1280 		return QCA_BAUDRATE_115200;
1281 	}
1282 }
1283 
1284 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1285 {
1286 	struct hci_uart *hu = hci_get_drvdata(hdev);
1287 	struct qca_data *qca = hu->priv;
1288 	struct sk_buff *skb;
1289 	u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1290 
1291 	if (baudrate > QCA_BAUDRATE_3200000)
1292 		return -EINVAL;
1293 
1294 	cmd[4] = baudrate;
1295 
1296 	skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1297 	if (!skb) {
1298 		bt_dev_err(hdev, "Failed to allocate baudrate packet");
1299 		return -ENOMEM;
1300 	}
1301 
1302 	/* Assign commands to change baudrate and packet type. */
1303 	skb_put_data(skb, cmd, sizeof(cmd));
1304 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1305 
1306 	skb_queue_tail(&qca->txq, skb);
1307 	hci_uart_tx_wakeup(hu);
1308 
1309 	/* Wait for the baudrate change request to be sent */
1310 
1311 	while (!skb_queue_empty(&qca->txq))
1312 		usleep_range(100, 200);
1313 
1314 	if (hu->serdev)
1315 		serdev_device_wait_until_sent(hu->serdev,
1316 		      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1317 
1318 	/* Give the controller time to process the request */
1319 	if (qca_is_wcn399x(qca_soc_type(hu)) ||
1320 	    qca_is_wcn6750(qca_soc_type(hu)))
1321 		usleep_range(1000, 10000);
1322 	else
1323 		msleep(300);
1324 
1325 	return 0;
1326 }
1327 
1328 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1329 {
1330 	if (hu->serdev)
1331 		serdev_device_set_baudrate(hu->serdev, speed);
1332 	else
1333 		hci_uart_set_baudrate(hu, speed);
1334 }
1335 
1336 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1337 {
1338 	int ret;
1339 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1340 	u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1341 
1342 	/* These power pulses are single byte command which are sent
1343 	 * at required baudrate to wcn3990. On wcn3990, we have an external
1344 	 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1345 	 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1346 	 * and also we use the same power inputs to turn on and off for
1347 	 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1348 	 * we send a power on pulse at 115200 bps. This algorithm will help to
1349 	 * save power. Disabling hardware flow control is mandatory while
1350 	 * sending power pulses to SoC.
1351 	 */
1352 	bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1353 
1354 	serdev_device_write_flush(hu->serdev);
1355 	hci_uart_set_flow_control(hu, true);
1356 	ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1357 	if (ret < 0) {
1358 		bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1359 		return ret;
1360 	}
1361 
1362 	serdev_device_wait_until_sent(hu->serdev, timeout);
1363 	hci_uart_set_flow_control(hu, false);
1364 
1365 	/* Give to controller time to boot/shutdown */
1366 	if (on)
1367 		msleep(100);
1368 	else
1369 		usleep_range(1000, 10000);
1370 
1371 	return 0;
1372 }
1373 
1374 static unsigned int qca_get_speed(struct hci_uart *hu,
1375 				  enum qca_speed_type speed_type)
1376 {
1377 	unsigned int speed = 0;
1378 
1379 	if (speed_type == QCA_INIT_SPEED) {
1380 		if (hu->init_speed)
1381 			speed = hu->init_speed;
1382 		else if (hu->proto->init_speed)
1383 			speed = hu->proto->init_speed;
1384 	} else {
1385 		if (hu->oper_speed)
1386 			speed = hu->oper_speed;
1387 		else if (hu->proto->oper_speed)
1388 			speed = hu->proto->oper_speed;
1389 	}
1390 
1391 	return speed;
1392 }
1393 
1394 static int qca_check_speeds(struct hci_uart *hu)
1395 {
1396 	if (qca_is_wcn399x(qca_soc_type(hu)) ||
1397 	    qca_is_wcn6750(qca_soc_type(hu))) {
1398 		if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1399 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1400 			return -EINVAL;
1401 	} else {
1402 		if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1403 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1404 			return -EINVAL;
1405 	}
1406 
1407 	return 0;
1408 }
1409 
1410 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1411 {
1412 	unsigned int speed, qca_baudrate;
1413 	struct qca_data *qca = hu->priv;
1414 	int ret = 0;
1415 
1416 	if (speed_type == QCA_INIT_SPEED) {
1417 		speed = qca_get_speed(hu, QCA_INIT_SPEED);
1418 		if (speed)
1419 			host_set_baudrate(hu, speed);
1420 	} else {
1421 		enum qca_btsoc_type soc_type = qca_soc_type(hu);
1422 
1423 		speed = qca_get_speed(hu, QCA_OPER_SPEED);
1424 		if (!speed)
1425 			return 0;
1426 
1427 		/* Disable flow control for wcn3990 to deassert RTS while
1428 		 * changing the baudrate of chip and host.
1429 		 */
1430 		if (qca_is_wcn399x(soc_type) ||
1431 		    qca_is_wcn6750(soc_type))
1432 			hci_uart_set_flow_control(hu, true);
1433 
1434 		if (soc_type == QCA_WCN3990) {
1435 			reinit_completion(&qca->drop_ev_comp);
1436 			set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1437 		}
1438 
1439 		qca_baudrate = qca_get_baudrate_value(speed);
1440 		bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1441 		ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1442 		if (ret)
1443 			goto error;
1444 
1445 		host_set_baudrate(hu, speed);
1446 
1447 error:
1448 		if (qca_is_wcn399x(soc_type) ||
1449 		    qca_is_wcn6750(soc_type))
1450 			hci_uart_set_flow_control(hu, false);
1451 
1452 		if (soc_type == QCA_WCN3990) {
1453 			/* Wait for the controller to send the vendor event
1454 			 * for the baudrate change command.
1455 			 */
1456 			if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1457 						 msecs_to_jiffies(100))) {
1458 				bt_dev_err(hu->hdev,
1459 					   "Failed to change controller baudrate\n");
1460 				ret = -ETIMEDOUT;
1461 			}
1462 
1463 			clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1464 		}
1465 	}
1466 
1467 	return ret;
1468 }
1469 
1470 static int qca_send_crashbuffer(struct hci_uart *hu)
1471 {
1472 	struct qca_data *qca = hu->priv;
1473 	struct sk_buff *skb;
1474 
1475 	skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1476 	if (!skb) {
1477 		bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1478 		return -ENOMEM;
1479 	}
1480 
1481 	/* We forcefully crash the controller, by sending 0xfb byte for
1482 	 * 1024 times. We also might have chance of losing data, To be
1483 	 * on safer side we send 1096 bytes to the SoC.
1484 	 */
1485 	memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1486 	       QCA_CRASHBYTE_PACKET_LEN);
1487 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1488 	bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1489 	skb_queue_tail(&qca->txq, skb);
1490 	hci_uart_tx_wakeup(hu);
1491 
1492 	return 0;
1493 }
1494 
1495 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1496 {
1497 	struct hci_uart *hu = hci_get_drvdata(hdev);
1498 	struct qca_data *qca = hu->priv;
1499 
1500 	wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1501 			    TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1502 
1503 	clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1504 }
1505 
1506 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1507 {
1508 	struct hci_uart *hu = hci_get_drvdata(hdev);
1509 	struct qca_data *qca = hu->priv;
1510 
1511 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1512 	set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1513 	bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1514 
1515 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1516 		/* If hardware error event received for other than QCA
1517 		 * soc memory dump event, then we need to crash the SOC
1518 		 * and wait here for 8 seconds to get the dump packets.
1519 		 * This will block main thread to be on hold until we
1520 		 * collect dump.
1521 		 */
1522 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1523 		qca_send_crashbuffer(hu);
1524 		qca_wait_for_dump_collection(hdev);
1525 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1526 		/* Let us wait here until memory dump collected or
1527 		 * memory dump timer expired.
1528 		 */
1529 		bt_dev_info(hdev, "waiting for dump to complete");
1530 		qca_wait_for_dump_collection(hdev);
1531 	}
1532 
1533 	mutex_lock(&qca->hci_memdump_lock);
1534 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1535 		bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1536 		if (qca->qca_memdump) {
1537 			vfree(qca->qca_memdump->memdump_buf_head);
1538 			kfree(qca->qca_memdump);
1539 			qca->qca_memdump = NULL;
1540 		}
1541 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1542 		cancel_delayed_work(&qca->ctrl_memdump_timeout);
1543 	}
1544 	mutex_unlock(&qca->hci_memdump_lock);
1545 
1546 	if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1547 	    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1548 		cancel_work_sync(&qca->ctrl_memdump_evt);
1549 		skb_queue_purge(&qca->rx_memdump_q);
1550 	}
1551 
1552 	clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1553 }
1554 
1555 static void qca_cmd_timeout(struct hci_dev *hdev)
1556 {
1557 	struct hci_uart *hu = hci_get_drvdata(hdev);
1558 	struct qca_data *qca = hu->priv;
1559 
1560 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1561 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1562 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1563 		qca_send_crashbuffer(hu);
1564 		qca_wait_for_dump_collection(hdev);
1565 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1566 		/* Let us wait here until memory dump collected or
1567 		 * memory dump timer expired.
1568 		 */
1569 		bt_dev_info(hdev, "waiting for dump to complete");
1570 		qca_wait_for_dump_collection(hdev);
1571 	}
1572 
1573 	mutex_lock(&qca->hci_memdump_lock);
1574 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1575 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1576 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1577 			/* Inject hw error event to reset the device
1578 			 * and driver.
1579 			 */
1580 			hci_reset_dev(hu->hdev);
1581 		}
1582 	}
1583 	mutex_unlock(&qca->hci_memdump_lock);
1584 }
1585 
1586 static bool qca_wakeup(struct hci_dev *hdev)
1587 {
1588 	struct hci_uart *hu = hci_get_drvdata(hdev);
1589 	bool wakeup;
1590 
1591 	/* UART driver handles the interrupt from BT SoC.So we need to use
1592 	 * device handle of UART driver to get the status of device may wakeup.
1593 	 */
1594 	wakeup = device_may_wakeup(hu->serdev->ctrl->dev.parent);
1595 	bt_dev_dbg(hu->hdev, "wakeup status : %d", wakeup);
1596 
1597 	return wakeup;
1598 }
1599 
1600 static int qca_regulator_init(struct hci_uart *hu)
1601 {
1602 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1603 	struct qca_serdev *qcadev;
1604 	int ret;
1605 	bool sw_ctrl_state;
1606 
1607 	/* Check for vregs status, may be hci down has turned
1608 	 * off the voltage regulator.
1609 	 */
1610 	qcadev = serdev_device_get_drvdata(hu->serdev);
1611 	if (!qcadev->bt_power->vregs_on) {
1612 		serdev_device_close(hu->serdev);
1613 		ret = qca_regulator_enable(qcadev);
1614 		if (ret)
1615 			return ret;
1616 
1617 		ret = serdev_device_open(hu->serdev);
1618 		if (ret) {
1619 			bt_dev_err(hu->hdev, "failed to open port");
1620 			return ret;
1621 		}
1622 	}
1623 
1624 	if (qca_is_wcn399x(soc_type)) {
1625 		/* Forcefully enable wcn399x to enter in to boot mode. */
1626 		host_set_baudrate(hu, 2400);
1627 		ret = qca_send_power_pulse(hu, false);
1628 		if (ret)
1629 			return ret;
1630 	}
1631 
1632 	/* For wcn6750 need to enable gpio bt_en */
1633 	if (qcadev->bt_en) {
1634 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
1635 		msleep(50);
1636 		gpiod_set_value_cansleep(qcadev->bt_en, 1);
1637 		msleep(50);
1638 		if (qcadev->sw_ctrl) {
1639 			sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1640 			bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1641 		}
1642 	}
1643 
1644 	qca_set_speed(hu, QCA_INIT_SPEED);
1645 
1646 	if (qca_is_wcn399x(soc_type)) {
1647 		ret = qca_send_power_pulse(hu, true);
1648 		if (ret)
1649 			return ret;
1650 	}
1651 
1652 	/* Now the device is in ready state to communicate with host.
1653 	 * To sync host with device we need to reopen port.
1654 	 * Without this, we will have RTS and CTS synchronization
1655 	 * issues.
1656 	 */
1657 	serdev_device_close(hu->serdev);
1658 	ret = serdev_device_open(hu->serdev);
1659 	if (ret) {
1660 		bt_dev_err(hu->hdev, "failed to open port");
1661 		return ret;
1662 	}
1663 
1664 	hci_uart_set_flow_control(hu, false);
1665 
1666 	return 0;
1667 }
1668 
1669 static int qca_power_on(struct hci_dev *hdev)
1670 {
1671 	struct hci_uart *hu = hci_get_drvdata(hdev);
1672 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1673 	struct qca_serdev *qcadev;
1674 	struct qca_data *qca = hu->priv;
1675 	int ret = 0;
1676 
1677 	/* Non-serdev device usually is powered by external power
1678 	 * and don't need additional action in driver for power on
1679 	 */
1680 	if (!hu->serdev)
1681 		return 0;
1682 
1683 	if (qca_is_wcn399x(soc_type) ||
1684 	    qca_is_wcn6750(soc_type)) {
1685 		ret = qca_regulator_init(hu);
1686 	} else {
1687 		qcadev = serdev_device_get_drvdata(hu->serdev);
1688 		if (qcadev->bt_en) {
1689 			gpiod_set_value_cansleep(qcadev->bt_en, 1);
1690 			/* Controller needs time to bootup. */
1691 			msleep(150);
1692 		}
1693 	}
1694 
1695 	clear_bit(QCA_BT_OFF, &qca->flags);
1696 	return ret;
1697 }
1698 
1699 static int qca_setup(struct hci_uart *hu)
1700 {
1701 	struct hci_dev *hdev = hu->hdev;
1702 	struct qca_data *qca = hu->priv;
1703 	unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1704 	unsigned int retries = 0;
1705 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1706 	const char *firmware_name = qca_get_firmware_name(hu);
1707 	int ret;
1708 	struct qca_btsoc_version ver;
1709 
1710 	ret = qca_check_speeds(hu);
1711 	if (ret)
1712 		return ret;
1713 
1714 	clear_bit(QCA_ROM_FW, &qca->flags);
1715 	/* Patch downloading has to be done without IBS mode */
1716 	set_bit(QCA_IBS_DISABLED, &qca->flags);
1717 
1718 	/* Enable controller to do both LE scan and BR/EDR inquiry
1719 	 * simultaneously.
1720 	 */
1721 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1722 
1723 	bt_dev_info(hdev, "setting up %s",
1724 		qca_is_wcn399x(soc_type) ? "wcn399x" :
1725 		(soc_type == QCA_WCN6750) ? "wcn6750" : "ROME/QCA6390");
1726 
1727 	qca->memdump_state = QCA_MEMDUMP_IDLE;
1728 
1729 retry:
1730 	ret = qca_power_on(hdev);
1731 	if (ret)
1732 		goto out;
1733 
1734 	clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1735 
1736 	if (qca_is_wcn399x(soc_type) ||
1737 	    qca_is_wcn6750(soc_type)) {
1738 		set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1739 		hci_set_aosp_capable(hdev);
1740 
1741 		ret = qca_read_soc_version(hdev, &ver, soc_type);
1742 		if (ret)
1743 			goto out;
1744 	} else {
1745 		qca_set_speed(hu, QCA_INIT_SPEED);
1746 	}
1747 
1748 	/* Setup user speed if needed */
1749 	speed = qca_get_speed(hu, QCA_OPER_SPEED);
1750 	if (speed) {
1751 		ret = qca_set_speed(hu, QCA_OPER_SPEED);
1752 		if (ret)
1753 			goto out;
1754 
1755 		qca_baudrate = qca_get_baudrate_value(speed);
1756 	}
1757 
1758 	if (!(qca_is_wcn399x(soc_type) ||
1759 	     qca_is_wcn6750(soc_type))) {
1760 		/* Get QCA version information */
1761 		ret = qca_read_soc_version(hdev, &ver, soc_type);
1762 		if (ret)
1763 			goto out;
1764 	}
1765 
1766 	/* Setup patch / NVM configurations */
1767 	ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver,
1768 			firmware_name);
1769 	if (!ret) {
1770 		clear_bit(QCA_IBS_DISABLED, &qca->flags);
1771 		qca_debugfs_init(hdev);
1772 		hu->hdev->hw_error = qca_hw_error;
1773 		hu->hdev->cmd_timeout = qca_cmd_timeout;
1774 		if (device_can_wakeup(hu->serdev->ctrl->dev.parent))
1775 			hu->hdev->wakeup = qca_wakeup;
1776 	} else if (ret == -ENOENT) {
1777 		/* No patch/nvm-config found, run with original fw/config */
1778 		set_bit(QCA_ROM_FW, &qca->flags);
1779 		ret = 0;
1780 	} else if (ret == -EAGAIN) {
1781 		/*
1782 		 * Userspace firmware loader will return -EAGAIN in case no
1783 		 * patch/nvm-config is found, so run with original fw/config.
1784 		 */
1785 		set_bit(QCA_ROM_FW, &qca->flags);
1786 		ret = 0;
1787 	}
1788 
1789 out:
1790 	if (ret && retries < MAX_INIT_RETRIES) {
1791 		bt_dev_warn(hdev, "Retry BT power ON:%d", retries);
1792 		qca_power_shutdown(hu);
1793 		if (hu->serdev) {
1794 			serdev_device_close(hu->serdev);
1795 			ret = serdev_device_open(hu->serdev);
1796 			if (ret) {
1797 				bt_dev_err(hdev, "failed to open port");
1798 				return ret;
1799 			}
1800 		}
1801 		retries++;
1802 		goto retry;
1803 	}
1804 
1805 	/* Setup bdaddr */
1806 	if (soc_type == QCA_ROME)
1807 		hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1808 	else
1809 		hu->hdev->set_bdaddr = qca_set_bdaddr;
1810 
1811 	return ret;
1812 }
1813 
1814 static const struct hci_uart_proto qca_proto = {
1815 	.id		= HCI_UART_QCA,
1816 	.name		= "QCA",
1817 	.manufacturer	= 29,
1818 	.init_speed	= 115200,
1819 	.oper_speed	= 3000000,
1820 	.open		= qca_open,
1821 	.close		= qca_close,
1822 	.flush		= qca_flush,
1823 	.setup		= qca_setup,
1824 	.recv		= qca_recv,
1825 	.enqueue	= qca_enqueue,
1826 	.dequeue	= qca_dequeue,
1827 };
1828 
1829 static const struct qca_device_data qca_soc_data_wcn3990 = {
1830 	.soc_type = QCA_WCN3990,
1831 	.vregs = (struct qca_vreg []) {
1832 		{ "vddio", 15000  },
1833 		{ "vddxo", 80000  },
1834 		{ "vddrf", 300000 },
1835 		{ "vddch0", 450000 },
1836 	},
1837 	.num_vregs = 4,
1838 };
1839 
1840 static const struct qca_device_data qca_soc_data_wcn3991 = {
1841 	.soc_type = QCA_WCN3991,
1842 	.vregs = (struct qca_vreg []) {
1843 		{ "vddio", 15000  },
1844 		{ "vddxo", 80000  },
1845 		{ "vddrf", 300000 },
1846 		{ "vddch0", 450000 },
1847 	},
1848 	.num_vregs = 4,
1849 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1850 };
1851 
1852 static const struct qca_device_data qca_soc_data_wcn3998 = {
1853 	.soc_type = QCA_WCN3998,
1854 	.vregs = (struct qca_vreg []) {
1855 		{ "vddio", 10000  },
1856 		{ "vddxo", 80000  },
1857 		{ "vddrf", 300000 },
1858 		{ "vddch0", 450000 },
1859 	},
1860 	.num_vregs = 4,
1861 };
1862 
1863 static const struct qca_device_data qca_soc_data_qca6390 = {
1864 	.soc_type = QCA_QCA6390,
1865 	.num_vregs = 0,
1866 };
1867 
1868 static const struct qca_device_data qca_soc_data_wcn6750 = {
1869 	.soc_type = QCA_WCN6750,
1870 	.vregs = (struct qca_vreg []) {
1871 		{ "vddio", 5000 },
1872 		{ "vddaon", 26000 },
1873 		{ "vddbtcxmx", 126000 },
1874 		{ "vddrfacmn", 12500 },
1875 		{ "vddrfa0p8", 102000 },
1876 		{ "vddrfa1p7", 302000 },
1877 		{ "vddrfa1p2", 257000 },
1878 		{ "vddrfa2p2", 1700000 },
1879 		{ "vddasd", 200 },
1880 	},
1881 	.num_vregs = 9,
1882 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1883 };
1884 
1885 static void qca_power_shutdown(struct hci_uart *hu)
1886 {
1887 	struct qca_serdev *qcadev;
1888 	struct qca_data *qca = hu->priv;
1889 	unsigned long flags;
1890 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1891 	bool sw_ctrl_state;
1892 
1893 	/* From this point we go into power off state. But serial port is
1894 	 * still open, stop queueing the IBS data and flush all the buffered
1895 	 * data in skb's.
1896 	 */
1897 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
1898 	set_bit(QCA_IBS_DISABLED, &qca->flags);
1899 	qca_flush(hu);
1900 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
1901 
1902 	/* Non-serdev device usually is powered by external power
1903 	 * and don't need additional action in driver for power down
1904 	 */
1905 	if (!hu->serdev)
1906 		return;
1907 
1908 	qcadev = serdev_device_get_drvdata(hu->serdev);
1909 
1910 	if (qca_is_wcn399x(soc_type)) {
1911 		host_set_baudrate(hu, 2400);
1912 		qca_send_power_pulse(hu, false);
1913 		qca_regulator_disable(qcadev);
1914 	} else if (soc_type == QCA_WCN6750) {
1915 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
1916 		msleep(100);
1917 		qca_regulator_disable(qcadev);
1918 		if (qcadev->sw_ctrl) {
1919 			sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1920 			bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1921 		}
1922 	} else if (qcadev->bt_en) {
1923 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
1924 	}
1925 
1926 	set_bit(QCA_BT_OFF, &qca->flags);
1927 }
1928 
1929 static int qca_power_off(struct hci_dev *hdev)
1930 {
1931 	struct hci_uart *hu = hci_get_drvdata(hdev);
1932 	struct qca_data *qca = hu->priv;
1933 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1934 
1935 	hu->hdev->hw_error = NULL;
1936 	hu->hdev->cmd_timeout = NULL;
1937 
1938 	del_timer_sync(&qca->wake_retrans_timer);
1939 	del_timer_sync(&qca->tx_idle_timer);
1940 
1941 	/* Stop sending shutdown command if soc crashes. */
1942 	if (soc_type != QCA_ROME
1943 		&& qca->memdump_state == QCA_MEMDUMP_IDLE) {
1944 		qca_send_pre_shutdown_cmd(hdev);
1945 		usleep_range(8000, 10000);
1946 	}
1947 
1948 	qca_power_shutdown(hu);
1949 	return 0;
1950 }
1951 
1952 static int qca_regulator_enable(struct qca_serdev *qcadev)
1953 {
1954 	struct qca_power *power = qcadev->bt_power;
1955 	int ret;
1956 
1957 	/* Already enabled */
1958 	if (power->vregs_on)
1959 		return 0;
1960 
1961 	BT_DBG("enabling %d regulators)", power->num_vregs);
1962 
1963 	ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
1964 	if (ret)
1965 		return ret;
1966 
1967 	power->vregs_on = true;
1968 
1969 	ret = clk_prepare_enable(qcadev->susclk);
1970 	if (ret)
1971 		qca_regulator_disable(qcadev);
1972 
1973 	return ret;
1974 }
1975 
1976 static void qca_regulator_disable(struct qca_serdev *qcadev)
1977 {
1978 	struct qca_power *power;
1979 
1980 	if (!qcadev)
1981 		return;
1982 
1983 	power = qcadev->bt_power;
1984 
1985 	/* Already disabled? */
1986 	if (!power->vregs_on)
1987 		return;
1988 
1989 	regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
1990 	power->vregs_on = false;
1991 
1992 	clk_disable_unprepare(qcadev->susclk);
1993 }
1994 
1995 static int qca_init_regulators(struct qca_power *qca,
1996 				const struct qca_vreg *vregs, size_t num_vregs)
1997 {
1998 	struct regulator_bulk_data *bulk;
1999 	int ret;
2000 	int i;
2001 
2002 	bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
2003 	if (!bulk)
2004 		return -ENOMEM;
2005 
2006 	for (i = 0; i < num_vregs; i++)
2007 		bulk[i].supply = vregs[i].name;
2008 
2009 	ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
2010 	if (ret < 0)
2011 		return ret;
2012 
2013 	for (i = 0; i < num_vregs; i++) {
2014 		ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
2015 		if (ret)
2016 			return ret;
2017 	}
2018 
2019 	qca->vreg_bulk = bulk;
2020 	qca->num_vregs = num_vregs;
2021 
2022 	return 0;
2023 }
2024 
2025 static int qca_serdev_probe(struct serdev_device *serdev)
2026 {
2027 	struct qca_serdev *qcadev;
2028 	struct hci_dev *hdev;
2029 	const struct qca_device_data *data;
2030 	int err;
2031 	bool power_ctrl_enabled = true;
2032 
2033 	qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
2034 	if (!qcadev)
2035 		return -ENOMEM;
2036 
2037 	qcadev->serdev_hu.serdev = serdev;
2038 	data = device_get_match_data(&serdev->dev);
2039 	serdev_device_set_drvdata(serdev, qcadev);
2040 	device_property_read_string(&serdev->dev, "firmware-name",
2041 					 &qcadev->firmware_name);
2042 	device_property_read_u32(&serdev->dev, "max-speed",
2043 				 &qcadev->oper_speed);
2044 	if (!qcadev->oper_speed)
2045 		BT_DBG("UART will pick default operating speed");
2046 
2047 	if (data &&
2048 	    (qca_is_wcn399x(data->soc_type) ||
2049 	    qca_is_wcn6750(data->soc_type))) {
2050 		qcadev->btsoc_type = data->soc_type;
2051 		qcadev->bt_power = devm_kzalloc(&serdev->dev,
2052 						sizeof(struct qca_power),
2053 						GFP_KERNEL);
2054 		if (!qcadev->bt_power)
2055 			return -ENOMEM;
2056 
2057 		qcadev->bt_power->dev = &serdev->dev;
2058 		err = qca_init_regulators(qcadev->bt_power, data->vregs,
2059 					  data->num_vregs);
2060 		if (err) {
2061 			BT_ERR("Failed to init regulators:%d", err);
2062 			return err;
2063 		}
2064 
2065 		qcadev->bt_power->vregs_on = false;
2066 
2067 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2068 					       GPIOD_OUT_LOW);
2069 		if (IS_ERR_OR_NULL(qcadev->bt_en) && data->soc_type == QCA_WCN6750) {
2070 			dev_err(&serdev->dev, "failed to acquire BT_EN gpio\n");
2071 			power_ctrl_enabled = false;
2072 		}
2073 
2074 		qcadev->sw_ctrl = devm_gpiod_get_optional(&serdev->dev, "swctrl",
2075 					       GPIOD_IN);
2076 		if (IS_ERR_OR_NULL(qcadev->sw_ctrl) && data->soc_type == QCA_WCN6750)
2077 			dev_warn(&serdev->dev, "failed to acquire SW_CTRL gpio\n");
2078 
2079 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2080 		if (IS_ERR(qcadev->susclk)) {
2081 			dev_err(&serdev->dev, "failed to acquire clk\n");
2082 			return PTR_ERR(qcadev->susclk);
2083 		}
2084 
2085 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2086 		if (err) {
2087 			BT_ERR("wcn3990 serdev registration failed");
2088 			return err;
2089 		}
2090 	} else {
2091 		if (data)
2092 			qcadev->btsoc_type = data->soc_type;
2093 		else
2094 			qcadev->btsoc_type = QCA_ROME;
2095 
2096 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2097 					       GPIOD_OUT_LOW);
2098 		if (IS_ERR_OR_NULL(qcadev->bt_en)) {
2099 			dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
2100 			power_ctrl_enabled = false;
2101 		}
2102 
2103 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2104 		if (IS_ERR(qcadev->susclk)) {
2105 			dev_warn(&serdev->dev, "failed to acquire clk\n");
2106 			return PTR_ERR(qcadev->susclk);
2107 		}
2108 		err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
2109 		if (err)
2110 			return err;
2111 
2112 		err = clk_prepare_enable(qcadev->susclk);
2113 		if (err)
2114 			return err;
2115 
2116 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2117 		if (err) {
2118 			BT_ERR("Rome serdev registration failed");
2119 			clk_disable_unprepare(qcadev->susclk);
2120 			return err;
2121 		}
2122 	}
2123 
2124 	hdev = qcadev->serdev_hu.hdev;
2125 
2126 	if (power_ctrl_enabled) {
2127 		set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2128 		hdev->shutdown = qca_power_off;
2129 	}
2130 
2131 	if (data) {
2132 		/* Wideband speech support must be set per driver since it can't
2133 		 * be queried via hci. Same with the valid le states quirk.
2134 		 */
2135 		if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
2136 			set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2137 				&hdev->quirks);
2138 
2139 		if (data->capabilities & QCA_CAP_VALID_LE_STATES)
2140 			set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2141 	}
2142 
2143 	return 0;
2144 }
2145 
2146 static void qca_serdev_remove(struct serdev_device *serdev)
2147 {
2148 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2149 	struct qca_power *power = qcadev->bt_power;
2150 
2151 	if ((qca_is_wcn399x(qcadev->btsoc_type) ||
2152 	     qca_is_wcn6750(qcadev->btsoc_type)) &&
2153 	     power->vregs_on)
2154 		qca_power_shutdown(&qcadev->serdev_hu);
2155 	else if (qcadev->susclk)
2156 		clk_disable_unprepare(qcadev->susclk);
2157 
2158 	hci_uart_unregister_device(&qcadev->serdev_hu);
2159 }
2160 
2161 static void qca_serdev_shutdown(struct device *dev)
2162 {
2163 	int ret;
2164 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2165 	struct serdev_device *serdev = to_serdev_device(dev);
2166 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2167 	struct hci_uart *hu = &qcadev->serdev_hu;
2168 	struct hci_dev *hdev = hu->hdev;
2169 	struct qca_data *qca = hu->priv;
2170 	const u8 ibs_wake_cmd[] = { 0xFD };
2171 	const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2172 
2173 	if (qcadev->btsoc_type == QCA_QCA6390) {
2174 		if (test_bit(QCA_BT_OFF, &qca->flags) ||
2175 		    !test_bit(HCI_RUNNING, &hdev->flags))
2176 			return;
2177 
2178 		serdev_device_write_flush(serdev);
2179 		ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2180 					      sizeof(ibs_wake_cmd));
2181 		if (ret < 0) {
2182 			BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2183 			return;
2184 		}
2185 		serdev_device_wait_until_sent(serdev, timeout);
2186 		usleep_range(8000, 10000);
2187 
2188 		serdev_device_write_flush(serdev);
2189 		ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2190 					      sizeof(edl_reset_soc_cmd));
2191 		if (ret < 0) {
2192 			BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2193 			return;
2194 		}
2195 		serdev_device_wait_until_sent(serdev, timeout);
2196 		usleep_range(8000, 10000);
2197 	}
2198 }
2199 
2200 static int __maybe_unused qca_suspend(struct device *dev)
2201 {
2202 	struct serdev_device *serdev = to_serdev_device(dev);
2203 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2204 	struct hci_uart *hu = &qcadev->serdev_hu;
2205 	struct qca_data *qca = hu->priv;
2206 	unsigned long flags;
2207 	bool tx_pending = false;
2208 	int ret = 0;
2209 	u8 cmd;
2210 	u32 wait_timeout = 0;
2211 
2212 	set_bit(QCA_SUSPENDING, &qca->flags);
2213 
2214 	/* if BT SoC is running with default firmware then it does not
2215 	 * support in-band sleep
2216 	 */
2217 	if (test_bit(QCA_ROM_FW, &qca->flags))
2218 		return 0;
2219 
2220 	/* During SSR after memory dump collection, controller will be
2221 	 * powered off and then powered on.If controller is powered off
2222 	 * during SSR then we should wait until SSR is completed.
2223 	 */
2224 	if (test_bit(QCA_BT_OFF, &qca->flags) &&
2225 	    !test_bit(QCA_SSR_TRIGGERED, &qca->flags))
2226 		return 0;
2227 
2228 	if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
2229 	    test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
2230 		wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ?
2231 					IBS_DISABLE_SSR_TIMEOUT_MS :
2232 					FW_DOWNLOAD_TIMEOUT_MS;
2233 
2234 		/* QCA_IBS_DISABLED flag is set to true, During FW download
2235 		 * and during memory dump collection. It is reset to false,
2236 		 * After FW download complete.
2237 		 */
2238 		wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED,
2239 			    TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout));
2240 
2241 		if (test_bit(QCA_IBS_DISABLED, &qca->flags)) {
2242 			bt_dev_err(hu->hdev, "SSR or FW download time out");
2243 			ret = -ETIMEDOUT;
2244 			goto error;
2245 		}
2246 	}
2247 
2248 	cancel_work_sync(&qca->ws_awake_device);
2249 	cancel_work_sync(&qca->ws_awake_rx);
2250 
2251 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2252 				 flags, SINGLE_DEPTH_NESTING);
2253 
2254 	switch (qca->tx_ibs_state) {
2255 	case HCI_IBS_TX_WAKING:
2256 		del_timer(&qca->wake_retrans_timer);
2257 		fallthrough;
2258 	case HCI_IBS_TX_AWAKE:
2259 		del_timer(&qca->tx_idle_timer);
2260 
2261 		serdev_device_write_flush(hu->serdev);
2262 		cmd = HCI_IBS_SLEEP_IND;
2263 		ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2264 
2265 		if (ret < 0) {
2266 			BT_ERR("Failed to send SLEEP to device");
2267 			break;
2268 		}
2269 
2270 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2271 		qca->ibs_sent_slps++;
2272 		tx_pending = true;
2273 		break;
2274 
2275 	case HCI_IBS_TX_ASLEEP:
2276 		break;
2277 
2278 	default:
2279 		BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2280 		ret = -EINVAL;
2281 		break;
2282 	}
2283 
2284 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2285 
2286 	if (ret < 0)
2287 		goto error;
2288 
2289 	if (tx_pending) {
2290 		serdev_device_wait_until_sent(hu->serdev,
2291 					      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2292 		serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2293 	}
2294 
2295 	/* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2296 	 * to sleep, so that the packet does not wake the system later.
2297 	 */
2298 	ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2299 			qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2300 			msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2301 	if (ret == 0) {
2302 		ret = -ETIMEDOUT;
2303 		goto error;
2304 	}
2305 
2306 	return 0;
2307 
2308 error:
2309 	clear_bit(QCA_SUSPENDING, &qca->flags);
2310 
2311 	return ret;
2312 }
2313 
2314 static int __maybe_unused qca_resume(struct device *dev)
2315 {
2316 	struct serdev_device *serdev = to_serdev_device(dev);
2317 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2318 	struct hci_uart *hu = &qcadev->serdev_hu;
2319 	struct qca_data *qca = hu->priv;
2320 
2321 	clear_bit(QCA_SUSPENDING, &qca->flags);
2322 
2323 	return 0;
2324 }
2325 
2326 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2327 
2328 #ifdef CONFIG_OF
2329 static const struct of_device_id qca_bluetooth_of_match[] = {
2330 	{ .compatible = "qcom,qca6174-bt" },
2331 	{ .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2332 	{ .compatible = "qcom,qca9377-bt" },
2333 	{ .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2334 	{ .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2335 	{ .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2336 	{ .compatible = "qcom,wcn6750-bt", .data = &qca_soc_data_wcn6750},
2337 	{ /* sentinel */ }
2338 };
2339 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2340 #endif
2341 
2342 #ifdef CONFIG_ACPI
2343 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2344 	{ "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2345 	{ "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2346 	{ "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2347 	{ "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2348 	{ },
2349 };
2350 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2351 #endif
2352 
2353 
2354 static struct serdev_device_driver qca_serdev_driver = {
2355 	.probe = qca_serdev_probe,
2356 	.remove = qca_serdev_remove,
2357 	.driver = {
2358 		.name = "hci_uart_qca",
2359 		.of_match_table = of_match_ptr(qca_bluetooth_of_match),
2360 		.acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2361 		.shutdown = qca_serdev_shutdown,
2362 		.pm = &qca_pm_ops,
2363 	},
2364 };
2365 
2366 int __init qca_init(void)
2367 {
2368 	serdev_device_driver_register(&qca_serdev_driver);
2369 
2370 	return hci_uart_register_proto(&qca_proto);
2371 }
2372 
2373 int __exit qca_deinit(void)
2374 {
2375 	serdev_device_driver_unregister(&qca_serdev_driver);
2376 
2377 	return hci_uart_unregister_proto(&qca_proto);
2378 }
2379