1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Bluetooth Software UART Qualcomm protocol 4 * 5 * HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management 6 * protocol extension to H4. 7 * 8 * Copyright (C) 2007 Texas Instruments, Inc. 9 * Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved. 10 * 11 * Acknowledgements: 12 * This file is based on hci_ll.c, which was... 13 * Written by Ohad Ben-Cohen <ohad@bencohen.org> 14 * which was in turn based on hci_h4.c, which was written 15 * by Maxim Krasnyansky and Marcel Holtmann. 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/clk.h> 20 #include <linux/completion.h> 21 #include <linux/debugfs.h> 22 #include <linux/delay.h> 23 #include <linux/devcoredump.h> 24 #include <linux/device.h> 25 #include <linux/gpio/consumer.h> 26 #include <linux/mod_devicetable.h> 27 #include <linux/module.h> 28 #include <linux/of.h> 29 #include <linux/acpi.h> 30 #include <linux/platform_device.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/serdev.h> 33 #include <linux/mutex.h> 34 #include <asm/unaligned.h> 35 36 #include <net/bluetooth/bluetooth.h> 37 #include <net/bluetooth/hci_core.h> 38 39 #include "hci_uart.h" 40 #include "btqca.h" 41 42 /* HCI_IBS protocol messages */ 43 #define HCI_IBS_SLEEP_IND 0xFE 44 #define HCI_IBS_WAKE_IND 0xFD 45 #define HCI_IBS_WAKE_ACK 0xFC 46 #define HCI_MAX_IBS_SIZE 10 47 48 #define IBS_WAKE_RETRANS_TIMEOUT_MS 100 49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS 200 50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS 2000 51 #define CMD_TRANS_TIMEOUT_MS 100 52 #define MEMDUMP_TIMEOUT_MS 8000 53 #define IBS_DISABLE_SSR_TIMEOUT_MS \ 54 (MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS) 55 #define FW_DOWNLOAD_TIMEOUT_MS 3000 56 57 /* susclk rate */ 58 #define SUSCLK_RATE_32KHZ 32768 59 60 /* Controller debug log header */ 61 #define QCA_DEBUG_HANDLE 0x2EDC 62 63 /* max retry count when init fails */ 64 #define MAX_INIT_RETRIES 3 65 66 /* Controller dump header */ 67 #define QCA_SSR_DUMP_HANDLE 0x0108 68 #define QCA_DUMP_PACKET_SIZE 255 69 #define QCA_LAST_SEQUENCE_NUM 0xFFFF 70 #define QCA_CRASHBYTE_PACKET_LEN 1096 71 #define QCA_MEMDUMP_BYTE 0xFB 72 73 enum qca_flags { 74 QCA_IBS_DISABLED, 75 QCA_DROP_VENDOR_EVENT, 76 QCA_SUSPENDING, 77 QCA_MEMDUMP_COLLECTION, 78 QCA_HW_ERROR_EVENT, 79 QCA_SSR_TRIGGERED, 80 QCA_BT_OFF, 81 QCA_ROM_FW, 82 QCA_DEBUGFS_CREATED, 83 }; 84 85 enum qca_capabilities { 86 QCA_CAP_WIDEBAND_SPEECH = BIT(0), 87 QCA_CAP_VALID_LE_STATES = BIT(1), 88 }; 89 90 /* HCI_IBS transmit side sleep protocol states */ 91 enum tx_ibs_states { 92 HCI_IBS_TX_ASLEEP, 93 HCI_IBS_TX_WAKING, 94 HCI_IBS_TX_AWAKE, 95 }; 96 97 /* HCI_IBS receive side sleep protocol states */ 98 enum rx_states { 99 HCI_IBS_RX_ASLEEP, 100 HCI_IBS_RX_AWAKE, 101 }; 102 103 /* HCI_IBS transmit and receive side clock state vote */ 104 enum hci_ibs_clock_state_vote { 105 HCI_IBS_VOTE_STATS_UPDATE, 106 HCI_IBS_TX_VOTE_CLOCK_ON, 107 HCI_IBS_TX_VOTE_CLOCK_OFF, 108 HCI_IBS_RX_VOTE_CLOCK_ON, 109 HCI_IBS_RX_VOTE_CLOCK_OFF, 110 }; 111 112 /* Controller memory dump states */ 113 enum qca_memdump_states { 114 QCA_MEMDUMP_IDLE, 115 QCA_MEMDUMP_COLLECTING, 116 QCA_MEMDUMP_COLLECTED, 117 QCA_MEMDUMP_TIMEOUT, 118 }; 119 120 struct qca_memdump_info { 121 u32 current_seq_no; 122 u32 received_dump; 123 u32 ram_dump_size; 124 }; 125 126 struct qca_memdump_event_hdr { 127 __u8 evt; 128 __u8 plen; 129 __u16 opcode; 130 __le16 seq_no; 131 __u8 reserved; 132 } __packed; 133 134 135 struct qca_dump_size { 136 __le32 dump_size; 137 } __packed; 138 139 struct qca_data { 140 struct hci_uart *hu; 141 struct sk_buff *rx_skb; 142 struct sk_buff_head txq; 143 struct sk_buff_head tx_wait_q; /* HCI_IBS wait queue */ 144 struct sk_buff_head rx_memdump_q; /* Memdump wait queue */ 145 spinlock_t hci_ibs_lock; /* HCI_IBS state lock */ 146 u8 tx_ibs_state; /* HCI_IBS transmit side power state*/ 147 u8 rx_ibs_state; /* HCI_IBS receive side power state */ 148 bool tx_vote; /* Clock must be on for TX */ 149 bool rx_vote; /* Clock must be on for RX */ 150 struct timer_list tx_idle_timer; 151 u32 tx_idle_delay; 152 struct timer_list wake_retrans_timer; 153 u32 wake_retrans; 154 struct workqueue_struct *workqueue; 155 struct work_struct ws_awake_rx; 156 struct work_struct ws_awake_device; 157 struct work_struct ws_rx_vote_off; 158 struct work_struct ws_tx_vote_off; 159 struct work_struct ctrl_memdump_evt; 160 struct delayed_work ctrl_memdump_timeout; 161 struct qca_memdump_info *qca_memdump; 162 unsigned long flags; 163 struct completion drop_ev_comp; 164 wait_queue_head_t suspend_wait_q; 165 enum qca_memdump_states memdump_state; 166 struct mutex hci_memdump_lock; 167 168 u16 fw_version; 169 u16 controller_id; 170 /* For debugging purpose */ 171 u64 ibs_sent_wacks; 172 u64 ibs_sent_slps; 173 u64 ibs_sent_wakes; 174 u64 ibs_recv_wacks; 175 u64 ibs_recv_slps; 176 u64 ibs_recv_wakes; 177 u64 vote_last_jif; 178 u32 vote_on_ms; 179 u32 vote_off_ms; 180 u64 tx_votes_on; 181 u64 rx_votes_on; 182 u64 tx_votes_off; 183 u64 rx_votes_off; 184 u64 votes_on; 185 u64 votes_off; 186 }; 187 188 enum qca_speed_type { 189 QCA_INIT_SPEED = 1, 190 QCA_OPER_SPEED 191 }; 192 193 /* 194 * Voltage regulator information required for configuring the 195 * QCA Bluetooth chipset 196 */ 197 struct qca_vreg { 198 const char *name; 199 unsigned int load_uA; 200 }; 201 202 struct qca_device_data { 203 enum qca_btsoc_type soc_type; 204 struct qca_vreg *vregs; 205 size_t num_vregs; 206 uint32_t capabilities; 207 }; 208 209 /* 210 * Platform data for the QCA Bluetooth power driver. 211 */ 212 struct qca_power { 213 struct device *dev; 214 struct regulator_bulk_data *vreg_bulk; 215 int num_vregs; 216 bool vregs_on; 217 }; 218 219 struct qca_serdev { 220 struct hci_uart serdev_hu; 221 struct gpio_desc *bt_en; 222 struct gpio_desc *sw_ctrl; 223 struct clk *susclk; 224 enum qca_btsoc_type btsoc_type; 225 struct qca_power *bt_power; 226 u32 init_speed; 227 u32 oper_speed; 228 const char *firmware_name; 229 }; 230 231 static int qca_regulator_enable(struct qca_serdev *qcadev); 232 static void qca_regulator_disable(struct qca_serdev *qcadev); 233 static void qca_power_shutdown(struct hci_uart *hu); 234 static int qca_power_off(struct hci_dev *hdev); 235 static void qca_controller_memdump(struct work_struct *work); 236 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb); 237 238 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu) 239 { 240 enum qca_btsoc_type soc_type; 241 242 if (hu->serdev) { 243 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev); 244 245 soc_type = qsd->btsoc_type; 246 } else { 247 soc_type = QCA_ROME; 248 } 249 250 return soc_type; 251 } 252 253 static const char *qca_get_firmware_name(struct hci_uart *hu) 254 { 255 if (hu->serdev) { 256 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev); 257 258 return qsd->firmware_name; 259 } else { 260 return NULL; 261 } 262 } 263 264 static void __serial_clock_on(struct tty_struct *tty) 265 { 266 /* TODO: Some chipset requires to enable UART clock on client 267 * side to save power consumption or manual work is required. 268 * Please put your code to control UART clock here if needed 269 */ 270 } 271 272 static void __serial_clock_off(struct tty_struct *tty) 273 { 274 /* TODO: Some chipset requires to disable UART clock on client 275 * side to save power consumption or manual work is required. 276 * Please put your code to control UART clock off here if needed 277 */ 278 } 279 280 /* serial_clock_vote needs to be called with the ibs lock held */ 281 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu) 282 { 283 struct qca_data *qca = hu->priv; 284 unsigned int diff; 285 286 bool old_vote = (qca->tx_vote | qca->rx_vote); 287 bool new_vote; 288 289 switch (vote) { 290 case HCI_IBS_VOTE_STATS_UPDATE: 291 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif); 292 293 if (old_vote) 294 qca->vote_off_ms += diff; 295 else 296 qca->vote_on_ms += diff; 297 return; 298 299 case HCI_IBS_TX_VOTE_CLOCK_ON: 300 qca->tx_vote = true; 301 qca->tx_votes_on++; 302 break; 303 304 case HCI_IBS_RX_VOTE_CLOCK_ON: 305 qca->rx_vote = true; 306 qca->rx_votes_on++; 307 break; 308 309 case HCI_IBS_TX_VOTE_CLOCK_OFF: 310 qca->tx_vote = false; 311 qca->tx_votes_off++; 312 break; 313 314 case HCI_IBS_RX_VOTE_CLOCK_OFF: 315 qca->rx_vote = false; 316 qca->rx_votes_off++; 317 break; 318 319 default: 320 BT_ERR("Voting irregularity"); 321 return; 322 } 323 324 new_vote = qca->rx_vote | qca->tx_vote; 325 326 if (new_vote != old_vote) { 327 if (new_vote) 328 __serial_clock_on(hu->tty); 329 else 330 __serial_clock_off(hu->tty); 331 332 BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false", 333 vote ? "true" : "false"); 334 335 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif); 336 337 if (new_vote) { 338 qca->votes_on++; 339 qca->vote_off_ms += diff; 340 } else { 341 qca->votes_off++; 342 qca->vote_on_ms += diff; 343 } 344 qca->vote_last_jif = jiffies; 345 } 346 } 347 348 /* Builds and sends an HCI_IBS command packet. 349 * These are very simple packets with only 1 cmd byte. 350 */ 351 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu) 352 { 353 int err = 0; 354 struct sk_buff *skb = NULL; 355 struct qca_data *qca = hu->priv; 356 357 BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd); 358 359 skb = bt_skb_alloc(1, GFP_ATOMIC); 360 if (!skb) { 361 BT_ERR("Failed to allocate memory for HCI_IBS packet"); 362 return -ENOMEM; 363 } 364 365 /* Assign HCI_IBS type */ 366 skb_put_u8(skb, cmd); 367 368 skb_queue_tail(&qca->txq, skb); 369 370 return err; 371 } 372 373 static void qca_wq_awake_device(struct work_struct *work) 374 { 375 struct qca_data *qca = container_of(work, struct qca_data, 376 ws_awake_device); 377 struct hci_uart *hu = qca->hu; 378 unsigned long retrans_delay; 379 unsigned long flags; 380 381 BT_DBG("hu %p wq awake device", hu); 382 383 /* Vote for serial clock */ 384 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu); 385 386 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 387 388 /* Send wake indication to device */ 389 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) 390 BT_ERR("Failed to send WAKE to device"); 391 392 qca->ibs_sent_wakes++; 393 394 /* Start retransmit timer */ 395 retrans_delay = msecs_to_jiffies(qca->wake_retrans); 396 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay); 397 398 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 399 400 /* Actually send the packets */ 401 hci_uart_tx_wakeup(hu); 402 } 403 404 static void qca_wq_awake_rx(struct work_struct *work) 405 { 406 struct qca_data *qca = container_of(work, struct qca_data, 407 ws_awake_rx); 408 struct hci_uart *hu = qca->hu; 409 unsigned long flags; 410 411 BT_DBG("hu %p wq awake rx", hu); 412 413 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu); 414 415 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 416 qca->rx_ibs_state = HCI_IBS_RX_AWAKE; 417 418 /* Always acknowledge device wake up, 419 * sending IBS message doesn't count as TX ON. 420 */ 421 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) 422 BT_ERR("Failed to acknowledge device wake up"); 423 424 qca->ibs_sent_wacks++; 425 426 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 427 428 /* Actually send the packets */ 429 hci_uart_tx_wakeup(hu); 430 } 431 432 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work) 433 { 434 struct qca_data *qca = container_of(work, struct qca_data, 435 ws_rx_vote_off); 436 struct hci_uart *hu = qca->hu; 437 438 BT_DBG("hu %p rx clock vote off", hu); 439 440 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu); 441 } 442 443 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work) 444 { 445 struct qca_data *qca = container_of(work, struct qca_data, 446 ws_tx_vote_off); 447 struct hci_uart *hu = qca->hu; 448 449 BT_DBG("hu %p tx clock vote off", hu); 450 451 /* Run HCI tx handling unlocked */ 452 hci_uart_tx_wakeup(hu); 453 454 /* Now that message queued to tty driver, vote for tty clocks off. 455 * It is up to the tty driver to pend the clocks off until tx done. 456 */ 457 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu); 458 } 459 460 static void hci_ibs_tx_idle_timeout(struct timer_list *t) 461 { 462 struct qca_data *qca = from_timer(qca, t, tx_idle_timer); 463 struct hci_uart *hu = qca->hu; 464 unsigned long flags; 465 466 BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state); 467 468 spin_lock_irqsave_nested(&qca->hci_ibs_lock, 469 flags, SINGLE_DEPTH_NESTING); 470 471 switch (qca->tx_ibs_state) { 472 case HCI_IBS_TX_AWAKE: 473 /* TX_IDLE, go to SLEEP */ 474 if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) { 475 BT_ERR("Failed to send SLEEP to device"); 476 break; 477 } 478 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; 479 qca->ibs_sent_slps++; 480 queue_work(qca->workqueue, &qca->ws_tx_vote_off); 481 break; 482 483 case HCI_IBS_TX_ASLEEP: 484 case HCI_IBS_TX_WAKING: 485 default: 486 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state); 487 break; 488 } 489 490 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 491 } 492 493 static void hci_ibs_wake_retrans_timeout(struct timer_list *t) 494 { 495 struct qca_data *qca = from_timer(qca, t, wake_retrans_timer); 496 struct hci_uart *hu = qca->hu; 497 unsigned long flags, retrans_delay; 498 bool retransmit = false; 499 500 BT_DBG("hu %p wake retransmit timeout in %d state", 501 hu, qca->tx_ibs_state); 502 503 spin_lock_irqsave_nested(&qca->hci_ibs_lock, 504 flags, SINGLE_DEPTH_NESTING); 505 506 /* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */ 507 if (test_bit(QCA_SUSPENDING, &qca->flags)) { 508 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 509 return; 510 } 511 512 switch (qca->tx_ibs_state) { 513 case HCI_IBS_TX_WAKING: 514 /* No WAKE_ACK, retransmit WAKE */ 515 retransmit = true; 516 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) { 517 BT_ERR("Failed to acknowledge device wake up"); 518 break; 519 } 520 qca->ibs_sent_wakes++; 521 retrans_delay = msecs_to_jiffies(qca->wake_retrans); 522 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay); 523 break; 524 525 case HCI_IBS_TX_ASLEEP: 526 case HCI_IBS_TX_AWAKE: 527 default: 528 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state); 529 break; 530 } 531 532 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 533 534 if (retransmit) 535 hci_uart_tx_wakeup(hu); 536 } 537 538 539 static void qca_controller_memdump_timeout(struct work_struct *work) 540 { 541 struct qca_data *qca = container_of(work, struct qca_data, 542 ctrl_memdump_timeout.work); 543 struct hci_uart *hu = qca->hu; 544 545 mutex_lock(&qca->hci_memdump_lock); 546 if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) { 547 qca->memdump_state = QCA_MEMDUMP_TIMEOUT; 548 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) { 549 /* Inject hw error event to reset the device 550 * and driver. 551 */ 552 hci_reset_dev(hu->hdev); 553 } 554 } 555 556 mutex_unlock(&qca->hci_memdump_lock); 557 } 558 559 560 /* Initialize protocol */ 561 static int qca_open(struct hci_uart *hu) 562 { 563 struct qca_serdev *qcadev; 564 struct qca_data *qca; 565 566 BT_DBG("hu %p qca_open", hu); 567 568 if (!hci_uart_has_flow_control(hu)) 569 return -EOPNOTSUPP; 570 571 qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL); 572 if (!qca) 573 return -ENOMEM; 574 575 skb_queue_head_init(&qca->txq); 576 skb_queue_head_init(&qca->tx_wait_q); 577 skb_queue_head_init(&qca->rx_memdump_q); 578 spin_lock_init(&qca->hci_ibs_lock); 579 mutex_init(&qca->hci_memdump_lock); 580 qca->workqueue = alloc_ordered_workqueue("qca_wq", 0); 581 if (!qca->workqueue) { 582 BT_ERR("QCA Workqueue not initialized properly"); 583 kfree(qca); 584 return -ENOMEM; 585 } 586 587 INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx); 588 INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device); 589 INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off); 590 INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off); 591 INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump); 592 INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout, 593 qca_controller_memdump_timeout); 594 init_waitqueue_head(&qca->suspend_wait_q); 595 596 qca->hu = hu; 597 init_completion(&qca->drop_ev_comp); 598 599 /* Assume we start with both sides asleep -- extra wakes OK */ 600 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; 601 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP; 602 603 qca->vote_last_jif = jiffies; 604 605 hu->priv = qca; 606 607 if (hu->serdev) { 608 qcadev = serdev_device_get_drvdata(hu->serdev); 609 610 if (qca_is_wcn399x(qcadev->btsoc_type) || 611 qca_is_wcn6750(qcadev->btsoc_type)) 612 hu->init_speed = qcadev->init_speed; 613 614 if (qcadev->oper_speed) 615 hu->oper_speed = qcadev->oper_speed; 616 } 617 618 timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0); 619 qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS; 620 621 timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0); 622 qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS; 623 624 BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u", 625 qca->tx_idle_delay, qca->wake_retrans); 626 627 return 0; 628 } 629 630 static void qca_debugfs_init(struct hci_dev *hdev) 631 { 632 struct hci_uart *hu = hci_get_drvdata(hdev); 633 struct qca_data *qca = hu->priv; 634 struct dentry *ibs_dir; 635 umode_t mode; 636 637 if (!hdev->debugfs) 638 return; 639 640 if (test_and_set_bit(QCA_DEBUGFS_CREATED, &qca->flags)) 641 return; 642 643 ibs_dir = debugfs_create_dir("ibs", hdev->debugfs); 644 645 /* read only */ 646 mode = 0444; 647 debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state); 648 debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state); 649 debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir, 650 &qca->ibs_sent_slps); 651 debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir, 652 &qca->ibs_sent_wakes); 653 debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir, 654 &qca->ibs_sent_wacks); 655 debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir, 656 &qca->ibs_recv_slps); 657 debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir, 658 &qca->ibs_recv_wakes); 659 debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir, 660 &qca->ibs_recv_wacks); 661 debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote); 662 debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on); 663 debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off); 664 debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote); 665 debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on); 666 debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off); 667 debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on); 668 debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off); 669 debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms); 670 debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms); 671 672 /* read/write */ 673 mode = 0644; 674 debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans); 675 debugfs_create_u32("tx_idle_delay", mode, ibs_dir, 676 &qca->tx_idle_delay); 677 } 678 679 /* Flush protocol data */ 680 static int qca_flush(struct hci_uart *hu) 681 { 682 struct qca_data *qca = hu->priv; 683 684 BT_DBG("hu %p qca flush", hu); 685 686 skb_queue_purge(&qca->tx_wait_q); 687 skb_queue_purge(&qca->txq); 688 689 return 0; 690 } 691 692 /* Close protocol */ 693 static int qca_close(struct hci_uart *hu) 694 { 695 struct qca_data *qca = hu->priv; 696 697 BT_DBG("hu %p qca close", hu); 698 699 serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu); 700 701 skb_queue_purge(&qca->tx_wait_q); 702 skb_queue_purge(&qca->txq); 703 skb_queue_purge(&qca->rx_memdump_q); 704 /* 705 * Shut the timers down so they can't be rearmed when 706 * destroy_workqueue() drains pending work which in turn might try 707 * to arm a timer. After shutdown rearm attempts are silently 708 * ignored by the timer core code. 709 */ 710 timer_shutdown_sync(&qca->tx_idle_timer); 711 timer_shutdown_sync(&qca->wake_retrans_timer); 712 destroy_workqueue(qca->workqueue); 713 qca->hu = NULL; 714 715 kfree_skb(qca->rx_skb); 716 717 hu->priv = NULL; 718 719 kfree(qca); 720 721 return 0; 722 } 723 724 /* Called upon a wake-up-indication from the device. 725 */ 726 static void device_want_to_wakeup(struct hci_uart *hu) 727 { 728 unsigned long flags; 729 struct qca_data *qca = hu->priv; 730 731 BT_DBG("hu %p want to wake up", hu); 732 733 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 734 735 qca->ibs_recv_wakes++; 736 737 /* Don't wake the rx up when suspending. */ 738 if (test_bit(QCA_SUSPENDING, &qca->flags)) { 739 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 740 return; 741 } 742 743 switch (qca->rx_ibs_state) { 744 case HCI_IBS_RX_ASLEEP: 745 /* Make sure clock is on - we may have turned clock off since 746 * receiving the wake up indicator awake rx clock. 747 */ 748 queue_work(qca->workqueue, &qca->ws_awake_rx); 749 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 750 return; 751 752 case HCI_IBS_RX_AWAKE: 753 /* Always acknowledge device wake up, 754 * sending IBS message doesn't count as TX ON. 755 */ 756 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) { 757 BT_ERR("Failed to acknowledge device wake up"); 758 break; 759 } 760 qca->ibs_sent_wacks++; 761 break; 762 763 default: 764 /* Any other state is illegal */ 765 BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d", 766 qca->rx_ibs_state); 767 break; 768 } 769 770 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 771 772 /* Actually send the packets */ 773 hci_uart_tx_wakeup(hu); 774 } 775 776 /* Called upon a sleep-indication from the device. 777 */ 778 static void device_want_to_sleep(struct hci_uart *hu) 779 { 780 unsigned long flags; 781 struct qca_data *qca = hu->priv; 782 783 BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state); 784 785 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 786 787 qca->ibs_recv_slps++; 788 789 switch (qca->rx_ibs_state) { 790 case HCI_IBS_RX_AWAKE: 791 /* Update state */ 792 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP; 793 /* Vote off rx clock under workqueue */ 794 queue_work(qca->workqueue, &qca->ws_rx_vote_off); 795 break; 796 797 case HCI_IBS_RX_ASLEEP: 798 break; 799 800 default: 801 /* Any other state is illegal */ 802 BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d", 803 qca->rx_ibs_state); 804 break; 805 } 806 807 wake_up_interruptible(&qca->suspend_wait_q); 808 809 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 810 } 811 812 /* Called upon wake-up-acknowledgement from the device 813 */ 814 static void device_woke_up(struct hci_uart *hu) 815 { 816 unsigned long flags, idle_delay; 817 struct qca_data *qca = hu->priv; 818 struct sk_buff *skb = NULL; 819 820 BT_DBG("hu %p woke up", hu); 821 822 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 823 824 qca->ibs_recv_wacks++; 825 826 /* Don't react to the wake-up-acknowledgment when suspending. */ 827 if (test_bit(QCA_SUSPENDING, &qca->flags)) { 828 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 829 return; 830 } 831 832 switch (qca->tx_ibs_state) { 833 case HCI_IBS_TX_AWAKE: 834 /* Expect one if we send 2 WAKEs */ 835 BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d", 836 qca->tx_ibs_state); 837 break; 838 839 case HCI_IBS_TX_WAKING: 840 /* Send pending packets */ 841 while ((skb = skb_dequeue(&qca->tx_wait_q))) 842 skb_queue_tail(&qca->txq, skb); 843 844 /* Switch timers and change state to HCI_IBS_TX_AWAKE */ 845 del_timer(&qca->wake_retrans_timer); 846 idle_delay = msecs_to_jiffies(qca->tx_idle_delay); 847 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay); 848 qca->tx_ibs_state = HCI_IBS_TX_AWAKE; 849 break; 850 851 case HCI_IBS_TX_ASLEEP: 852 default: 853 BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d", 854 qca->tx_ibs_state); 855 break; 856 } 857 858 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 859 860 /* Actually send the packets */ 861 hci_uart_tx_wakeup(hu); 862 } 863 864 /* Enqueue frame for transmittion (padding, crc, etc) may be called from 865 * two simultaneous tasklets. 866 */ 867 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb) 868 { 869 unsigned long flags = 0, idle_delay; 870 struct qca_data *qca = hu->priv; 871 872 BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb, 873 qca->tx_ibs_state); 874 875 if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) { 876 /* As SSR is in progress, ignore the packets */ 877 bt_dev_dbg(hu->hdev, "SSR is in progress"); 878 kfree_skb(skb); 879 return 0; 880 } 881 882 /* Prepend skb with frame type */ 883 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1); 884 885 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 886 887 /* Don't go to sleep in middle of patch download or 888 * Out-Of-Band(GPIOs control) sleep is selected. 889 * Don't wake the device up when suspending. 890 */ 891 if (test_bit(QCA_IBS_DISABLED, &qca->flags) || 892 test_bit(QCA_SUSPENDING, &qca->flags)) { 893 skb_queue_tail(&qca->txq, skb); 894 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 895 return 0; 896 } 897 898 /* Act according to current state */ 899 switch (qca->tx_ibs_state) { 900 case HCI_IBS_TX_AWAKE: 901 BT_DBG("Device awake, sending normally"); 902 skb_queue_tail(&qca->txq, skb); 903 idle_delay = msecs_to_jiffies(qca->tx_idle_delay); 904 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay); 905 break; 906 907 case HCI_IBS_TX_ASLEEP: 908 BT_DBG("Device asleep, waking up and queueing packet"); 909 /* Save packet for later */ 910 skb_queue_tail(&qca->tx_wait_q, skb); 911 912 qca->tx_ibs_state = HCI_IBS_TX_WAKING; 913 /* Schedule a work queue to wake up device */ 914 queue_work(qca->workqueue, &qca->ws_awake_device); 915 break; 916 917 case HCI_IBS_TX_WAKING: 918 BT_DBG("Device waking up, queueing packet"); 919 /* Transient state; just keep packet for later */ 920 skb_queue_tail(&qca->tx_wait_q, skb); 921 break; 922 923 default: 924 BT_ERR("Illegal tx state: %d (losing packet)", 925 qca->tx_ibs_state); 926 dev_kfree_skb_irq(skb); 927 break; 928 } 929 930 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 931 932 return 0; 933 } 934 935 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb) 936 { 937 struct hci_uart *hu = hci_get_drvdata(hdev); 938 939 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND); 940 941 device_want_to_sleep(hu); 942 943 kfree_skb(skb); 944 return 0; 945 } 946 947 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb) 948 { 949 struct hci_uart *hu = hci_get_drvdata(hdev); 950 951 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND); 952 953 device_want_to_wakeup(hu); 954 955 kfree_skb(skb); 956 return 0; 957 } 958 959 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb) 960 { 961 struct hci_uart *hu = hci_get_drvdata(hdev); 962 963 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK); 964 965 device_woke_up(hu); 966 967 kfree_skb(skb); 968 return 0; 969 } 970 971 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb) 972 { 973 /* We receive debug logs from chip as an ACL packets. 974 * Instead of sending the data to ACL to decode the 975 * received data, we are pushing them to the above layers 976 * as a diagnostic packet. 977 */ 978 if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE) 979 return hci_recv_diag(hdev, skb); 980 981 return hci_recv_frame(hdev, skb); 982 } 983 984 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb) 985 { 986 struct hci_uart *hu = hci_get_drvdata(hdev); 987 struct qca_data *qca = hu->priv; 988 char buf[80]; 989 990 snprintf(buf, sizeof(buf), "Controller Name: 0x%x\n", 991 qca->controller_id); 992 skb_put_data(skb, buf, strlen(buf)); 993 994 snprintf(buf, sizeof(buf), "Firmware Version: 0x%x\n", 995 qca->fw_version); 996 skb_put_data(skb, buf, strlen(buf)); 997 998 snprintf(buf, sizeof(buf), "Vendor:Qualcomm\n"); 999 skb_put_data(skb, buf, strlen(buf)); 1000 1001 snprintf(buf, sizeof(buf), "Driver: %s\n", 1002 hu->serdev->dev.driver->name); 1003 skb_put_data(skb, buf, strlen(buf)); 1004 } 1005 1006 static void qca_controller_memdump(struct work_struct *work) 1007 { 1008 struct qca_data *qca = container_of(work, struct qca_data, 1009 ctrl_memdump_evt); 1010 struct hci_uart *hu = qca->hu; 1011 struct sk_buff *skb; 1012 struct qca_memdump_event_hdr *cmd_hdr; 1013 struct qca_memdump_info *qca_memdump = qca->qca_memdump; 1014 struct qca_dump_size *dump; 1015 u16 seq_no; 1016 u32 rx_size; 1017 int ret = 0; 1018 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1019 1020 while ((skb = skb_dequeue(&qca->rx_memdump_q))) { 1021 1022 mutex_lock(&qca->hci_memdump_lock); 1023 /* Skip processing the received packets if timeout detected 1024 * or memdump collection completed. 1025 */ 1026 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT || 1027 qca->memdump_state == QCA_MEMDUMP_COLLECTED) { 1028 mutex_unlock(&qca->hci_memdump_lock); 1029 return; 1030 } 1031 1032 if (!qca_memdump) { 1033 qca_memdump = kzalloc(sizeof(struct qca_memdump_info), 1034 GFP_ATOMIC); 1035 if (!qca_memdump) { 1036 mutex_unlock(&qca->hci_memdump_lock); 1037 return; 1038 } 1039 1040 qca->qca_memdump = qca_memdump; 1041 } 1042 1043 qca->memdump_state = QCA_MEMDUMP_COLLECTING; 1044 cmd_hdr = (void *) skb->data; 1045 seq_no = __le16_to_cpu(cmd_hdr->seq_no); 1046 skb_pull(skb, sizeof(struct qca_memdump_event_hdr)); 1047 1048 if (!seq_no) { 1049 1050 /* This is the first frame of memdump packet from 1051 * the controller, Disable IBS to recevie dump 1052 * with out any interruption, ideally time required for 1053 * the controller to send the dump is 8 seconds. let us 1054 * start timer to handle this asynchronous activity. 1055 */ 1056 set_bit(QCA_IBS_DISABLED, &qca->flags); 1057 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1058 dump = (void *) skb->data; 1059 qca_memdump->ram_dump_size = __le32_to_cpu(dump->dump_size); 1060 if (!(qca_memdump->ram_dump_size)) { 1061 bt_dev_err(hu->hdev, "Rx invalid memdump size"); 1062 kfree(qca_memdump); 1063 kfree_skb(skb); 1064 mutex_unlock(&qca->hci_memdump_lock); 1065 return; 1066 } 1067 1068 queue_delayed_work(qca->workqueue, 1069 &qca->ctrl_memdump_timeout, 1070 msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)); 1071 skb_pull(skb, sizeof(qca_memdump->ram_dump_size)); 1072 qca_memdump->current_seq_no = 0; 1073 qca_memdump->received_dump = 0; 1074 ret = hci_devcd_init(hu->hdev, qca_memdump->ram_dump_size); 1075 bt_dev_info(hu->hdev, "hci_devcd_init Return:%d", 1076 ret); 1077 if (ret < 0) { 1078 kfree(qca->qca_memdump); 1079 qca->qca_memdump = NULL; 1080 qca->memdump_state = QCA_MEMDUMP_COLLECTED; 1081 cancel_delayed_work(&qca->ctrl_memdump_timeout); 1082 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1083 mutex_unlock(&qca->hci_memdump_lock); 1084 return; 1085 } 1086 1087 bt_dev_info(hu->hdev, "QCA collecting dump of size:%u", 1088 qca_memdump->ram_dump_size); 1089 1090 } 1091 1092 /* If sequence no 0 is missed then there is no point in 1093 * accepting the other sequences. 1094 */ 1095 if (!test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) { 1096 bt_dev_err(hu->hdev, "QCA: Discarding other packets"); 1097 kfree(qca_memdump); 1098 kfree_skb(skb); 1099 mutex_unlock(&qca->hci_memdump_lock); 1100 return; 1101 } 1102 /* There could be chance of missing some packets from 1103 * the controller. In such cases let us store the dummy 1104 * packets in the buffer. 1105 */ 1106 /* For QCA6390, controller does not lost packets but 1107 * sequence number field of packet sometimes has error 1108 * bits, so skip this checking for missing packet. 1109 */ 1110 while ((seq_no > qca_memdump->current_seq_no + 1) && 1111 (soc_type != QCA_QCA6390) && 1112 seq_no != QCA_LAST_SEQUENCE_NUM) { 1113 bt_dev_err(hu->hdev, "QCA controller missed packet:%d", 1114 qca_memdump->current_seq_no); 1115 rx_size = qca_memdump->received_dump; 1116 rx_size += QCA_DUMP_PACKET_SIZE; 1117 if (rx_size > qca_memdump->ram_dump_size) { 1118 bt_dev_err(hu->hdev, 1119 "QCA memdump received %d, no space for missed packet", 1120 qca_memdump->received_dump); 1121 break; 1122 } 1123 hci_devcd_append_pattern(hu->hdev, 0x00, 1124 QCA_DUMP_PACKET_SIZE); 1125 qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE; 1126 qca_memdump->current_seq_no++; 1127 } 1128 1129 rx_size = qca_memdump->received_dump + skb->len; 1130 if (rx_size <= qca_memdump->ram_dump_size) { 1131 if ((seq_no != QCA_LAST_SEQUENCE_NUM) && 1132 (seq_no != qca_memdump->current_seq_no)) { 1133 bt_dev_err(hu->hdev, 1134 "QCA memdump unexpected packet %d", 1135 seq_no); 1136 } 1137 bt_dev_dbg(hu->hdev, 1138 "QCA memdump packet %d with length %d", 1139 seq_no, skb->len); 1140 hci_devcd_append(hu->hdev, skb); 1141 qca_memdump->current_seq_no += 1; 1142 qca_memdump->received_dump = rx_size; 1143 } else { 1144 bt_dev_err(hu->hdev, 1145 "QCA memdump received no space for packet %d", 1146 qca_memdump->current_seq_no); 1147 } 1148 1149 if (seq_no == QCA_LAST_SEQUENCE_NUM) { 1150 bt_dev_info(hu->hdev, 1151 "QCA memdump Done, received %d, total %d", 1152 qca_memdump->received_dump, 1153 qca_memdump->ram_dump_size); 1154 hci_devcd_complete(hu->hdev); 1155 cancel_delayed_work(&qca->ctrl_memdump_timeout); 1156 kfree(qca->qca_memdump); 1157 qca->qca_memdump = NULL; 1158 qca->memdump_state = QCA_MEMDUMP_COLLECTED; 1159 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1160 } 1161 1162 mutex_unlock(&qca->hci_memdump_lock); 1163 } 1164 1165 } 1166 1167 static int qca_controller_memdump_event(struct hci_dev *hdev, 1168 struct sk_buff *skb) 1169 { 1170 struct hci_uart *hu = hci_get_drvdata(hdev); 1171 struct qca_data *qca = hu->priv; 1172 1173 set_bit(QCA_SSR_TRIGGERED, &qca->flags); 1174 skb_queue_tail(&qca->rx_memdump_q, skb); 1175 queue_work(qca->workqueue, &qca->ctrl_memdump_evt); 1176 1177 return 0; 1178 } 1179 1180 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb) 1181 { 1182 struct hci_uart *hu = hci_get_drvdata(hdev); 1183 struct qca_data *qca = hu->priv; 1184 1185 if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) { 1186 struct hci_event_hdr *hdr = (void *)skb->data; 1187 1188 /* For the WCN3990 the vendor command for a baudrate change 1189 * isn't sent as synchronous HCI command, because the 1190 * controller sends the corresponding vendor event with the 1191 * new baudrate. The event is received and properly decoded 1192 * after changing the baudrate of the host port. It needs to 1193 * be dropped, otherwise it can be misinterpreted as 1194 * response to a later firmware download command (also a 1195 * vendor command). 1196 */ 1197 1198 if (hdr->evt == HCI_EV_VENDOR) 1199 complete(&qca->drop_ev_comp); 1200 1201 kfree_skb(skb); 1202 1203 return 0; 1204 } 1205 /* We receive chip memory dump as an event packet, With a dedicated 1206 * handler followed by a hardware error event. When this event is 1207 * received we store dump into a file before closing hci. This 1208 * dump will help in triaging the issues. 1209 */ 1210 if ((skb->data[0] == HCI_VENDOR_PKT) && 1211 (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE)) 1212 return qca_controller_memdump_event(hdev, skb); 1213 1214 return hci_recv_frame(hdev, skb); 1215 } 1216 1217 #define QCA_IBS_SLEEP_IND_EVENT \ 1218 .type = HCI_IBS_SLEEP_IND, \ 1219 .hlen = 0, \ 1220 .loff = 0, \ 1221 .lsize = 0, \ 1222 .maxlen = HCI_MAX_IBS_SIZE 1223 1224 #define QCA_IBS_WAKE_IND_EVENT \ 1225 .type = HCI_IBS_WAKE_IND, \ 1226 .hlen = 0, \ 1227 .loff = 0, \ 1228 .lsize = 0, \ 1229 .maxlen = HCI_MAX_IBS_SIZE 1230 1231 #define QCA_IBS_WAKE_ACK_EVENT \ 1232 .type = HCI_IBS_WAKE_ACK, \ 1233 .hlen = 0, \ 1234 .loff = 0, \ 1235 .lsize = 0, \ 1236 .maxlen = HCI_MAX_IBS_SIZE 1237 1238 static const struct h4_recv_pkt qca_recv_pkts[] = { 1239 { H4_RECV_ACL, .recv = qca_recv_acl_data }, 1240 { H4_RECV_SCO, .recv = hci_recv_frame }, 1241 { H4_RECV_EVENT, .recv = qca_recv_event }, 1242 { QCA_IBS_WAKE_IND_EVENT, .recv = qca_ibs_wake_ind }, 1243 { QCA_IBS_WAKE_ACK_EVENT, .recv = qca_ibs_wake_ack }, 1244 { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind }, 1245 }; 1246 1247 static int qca_recv(struct hci_uart *hu, const void *data, int count) 1248 { 1249 struct qca_data *qca = hu->priv; 1250 1251 if (!test_bit(HCI_UART_REGISTERED, &hu->flags)) 1252 return -EUNATCH; 1253 1254 qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count, 1255 qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts)); 1256 if (IS_ERR(qca->rx_skb)) { 1257 int err = PTR_ERR(qca->rx_skb); 1258 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err); 1259 qca->rx_skb = NULL; 1260 return err; 1261 } 1262 1263 return count; 1264 } 1265 1266 static struct sk_buff *qca_dequeue(struct hci_uart *hu) 1267 { 1268 struct qca_data *qca = hu->priv; 1269 1270 return skb_dequeue(&qca->txq); 1271 } 1272 1273 static uint8_t qca_get_baudrate_value(int speed) 1274 { 1275 switch (speed) { 1276 case 9600: 1277 return QCA_BAUDRATE_9600; 1278 case 19200: 1279 return QCA_BAUDRATE_19200; 1280 case 38400: 1281 return QCA_BAUDRATE_38400; 1282 case 57600: 1283 return QCA_BAUDRATE_57600; 1284 case 115200: 1285 return QCA_BAUDRATE_115200; 1286 case 230400: 1287 return QCA_BAUDRATE_230400; 1288 case 460800: 1289 return QCA_BAUDRATE_460800; 1290 case 500000: 1291 return QCA_BAUDRATE_500000; 1292 case 921600: 1293 return QCA_BAUDRATE_921600; 1294 case 1000000: 1295 return QCA_BAUDRATE_1000000; 1296 case 2000000: 1297 return QCA_BAUDRATE_2000000; 1298 case 3000000: 1299 return QCA_BAUDRATE_3000000; 1300 case 3200000: 1301 return QCA_BAUDRATE_3200000; 1302 case 3500000: 1303 return QCA_BAUDRATE_3500000; 1304 default: 1305 return QCA_BAUDRATE_115200; 1306 } 1307 } 1308 1309 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate) 1310 { 1311 struct hci_uart *hu = hci_get_drvdata(hdev); 1312 struct qca_data *qca = hu->priv; 1313 struct sk_buff *skb; 1314 u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 }; 1315 1316 if (baudrate > QCA_BAUDRATE_3200000) 1317 return -EINVAL; 1318 1319 cmd[4] = baudrate; 1320 1321 skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL); 1322 if (!skb) { 1323 bt_dev_err(hdev, "Failed to allocate baudrate packet"); 1324 return -ENOMEM; 1325 } 1326 1327 /* Assign commands to change baudrate and packet type. */ 1328 skb_put_data(skb, cmd, sizeof(cmd)); 1329 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 1330 1331 skb_queue_tail(&qca->txq, skb); 1332 hci_uart_tx_wakeup(hu); 1333 1334 /* Wait for the baudrate change request to be sent */ 1335 1336 while (!skb_queue_empty(&qca->txq)) 1337 usleep_range(100, 200); 1338 1339 if (hu->serdev) 1340 serdev_device_wait_until_sent(hu->serdev, 1341 msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS)); 1342 1343 /* Give the controller time to process the request */ 1344 if (qca_is_wcn399x(qca_soc_type(hu)) || 1345 qca_is_wcn6750(qca_soc_type(hu)) || 1346 qca_is_wcn6855(qca_soc_type(hu))) 1347 usleep_range(1000, 10000); 1348 else 1349 msleep(300); 1350 1351 return 0; 1352 } 1353 1354 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed) 1355 { 1356 if (hu->serdev) 1357 serdev_device_set_baudrate(hu->serdev, speed); 1358 else 1359 hci_uart_set_baudrate(hu, speed); 1360 } 1361 1362 static int qca_send_power_pulse(struct hci_uart *hu, bool on) 1363 { 1364 int ret; 1365 int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS); 1366 u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE; 1367 1368 /* These power pulses are single byte command which are sent 1369 * at required baudrate to wcn3990. On wcn3990, we have an external 1370 * circuit at Tx pin which decodes the pulse sent at specific baudrate. 1371 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT 1372 * and also we use the same power inputs to turn on and off for 1373 * Wi-Fi/BT. Powering up the power sources will not enable BT, until 1374 * we send a power on pulse at 115200 bps. This algorithm will help to 1375 * save power. Disabling hardware flow control is mandatory while 1376 * sending power pulses to SoC. 1377 */ 1378 bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd); 1379 1380 serdev_device_write_flush(hu->serdev); 1381 hci_uart_set_flow_control(hu, true); 1382 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd)); 1383 if (ret < 0) { 1384 bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd); 1385 return ret; 1386 } 1387 1388 serdev_device_wait_until_sent(hu->serdev, timeout); 1389 hci_uart_set_flow_control(hu, false); 1390 1391 /* Give to controller time to boot/shutdown */ 1392 if (on) 1393 msleep(100); 1394 else 1395 usleep_range(1000, 10000); 1396 1397 return 0; 1398 } 1399 1400 static unsigned int qca_get_speed(struct hci_uart *hu, 1401 enum qca_speed_type speed_type) 1402 { 1403 unsigned int speed = 0; 1404 1405 if (speed_type == QCA_INIT_SPEED) { 1406 if (hu->init_speed) 1407 speed = hu->init_speed; 1408 else if (hu->proto->init_speed) 1409 speed = hu->proto->init_speed; 1410 } else { 1411 if (hu->oper_speed) 1412 speed = hu->oper_speed; 1413 else if (hu->proto->oper_speed) 1414 speed = hu->proto->oper_speed; 1415 } 1416 1417 return speed; 1418 } 1419 1420 static int qca_check_speeds(struct hci_uart *hu) 1421 { 1422 if (qca_is_wcn399x(qca_soc_type(hu)) || 1423 qca_is_wcn6750(qca_soc_type(hu)) || 1424 qca_is_wcn6855(qca_soc_type(hu))) { 1425 if (!qca_get_speed(hu, QCA_INIT_SPEED) && 1426 !qca_get_speed(hu, QCA_OPER_SPEED)) 1427 return -EINVAL; 1428 } else { 1429 if (!qca_get_speed(hu, QCA_INIT_SPEED) || 1430 !qca_get_speed(hu, QCA_OPER_SPEED)) 1431 return -EINVAL; 1432 } 1433 1434 return 0; 1435 } 1436 1437 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type) 1438 { 1439 unsigned int speed, qca_baudrate; 1440 struct qca_data *qca = hu->priv; 1441 int ret = 0; 1442 1443 if (speed_type == QCA_INIT_SPEED) { 1444 speed = qca_get_speed(hu, QCA_INIT_SPEED); 1445 if (speed) 1446 host_set_baudrate(hu, speed); 1447 } else { 1448 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1449 1450 speed = qca_get_speed(hu, QCA_OPER_SPEED); 1451 if (!speed) 1452 return 0; 1453 1454 /* Disable flow control for wcn3990 to deassert RTS while 1455 * changing the baudrate of chip and host. 1456 */ 1457 if (qca_is_wcn399x(soc_type) || 1458 qca_is_wcn6750(soc_type) || 1459 qca_is_wcn6855(soc_type)) 1460 hci_uart_set_flow_control(hu, true); 1461 1462 if (soc_type == QCA_WCN3990) { 1463 reinit_completion(&qca->drop_ev_comp); 1464 set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags); 1465 } 1466 1467 qca_baudrate = qca_get_baudrate_value(speed); 1468 bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed); 1469 ret = qca_set_baudrate(hu->hdev, qca_baudrate); 1470 if (ret) 1471 goto error; 1472 1473 host_set_baudrate(hu, speed); 1474 1475 error: 1476 if (qca_is_wcn399x(soc_type) || 1477 qca_is_wcn6750(soc_type) || 1478 qca_is_wcn6855(soc_type)) 1479 hci_uart_set_flow_control(hu, false); 1480 1481 if (soc_type == QCA_WCN3990) { 1482 /* Wait for the controller to send the vendor event 1483 * for the baudrate change command. 1484 */ 1485 if (!wait_for_completion_timeout(&qca->drop_ev_comp, 1486 msecs_to_jiffies(100))) { 1487 bt_dev_err(hu->hdev, 1488 "Failed to change controller baudrate\n"); 1489 ret = -ETIMEDOUT; 1490 } 1491 1492 clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags); 1493 } 1494 } 1495 1496 return ret; 1497 } 1498 1499 static int qca_send_crashbuffer(struct hci_uart *hu) 1500 { 1501 struct qca_data *qca = hu->priv; 1502 struct sk_buff *skb; 1503 1504 skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL); 1505 if (!skb) { 1506 bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet"); 1507 return -ENOMEM; 1508 } 1509 1510 /* We forcefully crash the controller, by sending 0xfb byte for 1511 * 1024 times. We also might have chance of losing data, To be 1512 * on safer side we send 1096 bytes to the SoC. 1513 */ 1514 memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE, 1515 QCA_CRASHBYTE_PACKET_LEN); 1516 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 1517 bt_dev_info(hu->hdev, "crash the soc to collect controller dump"); 1518 skb_queue_tail(&qca->txq, skb); 1519 hci_uart_tx_wakeup(hu); 1520 1521 return 0; 1522 } 1523 1524 static void qca_wait_for_dump_collection(struct hci_dev *hdev) 1525 { 1526 struct hci_uart *hu = hci_get_drvdata(hdev); 1527 struct qca_data *qca = hu->priv; 1528 1529 wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION, 1530 TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS); 1531 1532 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1533 } 1534 1535 static void qca_hw_error(struct hci_dev *hdev, u8 code) 1536 { 1537 struct hci_uart *hu = hci_get_drvdata(hdev); 1538 struct qca_data *qca = hu->priv; 1539 1540 set_bit(QCA_SSR_TRIGGERED, &qca->flags); 1541 set_bit(QCA_HW_ERROR_EVENT, &qca->flags); 1542 bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state); 1543 1544 if (qca->memdump_state == QCA_MEMDUMP_IDLE) { 1545 /* If hardware error event received for other than QCA 1546 * soc memory dump event, then we need to crash the SOC 1547 * and wait here for 8 seconds to get the dump packets. 1548 * This will block main thread to be on hold until we 1549 * collect dump. 1550 */ 1551 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1552 qca_send_crashbuffer(hu); 1553 qca_wait_for_dump_collection(hdev); 1554 } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) { 1555 /* Let us wait here until memory dump collected or 1556 * memory dump timer expired. 1557 */ 1558 bt_dev_info(hdev, "waiting for dump to complete"); 1559 qca_wait_for_dump_collection(hdev); 1560 } 1561 1562 mutex_lock(&qca->hci_memdump_lock); 1563 if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) { 1564 bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout"); 1565 hci_devcd_abort(hu->hdev); 1566 if (qca->qca_memdump) { 1567 kfree(qca->qca_memdump); 1568 qca->qca_memdump = NULL; 1569 } 1570 qca->memdump_state = QCA_MEMDUMP_TIMEOUT; 1571 cancel_delayed_work(&qca->ctrl_memdump_timeout); 1572 } 1573 mutex_unlock(&qca->hci_memdump_lock); 1574 1575 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT || 1576 qca->memdump_state == QCA_MEMDUMP_COLLECTED) { 1577 cancel_work_sync(&qca->ctrl_memdump_evt); 1578 skb_queue_purge(&qca->rx_memdump_q); 1579 } 1580 1581 clear_bit(QCA_HW_ERROR_EVENT, &qca->flags); 1582 } 1583 1584 static void qca_cmd_timeout(struct hci_dev *hdev) 1585 { 1586 struct hci_uart *hu = hci_get_drvdata(hdev); 1587 struct qca_data *qca = hu->priv; 1588 1589 set_bit(QCA_SSR_TRIGGERED, &qca->flags); 1590 if (qca->memdump_state == QCA_MEMDUMP_IDLE) { 1591 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1592 qca_send_crashbuffer(hu); 1593 qca_wait_for_dump_collection(hdev); 1594 } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) { 1595 /* Let us wait here until memory dump collected or 1596 * memory dump timer expired. 1597 */ 1598 bt_dev_info(hdev, "waiting for dump to complete"); 1599 qca_wait_for_dump_collection(hdev); 1600 } 1601 1602 mutex_lock(&qca->hci_memdump_lock); 1603 if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) { 1604 qca->memdump_state = QCA_MEMDUMP_TIMEOUT; 1605 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) { 1606 /* Inject hw error event to reset the device 1607 * and driver. 1608 */ 1609 hci_reset_dev(hu->hdev); 1610 } 1611 } 1612 mutex_unlock(&qca->hci_memdump_lock); 1613 } 1614 1615 static bool qca_wakeup(struct hci_dev *hdev) 1616 { 1617 struct hci_uart *hu = hci_get_drvdata(hdev); 1618 bool wakeup; 1619 1620 /* BT SoC attached through the serial bus is handled by the serdev driver. 1621 * So we need to use the device handle of the serdev driver to get the 1622 * status of device may wakeup. 1623 */ 1624 wakeup = device_may_wakeup(&hu->serdev->ctrl->dev); 1625 bt_dev_dbg(hu->hdev, "wakeup status : %d", wakeup); 1626 1627 return wakeup; 1628 } 1629 1630 static int qca_regulator_init(struct hci_uart *hu) 1631 { 1632 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1633 struct qca_serdev *qcadev; 1634 int ret; 1635 bool sw_ctrl_state; 1636 1637 /* Check for vregs status, may be hci down has turned 1638 * off the voltage regulator. 1639 */ 1640 qcadev = serdev_device_get_drvdata(hu->serdev); 1641 if (!qcadev->bt_power->vregs_on) { 1642 serdev_device_close(hu->serdev); 1643 ret = qca_regulator_enable(qcadev); 1644 if (ret) 1645 return ret; 1646 1647 ret = serdev_device_open(hu->serdev); 1648 if (ret) { 1649 bt_dev_err(hu->hdev, "failed to open port"); 1650 return ret; 1651 } 1652 } 1653 1654 if (qca_is_wcn399x(soc_type)) { 1655 /* Forcefully enable wcn399x to enter in to boot mode. */ 1656 host_set_baudrate(hu, 2400); 1657 ret = qca_send_power_pulse(hu, false); 1658 if (ret) 1659 return ret; 1660 } 1661 1662 /* For wcn6750 need to enable gpio bt_en */ 1663 if (qcadev->bt_en) { 1664 gpiod_set_value_cansleep(qcadev->bt_en, 0); 1665 msleep(50); 1666 gpiod_set_value_cansleep(qcadev->bt_en, 1); 1667 msleep(50); 1668 if (qcadev->sw_ctrl) { 1669 sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl); 1670 bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state); 1671 } 1672 } 1673 1674 qca_set_speed(hu, QCA_INIT_SPEED); 1675 1676 if (qca_is_wcn399x(soc_type)) { 1677 ret = qca_send_power_pulse(hu, true); 1678 if (ret) 1679 return ret; 1680 } 1681 1682 /* Now the device is in ready state to communicate with host. 1683 * To sync host with device we need to reopen port. 1684 * Without this, we will have RTS and CTS synchronization 1685 * issues. 1686 */ 1687 serdev_device_close(hu->serdev); 1688 ret = serdev_device_open(hu->serdev); 1689 if (ret) { 1690 bt_dev_err(hu->hdev, "failed to open port"); 1691 return ret; 1692 } 1693 1694 hci_uart_set_flow_control(hu, false); 1695 1696 return 0; 1697 } 1698 1699 static int qca_power_on(struct hci_dev *hdev) 1700 { 1701 struct hci_uart *hu = hci_get_drvdata(hdev); 1702 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1703 struct qca_serdev *qcadev; 1704 struct qca_data *qca = hu->priv; 1705 int ret = 0; 1706 1707 /* Non-serdev device usually is powered by external power 1708 * and don't need additional action in driver for power on 1709 */ 1710 if (!hu->serdev) 1711 return 0; 1712 1713 if (qca_is_wcn399x(soc_type) || 1714 qca_is_wcn6750(soc_type) || 1715 qca_is_wcn6855(soc_type)) { 1716 ret = qca_regulator_init(hu); 1717 } else { 1718 qcadev = serdev_device_get_drvdata(hu->serdev); 1719 if (qcadev->bt_en) { 1720 gpiod_set_value_cansleep(qcadev->bt_en, 1); 1721 /* Controller needs time to bootup. */ 1722 msleep(150); 1723 } 1724 } 1725 1726 clear_bit(QCA_BT_OFF, &qca->flags); 1727 return ret; 1728 } 1729 1730 static void hci_coredump_qca(struct hci_dev *hdev) 1731 { 1732 static const u8 param[] = { 0x26 }; 1733 struct sk_buff *skb; 1734 1735 skb = __hci_cmd_sync(hdev, 0xfc0c, 1, param, HCI_CMD_TIMEOUT); 1736 if (IS_ERR(skb)) 1737 bt_dev_err(hdev, "%s: trigger crash failed (%ld)", __func__, PTR_ERR(skb)); 1738 kfree_skb(skb); 1739 } 1740 1741 static int qca_setup(struct hci_uart *hu) 1742 { 1743 struct hci_dev *hdev = hu->hdev; 1744 struct qca_data *qca = hu->priv; 1745 unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200; 1746 unsigned int retries = 0; 1747 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1748 const char *firmware_name = qca_get_firmware_name(hu); 1749 int ret; 1750 struct qca_btsoc_version ver; 1751 1752 ret = qca_check_speeds(hu); 1753 if (ret) 1754 return ret; 1755 1756 clear_bit(QCA_ROM_FW, &qca->flags); 1757 /* Patch downloading has to be done without IBS mode */ 1758 set_bit(QCA_IBS_DISABLED, &qca->flags); 1759 1760 /* Enable controller to do both LE scan and BR/EDR inquiry 1761 * simultaneously. 1762 */ 1763 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks); 1764 1765 bt_dev_info(hdev, "setting up %s", 1766 qca_is_wcn399x(soc_type) ? "wcn399x" : 1767 (soc_type == QCA_WCN6750) ? "wcn6750" : 1768 (soc_type == QCA_WCN6855) ? "wcn6855" : "ROME/QCA6390"); 1769 1770 qca->memdump_state = QCA_MEMDUMP_IDLE; 1771 1772 retry: 1773 ret = qca_power_on(hdev); 1774 if (ret) 1775 goto out; 1776 1777 clear_bit(QCA_SSR_TRIGGERED, &qca->flags); 1778 1779 if (qca_is_wcn399x(soc_type) || 1780 qca_is_wcn6750(soc_type) || 1781 qca_is_wcn6855(soc_type)) { 1782 set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks); 1783 hci_set_aosp_capable(hdev); 1784 1785 ret = qca_read_soc_version(hdev, &ver, soc_type); 1786 if (ret) 1787 goto out; 1788 } else { 1789 qca_set_speed(hu, QCA_INIT_SPEED); 1790 } 1791 1792 /* Setup user speed if needed */ 1793 speed = qca_get_speed(hu, QCA_OPER_SPEED); 1794 if (speed) { 1795 ret = qca_set_speed(hu, QCA_OPER_SPEED); 1796 if (ret) 1797 goto out; 1798 1799 qca_baudrate = qca_get_baudrate_value(speed); 1800 } 1801 1802 if (!(qca_is_wcn399x(soc_type) || 1803 qca_is_wcn6750(soc_type) || 1804 qca_is_wcn6855(soc_type))) { 1805 /* Get QCA version information */ 1806 ret = qca_read_soc_version(hdev, &ver, soc_type); 1807 if (ret) 1808 goto out; 1809 } 1810 1811 /* Setup patch / NVM configurations */ 1812 ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver, 1813 firmware_name); 1814 if (!ret) { 1815 clear_bit(QCA_IBS_DISABLED, &qca->flags); 1816 qca_debugfs_init(hdev); 1817 hu->hdev->hw_error = qca_hw_error; 1818 hu->hdev->cmd_timeout = qca_cmd_timeout; 1819 if (device_can_wakeup(hu->serdev->ctrl->dev.parent)) 1820 hu->hdev->wakeup = qca_wakeup; 1821 } else if (ret == -ENOENT) { 1822 /* No patch/nvm-config found, run with original fw/config */ 1823 set_bit(QCA_ROM_FW, &qca->flags); 1824 ret = 0; 1825 } else if (ret == -EAGAIN) { 1826 /* 1827 * Userspace firmware loader will return -EAGAIN in case no 1828 * patch/nvm-config is found, so run with original fw/config. 1829 */ 1830 set_bit(QCA_ROM_FW, &qca->flags); 1831 ret = 0; 1832 } 1833 1834 out: 1835 if (ret && retries < MAX_INIT_RETRIES) { 1836 bt_dev_warn(hdev, "Retry BT power ON:%d", retries); 1837 qca_power_shutdown(hu); 1838 if (hu->serdev) { 1839 serdev_device_close(hu->serdev); 1840 ret = serdev_device_open(hu->serdev); 1841 if (ret) { 1842 bt_dev_err(hdev, "failed to open port"); 1843 return ret; 1844 } 1845 } 1846 retries++; 1847 goto retry; 1848 } 1849 1850 /* Setup bdaddr */ 1851 if (soc_type == QCA_ROME) 1852 hu->hdev->set_bdaddr = qca_set_bdaddr_rome; 1853 else 1854 hu->hdev->set_bdaddr = qca_set_bdaddr; 1855 qca->fw_version = le16_to_cpu(ver.patch_ver); 1856 qca->controller_id = le16_to_cpu(ver.rom_ver); 1857 hci_devcd_register(hdev, hci_coredump_qca, qca_dmp_hdr, NULL); 1858 1859 return ret; 1860 } 1861 1862 static const struct hci_uart_proto qca_proto = { 1863 .id = HCI_UART_QCA, 1864 .name = "QCA", 1865 .manufacturer = 29, 1866 .init_speed = 115200, 1867 .oper_speed = 3000000, 1868 .open = qca_open, 1869 .close = qca_close, 1870 .flush = qca_flush, 1871 .setup = qca_setup, 1872 .recv = qca_recv, 1873 .enqueue = qca_enqueue, 1874 .dequeue = qca_dequeue, 1875 }; 1876 1877 static const struct qca_device_data qca_soc_data_wcn3988 __maybe_unused = { 1878 .soc_type = QCA_WCN3988, 1879 .vregs = (struct qca_vreg []) { 1880 { "vddio", 15000 }, 1881 { "vddxo", 80000 }, 1882 { "vddrf", 300000 }, 1883 { "vddch0", 450000 }, 1884 }, 1885 .num_vregs = 4, 1886 }; 1887 1888 static const struct qca_device_data qca_soc_data_wcn3990 __maybe_unused = { 1889 .soc_type = QCA_WCN3990, 1890 .vregs = (struct qca_vreg []) { 1891 { "vddio", 15000 }, 1892 { "vddxo", 80000 }, 1893 { "vddrf", 300000 }, 1894 { "vddch0", 450000 }, 1895 }, 1896 .num_vregs = 4, 1897 }; 1898 1899 static const struct qca_device_data qca_soc_data_wcn3991 __maybe_unused = { 1900 .soc_type = QCA_WCN3991, 1901 .vregs = (struct qca_vreg []) { 1902 { "vddio", 15000 }, 1903 { "vddxo", 80000 }, 1904 { "vddrf", 300000 }, 1905 { "vddch0", 450000 }, 1906 }, 1907 .num_vregs = 4, 1908 .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES, 1909 }; 1910 1911 static const struct qca_device_data qca_soc_data_wcn3998 __maybe_unused = { 1912 .soc_type = QCA_WCN3998, 1913 .vregs = (struct qca_vreg []) { 1914 { "vddio", 10000 }, 1915 { "vddxo", 80000 }, 1916 { "vddrf", 300000 }, 1917 { "vddch0", 450000 }, 1918 }, 1919 .num_vregs = 4, 1920 }; 1921 1922 static const struct qca_device_data qca_soc_data_qca6390 __maybe_unused = { 1923 .soc_type = QCA_QCA6390, 1924 .num_vregs = 0, 1925 }; 1926 1927 static const struct qca_device_data qca_soc_data_wcn6750 __maybe_unused = { 1928 .soc_type = QCA_WCN6750, 1929 .vregs = (struct qca_vreg []) { 1930 { "vddio", 5000 }, 1931 { "vddaon", 26000 }, 1932 { "vddbtcxmx", 126000 }, 1933 { "vddrfacmn", 12500 }, 1934 { "vddrfa0p8", 102000 }, 1935 { "vddrfa1p7", 302000 }, 1936 { "vddrfa1p2", 257000 }, 1937 { "vddrfa2p2", 1700000 }, 1938 { "vddasd", 200 }, 1939 }, 1940 .num_vregs = 9, 1941 .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES, 1942 }; 1943 1944 static const struct qca_device_data qca_soc_data_wcn6855 __maybe_unused = { 1945 .soc_type = QCA_WCN6855, 1946 .vregs = (struct qca_vreg []) { 1947 { "vddio", 5000 }, 1948 { "vddbtcxmx", 126000 }, 1949 { "vddrfacmn", 12500 }, 1950 { "vddrfa0p8", 102000 }, 1951 { "vddrfa1p7", 302000 }, 1952 { "vddrfa1p2", 257000 }, 1953 }, 1954 .num_vregs = 6, 1955 .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES, 1956 }; 1957 1958 static void qca_power_shutdown(struct hci_uart *hu) 1959 { 1960 struct qca_serdev *qcadev; 1961 struct qca_data *qca = hu->priv; 1962 unsigned long flags; 1963 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1964 bool sw_ctrl_state; 1965 1966 /* From this point we go into power off state. But serial port is 1967 * still open, stop queueing the IBS data and flush all the buffered 1968 * data in skb's. 1969 */ 1970 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 1971 set_bit(QCA_IBS_DISABLED, &qca->flags); 1972 qca_flush(hu); 1973 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 1974 1975 /* Non-serdev device usually is powered by external power 1976 * and don't need additional action in driver for power down 1977 */ 1978 if (!hu->serdev) 1979 return; 1980 1981 qcadev = serdev_device_get_drvdata(hu->serdev); 1982 1983 if (qca_is_wcn399x(soc_type)) { 1984 host_set_baudrate(hu, 2400); 1985 qca_send_power_pulse(hu, false); 1986 qca_regulator_disable(qcadev); 1987 } else if (soc_type == QCA_WCN6750 || soc_type == QCA_WCN6855) { 1988 gpiod_set_value_cansleep(qcadev->bt_en, 0); 1989 msleep(100); 1990 qca_regulator_disable(qcadev); 1991 if (qcadev->sw_ctrl) { 1992 sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl); 1993 bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state); 1994 } 1995 } else if (qcadev->bt_en) { 1996 gpiod_set_value_cansleep(qcadev->bt_en, 0); 1997 } 1998 1999 set_bit(QCA_BT_OFF, &qca->flags); 2000 } 2001 2002 static int qca_power_off(struct hci_dev *hdev) 2003 { 2004 struct hci_uart *hu = hci_get_drvdata(hdev); 2005 struct qca_data *qca = hu->priv; 2006 enum qca_btsoc_type soc_type = qca_soc_type(hu); 2007 2008 hu->hdev->hw_error = NULL; 2009 hu->hdev->cmd_timeout = NULL; 2010 2011 del_timer_sync(&qca->wake_retrans_timer); 2012 del_timer_sync(&qca->tx_idle_timer); 2013 2014 /* Stop sending shutdown command if soc crashes. */ 2015 if (soc_type != QCA_ROME 2016 && qca->memdump_state == QCA_MEMDUMP_IDLE) { 2017 qca_send_pre_shutdown_cmd(hdev); 2018 usleep_range(8000, 10000); 2019 } 2020 2021 qca_power_shutdown(hu); 2022 return 0; 2023 } 2024 2025 static int qca_regulator_enable(struct qca_serdev *qcadev) 2026 { 2027 struct qca_power *power = qcadev->bt_power; 2028 int ret; 2029 2030 /* Already enabled */ 2031 if (power->vregs_on) 2032 return 0; 2033 2034 BT_DBG("enabling %d regulators)", power->num_vregs); 2035 2036 ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk); 2037 if (ret) 2038 return ret; 2039 2040 power->vregs_on = true; 2041 2042 ret = clk_prepare_enable(qcadev->susclk); 2043 if (ret) 2044 qca_regulator_disable(qcadev); 2045 2046 return ret; 2047 } 2048 2049 static void qca_regulator_disable(struct qca_serdev *qcadev) 2050 { 2051 struct qca_power *power; 2052 2053 if (!qcadev) 2054 return; 2055 2056 power = qcadev->bt_power; 2057 2058 /* Already disabled? */ 2059 if (!power->vregs_on) 2060 return; 2061 2062 regulator_bulk_disable(power->num_vregs, power->vreg_bulk); 2063 power->vregs_on = false; 2064 2065 clk_disable_unprepare(qcadev->susclk); 2066 } 2067 2068 static int qca_init_regulators(struct qca_power *qca, 2069 const struct qca_vreg *vregs, size_t num_vregs) 2070 { 2071 struct regulator_bulk_data *bulk; 2072 int ret; 2073 int i; 2074 2075 bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL); 2076 if (!bulk) 2077 return -ENOMEM; 2078 2079 for (i = 0; i < num_vregs; i++) 2080 bulk[i].supply = vregs[i].name; 2081 2082 ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk); 2083 if (ret < 0) 2084 return ret; 2085 2086 for (i = 0; i < num_vregs; i++) { 2087 ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA); 2088 if (ret) 2089 return ret; 2090 } 2091 2092 qca->vreg_bulk = bulk; 2093 qca->num_vregs = num_vregs; 2094 2095 return 0; 2096 } 2097 2098 static int qca_serdev_probe(struct serdev_device *serdev) 2099 { 2100 struct qca_serdev *qcadev; 2101 struct hci_dev *hdev; 2102 const struct qca_device_data *data; 2103 int err; 2104 bool power_ctrl_enabled = true; 2105 2106 qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL); 2107 if (!qcadev) 2108 return -ENOMEM; 2109 2110 qcadev->serdev_hu.serdev = serdev; 2111 data = device_get_match_data(&serdev->dev); 2112 serdev_device_set_drvdata(serdev, qcadev); 2113 device_property_read_string(&serdev->dev, "firmware-name", 2114 &qcadev->firmware_name); 2115 device_property_read_u32(&serdev->dev, "max-speed", 2116 &qcadev->oper_speed); 2117 if (!qcadev->oper_speed) 2118 BT_DBG("UART will pick default operating speed"); 2119 2120 if (data && 2121 (qca_is_wcn399x(data->soc_type) || 2122 qca_is_wcn6750(data->soc_type) || 2123 qca_is_wcn6855(data->soc_type))) { 2124 qcadev->btsoc_type = data->soc_type; 2125 qcadev->bt_power = devm_kzalloc(&serdev->dev, 2126 sizeof(struct qca_power), 2127 GFP_KERNEL); 2128 if (!qcadev->bt_power) 2129 return -ENOMEM; 2130 2131 qcadev->bt_power->dev = &serdev->dev; 2132 err = qca_init_regulators(qcadev->bt_power, data->vregs, 2133 data->num_vregs); 2134 if (err) { 2135 BT_ERR("Failed to init regulators:%d", err); 2136 return err; 2137 } 2138 2139 qcadev->bt_power->vregs_on = false; 2140 2141 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable", 2142 GPIOD_OUT_LOW); 2143 if (IS_ERR_OR_NULL(qcadev->bt_en) && 2144 (data->soc_type == QCA_WCN6750 || 2145 data->soc_type == QCA_WCN6855)) { 2146 dev_err(&serdev->dev, "failed to acquire BT_EN gpio\n"); 2147 power_ctrl_enabled = false; 2148 } 2149 2150 qcadev->sw_ctrl = devm_gpiod_get_optional(&serdev->dev, "swctrl", 2151 GPIOD_IN); 2152 if (IS_ERR_OR_NULL(qcadev->sw_ctrl) && 2153 (data->soc_type == QCA_WCN6750 || 2154 data->soc_type == QCA_WCN6855)) 2155 dev_warn(&serdev->dev, "failed to acquire SW_CTRL gpio\n"); 2156 2157 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL); 2158 if (IS_ERR(qcadev->susclk)) { 2159 dev_err(&serdev->dev, "failed to acquire clk\n"); 2160 return PTR_ERR(qcadev->susclk); 2161 } 2162 2163 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto); 2164 if (err) { 2165 BT_ERR("wcn3990 serdev registration failed"); 2166 return err; 2167 } 2168 } else { 2169 if (data) 2170 qcadev->btsoc_type = data->soc_type; 2171 else 2172 qcadev->btsoc_type = QCA_ROME; 2173 2174 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable", 2175 GPIOD_OUT_LOW); 2176 if (IS_ERR_OR_NULL(qcadev->bt_en)) { 2177 dev_warn(&serdev->dev, "failed to acquire enable gpio\n"); 2178 power_ctrl_enabled = false; 2179 } 2180 2181 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL); 2182 if (IS_ERR(qcadev->susclk)) { 2183 dev_warn(&serdev->dev, "failed to acquire clk\n"); 2184 return PTR_ERR(qcadev->susclk); 2185 } 2186 err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ); 2187 if (err) 2188 return err; 2189 2190 err = clk_prepare_enable(qcadev->susclk); 2191 if (err) 2192 return err; 2193 2194 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto); 2195 if (err) { 2196 BT_ERR("Rome serdev registration failed"); 2197 clk_disable_unprepare(qcadev->susclk); 2198 return err; 2199 } 2200 } 2201 2202 hdev = qcadev->serdev_hu.hdev; 2203 2204 if (power_ctrl_enabled) { 2205 set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks); 2206 hdev->shutdown = qca_power_off; 2207 } 2208 2209 if (data) { 2210 /* Wideband speech support must be set per driver since it can't 2211 * be queried via hci. Same with the valid le states quirk. 2212 */ 2213 if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH) 2214 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, 2215 &hdev->quirks); 2216 2217 if (data->capabilities & QCA_CAP_VALID_LE_STATES) 2218 set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks); 2219 } 2220 2221 return 0; 2222 } 2223 2224 static void qca_serdev_remove(struct serdev_device *serdev) 2225 { 2226 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); 2227 struct qca_power *power = qcadev->bt_power; 2228 2229 if ((qca_is_wcn399x(qcadev->btsoc_type) || 2230 qca_is_wcn6750(qcadev->btsoc_type) || 2231 qca_is_wcn6855(qcadev->btsoc_type)) && 2232 power->vregs_on) 2233 qca_power_shutdown(&qcadev->serdev_hu); 2234 else if (qcadev->susclk) 2235 clk_disable_unprepare(qcadev->susclk); 2236 2237 hci_uart_unregister_device(&qcadev->serdev_hu); 2238 } 2239 2240 static void qca_serdev_shutdown(struct device *dev) 2241 { 2242 int ret; 2243 int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS); 2244 struct serdev_device *serdev = to_serdev_device(dev); 2245 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); 2246 struct hci_uart *hu = &qcadev->serdev_hu; 2247 struct hci_dev *hdev = hu->hdev; 2248 struct qca_data *qca = hu->priv; 2249 const u8 ibs_wake_cmd[] = { 0xFD }; 2250 const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 }; 2251 2252 if (qcadev->btsoc_type == QCA_QCA6390) { 2253 if (test_bit(QCA_BT_OFF, &qca->flags) || 2254 !test_bit(HCI_RUNNING, &hdev->flags)) 2255 return; 2256 2257 serdev_device_write_flush(serdev); 2258 ret = serdev_device_write_buf(serdev, ibs_wake_cmd, 2259 sizeof(ibs_wake_cmd)); 2260 if (ret < 0) { 2261 BT_ERR("QCA send IBS_WAKE_IND error: %d", ret); 2262 return; 2263 } 2264 serdev_device_wait_until_sent(serdev, timeout); 2265 usleep_range(8000, 10000); 2266 2267 serdev_device_write_flush(serdev); 2268 ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd, 2269 sizeof(edl_reset_soc_cmd)); 2270 if (ret < 0) { 2271 BT_ERR("QCA send EDL_RESET_REQ error: %d", ret); 2272 return; 2273 } 2274 serdev_device_wait_until_sent(serdev, timeout); 2275 usleep_range(8000, 10000); 2276 } 2277 } 2278 2279 static int __maybe_unused qca_suspend(struct device *dev) 2280 { 2281 struct serdev_device *serdev = to_serdev_device(dev); 2282 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); 2283 struct hci_uart *hu = &qcadev->serdev_hu; 2284 struct qca_data *qca = hu->priv; 2285 unsigned long flags; 2286 bool tx_pending = false; 2287 int ret = 0; 2288 u8 cmd; 2289 u32 wait_timeout = 0; 2290 2291 set_bit(QCA_SUSPENDING, &qca->flags); 2292 2293 /* if BT SoC is running with default firmware then it does not 2294 * support in-band sleep 2295 */ 2296 if (test_bit(QCA_ROM_FW, &qca->flags)) 2297 return 0; 2298 2299 /* During SSR after memory dump collection, controller will be 2300 * powered off and then powered on.If controller is powered off 2301 * during SSR then we should wait until SSR is completed. 2302 */ 2303 if (test_bit(QCA_BT_OFF, &qca->flags) && 2304 !test_bit(QCA_SSR_TRIGGERED, &qca->flags)) 2305 return 0; 2306 2307 if (test_bit(QCA_IBS_DISABLED, &qca->flags) || 2308 test_bit(QCA_SSR_TRIGGERED, &qca->flags)) { 2309 wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ? 2310 IBS_DISABLE_SSR_TIMEOUT_MS : 2311 FW_DOWNLOAD_TIMEOUT_MS; 2312 2313 /* QCA_IBS_DISABLED flag is set to true, During FW download 2314 * and during memory dump collection. It is reset to false, 2315 * After FW download complete. 2316 */ 2317 wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED, 2318 TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout)); 2319 2320 if (test_bit(QCA_IBS_DISABLED, &qca->flags)) { 2321 bt_dev_err(hu->hdev, "SSR or FW download time out"); 2322 ret = -ETIMEDOUT; 2323 goto error; 2324 } 2325 } 2326 2327 cancel_work_sync(&qca->ws_awake_device); 2328 cancel_work_sync(&qca->ws_awake_rx); 2329 2330 spin_lock_irqsave_nested(&qca->hci_ibs_lock, 2331 flags, SINGLE_DEPTH_NESTING); 2332 2333 switch (qca->tx_ibs_state) { 2334 case HCI_IBS_TX_WAKING: 2335 del_timer(&qca->wake_retrans_timer); 2336 fallthrough; 2337 case HCI_IBS_TX_AWAKE: 2338 del_timer(&qca->tx_idle_timer); 2339 2340 serdev_device_write_flush(hu->serdev); 2341 cmd = HCI_IBS_SLEEP_IND; 2342 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd)); 2343 2344 if (ret < 0) { 2345 BT_ERR("Failed to send SLEEP to device"); 2346 break; 2347 } 2348 2349 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; 2350 qca->ibs_sent_slps++; 2351 tx_pending = true; 2352 break; 2353 2354 case HCI_IBS_TX_ASLEEP: 2355 break; 2356 2357 default: 2358 BT_ERR("Spurious tx state %d", qca->tx_ibs_state); 2359 ret = -EINVAL; 2360 break; 2361 } 2362 2363 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 2364 2365 if (ret < 0) 2366 goto error; 2367 2368 if (tx_pending) { 2369 serdev_device_wait_until_sent(hu->serdev, 2370 msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS)); 2371 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu); 2372 } 2373 2374 /* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going 2375 * to sleep, so that the packet does not wake the system later. 2376 */ 2377 ret = wait_event_interruptible_timeout(qca->suspend_wait_q, 2378 qca->rx_ibs_state == HCI_IBS_RX_ASLEEP, 2379 msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS)); 2380 if (ret == 0) { 2381 ret = -ETIMEDOUT; 2382 goto error; 2383 } 2384 2385 return 0; 2386 2387 error: 2388 clear_bit(QCA_SUSPENDING, &qca->flags); 2389 2390 return ret; 2391 } 2392 2393 static int __maybe_unused qca_resume(struct device *dev) 2394 { 2395 struct serdev_device *serdev = to_serdev_device(dev); 2396 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); 2397 struct hci_uart *hu = &qcadev->serdev_hu; 2398 struct qca_data *qca = hu->priv; 2399 2400 clear_bit(QCA_SUSPENDING, &qca->flags); 2401 2402 return 0; 2403 } 2404 2405 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume); 2406 2407 #ifdef CONFIG_OF 2408 static const struct of_device_id qca_bluetooth_of_match[] = { 2409 { .compatible = "qcom,qca6174-bt" }, 2410 { .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390}, 2411 { .compatible = "qcom,qca9377-bt" }, 2412 { .compatible = "qcom,wcn3988-bt", .data = &qca_soc_data_wcn3988}, 2413 { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990}, 2414 { .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991}, 2415 { .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998}, 2416 { .compatible = "qcom,wcn6750-bt", .data = &qca_soc_data_wcn6750}, 2417 { .compatible = "qcom,wcn6855-bt", .data = &qca_soc_data_wcn6855}, 2418 { /* sentinel */ } 2419 }; 2420 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match); 2421 #endif 2422 2423 #ifdef CONFIG_ACPI 2424 static const struct acpi_device_id qca_bluetooth_acpi_match[] = { 2425 { "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 }, 2426 { "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 }, 2427 { "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 }, 2428 { "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 }, 2429 { }, 2430 }; 2431 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match); 2432 #endif 2433 2434 #ifdef CONFIG_DEV_COREDUMP 2435 static void hciqca_coredump(struct device *dev) 2436 { 2437 struct serdev_device *serdev = to_serdev_device(dev); 2438 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); 2439 struct hci_uart *hu = &qcadev->serdev_hu; 2440 struct hci_dev *hdev = hu->hdev; 2441 2442 if (hdev->dump.coredump) 2443 hdev->dump.coredump(hdev); 2444 } 2445 #endif 2446 2447 static struct serdev_device_driver qca_serdev_driver = { 2448 .probe = qca_serdev_probe, 2449 .remove = qca_serdev_remove, 2450 .driver = { 2451 .name = "hci_uart_qca", 2452 .of_match_table = of_match_ptr(qca_bluetooth_of_match), 2453 .acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match), 2454 .shutdown = qca_serdev_shutdown, 2455 .pm = &qca_pm_ops, 2456 #ifdef CONFIG_DEV_COREDUMP 2457 .coredump = hciqca_coredump, 2458 #endif 2459 }, 2460 }; 2461 2462 int __init qca_init(void) 2463 { 2464 serdev_device_driver_register(&qca_serdev_driver); 2465 2466 return hci_uart_register_proto(&qca_proto); 2467 } 2468 2469 int __exit qca_deinit(void) 2470 { 2471 serdev_device_driver_unregister(&qca_serdev_driver); 2472 2473 return hci_uart_unregister_proto(&qca_proto); 2474 } 2475