xref: /openbmc/linux/drivers/bluetooth/hci_qca.c (revision abe9af53)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Bluetooth Software UART Qualcomm protocol
4  *
5  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10  *
11  *  Acknowledgements:
12  *  This file is based on hci_ll.c, which was...
13  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14  *  which was in turn based on hci_h4.c, which was written
15  *  by Maxim Krasnyansky and Marcel Holtmann.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/serdev.h>
33 #include <linux/mutex.h>
34 #include <asm/unaligned.h>
35 
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38 
39 #include "hci_uart.h"
40 #include "btqca.h"
41 
42 /* HCI_IBS protocol messages */
43 #define HCI_IBS_SLEEP_IND	0xFE
44 #define HCI_IBS_WAKE_IND	0xFD
45 #define HCI_IBS_WAKE_ACK	0xFC
46 #define HCI_MAX_IBS_SIZE	10
47 
48 #define IBS_WAKE_RETRANS_TIMEOUT_MS	100
49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS	200
50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS	2000
51 #define CMD_TRANS_TIMEOUT_MS		100
52 #define MEMDUMP_TIMEOUT_MS		8000
53 
54 /* susclk rate */
55 #define SUSCLK_RATE_32KHZ	32768
56 
57 /* Controller debug log header */
58 #define QCA_DEBUG_HANDLE	0x2EDC
59 
60 /* max retry count when init fails */
61 #define MAX_INIT_RETRIES 3
62 
63 /* Controller dump header */
64 #define QCA_SSR_DUMP_HANDLE		0x0108
65 #define QCA_DUMP_PACKET_SIZE		255
66 #define QCA_LAST_SEQUENCE_NUM		0xFFFF
67 #define QCA_CRASHBYTE_PACKET_LEN	1096
68 #define QCA_MEMDUMP_BYTE		0xFB
69 
70 enum qca_flags {
71 	QCA_IBS_ENABLED,
72 	QCA_DROP_VENDOR_EVENT,
73 	QCA_SUSPENDING,
74 	QCA_MEMDUMP_COLLECTION,
75 	QCA_HW_ERROR_EVENT,
76 	QCA_SSR_TRIGGERED
77 };
78 
79 enum qca_capabilities {
80 	QCA_CAP_WIDEBAND_SPEECH = BIT(0),
81 };
82 
83 /* HCI_IBS transmit side sleep protocol states */
84 enum tx_ibs_states {
85 	HCI_IBS_TX_ASLEEP,
86 	HCI_IBS_TX_WAKING,
87 	HCI_IBS_TX_AWAKE,
88 };
89 
90 /* HCI_IBS receive side sleep protocol states */
91 enum rx_states {
92 	HCI_IBS_RX_ASLEEP,
93 	HCI_IBS_RX_AWAKE,
94 };
95 
96 /* HCI_IBS transmit and receive side clock state vote */
97 enum hci_ibs_clock_state_vote {
98 	HCI_IBS_VOTE_STATS_UPDATE,
99 	HCI_IBS_TX_VOTE_CLOCK_ON,
100 	HCI_IBS_TX_VOTE_CLOCK_OFF,
101 	HCI_IBS_RX_VOTE_CLOCK_ON,
102 	HCI_IBS_RX_VOTE_CLOCK_OFF,
103 };
104 
105 /* Controller memory dump states */
106 enum qca_memdump_states {
107 	QCA_MEMDUMP_IDLE,
108 	QCA_MEMDUMP_COLLECTING,
109 	QCA_MEMDUMP_COLLECTED,
110 	QCA_MEMDUMP_TIMEOUT,
111 };
112 
113 struct qca_memdump_data {
114 	char *memdump_buf_head;
115 	char *memdump_buf_tail;
116 	u32 current_seq_no;
117 	u32 received_dump;
118 	u32 ram_dump_size;
119 };
120 
121 struct qca_memdump_event_hdr {
122 	__u8    evt;
123 	__u8    plen;
124 	__u16   opcode;
125 	__u16   seq_no;
126 	__u8    reserved;
127 } __packed;
128 
129 
130 struct qca_dump_size {
131 	u32 dump_size;
132 } __packed;
133 
134 struct qca_data {
135 	struct hci_uart *hu;
136 	struct sk_buff *rx_skb;
137 	struct sk_buff_head txq;
138 	struct sk_buff_head tx_wait_q;	/* HCI_IBS wait queue	*/
139 	struct sk_buff_head rx_memdump_q;	/* Memdump wait queue	*/
140 	spinlock_t hci_ibs_lock;	/* HCI_IBS state lock	*/
141 	u8 tx_ibs_state;	/* HCI_IBS transmit side power state*/
142 	u8 rx_ibs_state;	/* HCI_IBS receive side power state */
143 	bool tx_vote;		/* Clock must be on for TX */
144 	bool rx_vote;		/* Clock must be on for RX */
145 	struct timer_list tx_idle_timer;
146 	u32 tx_idle_delay;
147 	struct timer_list wake_retrans_timer;
148 	u32 wake_retrans;
149 	struct workqueue_struct *workqueue;
150 	struct work_struct ws_awake_rx;
151 	struct work_struct ws_awake_device;
152 	struct work_struct ws_rx_vote_off;
153 	struct work_struct ws_tx_vote_off;
154 	struct work_struct ctrl_memdump_evt;
155 	struct delayed_work ctrl_memdump_timeout;
156 	struct qca_memdump_data *qca_memdump;
157 	unsigned long flags;
158 	struct completion drop_ev_comp;
159 	wait_queue_head_t suspend_wait_q;
160 	enum qca_memdump_states memdump_state;
161 	struct mutex hci_memdump_lock;
162 
163 	/* For debugging purpose */
164 	u64 ibs_sent_wacks;
165 	u64 ibs_sent_slps;
166 	u64 ibs_sent_wakes;
167 	u64 ibs_recv_wacks;
168 	u64 ibs_recv_slps;
169 	u64 ibs_recv_wakes;
170 	u64 vote_last_jif;
171 	u32 vote_on_ms;
172 	u32 vote_off_ms;
173 	u64 tx_votes_on;
174 	u64 rx_votes_on;
175 	u64 tx_votes_off;
176 	u64 rx_votes_off;
177 	u64 votes_on;
178 	u64 votes_off;
179 };
180 
181 enum qca_speed_type {
182 	QCA_INIT_SPEED = 1,
183 	QCA_OPER_SPEED
184 };
185 
186 /*
187  * Voltage regulator information required for configuring the
188  * QCA Bluetooth chipset
189  */
190 struct qca_vreg {
191 	const char *name;
192 	unsigned int load_uA;
193 };
194 
195 struct qca_device_data {
196 	enum qca_btsoc_type soc_type;
197 	struct qca_vreg *vregs;
198 	size_t num_vregs;
199 	uint32_t capabilities;
200 };
201 
202 /*
203  * Platform data for the QCA Bluetooth power driver.
204  */
205 struct qca_power {
206 	struct device *dev;
207 	struct regulator_bulk_data *vreg_bulk;
208 	int num_vregs;
209 	bool vregs_on;
210 };
211 
212 struct qca_serdev {
213 	struct hci_uart	 serdev_hu;
214 	struct gpio_desc *bt_en;
215 	struct clk	 *susclk;
216 	enum qca_btsoc_type btsoc_type;
217 	struct qca_power *bt_power;
218 	u32 init_speed;
219 	u32 oper_speed;
220 	const char *firmware_name;
221 };
222 
223 static int qca_regulator_enable(struct qca_serdev *qcadev);
224 static void qca_regulator_disable(struct qca_serdev *qcadev);
225 static void qca_power_shutdown(struct hci_uart *hu);
226 static int qca_power_off(struct hci_dev *hdev);
227 static void qca_controller_memdump(struct work_struct *work);
228 
229 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
230 {
231 	enum qca_btsoc_type soc_type;
232 
233 	if (hu->serdev) {
234 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
235 
236 		soc_type = qsd->btsoc_type;
237 	} else {
238 		soc_type = QCA_ROME;
239 	}
240 
241 	return soc_type;
242 }
243 
244 static const char *qca_get_firmware_name(struct hci_uart *hu)
245 {
246 	if (hu->serdev) {
247 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
248 
249 		return qsd->firmware_name;
250 	} else {
251 		return NULL;
252 	}
253 }
254 
255 static void __serial_clock_on(struct tty_struct *tty)
256 {
257 	/* TODO: Some chipset requires to enable UART clock on client
258 	 * side to save power consumption or manual work is required.
259 	 * Please put your code to control UART clock here if needed
260 	 */
261 }
262 
263 static void __serial_clock_off(struct tty_struct *tty)
264 {
265 	/* TODO: Some chipset requires to disable UART clock on client
266 	 * side to save power consumption or manual work is required.
267 	 * Please put your code to control UART clock off here if needed
268 	 */
269 }
270 
271 /* serial_clock_vote needs to be called with the ibs lock held */
272 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
273 {
274 	struct qca_data *qca = hu->priv;
275 	unsigned int diff;
276 
277 	bool old_vote = (qca->tx_vote | qca->rx_vote);
278 	bool new_vote;
279 
280 	switch (vote) {
281 	case HCI_IBS_VOTE_STATS_UPDATE:
282 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
283 
284 		if (old_vote)
285 			qca->vote_off_ms += diff;
286 		else
287 			qca->vote_on_ms += diff;
288 		return;
289 
290 	case HCI_IBS_TX_VOTE_CLOCK_ON:
291 		qca->tx_vote = true;
292 		qca->tx_votes_on++;
293 		break;
294 
295 	case HCI_IBS_RX_VOTE_CLOCK_ON:
296 		qca->rx_vote = true;
297 		qca->rx_votes_on++;
298 		break;
299 
300 	case HCI_IBS_TX_VOTE_CLOCK_OFF:
301 		qca->tx_vote = false;
302 		qca->tx_votes_off++;
303 		break;
304 
305 	case HCI_IBS_RX_VOTE_CLOCK_OFF:
306 		qca->rx_vote = false;
307 		qca->rx_votes_off++;
308 		break;
309 
310 	default:
311 		BT_ERR("Voting irregularity");
312 		return;
313 	}
314 
315 	new_vote = qca->rx_vote | qca->tx_vote;
316 
317 	if (new_vote != old_vote) {
318 		if (new_vote)
319 			__serial_clock_on(hu->tty);
320 		else
321 			__serial_clock_off(hu->tty);
322 
323 		BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
324 		       vote ? "true" : "false");
325 
326 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
327 
328 		if (new_vote) {
329 			qca->votes_on++;
330 			qca->vote_off_ms += diff;
331 		} else {
332 			qca->votes_off++;
333 			qca->vote_on_ms += diff;
334 		}
335 		qca->vote_last_jif = jiffies;
336 	}
337 }
338 
339 /* Builds and sends an HCI_IBS command packet.
340  * These are very simple packets with only 1 cmd byte.
341  */
342 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
343 {
344 	int err = 0;
345 	struct sk_buff *skb = NULL;
346 	struct qca_data *qca = hu->priv;
347 
348 	BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
349 
350 	skb = bt_skb_alloc(1, GFP_ATOMIC);
351 	if (!skb) {
352 		BT_ERR("Failed to allocate memory for HCI_IBS packet");
353 		return -ENOMEM;
354 	}
355 
356 	/* Assign HCI_IBS type */
357 	skb_put_u8(skb, cmd);
358 
359 	skb_queue_tail(&qca->txq, skb);
360 
361 	return err;
362 }
363 
364 static void qca_wq_awake_device(struct work_struct *work)
365 {
366 	struct qca_data *qca = container_of(work, struct qca_data,
367 					    ws_awake_device);
368 	struct hci_uart *hu = qca->hu;
369 	unsigned long retrans_delay;
370 	unsigned long flags;
371 
372 	BT_DBG("hu %p wq awake device", hu);
373 
374 	/* Vote for serial clock */
375 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
376 
377 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
378 
379 	/* Send wake indication to device */
380 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
381 		BT_ERR("Failed to send WAKE to device");
382 
383 	qca->ibs_sent_wakes++;
384 
385 	/* Start retransmit timer */
386 	retrans_delay = msecs_to_jiffies(qca->wake_retrans);
387 	mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
388 
389 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
390 
391 	/* Actually send the packets */
392 	hci_uart_tx_wakeup(hu);
393 }
394 
395 static void qca_wq_awake_rx(struct work_struct *work)
396 {
397 	struct qca_data *qca = container_of(work, struct qca_data,
398 					    ws_awake_rx);
399 	struct hci_uart *hu = qca->hu;
400 	unsigned long flags;
401 
402 	BT_DBG("hu %p wq awake rx", hu);
403 
404 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
405 
406 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
407 	qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
408 
409 	/* Always acknowledge device wake up,
410 	 * sending IBS message doesn't count as TX ON.
411 	 */
412 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
413 		BT_ERR("Failed to acknowledge device wake up");
414 
415 	qca->ibs_sent_wacks++;
416 
417 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
418 
419 	/* Actually send the packets */
420 	hci_uart_tx_wakeup(hu);
421 }
422 
423 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
424 {
425 	struct qca_data *qca = container_of(work, struct qca_data,
426 					    ws_rx_vote_off);
427 	struct hci_uart *hu = qca->hu;
428 
429 	BT_DBG("hu %p rx clock vote off", hu);
430 
431 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
432 }
433 
434 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
435 {
436 	struct qca_data *qca = container_of(work, struct qca_data,
437 					    ws_tx_vote_off);
438 	struct hci_uart *hu = qca->hu;
439 
440 	BT_DBG("hu %p tx clock vote off", hu);
441 
442 	/* Run HCI tx handling unlocked */
443 	hci_uart_tx_wakeup(hu);
444 
445 	/* Now that message queued to tty driver, vote for tty clocks off.
446 	 * It is up to the tty driver to pend the clocks off until tx done.
447 	 */
448 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
449 }
450 
451 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
452 {
453 	struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
454 	struct hci_uart *hu = qca->hu;
455 	unsigned long flags;
456 
457 	BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
458 
459 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
460 				 flags, SINGLE_DEPTH_NESTING);
461 
462 	switch (qca->tx_ibs_state) {
463 	case HCI_IBS_TX_AWAKE:
464 		/* TX_IDLE, go to SLEEP */
465 		if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
466 			BT_ERR("Failed to send SLEEP to device");
467 			break;
468 		}
469 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
470 		qca->ibs_sent_slps++;
471 		queue_work(qca->workqueue, &qca->ws_tx_vote_off);
472 		break;
473 
474 	case HCI_IBS_TX_ASLEEP:
475 	case HCI_IBS_TX_WAKING:
476 	default:
477 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
478 		break;
479 	}
480 
481 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
482 }
483 
484 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
485 {
486 	struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
487 	struct hci_uart *hu = qca->hu;
488 	unsigned long flags, retrans_delay;
489 	bool retransmit = false;
490 
491 	BT_DBG("hu %p wake retransmit timeout in %d state",
492 		hu, qca->tx_ibs_state);
493 
494 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
495 				 flags, SINGLE_DEPTH_NESTING);
496 
497 	/* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
498 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
499 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
500 		return;
501 	}
502 
503 	switch (qca->tx_ibs_state) {
504 	case HCI_IBS_TX_WAKING:
505 		/* No WAKE_ACK, retransmit WAKE */
506 		retransmit = true;
507 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
508 			BT_ERR("Failed to acknowledge device wake up");
509 			break;
510 		}
511 		qca->ibs_sent_wakes++;
512 		retrans_delay = msecs_to_jiffies(qca->wake_retrans);
513 		mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
514 		break;
515 
516 	case HCI_IBS_TX_ASLEEP:
517 	case HCI_IBS_TX_AWAKE:
518 	default:
519 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
520 		break;
521 	}
522 
523 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
524 
525 	if (retransmit)
526 		hci_uart_tx_wakeup(hu);
527 }
528 
529 
530 static void qca_controller_memdump_timeout(struct work_struct *work)
531 {
532 	struct qca_data *qca = container_of(work, struct qca_data,
533 					ctrl_memdump_timeout.work);
534 	struct hci_uart *hu = qca->hu;
535 
536 	mutex_lock(&qca->hci_memdump_lock);
537 	if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
538 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
539 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
540 			/* Inject hw error event to reset the device
541 			 * and driver.
542 			 */
543 			hci_reset_dev(hu->hdev);
544 		}
545 	}
546 
547 	mutex_unlock(&qca->hci_memdump_lock);
548 }
549 
550 
551 /* Initialize protocol */
552 static int qca_open(struct hci_uart *hu)
553 {
554 	struct qca_serdev *qcadev;
555 	struct qca_data *qca;
556 
557 	BT_DBG("hu %p qca_open", hu);
558 
559 	if (!hci_uart_has_flow_control(hu))
560 		return -EOPNOTSUPP;
561 
562 	qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
563 	if (!qca)
564 		return -ENOMEM;
565 
566 	skb_queue_head_init(&qca->txq);
567 	skb_queue_head_init(&qca->tx_wait_q);
568 	skb_queue_head_init(&qca->rx_memdump_q);
569 	spin_lock_init(&qca->hci_ibs_lock);
570 	mutex_init(&qca->hci_memdump_lock);
571 	qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
572 	if (!qca->workqueue) {
573 		BT_ERR("QCA Workqueue not initialized properly");
574 		kfree(qca);
575 		return -ENOMEM;
576 	}
577 
578 	INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
579 	INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
580 	INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
581 	INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
582 	INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
583 	INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
584 			  qca_controller_memdump_timeout);
585 	init_waitqueue_head(&qca->suspend_wait_q);
586 
587 	qca->hu = hu;
588 	init_completion(&qca->drop_ev_comp);
589 
590 	/* Assume we start with both sides asleep -- extra wakes OK */
591 	qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
592 	qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
593 
594 	qca->vote_last_jif = jiffies;
595 
596 	hu->priv = qca;
597 
598 	if (hu->serdev) {
599 		qcadev = serdev_device_get_drvdata(hu->serdev);
600 
601 		if (qca_is_wcn399x(qcadev->btsoc_type))
602 			hu->init_speed = qcadev->init_speed;
603 
604 		if (qcadev->oper_speed)
605 			hu->oper_speed = qcadev->oper_speed;
606 	}
607 
608 	timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
609 	qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
610 
611 	timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
612 	qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
613 
614 	BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
615 	       qca->tx_idle_delay, qca->wake_retrans);
616 
617 	return 0;
618 }
619 
620 static void qca_debugfs_init(struct hci_dev *hdev)
621 {
622 	struct hci_uart *hu = hci_get_drvdata(hdev);
623 	struct qca_data *qca = hu->priv;
624 	struct dentry *ibs_dir;
625 	umode_t mode;
626 
627 	if (!hdev->debugfs)
628 		return;
629 
630 	ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
631 
632 	/* read only */
633 	mode = S_IRUGO;
634 	debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
635 	debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
636 	debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
637 			   &qca->ibs_sent_slps);
638 	debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
639 			   &qca->ibs_sent_wakes);
640 	debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
641 			   &qca->ibs_sent_wacks);
642 	debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
643 			   &qca->ibs_recv_slps);
644 	debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
645 			   &qca->ibs_recv_wakes);
646 	debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
647 			   &qca->ibs_recv_wacks);
648 	debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
649 	debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
650 	debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
651 	debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
652 	debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
653 	debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
654 	debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
655 	debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
656 	debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
657 	debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
658 
659 	/* read/write */
660 	mode = S_IRUGO | S_IWUSR;
661 	debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
662 	debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
663 			   &qca->tx_idle_delay);
664 }
665 
666 /* Flush protocol data */
667 static int qca_flush(struct hci_uart *hu)
668 {
669 	struct qca_data *qca = hu->priv;
670 
671 	BT_DBG("hu %p qca flush", hu);
672 
673 	skb_queue_purge(&qca->tx_wait_q);
674 	skb_queue_purge(&qca->txq);
675 
676 	return 0;
677 }
678 
679 /* Close protocol */
680 static int qca_close(struct hci_uart *hu)
681 {
682 	struct qca_data *qca = hu->priv;
683 
684 	BT_DBG("hu %p qca close", hu);
685 
686 	serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
687 
688 	skb_queue_purge(&qca->tx_wait_q);
689 	skb_queue_purge(&qca->txq);
690 	skb_queue_purge(&qca->rx_memdump_q);
691 	del_timer(&qca->tx_idle_timer);
692 	del_timer(&qca->wake_retrans_timer);
693 	destroy_workqueue(qca->workqueue);
694 	qca->hu = NULL;
695 
696 	kfree_skb(qca->rx_skb);
697 
698 	hu->priv = NULL;
699 
700 	kfree(qca);
701 
702 	return 0;
703 }
704 
705 /* Called upon a wake-up-indication from the device.
706  */
707 static void device_want_to_wakeup(struct hci_uart *hu)
708 {
709 	unsigned long flags;
710 	struct qca_data *qca = hu->priv;
711 
712 	BT_DBG("hu %p want to wake up", hu);
713 
714 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
715 
716 	qca->ibs_recv_wakes++;
717 
718 	/* Don't wake the rx up when suspending. */
719 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
720 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
721 		return;
722 	}
723 
724 	switch (qca->rx_ibs_state) {
725 	case HCI_IBS_RX_ASLEEP:
726 		/* Make sure clock is on - we may have turned clock off since
727 		 * receiving the wake up indicator awake rx clock.
728 		 */
729 		queue_work(qca->workqueue, &qca->ws_awake_rx);
730 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
731 		return;
732 
733 	case HCI_IBS_RX_AWAKE:
734 		/* Always acknowledge device wake up,
735 		 * sending IBS message doesn't count as TX ON.
736 		 */
737 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
738 			BT_ERR("Failed to acknowledge device wake up");
739 			break;
740 		}
741 		qca->ibs_sent_wacks++;
742 		break;
743 
744 	default:
745 		/* Any other state is illegal */
746 		BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
747 		       qca->rx_ibs_state);
748 		break;
749 	}
750 
751 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
752 
753 	/* Actually send the packets */
754 	hci_uart_tx_wakeup(hu);
755 }
756 
757 /* Called upon a sleep-indication from the device.
758  */
759 static void device_want_to_sleep(struct hci_uart *hu)
760 {
761 	unsigned long flags;
762 	struct qca_data *qca = hu->priv;
763 
764 	BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
765 
766 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
767 
768 	qca->ibs_recv_slps++;
769 
770 	switch (qca->rx_ibs_state) {
771 	case HCI_IBS_RX_AWAKE:
772 		/* Update state */
773 		qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
774 		/* Vote off rx clock under workqueue */
775 		queue_work(qca->workqueue, &qca->ws_rx_vote_off);
776 		break;
777 
778 	case HCI_IBS_RX_ASLEEP:
779 		break;
780 
781 	default:
782 		/* Any other state is illegal */
783 		BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
784 		       qca->rx_ibs_state);
785 		break;
786 	}
787 
788 	wake_up_interruptible(&qca->suspend_wait_q);
789 
790 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
791 }
792 
793 /* Called upon wake-up-acknowledgement from the device
794  */
795 static void device_woke_up(struct hci_uart *hu)
796 {
797 	unsigned long flags, idle_delay;
798 	struct qca_data *qca = hu->priv;
799 	struct sk_buff *skb = NULL;
800 
801 	BT_DBG("hu %p woke up", hu);
802 
803 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
804 
805 	qca->ibs_recv_wacks++;
806 
807 	/* Don't react to the wake-up-acknowledgment when suspending. */
808 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
809 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
810 		return;
811 	}
812 
813 	switch (qca->tx_ibs_state) {
814 	case HCI_IBS_TX_AWAKE:
815 		/* Expect one if we send 2 WAKEs */
816 		BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
817 		       qca->tx_ibs_state);
818 		break;
819 
820 	case HCI_IBS_TX_WAKING:
821 		/* Send pending packets */
822 		while ((skb = skb_dequeue(&qca->tx_wait_q)))
823 			skb_queue_tail(&qca->txq, skb);
824 
825 		/* Switch timers and change state to HCI_IBS_TX_AWAKE */
826 		del_timer(&qca->wake_retrans_timer);
827 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
828 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
829 		qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
830 		break;
831 
832 	case HCI_IBS_TX_ASLEEP:
833 	default:
834 		BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
835 		       qca->tx_ibs_state);
836 		break;
837 	}
838 
839 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
840 
841 	/* Actually send the packets */
842 	hci_uart_tx_wakeup(hu);
843 }
844 
845 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
846  * two simultaneous tasklets.
847  */
848 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
849 {
850 	unsigned long flags = 0, idle_delay;
851 	struct qca_data *qca = hu->priv;
852 
853 	BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
854 	       qca->tx_ibs_state);
855 
856 	if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
857 		/* As SSR is in progress, ignore the packets */
858 		bt_dev_dbg(hu->hdev, "SSR is in progress");
859 		kfree_skb(skb);
860 		return 0;
861 	}
862 
863 	/* Prepend skb with frame type */
864 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
865 
866 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
867 
868 	/* Don't go to sleep in middle of patch download or
869 	 * Out-Of-Band(GPIOs control) sleep is selected.
870 	 * Don't wake the device up when suspending.
871 	 */
872 	if (!test_bit(QCA_IBS_ENABLED, &qca->flags) ||
873 	    test_bit(QCA_SUSPENDING, &qca->flags)) {
874 		skb_queue_tail(&qca->txq, skb);
875 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
876 		return 0;
877 	}
878 
879 	/* Act according to current state */
880 	switch (qca->tx_ibs_state) {
881 	case HCI_IBS_TX_AWAKE:
882 		BT_DBG("Device awake, sending normally");
883 		skb_queue_tail(&qca->txq, skb);
884 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
885 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
886 		break;
887 
888 	case HCI_IBS_TX_ASLEEP:
889 		BT_DBG("Device asleep, waking up and queueing packet");
890 		/* Save packet for later */
891 		skb_queue_tail(&qca->tx_wait_q, skb);
892 
893 		qca->tx_ibs_state = HCI_IBS_TX_WAKING;
894 		/* Schedule a work queue to wake up device */
895 		queue_work(qca->workqueue, &qca->ws_awake_device);
896 		break;
897 
898 	case HCI_IBS_TX_WAKING:
899 		BT_DBG("Device waking up, queueing packet");
900 		/* Transient state; just keep packet for later */
901 		skb_queue_tail(&qca->tx_wait_q, skb);
902 		break;
903 
904 	default:
905 		BT_ERR("Illegal tx state: %d (losing packet)",
906 		       qca->tx_ibs_state);
907 		kfree_skb(skb);
908 		break;
909 	}
910 
911 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
912 
913 	return 0;
914 }
915 
916 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
917 {
918 	struct hci_uart *hu = hci_get_drvdata(hdev);
919 
920 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
921 
922 	device_want_to_sleep(hu);
923 
924 	kfree_skb(skb);
925 	return 0;
926 }
927 
928 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
929 {
930 	struct hci_uart *hu = hci_get_drvdata(hdev);
931 
932 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
933 
934 	device_want_to_wakeup(hu);
935 
936 	kfree_skb(skb);
937 	return 0;
938 }
939 
940 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
941 {
942 	struct hci_uart *hu = hci_get_drvdata(hdev);
943 
944 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
945 
946 	device_woke_up(hu);
947 
948 	kfree_skb(skb);
949 	return 0;
950 }
951 
952 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
953 {
954 	/* We receive debug logs from chip as an ACL packets.
955 	 * Instead of sending the data to ACL to decode the
956 	 * received data, we are pushing them to the above layers
957 	 * as a diagnostic packet.
958 	 */
959 	if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
960 		return hci_recv_diag(hdev, skb);
961 
962 	return hci_recv_frame(hdev, skb);
963 }
964 
965 static void qca_controller_memdump(struct work_struct *work)
966 {
967 	struct qca_data *qca = container_of(work, struct qca_data,
968 					    ctrl_memdump_evt);
969 	struct hci_uart *hu = qca->hu;
970 	struct sk_buff *skb;
971 	struct qca_memdump_event_hdr *cmd_hdr;
972 	struct qca_memdump_data *qca_memdump = qca->qca_memdump;
973 	struct qca_dump_size *dump;
974 	char *memdump_buf;
975 	char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 };
976 	u16 seq_no;
977 	u32 dump_size;
978 	u32 rx_size;
979 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
980 
981 	while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
982 
983 		mutex_lock(&qca->hci_memdump_lock);
984 		/* Skip processing the received packets if timeout detected
985 		 * or memdump collection completed.
986 		 */
987 		if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
988 		    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
989 			mutex_unlock(&qca->hci_memdump_lock);
990 			return;
991 		}
992 
993 		if (!qca_memdump) {
994 			qca_memdump = kzalloc(sizeof(struct qca_memdump_data),
995 					      GFP_ATOMIC);
996 			if (!qca_memdump) {
997 				mutex_unlock(&qca->hci_memdump_lock);
998 				return;
999 			}
1000 
1001 			qca->qca_memdump = qca_memdump;
1002 		}
1003 
1004 		qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1005 		cmd_hdr = (void *) skb->data;
1006 		seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1007 		skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1008 
1009 		if (!seq_no) {
1010 
1011 			/* This is the first frame of memdump packet from
1012 			 * the controller, Disable IBS to recevie dump
1013 			 * with out any interruption, ideally time required for
1014 			 * the controller to send the dump is 8 seconds. let us
1015 			 * start timer to handle this asynchronous activity.
1016 			 */
1017 			clear_bit(QCA_IBS_ENABLED, &qca->flags);
1018 			set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1019 			dump = (void *) skb->data;
1020 			dump_size = __le32_to_cpu(dump->dump_size);
1021 			if (!(dump_size)) {
1022 				bt_dev_err(hu->hdev, "Rx invalid memdump size");
1023 				kfree_skb(skb);
1024 				mutex_unlock(&qca->hci_memdump_lock);
1025 				return;
1026 			}
1027 
1028 			bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1029 				    dump_size);
1030 			queue_delayed_work(qca->workqueue,
1031 					   &qca->ctrl_memdump_timeout,
1032 					   msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)
1033 					  );
1034 
1035 			skb_pull(skb, sizeof(dump_size));
1036 			memdump_buf = vmalloc(dump_size);
1037 			qca_memdump->ram_dump_size = dump_size;
1038 			qca_memdump->memdump_buf_head = memdump_buf;
1039 			qca_memdump->memdump_buf_tail = memdump_buf;
1040 		}
1041 
1042 		memdump_buf = qca_memdump->memdump_buf_tail;
1043 
1044 		/* If sequence no 0 is missed then there is no point in
1045 		 * accepting the other sequences.
1046 		 */
1047 		if (!memdump_buf) {
1048 			bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1049 			kfree(qca_memdump);
1050 			kfree_skb(skb);
1051 			qca->qca_memdump = NULL;
1052 			mutex_unlock(&qca->hci_memdump_lock);
1053 			return;
1054 		}
1055 
1056 		/* There could be chance of missing some packets from
1057 		 * the controller. In such cases let us store the dummy
1058 		 * packets in the buffer.
1059 		 */
1060 		/* For QCA6390, controller does not lost packets but
1061 		 * sequence number field of packat sometimes has error
1062 		 * bits, so skip this checking for missing packet.
1063 		 */
1064 		while ((seq_no > qca_memdump->current_seq_no + 1) &&
1065 		       (soc_type != QCA_QCA6390) &&
1066 		       seq_no != QCA_LAST_SEQUENCE_NUM) {
1067 			bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1068 				   qca_memdump->current_seq_no);
1069 			rx_size = qca_memdump->received_dump;
1070 			rx_size += QCA_DUMP_PACKET_SIZE;
1071 			if (rx_size > qca_memdump->ram_dump_size) {
1072 				bt_dev_err(hu->hdev,
1073 					   "QCA memdump received %d, no space for missed packet",
1074 					   qca_memdump->received_dump);
1075 				break;
1076 			}
1077 			memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE);
1078 			memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE;
1079 			qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1080 			qca_memdump->current_seq_no++;
1081 		}
1082 
1083 		rx_size = qca_memdump->received_dump + skb->len;
1084 		if (rx_size <= qca_memdump->ram_dump_size) {
1085 			if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1086 			    (seq_no != qca_memdump->current_seq_no))
1087 				bt_dev_err(hu->hdev,
1088 					   "QCA memdump unexpected packet %d",
1089 					   seq_no);
1090 			bt_dev_dbg(hu->hdev,
1091 				   "QCA memdump packet %d with length %d",
1092 				   seq_no, skb->len);
1093 			memcpy(memdump_buf, (unsigned char *)skb->data,
1094 			       skb->len);
1095 			memdump_buf = memdump_buf + skb->len;
1096 			qca_memdump->memdump_buf_tail = memdump_buf;
1097 			qca_memdump->current_seq_no = seq_no + 1;
1098 			qca_memdump->received_dump += skb->len;
1099 		} else {
1100 			bt_dev_err(hu->hdev,
1101 				   "QCA memdump received %d, no space for packet %d",
1102 				   qca_memdump->received_dump, seq_no);
1103 		}
1104 		qca->qca_memdump = qca_memdump;
1105 		kfree_skb(skb);
1106 		if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1107 			bt_dev_info(hu->hdev,
1108 				    "QCA memdump Done, received %d, total %d",
1109 				    qca_memdump->received_dump,
1110 				    qca_memdump->ram_dump_size);
1111 			memdump_buf = qca_memdump->memdump_buf_head;
1112 			dev_coredumpv(&hu->serdev->dev, memdump_buf,
1113 				      qca_memdump->received_dump, GFP_KERNEL);
1114 			cancel_delayed_work(&qca->ctrl_memdump_timeout);
1115 			kfree(qca->qca_memdump);
1116 			qca->qca_memdump = NULL;
1117 			qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1118 			clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1119 		}
1120 
1121 		mutex_unlock(&qca->hci_memdump_lock);
1122 	}
1123 
1124 }
1125 
1126 static int qca_controller_memdump_event(struct hci_dev *hdev,
1127 					struct sk_buff *skb)
1128 {
1129 	struct hci_uart *hu = hci_get_drvdata(hdev);
1130 	struct qca_data *qca = hu->priv;
1131 
1132 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1133 	skb_queue_tail(&qca->rx_memdump_q, skb);
1134 	queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1135 
1136 	return 0;
1137 }
1138 
1139 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1140 {
1141 	struct hci_uart *hu = hci_get_drvdata(hdev);
1142 	struct qca_data *qca = hu->priv;
1143 
1144 	if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1145 		struct hci_event_hdr *hdr = (void *)skb->data;
1146 
1147 		/* For the WCN3990 the vendor command for a baudrate change
1148 		 * isn't sent as synchronous HCI command, because the
1149 		 * controller sends the corresponding vendor event with the
1150 		 * new baudrate. The event is received and properly decoded
1151 		 * after changing the baudrate of the host port. It needs to
1152 		 * be dropped, otherwise it can be misinterpreted as
1153 		 * response to a later firmware download command (also a
1154 		 * vendor command).
1155 		 */
1156 
1157 		if (hdr->evt == HCI_EV_VENDOR)
1158 			complete(&qca->drop_ev_comp);
1159 
1160 		kfree_skb(skb);
1161 
1162 		return 0;
1163 	}
1164 	/* We receive chip memory dump as an event packet, With a dedicated
1165 	 * handler followed by a hardware error event. When this event is
1166 	 * received we store dump into a file before closing hci. This
1167 	 * dump will help in triaging the issues.
1168 	 */
1169 	if ((skb->data[0] == HCI_VENDOR_PKT) &&
1170 	    (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1171 		return qca_controller_memdump_event(hdev, skb);
1172 
1173 	return hci_recv_frame(hdev, skb);
1174 }
1175 
1176 #define QCA_IBS_SLEEP_IND_EVENT \
1177 	.type = HCI_IBS_SLEEP_IND, \
1178 	.hlen = 0, \
1179 	.loff = 0, \
1180 	.lsize = 0, \
1181 	.maxlen = HCI_MAX_IBS_SIZE
1182 
1183 #define QCA_IBS_WAKE_IND_EVENT \
1184 	.type = HCI_IBS_WAKE_IND, \
1185 	.hlen = 0, \
1186 	.loff = 0, \
1187 	.lsize = 0, \
1188 	.maxlen = HCI_MAX_IBS_SIZE
1189 
1190 #define QCA_IBS_WAKE_ACK_EVENT \
1191 	.type = HCI_IBS_WAKE_ACK, \
1192 	.hlen = 0, \
1193 	.loff = 0, \
1194 	.lsize = 0, \
1195 	.maxlen = HCI_MAX_IBS_SIZE
1196 
1197 static const struct h4_recv_pkt qca_recv_pkts[] = {
1198 	{ H4_RECV_ACL,             .recv = qca_recv_acl_data },
1199 	{ H4_RECV_SCO,             .recv = hci_recv_frame    },
1200 	{ H4_RECV_EVENT,           .recv = qca_recv_event    },
1201 	{ QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1202 	{ QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1203 	{ QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1204 };
1205 
1206 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1207 {
1208 	struct qca_data *qca = hu->priv;
1209 
1210 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1211 		return -EUNATCH;
1212 
1213 	qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1214 				  qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1215 	if (IS_ERR(qca->rx_skb)) {
1216 		int err = PTR_ERR(qca->rx_skb);
1217 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1218 		qca->rx_skb = NULL;
1219 		return err;
1220 	}
1221 
1222 	return count;
1223 }
1224 
1225 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1226 {
1227 	struct qca_data *qca = hu->priv;
1228 
1229 	return skb_dequeue(&qca->txq);
1230 }
1231 
1232 static uint8_t qca_get_baudrate_value(int speed)
1233 {
1234 	switch (speed) {
1235 	case 9600:
1236 		return QCA_BAUDRATE_9600;
1237 	case 19200:
1238 		return QCA_BAUDRATE_19200;
1239 	case 38400:
1240 		return QCA_BAUDRATE_38400;
1241 	case 57600:
1242 		return QCA_BAUDRATE_57600;
1243 	case 115200:
1244 		return QCA_BAUDRATE_115200;
1245 	case 230400:
1246 		return QCA_BAUDRATE_230400;
1247 	case 460800:
1248 		return QCA_BAUDRATE_460800;
1249 	case 500000:
1250 		return QCA_BAUDRATE_500000;
1251 	case 921600:
1252 		return QCA_BAUDRATE_921600;
1253 	case 1000000:
1254 		return QCA_BAUDRATE_1000000;
1255 	case 2000000:
1256 		return QCA_BAUDRATE_2000000;
1257 	case 3000000:
1258 		return QCA_BAUDRATE_3000000;
1259 	case 3200000:
1260 		return QCA_BAUDRATE_3200000;
1261 	case 3500000:
1262 		return QCA_BAUDRATE_3500000;
1263 	default:
1264 		return QCA_BAUDRATE_115200;
1265 	}
1266 }
1267 
1268 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1269 {
1270 	struct hci_uart *hu = hci_get_drvdata(hdev);
1271 	struct qca_data *qca = hu->priv;
1272 	struct sk_buff *skb;
1273 	u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1274 
1275 	if (baudrate > QCA_BAUDRATE_3200000)
1276 		return -EINVAL;
1277 
1278 	cmd[4] = baudrate;
1279 
1280 	skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1281 	if (!skb) {
1282 		bt_dev_err(hdev, "Failed to allocate baudrate packet");
1283 		return -ENOMEM;
1284 	}
1285 
1286 	/* Assign commands to change baudrate and packet type. */
1287 	skb_put_data(skb, cmd, sizeof(cmd));
1288 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1289 
1290 	skb_queue_tail(&qca->txq, skb);
1291 	hci_uart_tx_wakeup(hu);
1292 
1293 	/* Wait for the baudrate change request to be sent */
1294 
1295 	while (!skb_queue_empty(&qca->txq))
1296 		usleep_range(100, 200);
1297 
1298 	if (hu->serdev)
1299 		serdev_device_wait_until_sent(hu->serdev,
1300 		      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1301 
1302 	/* Give the controller time to process the request */
1303 	if (qca_is_wcn399x(qca_soc_type(hu)))
1304 		msleep(10);
1305 	else
1306 		msleep(300);
1307 
1308 	return 0;
1309 }
1310 
1311 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1312 {
1313 	if (hu->serdev)
1314 		serdev_device_set_baudrate(hu->serdev, speed);
1315 	else
1316 		hci_uart_set_baudrate(hu, speed);
1317 }
1318 
1319 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1320 {
1321 	int ret;
1322 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1323 	u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1324 
1325 	/* These power pulses are single byte command which are sent
1326 	 * at required baudrate to wcn3990. On wcn3990, we have an external
1327 	 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1328 	 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1329 	 * and also we use the same power inputs to turn on and off for
1330 	 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1331 	 * we send a power on pulse at 115200 bps. This algorithm will help to
1332 	 * save power. Disabling hardware flow control is mandatory while
1333 	 * sending power pulses to SoC.
1334 	 */
1335 	bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1336 
1337 	serdev_device_write_flush(hu->serdev);
1338 	hci_uart_set_flow_control(hu, true);
1339 	ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1340 	if (ret < 0) {
1341 		bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1342 		return ret;
1343 	}
1344 
1345 	serdev_device_wait_until_sent(hu->serdev, timeout);
1346 	hci_uart_set_flow_control(hu, false);
1347 
1348 	/* Give to controller time to boot/shutdown */
1349 	if (on)
1350 		msleep(100);
1351 	else
1352 		msleep(10);
1353 
1354 	return 0;
1355 }
1356 
1357 static unsigned int qca_get_speed(struct hci_uart *hu,
1358 				  enum qca_speed_type speed_type)
1359 {
1360 	unsigned int speed = 0;
1361 
1362 	if (speed_type == QCA_INIT_SPEED) {
1363 		if (hu->init_speed)
1364 			speed = hu->init_speed;
1365 		else if (hu->proto->init_speed)
1366 			speed = hu->proto->init_speed;
1367 	} else {
1368 		if (hu->oper_speed)
1369 			speed = hu->oper_speed;
1370 		else if (hu->proto->oper_speed)
1371 			speed = hu->proto->oper_speed;
1372 	}
1373 
1374 	return speed;
1375 }
1376 
1377 static int qca_check_speeds(struct hci_uart *hu)
1378 {
1379 	if (qca_is_wcn399x(qca_soc_type(hu))) {
1380 		if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1381 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1382 			return -EINVAL;
1383 	} else {
1384 		if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1385 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1386 			return -EINVAL;
1387 	}
1388 
1389 	return 0;
1390 }
1391 
1392 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1393 {
1394 	unsigned int speed, qca_baudrate;
1395 	struct qca_data *qca = hu->priv;
1396 	int ret = 0;
1397 
1398 	if (speed_type == QCA_INIT_SPEED) {
1399 		speed = qca_get_speed(hu, QCA_INIT_SPEED);
1400 		if (speed)
1401 			host_set_baudrate(hu, speed);
1402 	} else {
1403 		enum qca_btsoc_type soc_type = qca_soc_type(hu);
1404 
1405 		speed = qca_get_speed(hu, QCA_OPER_SPEED);
1406 		if (!speed)
1407 			return 0;
1408 
1409 		/* Disable flow control for wcn3990 to deassert RTS while
1410 		 * changing the baudrate of chip and host.
1411 		 */
1412 		if (qca_is_wcn399x(soc_type))
1413 			hci_uart_set_flow_control(hu, true);
1414 
1415 		if (soc_type == QCA_WCN3990) {
1416 			reinit_completion(&qca->drop_ev_comp);
1417 			set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1418 		}
1419 
1420 		qca_baudrate = qca_get_baudrate_value(speed);
1421 		bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1422 		ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1423 		if (ret)
1424 			goto error;
1425 
1426 		host_set_baudrate(hu, speed);
1427 
1428 error:
1429 		if (qca_is_wcn399x(soc_type))
1430 			hci_uart_set_flow_control(hu, false);
1431 
1432 		if (soc_type == QCA_WCN3990) {
1433 			/* Wait for the controller to send the vendor event
1434 			 * for the baudrate change command.
1435 			 */
1436 			if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1437 						 msecs_to_jiffies(100))) {
1438 				bt_dev_err(hu->hdev,
1439 					   "Failed to change controller baudrate\n");
1440 				ret = -ETIMEDOUT;
1441 			}
1442 
1443 			clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1444 		}
1445 	}
1446 
1447 	return ret;
1448 }
1449 
1450 static int qca_send_crashbuffer(struct hci_uart *hu)
1451 {
1452 	struct qca_data *qca = hu->priv;
1453 	struct sk_buff *skb;
1454 
1455 	skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1456 	if (!skb) {
1457 		bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1458 		return -ENOMEM;
1459 	}
1460 
1461 	/* We forcefully crash the controller, by sending 0xfb byte for
1462 	 * 1024 times. We also might have chance of losing data, To be
1463 	 * on safer side we send 1096 bytes to the SoC.
1464 	 */
1465 	memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1466 	       QCA_CRASHBYTE_PACKET_LEN);
1467 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1468 	bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1469 	skb_queue_tail(&qca->txq, skb);
1470 	hci_uart_tx_wakeup(hu);
1471 
1472 	return 0;
1473 }
1474 
1475 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1476 {
1477 	struct hci_uart *hu = hci_get_drvdata(hdev);
1478 	struct qca_data *qca = hu->priv;
1479 
1480 	wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1481 			    TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1482 
1483 	clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1484 }
1485 
1486 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1487 {
1488 	struct hci_uart *hu = hci_get_drvdata(hdev);
1489 	struct qca_data *qca = hu->priv;
1490 
1491 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1492 	set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1493 	bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1494 
1495 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1496 		/* If hardware error event received for other than QCA
1497 		 * soc memory dump event, then we need to crash the SOC
1498 		 * and wait here for 8 seconds to get the dump packets.
1499 		 * This will block main thread to be on hold until we
1500 		 * collect dump.
1501 		 */
1502 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1503 		qca_send_crashbuffer(hu);
1504 		qca_wait_for_dump_collection(hdev);
1505 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1506 		/* Let us wait here until memory dump collected or
1507 		 * memory dump timer expired.
1508 		 */
1509 		bt_dev_info(hdev, "waiting for dump to complete");
1510 		qca_wait_for_dump_collection(hdev);
1511 	}
1512 
1513 	mutex_lock(&qca->hci_memdump_lock);
1514 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1515 		bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1516 		if (qca->qca_memdump) {
1517 			vfree(qca->qca_memdump->memdump_buf_head);
1518 			kfree(qca->qca_memdump);
1519 			qca->qca_memdump = NULL;
1520 		}
1521 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1522 		cancel_delayed_work(&qca->ctrl_memdump_timeout);
1523 	}
1524 	mutex_unlock(&qca->hci_memdump_lock);
1525 
1526 	if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1527 	    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1528 		cancel_work_sync(&qca->ctrl_memdump_evt);
1529 		skb_queue_purge(&qca->rx_memdump_q);
1530 	}
1531 
1532 	clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1533 }
1534 
1535 static void qca_cmd_timeout(struct hci_dev *hdev)
1536 {
1537 	struct hci_uart *hu = hci_get_drvdata(hdev);
1538 	struct qca_data *qca = hu->priv;
1539 
1540 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1541 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1542 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1543 		qca_send_crashbuffer(hu);
1544 		qca_wait_for_dump_collection(hdev);
1545 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1546 		/* Let us wait here until memory dump collected or
1547 		 * memory dump timer expired.
1548 		 */
1549 		bt_dev_info(hdev, "waiting for dump to complete");
1550 		qca_wait_for_dump_collection(hdev);
1551 	}
1552 
1553 	mutex_lock(&qca->hci_memdump_lock);
1554 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1555 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1556 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1557 			/* Inject hw error event to reset the device
1558 			 * and driver.
1559 			 */
1560 			hci_reset_dev(hu->hdev);
1561 		}
1562 	}
1563 	mutex_unlock(&qca->hci_memdump_lock);
1564 }
1565 
1566 static int qca_wcn3990_init(struct hci_uart *hu)
1567 {
1568 	struct qca_serdev *qcadev;
1569 	int ret;
1570 
1571 	/* Check for vregs status, may be hci down has turned
1572 	 * off the voltage regulator.
1573 	 */
1574 	qcadev = serdev_device_get_drvdata(hu->serdev);
1575 	if (!qcadev->bt_power->vregs_on) {
1576 		serdev_device_close(hu->serdev);
1577 		ret = qca_regulator_enable(qcadev);
1578 		if (ret)
1579 			return ret;
1580 
1581 		ret = serdev_device_open(hu->serdev);
1582 		if (ret) {
1583 			bt_dev_err(hu->hdev, "failed to open port");
1584 			return ret;
1585 		}
1586 	}
1587 
1588 	/* Forcefully enable wcn3990 to enter in to boot mode. */
1589 	host_set_baudrate(hu, 2400);
1590 	ret = qca_send_power_pulse(hu, false);
1591 	if (ret)
1592 		return ret;
1593 
1594 	qca_set_speed(hu, QCA_INIT_SPEED);
1595 	ret = qca_send_power_pulse(hu, true);
1596 	if (ret)
1597 		return ret;
1598 
1599 	/* Now the device is in ready state to communicate with host.
1600 	 * To sync host with device we need to reopen port.
1601 	 * Without this, we will have RTS and CTS synchronization
1602 	 * issues.
1603 	 */
1604 	serdev_device_close(hu->serdev);
1605 	ret = serdev_device_open(hu->serdev);
1606 	if (ret) {
1607 		bt_dev_err(hu->hdev, "failed to open port");
1608 		return ret;
1609 	}
1610 
1611 	hci_uart_set_flow_control(hu, false);
1612 
1613 	return 0;
1614 }
1615 
1616 static int qca_power_on(struct hci_dev *hdev)
1617 {
1618 	struct hci_uart *hu = hci_get_drvdata(hdev);
1619 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1620 	struct qca_serdev *qcadev;
1621 	int ret = 0;
1622 
1623 	/* Non-serdev device usually is powered by external power
1624 	 * and don't need additional action in driver for power on
1625 	 */
1626 	if (!hu->serdev)
1627 		return 0;
1628 
1629 	if (qca_is_wcn399x(soc_type)) {
1630 		ret = qca_wcn3990_init(hu);
1631 	} else {
1632 		qcadev = serdev_device_get_drvdata(hu->serdev);
1633 		if (qcadev->bt_en) {
1634 			gpiod_set_value_cansleep(qcadev->bt_en, 1);
1635 			/* Controller needs time to bootup. */
1636 			msleep(150);
1637 		}
1638 	}
1639 
1640 	return ret;
1641 }
1642 
1643 static int qca_setup(struct hci_uart *hu)
1644 {
1645 	struct hci_dev *hdev = hu->hdev;
1646 	struct qca_data *qca = hu->priv;
1647 	unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1648 	unsigned int retries = 0;
1649 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1650 	const char *firmware_name = qca_get_firmware_name(hu);
1651 	int ret;
1652 	int soc_ver = 0;
1653 
1654 	ret = qca_check_speeds(hu);
1655 	if (ret)
1656 		return ret;
1657 
1658 	/* Patch downloading has to be done without IBS mode */
1659 	clear_bit(QCA_IBS_ENABLED, &qca->flags);
1660 
1661 	/* Enable controller to do both LE scan and BR/EDR inquiry
1662 	 * simultaneously.
1663 	 */
1664 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1665 
1666 	bt_dev_info(hdev, "setting up %s",
1667 		qca_is_wcn399x(soc_type) ? "wcn399x" : "ROME/QCA6390");
1668 
1669 	qca->memdump_state = QCA_MEMDUMP_IDLE;
1670 
1671 retry:
1672 	ret = qca_power_on(hdev);
1673 	if (ret)
1674 		return ret;
1675 
1676 	clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1677 
1678 	if (qca_is_wcn399x(soc_type)) {
1679 		set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1680 
1681 		ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1682 		if (ret)
1683 			return ret;
1684 	} else {
1685 		qca_set_speed(hu, QCA_INIT_SPEED);
1686 	}
1687 
1688 	/* Setup user speed if needed */
1689 	speed = qca_get_speed(hu, QCA_OPER_SPEED);
1690 	if (speed) {
1691 		ret = qca_set_speed(hu, QCA_OPER_SPEED);
1692 		if (ret)
1693 			return ret;
1694 
1695 		qca_baudrate = qca_get_baudrate_value(speed);
1696 	}
1697 
1698 	if (!qca_is_wcn399x(soc_type)) {
1699 		/* Get QCA version information */
1700 		ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1701 		if (ret)
1702 			return ret;
1703 	}
1704 
1705 	bt_dev_info(hdev, "QCA controller version 0x%08x", soc_ver);
1706 	/* Setup patch / NVM configurations */
1707 	ret = qca_uart_setup(hdev, qca_baudrate, soc_type, soc_ver,
1708 			firmware_name);
1709 	if (!ret) {
1710 		set_bit(QCA_IBS_ENABLED, &qca->flags);
1711 		qca_debugfs_init(hdev);
1712 		hu->hdev->hw_error = qca_hw_error;
1713 		hu->hdev->cmd_timeout = qca_cmd_timeout;
1714 	} else if (ret == -ENOENT) {
1715 		/* No patch/nvm-config found, run with original fw/config */
1716 		ret = 0;
1717 	} else if (ret == -EAGAIN) {
1718 		/*
1719 		 * Userspace firmware loader will return -EAGAIN in case no
1720 		 * patch/nvm-config is found, so run with original fw/config.
1721 		 */
1722 		ret = 0;
1723 	} else {
1724 		if (retries < MAX_INIT_RETRIES) {
1725 			qca_power_shutdown(hu);
1726 			if (hu->serdev) {
1727 				serdev_device_close(hu->serdev);
1728 				ret = serdev_device_open(hu->serdev);
1729 				if (ret) {
1730 					bt_dev_err(hdev, "failed to open port");
1731 					return ret;
1732 				}
1733 			}
1734 			retries++;
1735 			goto retry;
1736 		}
1737 	}
1738 
1739 	/* Setup bdaddr */
1740 	if (soc_type == QCA_ROME)
1741 		hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1742 	else
1743 		hu->hdev->set_bdaddr = qca_set_bdaddr;
1744 
1745 	return ret;
1746 }
1747 
1748 static const struct hci_uart_proto qca_proto = {
1749 	.id		= HCI_UART_QCA,
1750 	.name		= "QCA",
1751 	.manufacturer	= 29,
1752 	.init_speed	= 115200,
1753 	.oper_speed	= 3000000,
1754 	.open		= qca_open,
1755 	.close		= qca_close,
1756 	.flush		= qca_flush,
1757 	.setup		= qca_setup,
1758 	.recv		= qca_recv,
1759 	.enqueue	= qca_enqueue,
1760 	.dequeue	= qca_dequeue,
1761 };
1762 
1763 static const struct qca_device_data qca_soc_data_wcn3990 = {
1764 	.soc_type = QCA_WCN3990,
1765 	.vregs = (struct qca_vreg []) {
1766 		{ "vddio", 15000  },
1767 		{ "vddxo", 80000  },
1768 		{ "vddrf", 300000 },
1769 		{ "vddch0", 450000 },
1770 	},
1771 	.num_vregs = 4,
1772 };
1773 
1774 static const struct qca_device_data qca_soc_data_wcn3991 = {
1775 	.soc_type = QCA_WCN3991,
1776 	.vregs = (struct qca_vreg []) {
1777 		{ "vddio", 15000  },
1778 		{ "vddxo", 80000  },
1779 		{ "vddrf", 300000 },
1780 		{ "vddch0", 450000 },
1781 	},
1782 	.num_vregs = 4,
1783 	.capabilities = QCA_CAP_WIDEBAND_SPEECH,
1784 };
1785 
1786 static const struct qca_device_data qca_soc_data_wcn3998 = {
1787 	.soc_type = QCA_WCN3998,
1788 	.vregs = (struct qca_vreg []) {
1789 		{ "vddio", 10000  },
1790 		{ "vddxo", 80000  },
1791 		{ "vddrf", 300000 },
1792 		{ "vddch0", 450000 },
1793 	},
1794 	.num_vregs = 4,
1795 };
1796 
1797 static const struct qca_device_data qca_soc_data_qca6390 = {
1798 	.soc_type = QCA_QCA6390,
1799 	.num_vregs = 0,
1800 };
1801 
1802 static void qca_power_shutdown(struct hci_uart *hu)
1803 {
1804 	struct qca_serdev *qcadev;
1805 	struct qca_data *qca = hu->priv;
1806 	unsigned long flags;
1807 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1808 
1809 	qcadev = serdev_device_get_drvdata(hu->serdev);
1810 
1811 	/* From this point we go into power off state. But serial port is
1812 	 * still open, stop queueing the IBS data and flush all the buffered
1813 	 * data in skb's.
1814 	 */
1815 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
1816 	clear_bit(QCA_IBS_ENABLED, &qca->flags);
1817 	qca_flush(hu);
1818 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
1819 
1820 	/* Non-serdev device usually is powered by external power
1821 	 * and don't need additional action in driver for power down
1822 	 */
1823 	if (!hu->serdev)
1824 		return;
1825 
1826 	if (qca_is_wcn399x(soc_type)) {
1827 		host_set_baudrate(hu, 2400);
1828 		qca_send_power_pulse(hu, false);
1829 		qca_regulator_disable(qcadev);
1830 	} else if (qcadev->bt_en) {
1831 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
1832 	}
1833 }
1834 
1835 static int qca_power_off(struct hci_dev *hdev)
1836 {
1837 	struct hci_uart *hu = hci_get_drvdata(hdev);
1838 	struct qca_data *qca = hu->priv;
1839 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1840 
1841 	hu->hdev->hw_error = NULL;
1842 	hu->hdev->cmd_timeout = NULL;
1843 
1844 	/* Stop sending shutdown command if soc crashes. */
1845 	if (soc_type != QCA_ROME
1846 		&& qca->memdump_state == QCA_MEMDUMP_IDLE) {
1847 		qca_send_pre_shutdown_cmd(hdev);
1848 		usleep_range(8000, 10000);
1849 	}
1850 
1851 	qca_power_shutdown(hu);
1852 	return 0;
1853 }
1854 
1855 static int qca_regulator_enable(struct qca_serdev *qcadev)
1856 {
1857 	struct qca_power *power = qcadev->bt_power;
1858 	int ret;
1859 
1860 	/* Already enabled */
1861 	if (power->vregs_on)
1862 		return 0;
1863 
1864 	BT_DBG("enabling %d regulators)", power->num_vregs);
1865 
1866 	ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
1867 	if (ret)
1868 		return ret;
1869 
1870 	power->vregs_on = true;
1871 
1872 	ret = clk_prepare_enable(qcadev->susclk);
1873 	if (ret)
1874 		qca_regulator_disable(qcadev);
1875 
1876 	return ret;
1877 }
1878 
1879 static void qca_regulator_disable(struct qca_serdev *qcadev)
1880 {
1881 	struct qca_power *power;
1882 
1883 	if (!qcadev)
1884 		return;
1885 
1886 	power = qcadev->bt_power;
1887 
1888 	/* Already disabled? */
1889 	if (!power->vregs_on)
1890 		return;
1891 
1892 	regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
1893 	power->vregs_on = false;
1894 
1895 	clk_disable_unprepare(qcadev->susclk);
1896 }
1897 
1898 static int qca_init_regulators(struct qca_power *qca,
1899 				const struct qca_vreg *vregs, size_t num_vregs)
1900 {
1901 	struct regulator_bulk_data *bulk;
1902 	int ret;
1903 	int i;
1904 
1905 	bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
1906 	if (!bulk)
1907 		return -ENOMEM;
1908 
1909 	for (i = 0; i < num_vregs; i++)
1910 		bulk[i].supply = vregs[i].name;
1911 
1912 	ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
1913 	if (ret < 0)
1914 		return ret;
1915 
1916 	for (i = 0; i < num_vregs; i++) {
1917 		ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
1918 		if (ret)
1919 			return ret;
1920 	}
1921 
1922 	qca->vreg_bulk = bulk;
1923 	qca->num_vregs = num_vregs;
1924 
1925 	return 0;
1926 }
1927 
1928 static int qca_serdev_probe(struct serdev_device *serdev)
1929 {
1930 	struct qca_serdev *qcadev;
1931 	struct hci_dev *hdev;
1932 	const struct qca_device_data *data;
1933 	int err;
1934 	bool power_ctrl_enabled = true;
1935 
1936 	qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
1937 	if (!qcadev)
1938 		return -ENOMEM;
1939 
1940 	qcadev->serdev_hu.serdev = serdev;
1941 	data = device_get_match_data(&serdev->dev);
1942 	serdev_device_set_drvdata(serdev, qcadev);
1943 	device_property_read_string(&serdev->dev, "firmware-name",
1944 					 &qcadev->firmware_name);
1945 	device_property_read_u32(&serdev->dev, "max-speed",
1946 				 &qcadev->oper_speed);
1947 	if (!qcadev->oper_speed)
1948 		BT_DBG("UART will pick default operating speed");
1949 
1950 	if (data && qca_is_wcn399x(data->soc_type)) {
1951 		qcadev->btsoc_type = data->soc_type;
1952 		qcadev->bt_power = devm_kzalloc(&serdev->dev,
1953 						sizeof(struct qca_power),
1954 						GFP_KERNEL);
1955 		if (!qcadev->bt_power)
1956 			return -ENOMEM;
1957 
1958 		qcadev->bt_power->dev = &serdev->dev;
1959 		err = qca_init_regulators(qcadev->bt_power, data->vregs,
1960 					  data->num_vregs);
1961 		if (err) {
1962 			BT_ERR("Failed to init regulators:%d", err);
1963 			return err;
1964 		}
1965 
1966 		qcadev->bt_power->vregs_on = false;
1967 
1968 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
1969 		if (IS_ERR(qcadev->susclk)) {
1970 			dev_err(&serdev->dev, "failed to acquire clk\n");
1971 			return PTR_ERR(qcadev->susclk);
1972 		}
1973 
1974 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
1975 		if (err) {
1976 			BT_ERR("wcn3990 serdev registration failed");
1977 			return err;
1978 		}
1979 	} else {
1980 		if (data)
1981 			qcadev->btsoc_type = data->soc_type;
1982 		else
1983 			qcadev->btsoc_type = QCA_ROME;
1984 
1985 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
1986 					       GPIOD_OUT_LOW);
1987 		if (!qcadev->bt_en) {
1988 			dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
1989 			power_ctrl_enabled = false;
1990 		}
1991 
1992 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
1993 		if (IS_ERR(qcadev->susclk)) {
1994 			dev_warn(&serdev->dev, "failed to acquire clk\n");
1995 			return PTR_ERR(qcadev->susclk);
1996 		}
1997 		err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
1998 		if (err)
1999 			return err;
2000 
2001 		err = clk_prepare_enable(qcadev->susclk);
2002 		if (err)
2003 			return err;
2004 
2005 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2006 		if (err) {
2007 			BT_ERR("Rome serdev registration failed");
2008 			clk_disable_unprepare(qcadev->susclk);
2009 			return err;
2010 		}
2011 	}
2012 
2013 	hdev = qcadev->serdev_hu.hdev;
2014 
2015 	if (power_ctrl_enabled) {
2016 		set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2017 		hdev->shutdown = qca_power_off;
2018 	}
2019 
2020 	/* Wideband speech support must be set per driver since it can't be
2021 	 * queried via hci.
2022 	 */
2023 	if (data && (data->capabilities & QCA_CAP_WIDEBAND_SPEECH))
2024 		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
2025 
2026 	return 0;
2027 }
2028 
2029 static void qca_serdev_remove(struct serdev_device *serdev)
2030 {
2031 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2032 	struct qca_power *power = qcadev->bt_power;
2033 
2034 	if (qca_is_wcn399x(qcadev->btsoc_type) && power->vregs_on)
2035 		qca_power_shutdown(&qcadev->serdev_hu);
2036 	else if (qcadev->susclk)
2037 		clk_disable_unprepare(qcadev->susclk);
2038 
2039 	hci_uart_unregister_device(&qcadev->serdev_hu);
2040 }
2041 
2042 static void qca_serdev_shutdown(struct device *dev)
2043 {
2044 	int ret;
2045 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2046 	struct serdev_device *serdev = to_serdev_device(dev);
2047 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2048 	const u8 ibs_wake_cmd[] = { 0xFD };
2049 	const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2050 
2051 	if (qcadev->btsoc_type == QCA_QCA6390) {
2052 		serdev_device_write_flush(serdev);
2053 		ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2054 					      sizeof(ibs_wake_cmd));
2055 		if (ret < 0) {
2056 			BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2057 			return;
2058 		}
2059 		serdev_device_wait_until_sent(serdev, timeout);
2060 		usleep_range(8000, 10000);
2061 
2062 		serdev_device_write_flush(serdev);
2063 		ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2064 					      sizeof(edl_reset_soc_cmd));
2065 		if (ret < 0) {
2066 			BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2067 			return;
2068 		}
2069 		serdev_device_wait_until_sent(serdev, timeout);
2070 		usleep_range(8000, 10000);
2071 	}
2072 }
2073 
2074 static int __maybe_unused qca_suspend(struct device *dev)
2075 {
2076 	struct serdev_device *serdev = to_serdev_device(dev);
2077 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2078 	struct hci_uart *hu = &qcadev->serdev_hu;
2079 	struct qca_data *qca = hu->priv;
2080 	unsigned long flags;
2081 	bool tx_pending = false;
2082 	int ret = 0;
2083 	u8 cmd;
2084 
2085 	set_bit(QCA_SUSPENDING, &qca->flags);
2086 
2087 	/* Device is downloading patch or doesn't support in-band sleep. */
2088 	if (!test_bit(QCA_IBS_ENABLED, &qca->flags))
2089 		return 0;
2090 
2091 	cancel_work_sync(&qca->ws_awake_device);
2092 	cancel_work_sync(&qca->ws_awake_rx);
2093 
2094 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2095 				 flags, SINGLE_DEPTH_NESTING);
2096 
2097 	switch (qca->tx_ibs_state) {
2098 	case HCI_IBS_TX_WAKING:
2099 		del_timer(&qca->wake_retrans_timer);
2100 		fallthrough;
2101 	case HCI_IBS_TX_AWAKE:
2102 		del_timer(&qca->tx_idle_timer);
2103 
2104 		serdev_device_write_flush(hu->serdev);
2105 		cmd = HCI_IBS_SLEEP_IND;
2106 		ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2107 
2108 		if (ret < 0) {
2109 			BT_ERR("Failed to send SLEEP to device");
2110 			break;
2111 		}
2112 
2113 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2114 		qca->ibs_sent_slps++;
2115 		tx_pending = true;
2116 		break;
2117 
2118 	case HCI_IBS_TX_ASLEEP:
2119 		break;
2120 
2121 	default:
2122 		BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2123 		ret = -EINVAL;
2124 		break;
2125 	}
2126 
2127 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2128 
2129 	if (ret < 0)
2130 		goto error;
2131 
2132 	if (tx_pending) {
2133 		serdev_device_wait_until_sent(hu->serdev,
2134 					      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2135 		serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2136 	}
2137 
2138 	/* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2139 	 * to sleep, so that the packet does not wake the system later.
2140 	 */
2141 	ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2142 			qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2143 			msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2144 	if (ret == 0) {
2145 		ret = -ETIMEDOUT;
2146 		goto error;
2147 	}
2148 
2149 	return 0;
2150 
2151 error:
2152 	clear_bit(QCA_SUSPENDING, &qca->flags);
2153 
2154 	return ret;
2155 }
2156 
2157 static int __maybe_unused qca_resume(struct device *dev)
2158 {
2159 	struct serdev_device *serdev = to_serdev_device(dev);
2160 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2161 	struct hci_uart *hu = &qcadev->serdev_hu;
2162 	struct qca_data *qca = hu->priv;
2163 
2164 	clear_bit(QCA_SUSPENDING, &qca->flags);
2165 
2166 	return 0;
2167 }
2168 
2169 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2170 
2171 #ifdef CONFIG_OF
2172 static const struct of_device_id qca_bluetooth_of_match[] = {
2173 	{ .compatible = "qcom,qca6174-bt" },
2174 	{ .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2175 	{ .compatible = "qcom,qca9377-bt" },
2176 	{ .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2177 	{ .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2178 	{ .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2179 	{ /* sentinel */ }
2180 };
2181 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2182 #endif
2183 
2184 #ifdef CONFIG_ACPI
2185 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2186 	{ "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2187 	{ "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2188 	{ "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2189 	{ "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2190 	{ },
2191 };
2192 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2193 #endif
2194 
2195 
2196 static struct serdev_device_driver qca_serdev_driver = {
2197 	.probe = qca_serdev_probe,
2198 	.remove = qca_serdev_remove,
2199 	.driver = {
2200 		.name = "hci_uart_qca",
2201 		.of_match_table = of_match_ptr(qca_bluetooth_of_match),
2202 		.acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2203 		.shutdown = qca_serdev_shutdown,
2204 		.pm = &qca_pm_ops,
2205 	},
2206 };
2207 
2208 int __init qca_init(void)
2209 {
2210 	serdev_device_driver_register(&qca_serdev_driver);
2211 
2212 	return hci_uart_register_proto(&qca_proto);
2213 }
2214 
2215 int __exit qca_deinit(void)
2216 {
2217 	serdev_device_driver_unregister(&qca_serdev_driver);
2218 
2219 	return hci_uart_unregister_proto(&qca_proto);
2220 }
2221