xref: /openbmc/linux/drivers/bluetooth/hci_qca.c (revision 7ebf812b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Bluetooth Software UART Qualcomm protocol
4  *
5  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10  *
11  *  Acknowledgements:
12  *  This file is based on hci_ll.c, which was...
13  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14  *  which was in turn based on hci_h4.c, which was written
15  *  by Maxim Krasnyansky and Marcel Holtmann.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/serdev.h>
33 #include <linux/mutex.h>
34 #include <asm/unaligned.h>
35 
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38 
39 #include "hci_uart.h"
40 #include "btqca.h"
41 
42 /* HCI_IBS protocol messages */
43 #define HCI_IBS_SLEEP_IND	0xFE
44 #define HCI_IBS_WAKE_IND	0xFD
45 #define HCI_IBS_WAKE_ACK	0xFC
46 #define HCI_MAX_IBS_SIZE	10
47 
48 #define IBS_WAKE_RETRANS_TIMEOUT_MS	100
49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS	200
50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS	2000
51 #define CMD_TRANS_TIMEOUT_MS		100
52 #define MEMDUMP_TIMEOUT_MS		8000
53 #define IBS_DISABLE_SSR_TIMEOUT_MS \
54 	(MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS)
55 #define FW_DOWNLOAD_TIMEOUT_MS		3000
56 
57 /* susclk rate */
58 #define SUSCLK_RATE_32KHZ	32768
59 
60 /* Controller debug log header */
61 #define QCA_DEBUG_HANDLE	0x2EDC
62 
63 /* max retry count when init fails */
64 #define MAX_INIT_RETRIES 3
65 
66 /* Controller dump header */
67 #define QCA_SSR_DUMP_HANDLE		0x0108
68 #define QCA_DUMP_PACKET_SIZE		255
69 #define QCA_LAST_SEQUENCE_NUM		0xFFFF
70 #define QCA_CRASHBYTE_PACKET_LEN	1096
71 #define QCA_MEMDUMP_BYTE		0xFB
72 
73 enum qca_flags {
74 	QCA_IBS_DISABLED,
75 	QCA_DROP_VENDOR_EVENT,
76 	QCA_SUSPENDING,
77 	QCA_MEMDUMP_COLLECTION,
78 	QCA_HW_ERROR_EVENT,
79 	QCA_SSR_TRIGGERED,
80 	QCA_BT_OFF,
81 	QCA_ROM_FW,
82 	QCA_DEBUGFS_CREATED,
83 };
84 
85 enum qca_capabilities {
86 	QCA_CAP_WIDEBAND_SPEECH = BIT(0),
87 	QCA_CAP_VALID_LE_STATES = BIT(1),
88 };
89 
90 /* HCI_IBS transmit side sleep protocol states */
91 enum tx_ibs_states {
92 	HCI_IBS_TX_ASLEEP,
93 	HCI_IBS_TX_WAKING,
94 	HCI_IBS_TX_AWAKE,
95 };
96 
97 /* HCI_IBS receive side sleep protocol states */
98 enum rx_states {
99 	HCI_IBS_RX_ASLEEP,
100 	HCI_IBS_RX_AWAKE,
101 };
102 
103 /* HCI_IBS transmit and receive side clock state vote */
104 enum hci_ibs_clock_state_vote {
105 	HCI_IBS_VOTE_STATS_UPDATE,
106 	HCI_IBS_TX_VOTE_CLOCK_ON,
107 	HCI_IBS_TX_VOTE_CLOCK_OFF,
108 	HCI_IBS_RX_VOTE_CLOCK_ON,
109 	HCI_IBS_RX_VOTE_CLOCK_OFF,
110 };
111 
112 /* Controller memory dump states */
113 enum qca_memdump_states {
114 	QCA_MEMDUMP_IDLE,
115 	QCA_MEMDUMP_COLLECTING,
116 	QCA_MEMDUMP_COLLECTED,
117 	QCA_MEMDUMP_TIMEOUT,
118 };
119 
120 struct qca_memdump_info {
121 	u32 current_seq_no;
122 	u32 received_dump;
123 	u32 ram_dump_size;
124 };
125 
126 struct qca_memdump_event_hdr {
127 	__u8    evt;
128 	__u8    plen;
129 	__u16   opcode;
130 	__le16   seq_no;
131 	__u8    reserved;
132 } __packed;
133 
134 
135 struct qca_dump_size {
136 	__le32 dump_size;
137 } __packed;
138 
139 struct qca_data {
140 	struct hci_uart *hu;
141 	struct sk_buff *rx_skb;
142 	struct sk_buff_head txq;
143 	struct sk_buff_head tx_wait_q;	/* HCI_IBS wait queue	*/
144 	struct sk_buff_head rx_memdump_q;	/* Memdump wait queue	*/
145 	spinlock_t hci_ibs_lock;	/* HCI_IBS state lock	*/
146 	u8 tx_ibs_state;	/* HCI_IBS transmit side power state*/
147 	u8 rx_ibs_state;	/* HCI_IBS receive side power state */
148 	bool tx_vote;		/* Clock must be on for TX */
149 	bool rx_vote;		/* Clock must be on for RX */
150 	struct timer_list tx_idle_timer;
151 	u32 tx_idle_delay;
152 	struct timer_list wake_retrans_timer;
153 	u32 wake_retrans;
154 	struct workqueue_struct *workqueue;
155 	struct work_struct ws_awake_rx;
156 	struct work_struct ws_awake_device;
157 	struct work_struct ws_rx_vote_off;
158 	struct work_struct ws_tx_vote_off;
159 	struct work_struct ctrl_memdump_evt;
160 	struct delayed_work ctrl_memdump_timeout;
161 	struct qca_memdump_info *qca_memdump;
162 	unsigned long flags;
163 	struct completion drop_ev_comp;
164 	wait_queue_head_t suspend_wait_q;
165 	enum qca_memdump_states memdump_state;
166 	struct mutex hci_memdump_lock;
167 
168 	u16 fw_version;
169 	u16 controller_id;
170 	/* For debugging purpose */
171 	u64 ibs_sent_wacks;
172 	u64 ibs_sent_slps;
173 	u64 ibs_sent_wakes;
174 	u64 ibs_recv_wacks;
175 	u64 ibs_recv_slps;
176 	u64 ibs_recv_wakes;
177 	u64 vote_last_jif;
178 	u32 vote_on_ms;
179 	u32 vote_off_ms;
180 	u64 tx_votes_on;
181 	u64 rx_votes_on;
182 	u64 tx_votes_off;
183 	u64 rx_votes_off;
184 	u64 votes_on;
185 	u64 votes_off;
186 };
187 
188 enum qca_speed_type {
189 	QCA_INIT_SPEED = 1,
190 	QCA_OPER_SPEED
191 };
192 
193 /*
194  * Voltage regulator information required for configuring the
195  * QCA Bluetooth chipset
196  */
197 struct qca_vreg {
198 	const char *name;
199 	unsigned int load_uA;
200 };
201 
202 struct qca_device_data {
203 	enum qca_btsoc_type soc_type;
204 	struct qca_vreg *vregs;
205 	size_t num_vregs;
206 	uint32_t capabilities;
207 };
208 
209 /*
210  * Platform data for the QCA Bluetooth power driver.
211  */
212 struct qca_power {
213 	struct device *dev;
214 	struct regulator_bulk_data *vreg_bulk;
215 	int num_vregs;
216 	bool vregs_on;
217 };
218 
219 struct qca_serdev {
220 	struct hci_uart	 serdev_hu;
221 	struct gpio_desc *bt_en;
222 	struct gpio_desc *sw_ctrl;
223 	struct clk	 *susclk;
224 	enum qca_btsoc_type btsoc_type;
225 	struct qca_power *bt_power;
226 	u32 init_speed;
227 	u32 oper_speed;
228 	const char *firmware_name;
229 };
230 
231 static int qca_regulator_enable(struct qca_serdev *qcadev);
232 static void qca_regulator_disable(struct qca_serdev *qcadev);
233 static void qca_power_shutdown(struct hci_uart *hu);
234 static int qca_power_off(struct hci_dev *hdev);
235 static void qca_controller_memdump(struct work_struct *work);
236 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb);
237 
238 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
239 {
240 	enum qca_btsoc_type soc_type;
241 
242 	if (hu->serdev) {
243 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
244 
245 		soc_type = qsd->btsoc_type;
246 	} else {
247 		soc_type = QCA_ROME;
248 	}
249 
250 	return soc_type;
251 }
252 
253 static const char *qca_get_firmware_name(struct hci_uart *hu)
254 {
255 	if (hu->serdev) {
256 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
257 
258 		return qsd->firmware_name;
259 	} else {
260 		return NULL;
261 	}
262 }
263 
264 static void __serial_clock_on(struct tty_struct *tty)
265 {
266 	/* TODO: Some chipset requires to enable UART clock on client
267 	 * side to save power consumption or manual work is required.
268 	 * Please put your code to control UART clock here if needed
269 	 */
270 }
271 
272 static void __serial_clock_off(struct tty_struct *tty)
273 {
274 	/* TODO: Some chipset requires to disable UART clock on client
275 	 * side to save power consumption or manual work is required.
276 	 * Please put your code to control UART clock off here if needed
277 	 */
278 }
279 
280 /* serial_clock_vote needs to be called with the ibs lock held */
281 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
282 {
283 	struct qca_data *qca = hu->priv;
284 	unsigned int diff;
285 
286 	bool old_vote = (qca->tx_vote | qca->rx_vote);
287 	bool new_vote;
288 
289 	switch (vote) {
290 	case HCI_IBS_VOTE_STATS_UPDATE:
291 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
292 
293 		if (old_vote)
294 			qca->vote_off_ms += diff;
295 		else
296 			qca->vote_on_ms += diff;
297 		return;
298 
299 	case HCI_IBS_TX_VOTE_CLOCK_ON:
300 		qca->tx_vote = true;
301 		qca->tx_votes_on++;
302 		break;
303 
304 	case HCI_IBS_RX_VOTE_CLOCK_ON:
305 		qca->rx_vote = true;
306 		qca->rx_votes_on++;
307 		break;
308 
309 	case HCI_IBS_TX_VOTE_CLOCK_OFF:
310 		qca->tx_vote = false;
311 		qca->tx_votes_off++;
312 		break;
313 
314 	case HCI_IBS_RX_VOTE_CLOCK_OFF:
315 		qca->rx_vote = false;
316 		qca->rx_votes_off++;
317 		break;
318 
319 	default:
320 		BT_ERR("Voting irregularity");
321 		return;
322 	}
323 
324 	new_vote = qca->rx_vote | qca->tx_vote;
325 
326 	if (new_vote != old_vote) {
327 		if (new_vote)
328 			__serial_clock_on(hu->tty);
329 		else
330 			__serial_clock_off(hu->tty);
331 
332 		BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
333 		       vote ? "true" : "false");
334 
335 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
336 
337 		if (new_vote) {
338 			qca->votes_on++;
339 			qca->vote_off_ms += diff;
340 		} else {
341 			qca->votes_off++;
342 			qca->vote_on_ms += diff;
343 		}
344 		qca->vote_last_jif = jiffies;
345 	}
346 }
347 
348 /* Builds and sends an HCI_IBS command packet.
349  * These are very simple packets with only 1 cmd byte.
350  */
351 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
352 {
353 	int err = 0;
354 	struct sk_buff *skb = NULL;
355 	struct qca_data *qca = hu->priv;
356 
357 	BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
358 
359 	skb = bt_skb_alloc(1, GFP_ATOMIC);
360 	if (!skb) {
361 		BT_ERR("Failed to allocate memory for HCI_IBS packet");
362 		return -ENOMEM;
363 	}
364 
365 	/* Assign HCI_IBS type */
366 	skb_put_u8(skb, cmd);
367 
368 	skb_queue_tail(&qca->txq, skb);
369 
370 	return err;
371 }
372 
373 static void qca_wq_awake_device(struct work_struct *work)
374 {
375 	struct qca_data *qca = container_of(work, struct qca_data,
376 					    ws_awake_device);
377 	struct hci_uart *hu = qca->hu;
378 	unsigned long retrans_delay;
379 	unsigned long flags;
380 
381 	BT_DBG("hu %p wq awake device", hu);
382 
383 	/* Vote for serial clock */
384 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
385 
386 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
387 
388 	/* Send wake indication to device */
389 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
390 		BT_ERR("Failed to send WAKE to device");
391 
392 	qca->ibs_sent_wakes++;
393 
394 	/* Start retransmit timer */
395 	retrans_delay = msecs_to_jiffies(qca->wake_retrans);
396 	mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
397 
398 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
399 
400 	/* Actually send the packets */
401 	hci_uart_tx_wakeup(hu);
402 }
403 
404 static void qca_wq_awake_rx(struct work_struct *work)
405 {
406 	struct qca_data *qca = container_of(work, struct qca_data,
407 					    ws_awake_rx);
408 	struct hci_uart *hu = qca->hu;
409 	unsigned long flags;
410 
411 	BT_DBG("hu %p wq awake rx", hu);
412 
413 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
414 
415 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
416 	qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
417 
418 	/* Always acknowledge device wake up,
419 	 * sending IBS message doesn't count as TX ON.
420 	 */
421 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
422 		BT_ERR("Failed to acknowledge device wake up");
423 
424 	qca->ibs_sent_wacks++;
425 
426 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
427 
428 	/* Actually send the packets */
429 	hci_uart_tx_wakeup(hu);
430 }
431 
432 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
433 {
434 	struct qca_data *qca = container_of(work, struct qca_data,
435 					    ws_rx_vote_off);
436 	struct hci_uart *hu = qca->hu;
437 
438 	BT_DBG("hu %p rx clock vote off", hu);
439 
440 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
441 }
442 
443 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
444 {
445 	struct qca_data *qca = container_of(work, struct qca_data,
446 					    ws_tx_vote_off);
447 	struct hci_uart *hu = qca->hu;
448 
449 	BT_DBG("hu %p tx clock vote off", hu);
450 
451 	/* Run HCI tx handling unlocked */
452 	hci_uart_tx_wakeup(hu);
453 
454 	/* Now that message queued to tty driver, vote for tty clocks off.
455 	 * It is up to the tty driver to pend the clocks off until tx done.
456 	 */
457 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
458 }
459 
460 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
461 {
462 	struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
463 	struct hci_uart *hu = qca->hu;
464 	unsigned long flags;
465 
466 	BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
467 
468 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
469 				 flags, SINGLE_DEPTH_NESTING);
470 
471 	switch (qca->tx_ibs_state) {
472 	case HCI_IBS_TX_AWAKE:
473 		/* TX_IDLE, go to SLEEP */
474 		if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
475 			BT_ERR("Failed to send SLEEP to device");
476 			break;
477 		}
478 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
479 		qca->ibs_sent_slps++;
480 		queue_work(qca->workqueue, &qca->ws_tx_vote_off);
481 		break;
482 
483 	case HCI_IBS_TX_ASLEEP:
484 	case HCI_IBS_TX_WAKING:
485 	default:
486 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
487 		break;
488 	}
489 
490 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
491 }
492 
493 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
494 {
495 	struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
496 	struct hci_uart *hu = qca->hu;
497 	unsigned long flags, retrans_delay;
498 	bool retransmit = false;
499 
500 	BT_DBG("hu %p wake retransmit timeout in %d state",
501 		hu, qca->tx_ibs_state);
502 
503 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
504 				 flags, SINGLE_DEPTH_NESTING);
505 
506 	/* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
507 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
508 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
509 		return;
510 	}
511 
512 	switch (qca->tx_ibs_state) {
513 	case HCI_IBS_TX_WAKING:
514 		/* No WAKE_ACK, retransmit WAKE */
515 		retransmit = true;
516 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
517 			BT_ERR("Failed to acknowledge device wake up");
518 			break;
519 		}
520 		qca->ibs_sent_wakes++;
521 		retrans_delay = msecs_to_jiffies(qca->wake_retrans);
522 		mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
523 		break;
524 
525 	case HCI_IBS_TX_ASLEEP:
526 	case HCI_IBS_TX_AWAKE:
527 	default:
528 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
529 		break;
530 	}
531 
532 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
533 
534 	if (retransmit)
535 		hci_uart_tx_wakeup(hu);
536 }
537 
538 
539 static void qca_controller_memdump_timeout(struct work_struct *work)
540 {
541 	struct qca_data *qca = container_of(work, struct qca_data,
542 					ctrl_memdump_timeout.work);
543 	struct hci_uart *hu = qca->hu;
544 
545 	mutex_lock(&qca->hci_memdump_lock);
546 	if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
547 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
548 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
549 			/* Inject hw error event to reset the device
550 			 * and driver.
551 			 */
552 			hci_reset_dev(hu->hdev);
553 		}
554 	}
555 
556 	mutex_unlock(&qca->hci_memdump_lock);
557 }
558 
559 
560 /* Initialize protocol */
561 static int qca_open(struct hci_uart *hu)
562 {
563 	struct qca_serdev *qcadev;
564 	struct qca_data *qca;
565 
566 	BT_DBG("hu %p qca_open", hu);
567 
568 	if (!hci_uart_has_flow_control(hu))
569 		return -EOPNOTSUPP;
570 
571 	qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
572 	if (!qca)
573 		return -ENOMEM;
574 
575 	skb_queue_head_init(&qca->txq);
576 	skb_queue_head_init(&qca->tx_wait_q);
577 	skb_queue_head_init(&qca->rx_memdump_q);
578 	spin_lock_init(&qca->hci_ibs_lock);
579 	mutex_init(&qca->hci_memdump_lock);
580 	qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
581 	if (!qca->workqueue) {
582 		BT_ERR("QCA Workqueue not initialized properly");
583 		kfree(qca);
584 		return -ENOMEM;
585 	}
586 
587 	INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
588 	INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
589 	INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
590 	INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
591 	INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
592 	INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
593 			  qca_controller_memdump_timeout);
594 	init_waitqueue_head(&qca->suspend_wait_q);
595 
596 	qca->hu = hu;
597 	init_completion(&qca->drop_ev_comp);
598 
599 	/* Assume we start with both sides asleep -- extra wakes OK */
600 	qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
601 	qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
602 
603 	qca->vote_last_jif = jiffies;
604 
605 	hu->priv = qca;
606 
607 	if (hu->serdev) {
608 		qcadev = serdev_device_get_drvdata(hu->serdev);
609 
610 		switch (qcadev->btsoc_type) {
611 		case QCA_WCN3988:
612 		case QCA_WCN3990:
613 		case QCA_WCN3991:
614 		case QCA_WCN3998:
615 		case QCA_WCN6750:
616 			hu->init_speed = qcadev->init_speed;
617 			break;
618 
619 		default:
620 			break;
621 		}
622 
623 		if (qcadev->oper_speed)
624 			hu->oper_speed = qcadev->oper_speed;
625 	}
626 
627 	timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
628 	qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
629 
630 	timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
631 	qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
632 
633 	BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
634 	       qca->tx_idle_delay, qca->wake_retrans);
635 
636 	return 0;
637 }
638 
639 static void qca_debugfs_init(struct hci_dev *hdev)
640 {
641 	struct hci_uart *hu = hci_get_drvdata(hdev);
642 	struct qca_data *qca = hu->priv;
643 	struct dentry *ibs_dir;
644 	umode_t mode;
645 
646 	if (!hdev->debugfs)
647 		return;
648 
649 	if (test_and_set_bit(QCA_DEBUGFS_CREATED, &qca->flags))
650 		return;
651 
652 	ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
653 
654 	/* read only */
655 	mode = 0444;
656 	debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
657 	debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
658 	debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
659 			   &qca->ibs_sent_slps);
660 	debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
661 			   &qca->ibs_sent_wakes);
662 	debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
663 			   &qca->ibs_sent_wacks);
664 	debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
665 			   &qca->ibs_recv_slps);
666 	debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
667 			   &qca->ibs_recv_wakes);
668 	debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
669 			   &qca->ibs_recv_wacks);
670 	debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
671 	debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
672 	debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
673 	debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
674 	debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
675 	debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
676 	debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
677 	debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
678 	debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
679 	debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
680 
681 	/* read/write */
682 	mode = 0644;
683 	debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
684 	debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
685 			   &qca->tx_idle_delay);
686 }
687 
688 /* Flush protocol data */
689 static int qca_flush(struct hci_uart *hu)
690 {
691 	struct qca_data *qca = hu->priv;
692 
693 	BT_DBG("hu %p qca flush", hu);
694 
695 	skb_queue_purge(&qca->tx_wait_q);
696 	skb_queue_purge(&qca->txq);
697 
698 	return 0;
699 }
700 
701 /* Close protocol */
702 static int qca_close(struct hci_uart *hu)
703 {
704 	struct qca_data *qca = hu->priv;
705 
706 	BT_DBG("hu %p qca close", hu);
707 
708 	serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
709 
710 	skb_queue_purge(&qca->tx_wait_q);
711 	skb_queue_purge(&qca->txq);
712 	skb_queue_purge(&qca->rx_memdump_q);
713 	/*
714 	 * Shut the timers down so they can't be rearmed when
715 	 * destroy_workqueue() drains pending work which in turn might try
716 	 * to arm a timer.  After shutdown rearm attempts are silently
717 	 * ignored by the timer core code.
718 	 */
719 	timer_shutdown_sync(&qca->tx_idle_timer);
720 	timer_shutdown_sync(&qca->wake_retrans_timer);
721 	destroy_workqueue(qca->workqueue);
722 	qca->hu = NULL;
723 
724 	kfree_skb(qca->rx_skb);
725 
726 	hu->priv = NULL;
727 
728 	kfree(qca);
729 
730 	return 0;
731 }
732 
733 /* Called upon a wake-up-indication from the device.
734  */
735 static void device_want_to_wakeup(struct hci_uart *hu)
736 {
737 	unsigned long flags;
738 	struct qca_data *qca = hu->priv;
739 
740 	BT_DBG("hu %p want to wake up", hu);
741 
742 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
743 
744 	qca->ibs_recv_wakes++;
745 
746 	/* Don't wake the rx up when suspending. */
747 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
748 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
749 		return;
750 	}
751 
752 	switch (qca->rx_ibs_state) {
753 	case HCI_IBS_RX_ASLEEP:
754 		/* Make sure clock is on - we may have turned clock off since
755 		 * receiving the wake up indicator awake rx clock.
756 		 */
757 		queue_work(qca->workqueue, &qca->ws_awake_rx);
758 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
759 		return;
760 
761 	case HCI_IBS_RX_AWAKE:
762 		/* Always acknowledge device wake up,
763 		 * sending IBS message doesn't count as TX ON.
764 		 */
765 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
766 			BT_ERR("Failed to acknowledge device wake up");
767 			break;
768 		}
769 		qca->ibs_sent_wacks++;
770 		break;
771 
772 	default:
773 		/* Any other state is illegal */
774 		BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
775 		       qca->rx_ibs_state);
776 		break;
777 	}
778 
779 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
780 
781 	/* Actually send the packets */
782 	hci_uart_tx_wakeup(hu);
783 }
784 
785 /* Called upon a sleep-indication from the device.
786  */
787 static void device_want_to_sleep(struct hci_uart *hu)
788 {
789 	unsigned long flags;
790 	struct qca_data *qca = hu->priv;
791 
792 	BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
793 
794 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
795 
796 	qca->ibs_recv_slps++;
797 
798 	switch (qca->rx_ibs_state) {
799 	case HCI_IBS_RX_AWAKE:
800 		/* Update state */
801 		qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
802 		/* Vote off rx clock under workqueue */
803 		queue_work(qca->workqueue, &qca->ws_rx_vote_off);
804 		break;
805 
806 	case HCI_IBS_RX_ASLEEP:
807 		break;
808 
809 	default:
810 		/* Any other state is illegal */
811 		BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
812 		       qca->rx_ibs_state);
813 		break;
814 	}
815 
816 	wake_up_interruptible(&qca->suspend_wait_q);
817 
818 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
819 }
820 
821 /* Called upon wake-up-acknowledgement from the device
822  */
823 static void device_woke_up(struct hci_uart *hu)
824 {
825 	unsigned long flags, idle_delay;
826 	struct qca_data *qca = hu->priv;
827 	struct sk_buff *skb = NULL;
828 
829 	BT_DBG("hu %p woke up", hu);
830 
831 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
832 
833 	qca->ibs_recv_wacks++;
834 
835 	/* Don't react to the wake-up-acknowledgment when suspending. */
836 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
837 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
838 		return;
839 	}
840 
841 	switch (qca->tx_ibs_state) {
842 	case HCI_IBS_TX_AWAKE:
843 		/* Expect one if we send 2 WAKEs */
844 		BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
845 		       qca->tx_ibs_state);
846 		break;
847 
848 	case HCI_IBS_TX_WAKING:
849 		/* Send pending packets */
850 		while ((skb = skb_dequeue(&qca->tx_wait_q)))
851 			skb_queue_tail(&qca->txq, skb);
852 
853 		/* Switch timers and change state to HCI_IBS_TX_AWAKE */
854 		del_timer(&qca->wake_retrans_timer);
855 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
856 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
857 		qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
858 		break;
859 
860 	case HCI_IBS_TX_ASLEEP:
861 	default:
862 		BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
863 		       qca->tx_ibs_state);
864 		break;
865 	}
866 
867 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
868 
869 	/* Actually send the packets */
870 	hci_uart_tx_wakeup(hu);
871 }
872 
873 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
874  * two simultaneous tasklets.
875  */
876 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
877 {
878 	unsigned long flags = 0, idle_delay;
879 	struct qca_data *qca = hu->priv;
880 
881 	BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
882 	       qca->tx_ibs_state);
883 
884 	if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
885 		/* As SSR is in progress, ignore the packets */
886 		bt_dev_dbg(hu->hdev, "SSR is in progress");
887 		kfree_skb(skb);
888 		return 0;
889 	}
890 
891 	/* Prepend skb with frame type */
892 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
893 
894 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
895 
896 	/* Don't go to sleep in middle of patch download or
897 	 * Out-Of-Band(GPIOs control) sleep is selected.
898 	 * Don't wake the device up when suspending.
899 	 */
900 	if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
901 	    test_bit(QCA_SUSPENDING, &qca->flags)) {
902 		skb_queue_tail(&qca->txq, skb);
903 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
904 		return 0;
905 	}
906 
907 	/* Act according to current state */
908 	switch (qca->tx_ibs_state) {
909 	case HCI_IBS_TX_AWAKE:
910 		BT_DBG("Device awake, sending normally");
911 		skb_queue_tail(&qca->txq, skb);
912 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
913 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
914 		break;
915 
916 	case HCI_IBS_TX_ASLEEP:
917 		BT_DBG("Device asleep, waking up and queueing packet");
918 		/* Save packet for later */
919 		skb_queue_tail(&qca->tx_wait_q, skb);
920 
921 		qca->tx_ibs_state = HCI_IBS_TX_WAKING;
922 		/* Schedule a work queue to wake up device */
923 		queue_work(qca->workqueue, &qca->ws_awake_device);
924 		break;
925 
926 	case HCI_IBS_TX_WAKING:
927 		BT_DBG("Device waking up, queueing packet");
928 		/* Transient state; just keep packet for later */
929 		skb_queue_tail(&qca->tx_wait_q, skb);
930 		break;
931 
932 	default:
933 		BT_ERR("Illegal tx state: %d (losing packet)",
934 		       qca->tx_ibs_state);
935 		dev_kfree_skb_irq(skb);
936 		break;
937 	}
938 
939 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
940 
941 	return 0;
942 }
943 
944 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
945 {
946 	struct hci_uart *hu = hci_get_drvdata(hdev);
947 
948 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
949 
950 	device_want_to_sleep(hu);
951 
952 	kfree_skb(skb);
953 	return 0;
954 }
955 
956 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
957 {
958 	struct hci_uart *hu = hci_get_drvdata(hdev);
959 
960 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
961 
962 	device_want_to_wakeup(hu);
963 
964 	kfree_skb(skb);
965 	return 0;
966 }
967 
968 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
969 {
970 	struct hci_uart *hu = hci_get_drvdata(hdev);
971 
972 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
973 
974 	device_woke_up(hu);
975 
976 	kfree_skb(skb);
977 	return 0;
978 }
979 
980 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
981 {
982 	/* We receive debug logs from chip as an ACL packets.
983 	 * Instead of sending the data to ACL to decode the
984 	 * received data, we are pushing them to the above layers
985 	 * as a diagnostic packet.
986 	 */
987 	if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
988 		return hci_recv_diag(hdev, skb);
989 
990 	return hci_recv_frame(hdev, skb);
991 }
992 
993 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb)
994 {
995 	struct hci_uart *hu = hci_get_drvdata(hdev);
996 	struct qca_data *qca = hu->priv;
997 	char buf[80];
998 
999 	snprintf(buf, sizeof(buf), "Controller Name: 0x%x\n",
1000 		qca->controller_id);
1001 	skb_put_data(skb, buf, strlen(buf));
1002 
1003 	snprintf(buf, sizeof(buf), "Firmware Version: 0x%x\n",
1004 		qca->fw_version);
1005 	skb_put_data(skb, buf, strlen(buf));
1006 
1007 	snprintf(buf, sizeof(buf), "Vendor:Qualcomm\n");
1008 	skb_put_data(skb, buf, strlen(buf));
1009 
1010 	snprintf(buf, sizeof(buf), "Driver: %s\n",
1011 		hu->serdev->dev.driver->name);
1012 	skb_put_data(skb, buf, strlen(buf));
1013 }
1014 
1015 static void qca_controller_memdump(struct work_struct *work)
1016 {
1017 	struct qca_data *qca = container_of(work, struct qca_data,
1018 					    ctrl_memdump_evt);
1019 	struct hci_uart *hu = qca->hu;
1020 	struct sk_buff *skb;
1021 	struct qca_memdump_event_hdr *cmd_hdr;
1022 	struct qca_memdump_info *qca_memdump = qca->qca_memdump;
1023 	struct qca_dump_size *dump;
1024 	u16 seq_no;
1025 	u32 rx_size;
1026 	int ret = 0;
1027 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1028 
1029 	while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
1030 
1031 		mutex_lock(&qca->hci_memdump_lock);
1032 		/* Skip processing the received packets if timeout detected
1033 		 * or memdump collection completed.
1034 		 */
1035 		if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1036 		    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1037 			mutex_unlock(&qca->hci_memdump_lock);
1038 			return;
1039 		}
1040 
1041 		if (!qca_memdump) {
1042 			qca_memdump = kzalloc(sizeof(struct qca_memdump_info),
1043 					      GFP_ATOMIC);
1044 			if (!qca_memdump) {
1045 				mutex_unlock(&qca->hci_memdump_lock);
1046 				return;
1047 			}
1048 
1049 			qca->qca_memdump = qca_memdump;
1050 		}
1051 
1052 		qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1053 		cmd_hdr = (void *) skb->data;
1054 		seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1055 		skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1056 
1057 		if (!seq_no) {
1058 
1059 			/* This is the first frame of memdump packet from
1060 			 * the controller, Disable IBS to recevie dump
1061 			 * with out any interruption, ideally time required for
1062 			 * the controller to send the dump is 8 seconds. let us
1063 			 * start timer to handle this asynchronous activity.
1064 			 */
1065 			set_bit(QCA_IBS_DISABLED, &qca->flags);
1066 			set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1067 			dump = (void *) skb->data;
1068 			qca_memdump->ram_dump_size = __le32_to_cpu(dump->dump_size);
1069 			if (!(qca_memdump->ram_dump_size)) {
1070 				bt_dev_err(hu->hdev, "Rx invalid memdump size");
1071 				kfree(qca_memdump);
1072 				kfree_skb(skb);
1073 				mutex_unlock(&qca->hci_memdump_lock);
1074 				return;
1075 			}
1076 
1077 			queue_delayed_work(qca->workqueue,
1078 					   &qca->ctrl_memdump_timeout,
1079 					   msecs_to_jiffies(MEMDUMP_TIMEOUT_MS));
1080 			skb_pull(skb, sizeof(qca_memdump->ram_dump_size));
1081 			qca_memdump->current_seq_no = 0;
1082 			qca_memdump->received_dump = 0;
1083 			ret = hci_devcd_init(hu->hdev, qca_memdump->ram_dump_size);
1084 			bt_dev_info(hu->hdev, "hci_devcd_init Return:%d",
1085 				    ret);
1086 			if (ret < 0) {
1087 				kfree(qca->qca_memdump);
1088 				qca->qca_memdump = NULL;
1089 				qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1090 				cancel_delayed_work(&qca->ctrl_memdump_timeout);
1091 				clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1092 				mutex_unlock(&qca->hci_memdump_lock);
1093 				return;
1094 			}
1095 
1096 			bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1097 				    qca_memdump->ram_dump_size);
1098 
1099 		}
1100 
1101 		/* If sequence no 0 is missed then there is no point in
1102 		 * accepting the other sequences.
1103 		 */
1104 		if (!test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
1105 			bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1106 			kfree(qca_memdump);
1107 			kfree_skb(skb);
1108 			mutex_unlock(&qca->hci_memdump_lock);
1109 			return;
1110 		}
1111 		/* There could be chance of missing some packets from
1112 		 * the controller. In such cases let us store the dummy
1113 		 * packets in the buffer.
1114 		 */
1115 		/* For QCA6390, controller does not lost packets but
1116 		 * sequence number field of packet sometimes has error
1117 		 * bits, so skip this checking for missing packet.
1118 		 */
1119 		while ((seq_no > qca_memdump->current_seq_no + 1) &&
1120 			(soc_type != QCA_QCA6390) &&
1121 			seq_no != QCA_LAST_SEQUENCE_NUM) {
1122 			bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1123 				   qca_memdump->current_seq_no);
1124 			rx_size = qca_memdump->received_dump;
1125 			rx_size += QCA_DUMP_PACKET_SIZE;
1126 			if (rx_size > qca_memdump->ram_dump_size) {
1127 				bt_dev_err(hu->hdev,
1128 					   "QCA memdump received %d, no space for missed packet",
1129 					   qca_memdump->received_dump);
1130 				break;
1131 			}
1132 			hci_devcd_append_pattern(hu->hdev, 0x00,
1133 				QCA_DUMP_PACKET_SIZE);
1134 			qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1135 			qca_memdump->current_seq_no++;
1136 		}
1137 
1138 		rx_size = qca_memdump->received_dump  + skb->len;
1139 		if (rx_size <= qca_memdump->ram_dump_size) {
1140 			if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1141 			    (seq_no != qca_memdump->current_seq_no)) {
1142 				bt_dev_err(hu->hdev,
1143 					   "QCA memdump unexpected packet %d",
1144 					   seq_no);
1145 			}
1146 			bt_dev_dbg(hu->hdev,
1147 				   "QCA memdump packet %d with length %d",
1148 				   seq_no, skb->len);
1149 			hci_devcd_append(hu->hdev, skb);
1150 			qca_memdump->current_seq_no += 1;
1151 			qca_memdump->received_dump = rx_size;
1152 		} else {
1153 			bt_dev_err(hu->hdev,
1154 				   "QCA memdump received no space for packet %d",
1155 				    qca_memdump->current_seq_no);
1156 		}
1157 
1158 		if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1159 			bt_dev_info(hu->hdev,
1160 				"QCA memdump Done, received %d, total %d",
1161 				qca_memdump->received_dump,
1162 				qca_memdump->ram_dump_size);
1163 			hci_devcd_complete(hu->hdev);
1164 			cancel_delayed_work(&qca->ctrl_memdump_timeout);
1165 			kfree(qca->qca_memdump);
1166 			qca->qca_memdump = NULL;
1167 			qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1168 			clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1169 		}
1170 
1171 		mutex_unlock(&qca->hci_memdump_lock);
1172 	}
1173 
1174 }
1175 
1176 static int qca_controller_memdump_event(struct hci_dev *hdev,
1177 					struct sk_buff *skb)
1178 {
1179 	struct hci_uart *hu = hci_get_drvdata(hdev);
1180 	struct qca_data *qca = hu->priv;
1181 
1182 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1183 	skb_queue_tail(&qca->rx_memdump_q, skb);
1184 	queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1185 
1186 	return 0;
1187 }
1188 
1189 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1190 {
1191 	struct hci_uart *hu = hci_get_drvdata(hdev);
1192 	struct qca_data *qca = hu->priv;
1193 
1194 	if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1195 		struct hci_event_hdr *hdr = (void *)skb->data;
1196 
1197 		/* For the WCN3990 the vendor command for a baudrate change
1198 		 * isn't sent as synchronous HCI command, because the
1199 		 * controller sends the corresponding vendor event with the
1200 		 * new baudrate. The event is received and properly decoded
1201 		 * after changing the baudrate of the host port. It needs to
1202 		 * be dropped, otherwise it can be misinterpreted as
1203 		 * response to a later firmware download command (also a
1204 		 * vendor command).
1205 		 */
1206 
1207 		if (hdr->evt == HCI_EV_VENDOR)
1208 			complete(&qca->drop_ev_comp);
1209 
1210 		kfree_skb(skb);
1211 
1212 		return 0;
1213 	}
1214 	/* We receive chip memory dump as an event packet, With a dedicated
1215 	 * handler followed by a hardware error event. When this event is
1216 	 * received we store dump into a file before closing hci. This
1217 	 * dump will help in triaging the issues.
1218 	 */
1219 	if ((skb->data[0] == HCI_VENDOR_PKT) &&
1220 	    (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1221 		return qca_controller_memdump_event(hdev, skb);
1222 
1223 	return hci_recv_frame(hdev, skb);
1224 }
1225 
1226 #define QCA_IBS_SLEEP_IND_EVENT \
1227 	.type = HCI_IBS_SLEEP_IND, \
1228 	.hlen = 0, \
1229 	.loff = 0, \
1230 	.lsize = 0, \
1231 	.maxlen = HCI_MAX_IBS_SIZE
1232 
1233 #define QCA_IBS_WAKE_IND_EVENT \
1234 	.type = HCI_IBS_WAKE_IND, \
1235 	.hlen = 0, \
1236 	.loff = 0, \
1237 	.lsize = 0, \
1238 	.maxlen = HCI_MAX_IBS_SIZE
1239 
1240 #define QCA_IBS_WAKE_ACK_EVENT \
1241 	.type = HCI_IBS_WAKE_ACK, \
1242 	.hlen = 0, \
1243 	.loff = 0, \
1244 	.lsize = 0, \
1245 	.maxlen = HCI_MAX_IBS_SIZE
1246 
1247 static const struct h4_recv_pkt qca_recv_pkts[] = {
1248 	{ H4_RECV_ACL,             .recv = qca_recv_acl_data },
1249 	{ H4_RECV_SCO,             .recv = hci_recv_frame    },
1250 	{ H4_RECV_EVENT,           .recv = qca_recv_event    },
1251 	{ QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1252 	{ QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1253 	{ QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1254 };
1255 
1256 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1257 {
1258 	struct qca_data *qca = hu->priv;
1259 
1260 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1261 		return -EUNATCH;
1262 
1263 	qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1264 				  qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1265 	if (IS_ERR(qca->rx_skb)) {
1266 		int err = PTR_ERR(qca->rx_skb);
1267 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1268 		qca->rx_skb = NULL;
1269 		return err;
1270 	}
1271 
1272 	return count;
1273 }
1274 
1275 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1276 {
1277 	struct qca_data *qca = hu->priv;
1278 
1279 	return skb_dequeue(&qca->txq);
1280 }
1281 
1282 static uint8_t qca_get_baudrate_value(int speed)
1283 {
1284 	switch (speed) {
1285 	case 9600:
1286 		return QCA_BAUDRATE_9600;
1287 	case 19200:
1288 		return QCA_BAUDRATE_19200;
1289 	case 38400:
1290 		return QCA_BAUDRATE_38400;
1291 	case 57600:
1292 		return QCA_BAUDRATE_57600;
1293 	case 115200:
1294 		return QCA_BAUDRATE_115200;
1295 	case 230400:
1296 		return QCA_BAUDRATE_230400;
1297 	case 460800:
1298 		return QCA_BAUDRATE_460800;
1299 	case 500000:
1300 		return QCA_BAUDRATE_500000;
1301 	case 921600:
1302 		return QCA_BAUDRATE_921600;
1303 	case 1000000:
1304 		return QCA_BAUDRATE_1000000;
1305 	case 2000000:
1306 		return QCA_BAUDRATE_2000000;
1307 	case 3000000:
1308 		return QCA_BAUDRATE_3000000;
1309 	case 3200000:
1310 		return QCA_BAUDRATE_3200000;
1311 	case 3500000:
1312 		return QCA_BAUDRATE_3500000;
1313 	default:
1314 		return QCA_BAUDRATE_115200;
1315 	}
1316 }
1317 
1318 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1319 {
1320 	struct hci_uart *hu = hci_get_drvdata(hdev);
1321 	struct qca_data *qca = hu->priv;
1322 	struct sk_buff *skb;
1323 	u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1324 
1325 	if (baudrate > QCA_BAUDRATE_3200000)
1326 		return -EINVAL;
1327 
1328 	cmd[4] = baudrate;
1329 
1330 	skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1331 	if (!skb) {
1332 		bt_dev_err(hdev, "Failed to allocate baudrate packet");
1333 		return -ENOMEM;
1334 	}
1335 
1336 	/* Assign commands to change baudrate and packet type. */
1337 	skb_put_data(skb, cmd, sizeof(cmd));
1338 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1339 
1340 	skb_queue_tail(&qca->txq, skb);
1341 	hci_uart_tx_wakeup(hu);
1342 
1343 	/* Wait for the baudrate change request to be sent */
1344 
1345 	while (!skb_queue_empty(&qca->txq))
1346 		usleep_range(100, 200);
1347 
1348 	if (hu->serdev)
1349 		serdev_device_wait_until_sent(hu->serdev,
1350 		      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1351 
1352 	/* Give the controller time to process the request */
1353 	switch (qca_soc_type(hu)) {
1354 	case QCA_WCN3988:
1355 	case QCA_WCN3990:
1356 	case QCA_WCN3991:
1357 	case QCA_WCN3998:
1358 	case QCA_WCN6750:
1359 	case QCA_WCN6855:
1360 	case QCA_WCN7850:
1361 		usleep_range(1000, 10000);
1362 		break;
1363 
1364 	default:
1365 		msleep(300);
1366 	}
1367 
1368 	return 0;
1369 }
1370 
1371 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1372 {
1373 	if (hu->serdev)
1374 		serdev_device_set_baudrate(hu->serdev, speed);
1375 	else
1376 		hci_uart_set_baudrate(hu, speed);
1377 }
1378 
1379 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1380 {
1381 	int ret;
1382 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1383 	u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1384 
1385 	/* These power pulses are single byte command which are sent
1386 	 * at required baudrate to wcn3990. On wcn3990, we have an external
1387 	 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1388 	 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1389 	 * and also we use the same power inputs to turn on and off for
1390 	 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1391 	 * we send a power on pulse at 115200 bps. This algorithm will help to
1392 	 * save power. Disabling hardware flow control is mandatory while
1393 	 * sending power pulses to SoC.
1394 	 */
1395 	bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1396 
1397 	serdev_device_write_flush(hu->serdev);
1398 	hci_uart_set_flow_control(hu, true);
1399 	ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1400 	if (ret < 0) {
1401 		bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1402 		return ret;
1403 	}
1404 
1405 	serdev_device_wait_until_sent(hu->serdev, timeout);
1406 	hci_uart_set_flow_control(hu, false);
1407 
1408 	/* Give to controller time to boot/shutdown */
1409 	if (on)
1410 		msleep(100);
1411 	else
1412 		usleep_range(1000, 10000);
1413 
1414 	return 0;
1415 }
1416 
1417 static unsigned int qca_get_speed(struct hci_uart *hu,
1418 				  enum qca_speed_type speed_type)
1419 {
1420 	unsigned int speed = 0;
1421 
1422 	if (speed_type == QCA_INIT_SPEED) {
1423 		if (hu->init_speed)
1424 			speed = hu->init_speed;
1425 		else if (hu->proto->init_speed)
1426 			speed = hu->proto->init_speed;
1427 	} else {
1428 		if (hu->oper_speed)
1429 			speed = hu->oper_speed;
1430 		else if (hu->proto->oper_speed)
1431 			speed = hu->proto->oper_speed;
1432 	}
1433 
1434 	return speed;
1435 }
1436 
1437 static int qca_check_speeds(struct hci_uart *hu)
1438 {
1439 	switch (qca_soc_type(hu)) {
1440 	case QCA_WCN3988:
1441 	case QCA_WCN3990:
1442 	case QCA_WCN3991:
1443 	case QCA_WCN3998:
1444 	case QCA_WCN6750:
1445 	case QCA_WCN6855:
1446 	case QCA_WCN7850:
1447 		if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1448 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1449 			return -EINVAL;
1450 		break;
1451 
1452 	default:
1453 		if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1454 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1455 			return -EINVAL;
1456 	}
1457 
1458 	return 0;
1459 }
1460 
1461 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1462 {
1463 	unsigned int speed, qca_baudrate;
1464 	struct qca_data *qca = hu->priv;
1465 	int ret = 0;
1466 
1467 	if (speed_type == QCA_INIT_SPEED) {
1468 		speed = qca_get_speed(hu, QCA_INIT_SPEED);
1469 		if (speed)
1470 			host_set_baudrate(hu, speed);
1471 	} else {
1472 		enum qca_btsoc_type soc_type = qca_soc_type(hu);
1473 
1474 		speed = qca_get_speed(hu, QCA_OPER_SPEED);
1475 		if (!speed)
1476 			return 0;
1477 
1478 		/* Disable flow control for wcn3990 to deassert RTS while
1479 		 * changing the baudrate of chip and host.
1480 		 */
1481 		switch (soc_type) {
1482 		case QCA_WCN3988:
1483 		case QCA_WCN3990:
1484 		case QCA_WCN3991:
1485 		case QCA_WCN3998:
1486 		case QCA_WCN6750:
1487 		case QCA_WCN6855:
1488 		case QCA_WCN7850:
1489 			hci_uart_set_flow_control(hu, true);
1490 			break;
1491 
1492 		default:
1493 			break;
1494 		}
1495 
1496 		switch (soc_type) {
1497 		case QCA_WCN3990:
1498 			reinit_completion(&qca->drop_ev_comp);
1499 			set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1500 			break;
1501 
1502 		default:
1503 			break;
1504 		}
1505 
1506 		qca_baudrate = qca_get_baudrate_value(speed);
1507 		bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1508 		ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1509 		if (ret)
1510 			goto error;
1511 
1512 		host_set_baudrate(hu, speed);
1513 
1514 error:
1515 		switch (soc_type) {
1516 		case QCA_WCN3988:
1517 		case QCA_WCN3990:
1518 		case QCA_WCN3991:
1519 		case QCA_WCN3998:
1520 		case QCA_WCN6750:
1521 		case QCA_WCN6855:
1522 		case QCA_WCN7850:
1523 			hci_uart_set_flow_control(hu, false);
1524 			break;
1525 
1526 		default:
1527 			break;
1528 		}
1529 
1530 		switch (soc_type) {
1531 		case QCA_WCN3990:
1532 			/* Wait for the controller to send the vendor event
1533 			 * for the baudrate change command.
1534 			 */
1535 			if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1536 						 msecs_to_jiffies(100))) {
1537 				bt_dev_err(hu->hdev,
1538 					   "Failed to change controller baudrate\n");
1539 				ret = -ETIMEDOUT;
1540 			}
1541 
1542 			clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1543 			break;
1544 
1545 		default:
1546 			break;
1547 		}
1548 	}
1549 
1550 	return ret;
1551 }
1552 
1553 static int qca_send_crashbuffer(struct hci_uart *hu)
1554 {
1555 	struct qca_data *qca = hu->priv;
1556 	struct sk_buff *skb;
1557 
1558 	skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1559 	if (!skb) {
1560 		bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1561 		return -ENOMEM;
1562 	}
1563 
1564 	/* We forcefully crash the controller, by sending 0xfb byte for
1565 	 * 1024 times. We also might have chance of losing data, To be
1566 	 * on safer side we send 1096 bytes to the SoC.
1567 	 */
1568 	memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1569 	       QCA_CRASHBYTE_PACKET_LEN);
1570 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1571 	bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1572 	skb_queue_tail(&qca->txq, skb);
1573 	hci_uart_tx_wakeup(hu);
1574 
1575 	return 0;
1576 }
1577 
1578 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1579 {
1580 	struct hci_uart *hu = hci_get_drvdata(hdev);
1581 	struct qca_data *qca = hu->priv;
1582 
1583 	wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1584 			    TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1585 
1586 	clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1587 }
1588 
1589 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1590 {
1591 	struct hci_uart *hu = hci_get_drvdata(hdev);
1592 	struct qca_data *qca = hu->priv;
1593 
1594 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1595 	set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1596 	bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1597 
1598 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1599 		/* If hardware error event received for other than QCA
1600 		 * soc memory dump event, then we need to crash the SOC
1601 		 * and wait here for 8 seconds to get the dump packets.
1602 		 * This will block main thread to be on hold until we
1603 		 * collect dump.
1604 		 */
1605 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1606 		qca_send_crashbuffer(hu);
1607 		qca_wait_for_dump_collection(hdev);
1608 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1609 		/* Let us wait here until memory dump collected or
1610 		 * memory dump timer expired.
1611 		 */
1612 		bt_dev_info(hdev, "waiting for dump to complete");
1613 		qca_wait_for_dump_collection(hdev);
1614 	}
1615 
1616 	mutex_lock(&qca->hci_memdump_lock);
1617 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1618 		bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1619 		hci_devcd_abort(hu->hdev);
1620 		if (qca->qca_memdump) {
1621 			kfree(qca->qca_memdump);
1622 			qca->qca_memdump = NULL;
1623 		}
1624 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1625 		cancel_delayed_work(&qca->ctrl_memdump_timeout);
1626 	}
1627 	mutex_unlock(&qca->hci_memdump_lock);
1628 
1629 	if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1630 	    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1631 		cancel_work_sync(&qca->ctrl_memdump_evt);
1632 		skb_queue_purge(&qca->rx_memdump_q);
1633 	}
1634 
1635 	clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1636 }
1637 
1638 static void qca_cmd_timeout(struct hci_dev *hdev)
1639 {
1640 	struct hci_uart *hu = hci_get_drvdata(hdev);
1641 	struct qca_data *qca = hu->priv;
1642 
1643 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1644 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1645 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1646 		qca_send_crashbuffer(hu);
1647 		qca_wait_for_dump_collection(hdev);
1648 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1649 		/* Let us wait here until memory dump collected or
1650 		 * memory dump timer expired.
1651 		 */
1652 		bt_dev_info(hdev, "waiting for dump to complete");
1653 		qca_wait_for_dump_collection(hdev);
1654 	}
1655 
1656 	mutex_lock(&qca->hci_memdump_lock);
1657 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1658 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1659 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1660 			/* Inject hw error event to reset the device
1661 			 * and driver.
1662 			 */
1663 			hci_reset_dev(hu->hdev);
1664 		}
1665 	}
1666 	mutex_unlock(&qca->hci_memdump_lock);
1667 }
1668 
1669 static bool qca_wakeup(struct hci_dev *hdev)
1670 {
1671 	struct hci_uart *hu = hci_get_drvdata(hdev);
1672 	bool wakeup;
1673 
1674 	/* BT SoC attached through the serial bus is handled by the serdev driver.
1675 	 * So we need to use the device handle of the serdev driver to get the
1676 	 * status of device may wakeup.
1677 	 */
1678 	wakeup = device_may_wakeup(&hu->serdev->ctrl->dev);
1679 	bt_dev_dbg(hu->hdev, "wakeup status : %d", wakeup);
1680 
1681 	return wakeup;
1682 }
1683 
1684 static int qca_regulator_init(struct hci_uart *hu)
1685 {
1686 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1687 	struct qca_serdev *qcadev;
1688 	int ret;
1689 	bool sw_ctrl_state;
1690 
1691 	/* Check for vregs status, may be hci down has turned
1692 	 * off the voltage regulator.
1693 	 */
1694 	qcadev = serdev_device_get_drvdata(hu->serdev);
1695 	if (!qcadev->bt_power->vregs_on) {
1696 		serdev_device_close(hu->serdev);
1697 		ret = qca_regulator_enable(qcadev);
1698 		if (ret)
1699 			return ret;
1700 
1701 		ret = serdev_device_open(hu->serdev);
1702 		if (ret) {
1703 			bt_dev_err(hu->hdev, "failed to open port");
1704 			return ret;
1705 		}
1706 	}
1707 
1708 	switch (soc_type) {
1709 	case QCA_WCN3988:
1710 	case QCA_WCN3990:
1711 	case QCA_WCN3991:
1712 	case QCA_WCN3998:
1713 		/* Forcefully enable wcn399x to enter in to boot mode. */
1714 		host_set_baudrate(hu, 2400);
1715 		ret = qca_send_power_pulse(hu, false);
1716 		if (ret)
1717 			return ret;
1718 		break;
1719 
1720 	default:
1721 		break;
1722 	}
1723 
1724 	/* For wcn6750 need to enable gpio bt_en */
1725 	if (qcadev->bt_en) {
1726 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
1727 		msleep(50);
1728 		gpiod_set_value_cansleep(qcadev->bt_en, 1);
1729 		msleep(50);
1730 		if (qcadev->sw_ctrl) {
1731 			sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1732 			bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1733 		}
1734 	}
1735 
1736 	qca_set_speed(hu, QCA_INIT_SPEED);
1737 
1738 	switch (soc_type) {
1739 	case QCA_WCN3988:
1740 	case QCA_WCN3990:
1741 	case QCA_WCN3991:
1742 	case QCA_WCN3998:
1743 		ret = qca_send_power_pulse(hu, true);
1744 		if (ret)
1745 			return ret;
1746 		break;
1747 
1748 	default:
1749 		break;
1750 	}
1751 
1752 	/* Now the device is in ready state to communicate with host.
1753 	 * To sync host with device we need to reopen port.
1754 	 * Without this, we will have RTS and CTS synchronization
1755 	 * issues.
1756 	 */
1757 	serdev_device_close(hu->serdev);
1758 	ret = serdev_device_open(hu->serdev);
1759 	if (ret) {
1760 		bt_dev_err(hu->hdev, "failed to open port");
1761 		return ret;
1762 	}
1763 
1764 	hci_uart_set_flow_control(hu, false);
1765 
1766 	return 0;
1767 }
1768 
1769 static int qca_power_on(struct hci_dev *hdev)
1770 {
1771 	struct hci_uart *hu = hci_get_drvdata(hdev);
1772 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1773 	struct qca_serdev *qcadev;
1774 	struct qca_data *qca = hu->priv;
1775 	int ret = 0;
1776 
1777 	/* Non-serdev device usually is powered by external power
1778 	 * and don't need additional action in driver for power on
1779 	 */
1780 	if (!hu->serdev)
1781 		return 0;
1782 
1783 	switch (soc_type) {
1784 	case QCA_WCN3988:
1785 	case QCA_WCN3990:
1786 	case QCA_WCN3991:
1787 	case QCA_WCN3998:
1788 	case QCA_WCN6750:
1789 	case QCA_WCN6855:
1790 	case QCA_WCN7850:
1791 		ret = qca_regulator_init(hu);
1792 		break;
1793 
1794 	default:
1795 		qcadev = serdev_device_get_drvdata(hu->serdev);
1796 		if (qcadev->bt_en) {
1797 			gpiod_set_value_cansleep(qcadev->bt_en, 1);
1798 			/* Controller needs time to bootup. */
1799 			msleep(150);
1800 		}
1801 	}
1802 
1803 	clear_bit(QCA_BT_OFF, &qca->flags);
1804 	return ret;
1805 }
1806 
1807 static void hci_coredump_qca(struct hci_dev *hdev)
1808 {
1809 	static const u8 param[] = { 0x26 };
1810 	struct sk_buff *skb;
1811 
1812 	skb = __hci_cmd_sync(hdev, 0xfc0c, 1, param, HCI_CMD_TIMEOUT);
1813 	if (IS_ERR(skb))
1814 		bt_dev_err(hdev, "%s: trigger crash failed (%ld)", __func__, PTR_ERR(skb));
1815 	kfree_skb(skb);
1816 }
1817 
1818 static int qca_setup(struct hci_uart *hu)
1819 {
1820 	struct hci_dev *hdev = hu->hdev;
1821 	struct qca_data *qca = hu->priv;
1822 	unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1823 	unsigned int retries = 0;
1824 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1825 	const char *firmware_name = qca_get_firmware_name(hu);
1826 	int ret;
1827 	struct qca_btsoc_version ver;
1828 	const char *soc_name;
1829 
1830 	ret = qca_check_speeds(hu);
1831 	if (ret)
1832 		return ret;
1833 
1834 	clear_bit(QCA_ROM_FW, &qca->flags);
1835 	/* Patch downloading has to be done without IBS mode */
1836 	set_bit(QCA_IBS_DISABLED, &qca->flags);
1837 
1838 	/* Enable controller to do both LE scan and BR/EDR inquiry
1839 	 * simultaneously.
1840 	 */
1841 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1842 
1843 	switch (soc_type) {
1844 	case QCA_WCN3988:
1845 	case QCA_WCN3990:
1846 	case QCA_WCN3991:
1847 	case QCA_WCN3998:
1848 		soc_name = "wcn399x";
1849 		break;
1850 
1851 	case QCA_WCN6750:
1852 		soc_name = "wcn6750";
1853 		break;
1854 
1855 	case QCA_WCN6855:
1856 		soc_name = "wcn6855";
1857 		break;
1858 
1859 	case QCA_WCN7850:
1860 		soc_name = "wcn7850";
1861 		break;
1862 
1863 	default:
1864 		soc_name = "ROME/QCA6390";
1865 	}
1866 	bt_dev_info(hdev, "setting up %s", soc_name);
1867 
1868 	qca->memdump_state = QCA_MEMDUMP_IDLE;
1869 
1870 retry:
1871 	ret = qca_power_on(hdev);
1872 	if (ret)
1873 		goto out;
1874 
1875 	clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1876 
1877 	switch (soc_type) {
1878 	case QCA_WCN3988:
1879 	case QCA_WCN3990:
1880 	case QCA_WCN3991:
1881 	case QCA_WCN3998:
1882 	case QCA_WCN6750:
1883 	case QCA_WCN6855:
1884 	case QCA_WCN7850:
1885 		set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1886 		hci_set_aosp_capable(hdev);
1887 
1888 		ret = qca_read_soc_version(hdev, &ver, soc_type);
1889 		if (ret)
1890 			goto out;
1891 		break;
1892 
1893 	default:
1894 		qca_set_speed(hu, QCA_INIT_SPEED);
1895 	}
1896 
1897 	/* Setup user speed if needed */
1898 	speed = qca_get_speed(hu, QCA_OPER_SPEED);
1899 	if (speed) {
1900 		ret = qca_set_speed(hu, QCA_OPER_SPEED);
1901 		if (ret)
1902 			goto out;
1903 
1904 		qca_baudrate = qca_get_baudrate_value(speed);
1905 	}
1906 
1907 	switch (soc_type) {
1908 	case QCA_WCN3988:
1909 	case QCA_WCN3990:
1910 	case QCA_WCN3991:
1911 	case QCA_WCN3998:
1912 	case QCA_WCN6750:
1913 	case QCA_WCN6855:
1914 	case QCA_WCN7850:
1915 		break;
1916 
1917 	default:
1918 		/* Get QCA version information */
1919 		ret = qca_read_soc_version(hdev, &ver, soc_type);
1920 		if (ret)
1921 			goto out;
1922 	}
1923 
1924 	/* Setup patch / NVM configurations */
1925 	ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver,
1926 			firmware_name);
1927 	if (!ret) {
1928 		clear_bit(QCA_IBS_DISABLED, &qca->flags);
1929 		qca_debugfs_init(hdev);
1930 		hu->hdev->hw_error = qca_hw_error;
1931 		hu->hdev->cmd_timeout = qca_cmd_timeout;
1932 		if (device_can_wakeup(hu->serdev->ctrl->dev.parent))
1933 			hu->hdev->wakeup = qca_wakeup;
1934 	} else if (ret == -ENOENT) {
1935 		/* No patch/nvm-config found, run with original fw/config */
1936 		set_bit(QCA_ROM_FW, &qca->flags);
1937 		ret = 0;
1938 	} else if (ret == -EAGAIN) {
1939 		/*
1940 		 * Userspace firmware loader will return -EAGAIN in case no
1941 		 * patch/nvm-config is found, so run with original fw/config.
1942 		 */
1943 		set_bit(QCA_ROM_FW, &qca->flags);
1944 		ret = 0;
1945 	}
1946 
1947 out:
1948 	if (ret && retries < MAX_INIT_RETRIES) {
1949 		bt_dev_warn(hdev, "Retry BT power ON:%d", retries);
1950 		qca_power_shutdown(hu);
1951 		if (hu->serdev) {
1952 			serdev_device_close(hu->serdev);
1953 			ret = serdev_device_open(hu->serdev);
1954 			if (ret) {
1955 				bt_dev_err(hdev, "failed to open port");
1956 				return ret;
1957 			}
1958 		}
1959 		retries++;
1960 		goto retry;
1961 	}
1962 
1963 	/* Setup bdaddr */
1964 	if (soc_type == QCA_ROME)
1965 		hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1966 	else
1967 		hu->hdev->set_bdaddr = qca_set_bdaddr;
1968 	qca->fw_version = le16_to_cpu(ver.patch_ver);
1969 	qca->controller_id = le16_to_cpu(ver.rom_ver);
1970 	hci_devcd_register(hdev, hci_coredump_qca, qca_dmp_hdr, NULL);
1971 
1972 	return ret;
1973 }
1974 
1975 static const struct hci_uart_proto qca_proto = {
1976 	.id		= HCI_UART_QCA,
1977 	.name		= "QCA",
1978 	.manufacturer	= 29,
1979 	.init_speed	= 115200,
1980 	.oper_speed	= 3000000,
1981 	.open		= qca_open,
1982 	.close		= qca_close,
1983 	.flush		= qca_flush,
1984 	.setup		= qca_setup,
1985 	.recv		= qca_recv,
1986 	.enqueue	= qca_enqueue,
1987 	.dequeue	= qca_dequeue,
1988 };
1989 
1990 static const struct qca_device_data qca_soc_data_wcn3988 __maybe_unused = {
1991 	.soc_type = QCA_WCN3988,
1992 	.vregs = (struct qca_vreg []) {
1993 		{ "vddio", 15000  },
1994 		{ "vddxo", 80000  },
1995 		{ "vddrf", 300000 },
1996 		{ "vddch0", 450000 },
1997 	},
1998 	.num_vregs = 4,
1999 };
2000 
2001 static const struct qca_device_data qca_soc_data_wcn3990 __maybe_unused = {
2002 	.soc_type = QCA_WCN3990,
2003 	.vregs = (struct qca_vreg []) {
2004 		{ "vddio", 15000  },
2005 		{ "vddxo", 80000  },
2006 		{ "vddrf", 300000 },
2007 		{ "vddch0", 450000 },
2008 	},
2009 	.num_vregs = 4,
2010 };
2011 
2012 static const struct qca_device_data qca_soc_data_wcn3991 __maybe_unused = {
2013 	.soc_type = QCA_WCN3991,
2014 	.vregs = (struct qca_vreg []) {
2015 		{ "vddio", 15000  },
2016 		{ "vddxo", 80000  },
2017 		{ "vddrf", 300000 },
2018 		{ "vddch0", 450000 },
2019 	},
2020 	.num_vregs = 4,
2021 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2022 };
2023 
2024 static const struct qca_device_data qca_soc_data_wcn3998 __maybe_unused = {
2025 	.soc_type = QCA_WCN3998,
2026 	.vregs = (struct qca_vreg []) {
2027 		{ "vddio", 10000  },
2028 		{ "vddxo", 80000  },
2029 		{ "vddrf", 300000 },
2030 		{ "vddch0", 450000 },
2031 	},
2032 	.num_vregs = 4,
2033 };
2034 
2035 static const struct qca_device_data qca_soc_data_qca6390 __maybe_unused = {
2036 	.soc_type = QCA_QCA6390,
2037 	.num_vregs = 0,
2038 };
2039 
2040 static const struct qca_device_data qca_soc_data_wcn6750 __maybe_unused = {
2041 	.soc_type = QCA_WCN6750,
2042 	.vregs = (struct qca_vreg []) {
2043 		{ "vddio", 5000 },
2044 		{ "vddaon", 26000 },
2045 		{ "vddbtcxmx", 126000 },
2046 		{ "vddrfacmn", 12500 },
2047 		{ "vddrfa0p8", 102000 },
2048 		{ "vddrfa1p7", 302000 },
2049 		{ "vddrfa1p2", 257000 },
2050 		{ "vddrfa2p2", 1700000 },
2051 		{ "vddasd", 200 },
2052 	},
2053 	.num_vregs = 9,
2054 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2055 };
2056 
2057 static const struct qca_device_data qca_soc_data_wcn6855 __maybe_unused = {
2058 	.soc_type = QCA_WCN6855,
2059 	.vregs = (struct qca_vreg []) {
2060 		{ "vddio", 5000 },
2061 		{ "vddbtcxmx", 126000 },
2062 		{ "vddrfacmn", 12500 },
2063 		{ "vddrfa0p8", 102000 },
2064 		{ "vddrfa1p7", 302000 },
2065 		{ "vddrfa1p2", 257000 },
2066 	},
2067 	.num_vregs = 6,
2068 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2069 };
2070 
2071 static const struct qca_device_data qca_soc_data_wcn7850 __maybe_unused = {
2072 	.soc_type = QCA_WCN7850,
2073 	.vregs = (struct qca_vreg []) {
2074 		{ "vddio", 5000 },
2075 		{ "vddaon", 26000 },
2076 		{ "vdddig", 126000 },
2077 		{ "vddrfa0p8", 102000 },
2078 		{ "vddrfa1p2", 257000 },
2079 		{ "vddrfa1p9", 302000 },
2080 	},
2081 	.num_vregs = 6,
2082 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2083 };
2084 
2085 static void qca_power_shutdown(struct hci_uart *hu)
2086 {
2087 	struct qca_serdev *qcadev;
2088 	struct qca_data *qca = hu->priv;
2089 	unsigned long flags;
2090 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
2091 	bool sw_ctrl_state;
2092 
2093 	/* From this point we go into power off state. But serial port is
2094 	 * still open, stop queueing the IBS data and flush all the buffered
2095 	 * data in skb's.
2096 	 */
2097 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
2098 	set_bit(QCA_IBS_DISABLED, &qca->flags);
2099 	qca_flush(hu);
2100 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2101 
2102 	/* Non-serdev device usually is powered by external power
2103 	 * and don't need additional action in driver for power down
2104 	 */
2105 	if (!hu->serdev)
2106 		return;
2107 
2108 	qcadev = serdev_device_get_drvdata(hu->serdev);
2109 
2110 	switch (soc_type) {
2111 	case QCA_WCN3988:
2112 	case QCA_WCN3990:
2113 	case QCA_WCN3991:
2114 	case QCA_WCN3998:
2115 		host_set_baudrate(hu, 2400);
2116 		qca_send_power_pulse(hu, false);
2117 		qca_regulator_disable(qcadev);
2118 		break;
2119 
2120 	case QCA_WCN6750:
2121 	case QCA_WCN6855:
2122 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
2123 		msleep(100);
2124 		qca_regulator_disable(qcadev);
2125 		if (qcadev->sw_ctrl) {
2126 			sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
2127 			bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
2128 		}
2129 		break;
2130 
2131 	default:
2132 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
2133 	}
2134 
2135 	set_bit(QCA_BT_OFF, &qca->flags);
2136 }
2137 
2138 static int qca_power_off(struct hci_dev *hdev)
2139 {
2140 	struct hci_uart *hu = hci_get_drvdata(hdev);
2141 	struct qca_data *qca = hu->priv;
2142 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
2143 
2144 	hu->hdev->hw_error = NULL;
2145 	hu->hdev->cmd_timeout = NULL;
2146 
2147 	del_timer_sync(&qca->wake_retrans_timer);
2148 	del_timer_sync(&qca->tx_idle_timer);
2149 
2150 	/* Stop sending shutdown command if soc crashes. */
2151 	if (soc_type != QCA_ROME
2152 		&& qca->memdump_state == QCA_MEMDUMP_IDLE) {
2153 		qca_send_pre_shutdown_cmd(hdev);
2154 		usleep_range(8000, 10000);
2155 	}
2156 
2157 	qca_power_shutdown(hu);
2158 	return 0;
2159 }
2160 
2161 static int qca_regulator_enable(struct qca_serdev *qcadev)
2162 {
2163 	struct qca_power *power = qcadev->bt_power;
2164 	int ret;
2165 
2166 	/* Already enabled */
2167 	if (power->vregs_on)
2168 		return 0;
2169 
2170 	BT_DBG("enabling %d regulators)", power->num_vregs);
2171 
2172 	ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
2173 	if (ret)
2174 		return ret;
2175 
2176 	power->vregs_on = true;
2177 
2178 	ret = clk_prepare_enable(qcadev->susclk);
2179 	if (ret)
2180 		qca_regulator_disable(qcadev);
2181 
2182 	return ret;
2183 }
2184 
2185 static void qca_regulator_disable(struct qca_serdev *qcadev)
2186 {
2187 	struct qca_power *power;
2188 
2189 	if (!qcadev)
2190 		return;
2191 
2192 	power = qcadev->bt_power;
2193 
2194 	/* Already disabled? */
2195 	if (!power->vregs_on)
2196 		return;
2197 
2198 	regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
2199 	power->vregs_on = false;
2200 
2201 	clk_disable_unprepare(qcadev->susclk);
2202 }
2203 
2204 static int qca_init_regulators(struct qca_power *qca,
2205 				const struct qca_vreg *vregs, size_t num_vregs)
2206 {
2207 	struct regulator_bulk_data *bulk;
2208 	int ret;
2209 	int i;
2210 
2211 	bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
2212 	if (!bulk)
2213 		return -ENOMEM;
2214 
2215 	for (i = 0; i < num_vregs; i++)
2216 		bulk[i].supply = vregs[i].name;
2217 
2218 	ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
2219 	if (ret < 0)
2220 		return ret;
2221 
2222 	for (i = 0; i < num_vregs; i++) {
2223 		ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
2224 		if (ret)
2225 			return ret;
2226 	}
2227 
2228 	qca->vreg_bulk = bulk;
2229 	qca->num_vregs = num_vregs;
2230 
2231 	return 0;
2232 }
2233 
2234 static int qca_serdev_probe(struct serdev_device *serdev)
2235 {
2236 	struct qca_serdev *qcadev;
2237 	struct hci_dev *hdev;
2238 	const struct qca_device_data *data;
2239 	int err;
2240 	bool power_ctrl_enabled = true;
2241 
2242 	qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
2243 	if (!qcadev)
2244 		return -ENOMEM;
2245 
2246 	qcadev->serdev_hu.serdev = serdev;
2247 	data = device_get_match_data(&serdev->dev);
2248 	serdev_device_set_drvdata(serdev, qcadev);
2249 	device_property_read_string(&serdev->dev, "firmware-name",
2250 					 &qcadev->firmware_name);
2251 	device_property_read_u32(&serdev->dev, "max-speed",
2252 				 &qcadev->oper_speed);
2253 	if (!qcadev->oper_speed)
2254 		BT_DBG("UART will pick default operating speed");
2255 
2256 	if (data)
2257 		qcadev->btsoc_type = data->soc_type;
2258 	else
2259 		qcadev->btsoc_type = QCA_ROME;
2260 
2261 	switch (qcadev->btsoc_type) {
2262 	case QCA_WCN3988:
2263 	case QCA_WCN3990:
2264 	case QCA_WCN3991:
2265 	case QCA_WCN3998:
2266 	case QCA_WCN6750:
2267 	case QCA_WCN6855:
2268 	case QCA_WCN7850:
2269 		qcadev->bt_power = devm_kzalloc(&serdev->dev,
2270 						sizeof(struct qca_power),
2271 						GFP_KERNEL);
2272 		if (!qcadev->bt_power)
2273 			return -ENOMEM;
2274 
2275 		qcadev->bt_power->dev = &serdev->dev;
2276 		err = qca_init_regulators(qcadev->bt_power, data->vregs,
2277 					  data->num_vregs);
2278 		if (err) {
2279 			BT_ERR("Failed to init regulators:%d", err);
2280 			return err;
2281 		}
2282 
2283 		qcadev->bt_power->vregs_on = false;
2284 
2285 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2286 					       GPIOD_OUT_LOW);
2287 		if (IS_ERR_OR_NULL(qcadev->bt_en) &&
2288 		    (data->soc_type == QCA_WCN6750 ||
2289 		     data->soc_type == QCA_WCN6855)) {
2290 			dev_err(&serdev->dev, "failed to acquire BT_EN gpio\n");
2291 			power_ctrl_enabled = false;
2292 		}
2293 
2294 		qcadev->sw_ctrl = devm_gpiod_get_optional(&serdev->dev, "swctrl",
2295 					       GPIOD_IN);
2296 		if (IS_ERR_OR_NULL(qcadev->sw_ctrl) &&
2297 		    (data->soc_type == QCA_WCN6750 ||
2298 		     data->soc_type == QCA_WCN6855 ||
2299 		     data->soc_type == QCA_WCN7850))
2300 			dev_warn(&serdev->dev, "failed to acquire SW_CTRL gpio\n");
2301 
2302 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2303 		if (IS_ERR(qcadev->susclk)) {
2304 			dev_err(&serdev->dev, "failed to acquire clk\n");
2305 			return PTR_ERR(qcadev->susclk);
2306 		}
2307 
2308 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2309 		if (err) {
2310 			BT_ERR("wcn3990 serdev registration failed");
2311 			return err;
2312 		}
2313 		break;
2314 
2315 	default:
2316 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2317 					       GPIOD_OUT_LOW);
2318 		if (IS_ERR_OR_NULL(qcadev->bt_en)) {
2319 			dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
2320 			power_ctrl_enabled = false;
2321 		}
2322 
2323 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2324 		if (IS_ERR(qcadev->susclk)) {
2325 			dev_warn(&serdev->dev, "failed to acquire clk\n");
2326 			return PTR_ERR(qcadev->susclk);
2327 		}
2328 		err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
2329 		if (err)
2330 			return err;
2331 
2332 		err = clk_prepare_enable(qcadev->susclk);
2333 		if (err)
2334 			return err;
2335 
2336 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2337 		if (err) {
2338 			BT_ERR("Rome serdev registration failed");
2339 			clk_disable_unprepare(qcadev->susclk);
2340 			return err;
2341 		}
2342 	}
2343 
2344 	hdev = qcadev->serdev_hu.hdev;
2345 
2346 	if (power_ctrl_enabled) {
2347 		set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2348 		hdev->shutdown = qca_power_off;
2349 	}
2350 
2351 	if (data) {
2352 		/* Wideband speech support must be set per driver since it can't
2353 		 * be queried via hci. Same with the valid le states quirk.
2354 		 */
2355 		if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
2356 			set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2357 				&hdev->quirks);
2358 
2359 		if (data->capabilities & QCA_CAP_VALID_LE_STATES)
2360 			set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2361 	}
2362 
2363 	return 0;
2364 }
2365 
2366 static void qca_serdev_remove(struct serdev_device *serdev)
2367 {
2368 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2369 	struct qca_power *power = qcadev->bt_power;
2370 
2371 	switch (qcadev->btsoc_type) {
2372 	case QCA_WCN3988:
2373 	case QCA_WCN3990:
2374 	case QCA_WCN3991:
2375 	case QCA_WCN3998:
2376 	case QCA_WCN6750:
2377 	case QCA_WCN6855:
2378 	case QCA_WCN7850:
2379 		if (power->vregs_on) {
2380 			qca_power_shutdown(&qcadev->serdev_hu);
2381 			break;
2382 		}
2383 		fallthrough;
2384 
2385 	default:
2386 		if (qcadev->susclk)
2387 			clk_disable_unprepare(qcadev->susclk);
2388 	}
2389 
2390 	hci_uart_unregister_device(&qcadev->serdev_hu);
2391 }
2392 
2393 static void qca_serdev_shutdown(struct device *dev)
2394 {
2395 	int ret;
2396 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2397 	struct serdev_device *serdev = to_serdev_device(dev);
2398 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2399 	struct hci_uart *hu = &qcadev->serdev_hu;
2400 	struct hci_dev *hdev = hu->hdev;
2401 	struct qca_data *qca = hu->priv;
2402 	const u8 ibs_wake_cmd[] = { 0xFD };
2403 	const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2404 
2405 	if (qcadev->btsoc_type == QCA_QCA6390) {
2406 		if (test_bit(QCA_BT_OFF, &qca->flags) ||
2407 		    !test_bit(HCI_RUNNING, &hdev->flags))
2408 			return;
2409 
2410 		serdev_device_write_flush(serdev);
2411 		ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2412 					      sizeof(ibs_wake_cmd));
2413 		if (ret < 0) {
2414 			BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2415 			return;
2416 		}
2417 		serdev_device_wait_until_sent(serdev, timeout);
2418 		usleep_range(8000, 10000);
2419 
2420 		serdev_device_write_flush(serdev);
2421 		ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2422 					      sizeof(edl_reset_soc_cmd));
2423 		if (ret < 0) {
2424 			BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2425 			return;
2426 		}
2427 		serdev_device_wait_until_sent(serdev, timeout);
2428 		usleep_range(8000, 10000);
2429 	}
2430 }
2431 
2432 static int __maybe_unused qca_suspend(struct device *dev)
2433 {
2434 	struct serdev_device *serdev = to_serdev_device(dev);
2435 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2436 	struct hci_uart *hu = &qcadev->serdev_hu;
2437 	struct qca_data *qca = hu->priv;
2438 	unsigned long flags;
2439 	bool tx_pending = false;
2440 	int ret = 0;
2441 	u8 cmd;
2442 	u32 wait_timeout = 0;
2443 
2444 	set_bit(QCA_SUSPENDING, &qca->flags);
2445 
2446 	/* if BT SoC is running with default firmware then it does not
2447 	 * support in-band sleep
2448 	 */
2449 	if (test_bit(QCA_ROM_FW, &qca->flags))
2450 		return 0;
2451 
2452 	/* During SSR after memory dump collection, controller will be
2453 	 * powered off and then powered on.If controller is powered off
2454 	 * during SSR then we should wait until SSR is completed.
2455 	 */
2456 	if (test_bit(QCA_BT_OFF, &qca->flags) &&
2457 	    !test_bit(QCA_SSR_TRIGGERED, &qca->flags))
2458 		return 0;
2459 
2460 	if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
2461 	    test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
2462 		wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ?
2463 					IBS_DISABLE_SSR_TIMEOUT_MS :
2464 					FW_DOWNLOAD_TIMEOUT_MS;
2465 
2466 		/* QCA_IBS_DISABLED flag is set to true, During FW download
2467 		 * and during memory dump collection. It is reset to false,
2468 		 * After FW download complete.
2469 		 */
2470 		wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED,
2471 			    TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout));
2472 
2473 		if (test_bit(QCA_IBS_DISABLED, &qca->flags)) {
2474 			bt_dev_err(hu->hdev, "SSR or FW download time out");
2475 			ret = -ETIMEDOUT;
2476 			goto error;
2477 		}
2478 	}
2479 
2480 	cancel_work_sync(&qca->ws_awake_device);
2481 	cancel_work_sync(&qca->ws_awake_rx);
2482 
2483 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2484 				 flags, SINGLE_DEPTH_NESTING);
2485 
2486 	switch (qca->tx_ibs_state) {
2487 	case HCI_IBS_TX_WAKING:
2488 		del_timer(&qca->wake_retrans_timer);
2489 		fallthrough;
2490 	case HCI_IBS_TX_AWAKE:
2491 		del_timer(&qca->tx_idle_timer);
2492 
2493 		serdev_device_write_flush(hu->serdev);
2494 		cmd = HCI_IBS_SLEEP_IND;
2495 		ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2496 
2497 		if (ret < 0) {
2498 			BT_ERR("Failed to send SLEEP to device");
2499 			break;
2500 		}
2501 
2502 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2503 		qca->ibs_sent_slps++;
2504 		tx_pending = true;
2505 		break;
2506 
2507 	case HCI_IBS_TX_ASLEEP:
2508 		break;
2509 
2510 	default:
2511 		BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2512 		ret = -EINVAL;
2513 		break;
2514 	}
2515 
2516 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2517 
2518 	if (ret < 0)
2519 		goto error;
2520 
2521 	if (tx_pending) {
2522 		serdev_device_wait_until_sent(hu->serdev,
2523 					      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2524 		serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2525 	}
2526 
2527 	/* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2528 	 * to sleep, so that the packet does not wake the system later.
2529 	 */
2530 	ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2531 			qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2532 			msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2533 	if (ret == 0) {
2534 		ret = -ETIMEDOUT;
2535 		goto error;
2536 	}
2537 
2538 	return 0;
2539 
2540 error:
2541 	clear_bit(QCA_SUSPENDING, &qca->flags);
2542 
2543 	return ret;
2544 }
2545 
2546 static int __maybe_unused qca_resume(struct device *dev)
2547 {
2548 	struct serdev_device *serdev = to_serdev_device(dev);
2549 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2550 	struct hci_uart *hu = &qcadev->serdev_hu;
2551 	struct qca_data *qca = hu->priv;
2552 
2553 	clear_bit(QCA_SUSPENDING, &qca->flags);
2554 
2555 	return 0;
2556 }
2557 
2558 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2559 
2560 #ifdef CONFIG_OF
2561 static const struct of_device_id qca_bluetooth_of_match[] = {
2562 	{ .compatible = "qcom,qca6174-bt" },
2563 	{ .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2564 	{ .compatible = "qcom,qca9377-bt" },
2565 	{ .compatible = "qcom,wcn3988-bt", .data = &qca_soc_data_wcn3988},
2566 	{ .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2567 	{ .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2568 	{ .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2569 	{ .compatible = "qcom,wcn6750-bt", .data = &qca_soc_data_wcn6750},
2570 	{ .compatible = "qcom,wcn6855-bt", .data = &qca_soc_data_wcn6855},
2571 	{ .compatible = "qcom,wcn7850-bt", .data = &qca_soc_data_wcn7850},
2572 	{ /* sentinel */ }
2573 };
2574 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2575 #endif
2576 
2577 #ifdef CONFIG_ACPI
2578 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2579 	{ "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2580 	{ "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2581 	{ "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2582 	{ "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2583 	{ },
2584 };
2585 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2586 #endif
2587 
2588 #ifdef CONFIG_DEV_COREDUMP
2589 static void hciqca_coredump(struct device *dev)
2590 {
2591 	struct serdev_device *serdev = to_serdev_device(dev);
2592 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2593 	struct hci_uart *hu = &qcadev->serdev_hu;
2594 	struct hci_dev  *hdev = hu->hdev;
2595 
2596 	if (hdev->dump.coredump)
2597 		hdev->dump.coredump(hdev);
2598 }
2599 #endif
2600 
2601 static struct serdev_device_driver qca_serdev_driver = {
2602 	.probe = qca_serdev_probe,
2603 	.remove = qca_serdev_remove,
2604 	.driver = {
2605 		.name = "hci_uart_qca",
2606 		.of_match_table = of_match_ptr(qca_bluetooth_of_match),
2607 		.acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2608 		.shutdown = qca_serdev_shutdown,
2609 		.pm = &qca_pm_ops,
2610 #ifdef CONFIG_DEV_COREDUMP
2611 		.coredump = hciqca_coredump,
2612 #endif
2613 	},
2614 };
2615 
2616 int __init qca_init(void)
2617 {
2618 	serdev_device_driver_register(&qca_serdev_driver);
2619 
2620 	return hci_uart_register_proto(&qca_proto);
2621 }
2622 
2623 int __exit qca_deinit(void)
2624 {
2625 	serdev_device_driver_unregister(&qca_serdev_driver);
2626 
2627 	return hci_uart_unregister_proto(&qca_proto);
2628 }
2629