xref: /openbmc/linux/drivers/bluetooth/hci_qca.c (revision 52cdded0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Bluetooth Software UART Qualcomm protocol
4  *
5  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10  *
11  *  Acknowledgements:
12  *  This file is based on hci_ll.c, which was...
13  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14  *  which was in turn based on hci_h4.c, which was written
15  *  by Maxim Krasnyansky and Marcel Holtmann.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/serdev.h>
33 #include <linux/mutex.h>
34 #include <asm/unaligned.h>
35 
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38 
39 #include "hci_uart.h"
40 #include "btqca.h"
41 
42 /* HCI_IBS protocol messages */
43 #define HCI_IBS_SLEEP_IND	0xFE
44 #define HCI_IBS_WAKE_IND	0xFD
45 #define HCI_IBS_WAKE_ACK	0xFC
46 #define HCI_MAX_IBS_SIZE	10
47 
48 #define IBS_WAKE_RETRANS_TIMEOUT_MS	100
49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS	200
50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS	2000
51 #define CMD_TRANS_TIMEOUT_MS		100
52 #define MEMDUMP_TIMEOUT_MS		8000
53 
54 /* susclk rate */
55 #define SUSCLK_RATE_32KHZ	32768
56 
57 /* Controller debug log header */
58 #define QCA_DEBUG_HANDLE	0x2EDC
59 
60 /* max retry count when init fails */
61 #define MAX_INIT_RETRIES 3
62 
63 /* Controller dump header */
64 #define QCA_SSR_DUMP_HANDLE		0x0108
65 #define QCA_DUMP_PACKET_SIZE		255
66 #define QCA_LAST_SEQUENCE_NUM		0xFFFF
67 #define QCA_CRASHBYTE_PACKET_LEN	1096
68 #define QCA_MEMDUMP_BYTE		0xFB
69 
70 enum qca_flags {
71 	QCA_IBS_ENABLED,
72 	QCA_DROP_VENDOR_EVENT,
73 	QCA_SUSPENDING,
74 	QCA_MEMDUMP_COLLECTION,
75 	QCA_HW_ERROR_EVENT,
76 	QCA_SSR_TRIGGERED
77 };
78 
79 enum qca_capabilities {
80 	QCA_CAP_WIDEBAND_SPEECH = BIT(0),
81 };
82 
83 /* HCI_IBS transmit side sleep protocol states */
84 enum tx_ibs_states {
85 	HCI_IBS_TX_ASLEEP,
86 	HCI_IBS_TX_WAKING,
87 	HCI_IBS_TX_AWAKE,
88 };
89 
90 /* HCI_IBS receive side sleep protocol states */
91 enum rx_states {
92 	HCI_IBS_RX_ASLEEP,
93 	HCI_IBS_RX_AWAKE,
94 };
95 
96 /* HCI_IBS transmit and receive side clock state vote */
97 enum hci_ibs_clock_state_vote {
98 	HCI_IBS_VOTE_STATS_UPDATE,
99 	HCI_IBS_TX_VOTE_CLOCK_ON,
100 	HCI_IBS_TX_VOTE_CLOCK_OFF,
101 	HCI_IBS_RX_VOTE_CLOCK_ON,
102 	HCI_IBS_RX_VOTE_CLOCK_OFF,
103 };
104 
105 /* Controller memory dump states */
106 enum qca_memdump_states {
107 	QCA_MEMDUMP_IDLE,
108 	QCA_MEMDUMP_COLLECTING,
109 	QCA_MEMDUMP_COLLECTED,
110 	QCA_MEMDUMP_TIMEOUT,
111 };
112 
113 struct qca_memdump_data {
114 	char *memdump_buf_head;
115 	char *memdump_buf_tail;
116 	u32 current_seq_no;
117 	u32 received_dump;
118 	u32 ram_dump_size;
119 };
120 
121 struct qca_memdump_event_hdr {
122 	__u8    evt;
123 	__u8    plen;
124 	__u16   opcode;
125 	__u16   seq_no;
126 	__u8    reserved;
127 } __packed;
128 
129 
130 struct qca_dump_size {
131 	u32 dump_size;
132 } __packed;
133 
134 struct qca_data {
135 	struct hci_uart *hu;
136 	struct sk_buff *rx_skb;
137 	struct sk_buff_head txq;
138 	struct sk_buff_head tx_wait_q;	/* HCI_IBS wait queue	*/
139 	struct sk_buff_head rx_memdump_q;	/* Memdump wait queue	*/
140 	spinlock_t hci_ibs_lock;	/* HCI_IBS state lock	*/
141 	u8 tx_ibs_state;	/* HCI_IBS transmit side power state*/
142 	u8 rx_ibs_state;	/* HCI_IBS receive side power state */
143 	bool tx_vote;		/* Clock must be on for TX */
144 	bool rx_vote;		/* Clock must be on for RX */
145 	struct timer_list tx_idle_timer;
146 	u32 tx_idle_delay;
147 	struct timer_list wake_retrans_timer;
148 	u32 wake_retrans;
149 	struct workqueue_struct *workqueue;
150 	struct work_struct ws_awake_rx;
151 	struct work_struct ws_awake_device;
152 	struct work_struct ws_rx_vote_off;
153 	struct work_struct ws_tx_vote_off;
154 	struct work_struct ctrl_memdump_evt;
155 	struct delayed_work ctrl_memdump_timeout;
156 	struct qca_memdump_data *qca_memdump;
157 	unsigned long flags;
158 	struct completion drop_ev_comp;
159 	wait_queue_head_t suspend_wait_q;
160 	enum qca_memdump_states memdump_state;
161 	struct mutex hci_memdump_lock;
162 
163 	/* For debugging purpose */
164 	u64 ibs_sent_wacks;
165 	u64 ibs_sent_slps;
166 	u64 ibs_sent_wakes;
167 	u64 ibs_recv_wacks;
168 	u64 ibs_recv_slps;
169 	u64 ibs_recv_wakes;
170 	u64 vote_last_jif;
171 	u32 vote_on_ms;
172 	u32 vote_off_ms;
173 	u64 tx_votes_on;
174 	u64 rx_votes_on;
175 	u64 tx_votes_off;
176 	u64 rx_votes_off;
177 	u64 votes_on;
178 	u64 votes_off;
179 };
180 
181 enum qca_speed_type {
182 	QCA_INIT_SPEED = 1,
183 	QCA_OPER_SPEED
184 };
185 
186 /*
187  * Voltage regulator information required for configuring the
188  * QCA Bluetooth chipset
189  */
190 struct qca_vreg {
191 	const char *name;
192 	unsigned int load_uA;
193 };
194 
195 struct qca_device_data {
196 	enum qca_btsoc_type soc_type;
197 	struct qca_vreg *vregs;
198 	size_t num_vregs;
199 	uint32_t capabilities;
200 };
201 
202 /*
203  * Platform data for the QCA Bluetooth power driver.
204  */
205 struct qca_power {
206 	struct device *dev;
207 	struct regulator_bulk_data *vreg_bulk;
208 	int num_vregs;
209 	bool vregs_on;
210 };
211 
212 struct qca_serdev {
213 	struct hci_uart	 serdev_hu;
214 	struct gpio_desc *bt_en;
215 	struct clk	 *susclk;
216 	enum qca_btsoc_type btsoc_type;
217 	struct qca_power *bt_power;
218 	u32 init_speed;
219 	u32 oper_speed;
220 	const char *firmware_name;
221 };
222 
223 static int qca_regulator_enable(struct qca_serdev *qcadev);
224 static void qca_regulator_disable(struct qca_serdev *qcadev);
225 static void qca_power_shutdown(struct hci_uart *hu);
226 static int qca_power_off(struct hci_dev *hdev);
227 static void qca_controller_memdump(struct work_struct *work);
228 
229 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
230 {
231 	enum qca_btsoc_type soc_type;
232 
233 	if (hu->serdev) {
234 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
235 
236 		soc_type = qsd->btsoc_type;
237 	} else {
238 		soc_type = QCA_ROME;
239 	}
240 
241 	return soc_type;
242 }
243 
244 static const char *qca_get_firmware_name(struct hci_uart *hu)
245 {
246 	if (hu->serdev) {
247 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
248 
249 		return qsd->firmware_name;
250 	} else {
251 		return NULL;
252 	}
253 }
254 
255 static void __serial_clock_on(struct tty_struct *tty)
256 {
257 	/* TODO: Some chipset requires to enable UART clock on client
258 	 * side to save power consumption or manual work is required.
259 	 * Please put your code to control UART clock here if needed
260 	 */
261 }
262 
263 static void __serial_clock_off(struct tty_struct *tty)
264 {
265 	/* TODO: Some chipset requires to disable UART clock on client
266 	 * side to save power consumption or manual work is required.
267 	 * Please put your code to control UART clock off here if needed
268 	 */
269 }
270 
271 /* serial_clock_vote needs to be called with the ibs lock held */
272 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
273 {
274 	struct qca_data *qca = hu->priv;
275 	unsigned int diff;
276 
277 	bool old_vote = (qca->tx_vote | qca->rx_vote);
278 	bool new_vote;
279 
280 	switch (vote) {
281 	case HCI_IBS_VOTE_STATS_UPDATE:
282 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
283 
284 		if (old_vote)
285 			qca->vote_off_ms += diff;
286 		else
287 			qca->vote_on_ms += diff;
288 		return;
289 
290 	case HCI_IBS_TX_VOTE_CLOCK_ON:
291 		qca->tx_vote = true;
292 		qca->tx_votes_on++;
293 		break;
294 
295 	case HCI_IBS_RX_VOTE_CLOCK_ON:
296 		qca->rx_vote = true;
297 		qca->rx_votes_on++;
298 		break;
299 
300 	case HCI_IBS_TX_VOTE_CLOCK_OFF:
301 		qca->tx_vote = false;
302 		qca->tx_votes_off++;
303 		break;
304 
305 	case HCI_IBS_RX_VOTE_CLOCK_OFF:
306 		qca->rx_vote = false;
307 		qca->rx_votes_off++;
308 		break;
309 
310 	default:
311 		BT_ERR("Voting irregularity");
312 		return;
313 	}
314 
315 	new_vote = qca->rx_vote | qca->tx_vote;
316 
317 	if (new_vote != old_vote) {
318 		if (new_vote)
319 			__serial_clock_on(hu->tty);
320 		else
321 			__serial_clock_off(hu->tty);
322 
323 		BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
324 		       vote ? "true" : "false");
325 
326 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
327 
328 		if (new_vote) {
329 			qca->votes_on++;
330 			qca->vote_off_ms += diff;
331 		} else {
332 			qca->votes_off++;
333 			qca->vote_on_ms += diff;
334 		}
335 		qca->vote_last_jif = jiffies;
336 	}
337 }
338 
339 /* Builds and sends an HCI_IBS command packet.
340  * These are very simple packets with only 1 cmd byte.
341  */
342 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
343 {
344 	int err = 0;
345 	struct sk_buff *skb = NULL;
346 	struct qca_data *qca = hu->priv;
347 
348 	BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
349 
350 	skb = bt_skb_alloc(1, GFP_ATOMIC);
351 	if (!skb) {
352 		BT_ERR("Failed to allocate memory for HCI_IBS packet");
353 		return -ENOMEM;
354 	}
355 
356 	/* Assign HCI_IBS type */
357 	skb_put_u8(skb, cmd);
358 
359 	skb_queue_tail(&qca->txq, skb);
360 
361 	return err;
362 }
363 
364 static void qca_wq_awake_device(struct work_struct *work)
365 {
366 	struct qca_data *qca = container_of(work, struct qca_data,
367 					    ws_awake_device);
368 	struct hci_uart *hu = qca->hu;
369 	unsigned long retrans_delay;
370 	unsigned long flags;
371 
372 	BT_DBG("hu %p wq awake device", hu);
373 
374 	/* Vote for serial clock */
375 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
376 
377 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
378 
379 	/* Send wake indication to device */
380 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
381 		BT_ERR("Failed to send WAKE to device");
382 
383 	qca->ibs_sent_wakes++;
384 
385 	/* Start retransmit timer */
386 	retrans_delay = msecs_to_jiffies(qca->wake_retrans);
387 	mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
388 
389 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
390 
391 	/* Actually send the packets */
392 	hci_uart_tx_wakeup(hu);
393 }
394 
395 static void qca_wq_awake_rx(struct work_struct *work)
396 {
397 	struct qca_data *qca = container_of(work, struct qca_data,
398 					    ws_awake_rx);
399 	struct hci_uart *hu = qca->hu;
400 	unsigned long flags;
401 
402 	BT_DBG("hu %p wq awake rx", hu);
403 
404 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
405 
406 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
407 	qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
408 
409 	/* Always acknowledge device wake up,
410 	 * sending IBS message doesn't count as TX ON.
411 	 */
412 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
413 		BT_ERR("Failed to acknowledge device wake up");
414 
415 	qca->ibs_sent_wacks++;
416 
417 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
418 
419 	/* Actually send the packets */
420 	hci_uart_tx_wakeup(hu);
421 }
422 
423 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
424 {
425 	struct qca_data *qca = container_of(work, struct qca_data,
426 					    ws_rx_vote_off);
427 	struct hci_uart *hu = qca->hu;
428 
429 	BT_DBG("hu %p rx clock vote off", hu);
430 
431 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
432 }
433 
434 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
435 {
436 	struct qca_data *qca = container_of(work, struct qca_data,
437 					    ws_tx_vote_off);
438 	struct hci_uart *hu = qca->hu;
439 
440 	BT_DBG("hu %p tx clock vote off", hu);
441 
442 	/* Run HCI tx handling unlocked */
443 	hci_uart_tx_wakeup(hu);
444 
445 	/* Now that message queued to tty driver, vote for tty clocks off.
446 	 * It is up to the tty driver to pend the clocks off until tx done.
447 	 */
448 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
449 }
450 
451 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
452 {
453 	struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
454 	struct hci_uart *hu = qca->hu;
455 	unsigned long flags;
456 
457 	BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
458 
459 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
460 				 flags, SINGLE_DEPTH_NESTING);
461 
462 	switch (qca->tx_ibs_state) {
463 	case HCI_IBS_TX_AWAKE:
464 		/* TX_IDLE, go to SLEEP */
465 		if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
466 			BT_ERR("Failed to send SLEEP to device");
467 			break;
468 		}
469 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
470 		qca->ibs_sent_slps++;
471 		queue_work(qca->workqueue, &qca->ws_tx_vote_off);
472 		break;
473 
474 	case HCI_IBS_TX_ASLEEP:
475 	case HCI_IBS_TX_WAKING:
476 	default:
477 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
478 		break;
479 	}
480 
481 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
482 }
483 
484 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
485 {
486 	struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
487 	struct hci_uart *hu = qca->hu;
488 	unsigned long flags, retrans_delay;
489 	bool retransmit = false;
490 
491 	BT_DBG("hu %p wake retransmit timeout in %d state",
492 		hu, qca->tx_ibs_state);
493 
494 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
495 				 flags, SINGLE_DEPTH_NESTING);
496 
497 	/* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
498 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
499 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
500 		return;
501 	}
502 
503 	switch (qca->tx_ibs_state) {
504 	case HCI_IBS_TX_WAKING:
505 		/* No WAKE_ACK, retransmit WAKE */
506 		retransmit = true;
507 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
508 			BT_ERR("Failed to acknowledge device wake up");
509 			break;
510 		}
511 		qca->ibs_sent_wakes++;
512 		retrans_delay = msecs_to_jiffies(qca->wake_retrans);
513 		mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
514 		break;
515 
516 	case HCI_IBS_TX_ASLEEP:
517 	case HCI_IBS_TX_AWAKE:
518 	default:
519 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
520 		break;
521 	}
522 
523 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
524 
525 	if (retransmit)
526 		hci_uart_tx_wakeup(hu);
527 }
528 
529 
530 static void qca_controller_memdump_timeout(struct work_struct *work)
531 {
532 	struct qca_data *qca = container_of(work, struct qca_data,
533 					ctrl_memdump_timeout.work);
534 	struct hci_uart *hu = qca->hu;
535 
536 	mutex_lock(&qca->hci_memdump_lock);
537 	if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
538 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
539 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
540 			/* Inject hw error event to reset the device
541 			 * and driver.
542 			 */
543 			hci_reset_dev(hu->hdev);
544 		}
545 	}
546 
547 	mutex_unlock(&qca->hci_memdump_lock);
548 }
549 
550 
551 /* Initialize protocol */
552 static int qca_open(struct hci_uart *hu)
553 {
554 	struct qca_serdev *qcadev;
555 	struct qca_data *qca;
556 
557 	BT_DBG("hu %p qca_open", hu);
558 
559 	if (!hci_uart_has_flow_control(hu))
560 		return -EOPNOTSUPP;
561 
562 	qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
563 	if (!qca)
564 		return -ENOMEM;
565 
566 	skb_queue_head_init(&qca->txq);
567 	skb_queue_head_init(&qca->tx_wait_q);
568 	skb_queue_head_init(&qca->rx_memdump_q);
569 	spin_lock_init(&qca->hci_ibs_lock);
570 	mutex_init(&qca->hci_memdump_lock);
571 	qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
572 	if (!qca->workqueue) {
573 		BT_ERR("QCA Workqueue not initialized properly");
574 		kfree(qca);
575 		return -ENOMEM;
576 	}
577 
578 	INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
579 	INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
580 	INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
581 	INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
582 	INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
583 	INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
584 			  qca_controller_memdump_timeout);
585 	init_waitqueue_head(&qca->suspend_wait_q);
586 
587 	qca->hu = hu;
588 	init_completion(&qca->drop_ev_comp);
589 
590 	/* Assume we start with both sides asleep -- extra wakes OK */
591 	qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
592 	qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
593 
594 	qca->vote_last_jif = jiffies;
595 
596 	hu->priv = qca;
597 
598 	if (hu->serdev) {
599 		qcadev = serdev_device_get_drvdata(hu->serdev);
600 
601 		if (qca_is_wcn399x(qcadev->btsoc_type))
602 			hu->init_speed = qcadev->init_speed;
603 
604 		if (qcadev->oper_speed)
605 			hu->oper_speed = qcadev->oper_speed;
606 	}
607 
608 	timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
609 	qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
610 
611 	timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
612 	qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
613 
614 	BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
615 	       qca->tx_idle_delay, qca->wake_retrans);
616 
617 	return 0;
618 }
619 
620 static void qca_debugfs_init(struct hci_dev *hdev)
621 {
622 	struct hci_uart *hu = hci_get_drvdata(hdev);
623 	struct qca_data *qca = hu->priv;
624 	struct dentry *ibs_dir;
625 	umode_t mode;
626 
627 	if (!hdev->debugfs)
628 		return;
629 
630 	ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
631 
632 	/* read only */
633 	mode = S_IRUGO;
634 	debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
635 	debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
636 	debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
637 			   &qca->ibs_sent_slps);
638 	debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
639 			   &qca->ibs_sent_wakes);
640 	debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
641 			   &qca->ibs_sent_wacks);
642 	debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
643 			   &qca->ibs_recv_slps);
644 	debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
645 			   &qca->ibs_recv_wakes);
646 	debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
647 			   &qca->ibs_recv_wacks);
648 	debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
649 	debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
650 	debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
651 	debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
652 	debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
653 	debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
654 	debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
655 	debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
656 	debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
657 	debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
658 
659 	/* read/write */
660 	mode = S_IRUGO | S_IWUSR;
661 	debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
662 	debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
663 			   &qca->tx_idle_delay);
664 }
665 
666 /* Flush protocol data */
667 static int qca_flush(struct hci_uart *hu)
668 {
669 	struct qca_data *qca = hu->priv;
670 
671 	BT_DBG("hu %p qca flush", hu);
672 
673 	skb_queue_purge(&qca->tx_wait_q);
674 	skb_queue_purge(&qca->txq);
675 
676 	return 0;
677 }
678 
679 /* Close protocol */
680 static int qca_close(struct hci_uart *hu)
681 {
682 	struct qca_data *qca = hu->priv;
683 
684 	BT_DBG("hu %p qca close", hu);
685 
686 	serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
687 
688 	skb_queue_purge(&qca->tx_wait_q);
689 	skb_queue_purge(&qca->txq);
690 	skb_queue_purge(&qca->rx_memdump_q);
691 	del_timer(&qca->tx_idle_timer);
692 	del_timer(&qca->wake_retrans_timer);
693 	destroy_workqueue(qca->workqueue);
694 	qca->hu = NULL;
695 
696 	qca_power_shutdown(hu);
697 
698 	kfree_skb(qca->rx_skb);
699 
700 	hu->priv = NULL;
701 
702 	kfree(qca);
703 
704 	return 0;
705 }
706 
707 /* Called upon a wake-up-indication from the device.
708  */
709 static void device_want_to_wakeup(struct hci_uart *hu)
710 {
711 	unsigned long flags;
712 	struct qca_data *qca = hu->priv;
713 
714 	BT_DBG("hu %p want to wake up", hu);
715 
716 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
717 
718 	qca->ibs_recv_wakes++;
719 
720 	/* Don't wake the rx up when suspending. */
721 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
722 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
723 		return;
724 	}
725 
726 	switch (qca->rx_ibs_state) {
727 	case HCI_IBS_RX_ASLEEP:
728 		/* Make sure clock is on - we may have turned clock off since
729 		 * receiving the wake up indicator awake rx clock.
730 		 */
731 		queue_work(qca->workqueue, &qca->ws_awake_rx);
732 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
733 		return;
734 
735 	case HCI_IBS_RX_AWAKE:
736 		/* Always acknowledge device wake up,
737 		 * sending IBS message doesn't count as TX ON.
738 		 */
739 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
740 			BT_ERR("Failed to acknowledge device wake up");
741 			break;
742 		}
743 		qca->ibs_sent_wacks++;
744 		break;
745 
746 	default:
747 		/* Any other state is illegal */
748 		BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
749 		       qca->rx_ibs_state);
750 		break;
751 	}
752 
753 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
754 
755 	/* Actually send the packets */
756 	hci_uart_tx_wakeup(hu);
757 }
758 
759 /* Called upon a sleep-indication from the device.
760  */
761 static void device_want_to_sleep(struct hci_uart *hu)
762 {
763 	unsigned long flags;
764 	struct qca_data *qca = hu->priv;
765 
766 	BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
767 
768 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
769 
770 	qca->ibs_recv_slps++;
771 
772 	switch (qca->rx_ibs_state) {
773 	case HCI_IBS_RX_AWAKE:
774 		/* Update state */
775 		qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
776 		/* Vote off rx clock under workqueue */
777 		queue_work(qca->workqueue, &qca->ws_rx_vote_off);
778 		break;
779 
780 	case HCI_IBS_RX_ASLEEP:
781 		break;
782 
783 	default:
784 		/* Any other state is illegal */
785 		BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
786 		       qca->rx_ibs_state);
787 		break;
788 	}
789 
790 	wake_up_interruptible(&qca->suspend_wait_q);
791 
792 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
793 }
794 
795 /* Called upon wake-up-acknowledgement from the device
796  */
797 static void device_woke_up(struct hci_uart *hu)
798 {
799 	unsigned long flags, idle_delay;
800 	struct qca_data *qca = hu->priv;
801 	struct sk_buff *skb = NULL;
802 
803 	BT_DBG("hu %p woke up", hu);
804 
805 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
806 
807 	qca->ibs_recv_wacks++;
808 
809 	/* Don't react to the wake-up-acknowledgment when suspending. */
810 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
811 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
812 		return;
813 	}
814 
815 	switch (qca->tx_ibs_state) {
816 	case HCI_IBS_TX_AWAKE:
817 		/* Expect one if we send 2 WAKEs */
818 		BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
819 		       qca->tx_ibs_state);
820 		break;
821 
822 	case HCI_IBS_TX_WAKING:
823 		/* Send pending packets */
824 		while ((skb = skb_dequeue(&qca->tx_wait_q)))
825 			skb_queue_tail(&qca->txq, skb);
826 
827 		/* Switch timers and change state to HCI_IBS_TX_AWAKE */
828 		del_timer(&qca->wake_retrans_timer);
829 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
830 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
831 		qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
832 		break;
833 
834 	case HCI_IBS_TX_ASLEEP:
835 	default:
836 		BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
837 		       qca->tx_ibs_state);
838 		break;
839 	}
840 
841 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
842 
843 	/* Actually send the packets */
844 	hci_uart_tx_wakeup(hu);
845 }
846 
847 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
848  * two simultaneous tasklets.
849  */
850 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
851 {
852 	unsigned long flags = 0, idle_delay;
853 	struct qca_data *qca = hu->priv;
854 
855 	BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
856 	       qca->tx_ibs_state);
857 
858 	if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
859 		/* As SSR is in progress, ignore the packets */
860 		bt_dev_dbg(hu->hdev, "SSR is in progress");
861 		kfree_skb(skb);
862 		return 0;
863 	}
864 
865 	/* Prepend skb with frame type */
866 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
867 
868 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
869 
870 	/* Don't go to sleep in middle of patch download or
871 	 * Out-Of-Band(GPIOs control) sleep is selected.
872 	 * Don't wake the device up when suspending.
873 	 */
874 	if (!test_bit(QCA_IBS_ENABLED, &qca->flags) ||
875 	    test_bit(QCA_SUSPENDING, &qca->flags)) {
876 		skb_queue_tail(&qca->txq, skb);
877 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
878 		return 0;
879 	}
880 
881 	/* Act according to current state */
882 	switch (qca->tx_ibs_state) {
883 	case HCI_IBS_TX_AWAKE:
884 		BT_DBG("Device awake, sending normally");
885 		skb_queue_tail(&qca->txq, skb);
886 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
887 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
888 		break;
889 
890 	case HCI_IBS_TX_ASLEEP:
891 		BT_DBG("Device asleep, waking up and queueing packet");
892 		/* Save packet for later */
893 		skb_queue_tail(&qca->tx_wait_q, skb);
894 
895 		qca->tx_ibs_state = HCI_IBS_TX_WAKING;
896 		/* Schedule a work queue to wake up device */
897 		queue_work(qca->workqueue, &qca->ws_awake_device);
898 		break;
899 
900 	case HCI_IBS_TX_WAKING:
901 		BT_DBG("Device waking up, queueing packet");
902 		/* Transient state; just keep packet for later */
903 		skb_queue_tail(&qca->tx_wait_q, skb);
904 		break;
905 
906 	default:
907 		BT_ERR("Illegal tx state: %d (losing packet)",
908 		       qca->tx_ibs_state);
909 		kfree_skb(skb);
910 		break;
911 	}
912 
913 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
914 
915 	return 0;
916 }
917 
918 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
919 {
920 	struct hci_uart *hu = hci_get_drvdata(hdev);
921 
922 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
923 
924 	device_want_to_sleep(hu);
925 
926 	kfree_skb(skb);
927 	return 0;
928 }
929 
930 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
931 {
932 	struct hci_uart *hu = hci_get_drvdata(hdev);
933 
934 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
935 
936 	device_want_to_wakeup(hu);
937 
938 	kfree_skb(skb);
939 	return 0;
940 }
941 
942 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
943 {
944 	struct hci_uart *hu = hci_get_drvdata(hdev);
945 
946 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
947 
948 	device_woke_up(hu);
949 
950 	kfree_skb(skb);
951 	return 0;
952 }
953 
954 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
955 {
956 	/* We receive debug logs from chip as an ACL packets.
957 	 * Instead of sending the data to ACL to decode the
958 	 * received data, we are pushing them to the above layers
959 	 * as a diagnostic packet.
960 	 */
961 	if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
962 		return hci_recv_diag(hdev, skb);
963 
964 	return hci_recv_frame(hdev, skb);
965 }
966 
967 static void qca_controller_memdump(struct work_struct *work)
968 {
969 	struct qca_data *qca = container_of(work, struct qca_data,
970 					    ctrl_memdump_evt);
971 	struct hci_uart *hu = qca->hu;
972 	struct sk_buff *skb;
973 	struct qca_memdump_event_hdr *cmd_hdr;
974 	struct qca_memdump_data *qca_memdump = qca->qca_memdump;
975 	struct qca_dump_size *dump;
976 	char *memdump_buf;
977 	char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 };
978 	u16 seq_no;
979 	u32 dump_size;
980 	u32 rx_size;
981 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
982 
983 	while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
984 
985 		mutex_lock(&qca->hci_memdump_lock);
986 		/* Skip processing the received packets if timeout detected
987 		 * or memdump collection completed.
988 		 */
989 		if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
990 		    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
991 			mutex_unlock(&qca->hci_memdump_lock);
992 			return;
993 		}
994 
995 		if (!qca_memdump) {
996 			qca_memdump = kzalloc(sizeof(struct qca_memdump_data),
997 					      GFP_ATOMIC);
998 			if (!qca_memdump) {
999 				mutex_unlock(&qca->hci_memdump_lock);
1000 				return;
1001 			}
1002 
1003 			qca->qca_memdump = qca_memdump;
1004 		}
1005 
1006 		qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1007 		cmd_hdr = (void *) skb->data;
1008 		seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1009 		skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1010 
1011 		if (!seq_no) {
1012 
1013 			/* This is the first frame of memdump packet from
1014 			 * the controller, Disable IBS to recevie dump
1015 			 * with out any interruption, ideally time required for
1016 			 * the controller to send the dump is 8 seconds. let us
1017 			 * start timer to handle this asynchronous activity.
1018 			 */
1019 			clear_bit(QCA_IBS_ENABLED, &qca->flags);
1020 			set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1021 			dump = (void *) skb->data;
1022 			dump_size = __le32_to_cpu(dump->dump_size);
1023 			if (!(dump_size)) {
1024 				bt_dev_err(hu->hdev, "Rx invalid memdump size");
1025 				kfree_skb(skb);
1026 				mutex_unlock(&qca->hci_memdump_lock);
1027 				return;
1028 			}
1029 
1030 			bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1031 				    dump_size);
1032 			queue_delayed_work(qca->workqueue,
1033 					   &qca->ctrl_memdump_timeout,
1034 					   msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)
1035 					  );
1036 
1037 			skb_pull(skb, sizeof(dump_size));
1038 			memdump_buf = vmalloc(dump_size);
1039 			qca_memdump->ram_dump_size = dump_size;
1040 			qca_memdump->memdump_buf_head = memdump_buf;
1041 			qca_memdump->memdump_buf_tail = memdump_buf;
1042 		}
1043 
1044 		memdump_buf = qca_memdump->memdump_buf_tail;
1045 
1046 		/* If sequence no 0 is missed then there is no point in
1047 		 * accepting the other sequences.
1048 		 */
1049 		if (!memdump_buf) {
1050 			bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1051 			kfree(qca_memdump);
1052 			kfree_skb(skb);
1053 			qca->qca_memdump = NULL;
1054 			mutex_unlock(&qca->hci_memdump_lock);
1055 			return;
1056 		}
1057 
1058 		/* There could be chance of missing some packets from
1059 		 * the controller. In such cases let us store the dummy
1060 		 * packets in the buffer.
1061 		 */
1062 		/* For QCA6390, controller does not lost packets but
1063 		 * sequence number field of packat sometimes has error
1064 		 * bits, so skip this checking for missing packet.
1065 		 */
1066 		while ((seq_no > qca_memdump->current_seq_no + 1) &&
1067 		       (soc_type != QCA_QCA6390) &&
1068 		       seq_no != QCA_LAST_SEQUENCE_NUM) {
1069 			bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1070 				   qca_memdump->current_seq_no);
1071 			rx_size = qca_memdump->received_dump;
1072 			rx_size += QCA_DUMP_PACKET_SIZE;
1073 			if (rx_size > qca_memdump->ram_dump_size) {
1074 				bt_dev_err(hu->hdev,
1075 					   "QCA memdump received %d, no space for missed packet",
1076 					   qca_memdump->received_dump);
1077 				break;
1078 			}
1079 			memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE);
1080 			memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE;
1081 			qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1082 			qca_memdump->current_seq_no++;
1083 		}
1084 
1085 		rx_size = qca_memdump->received_dump + skb->len;
1086 		if (rx_size <= qca_memdump->ram_dump_size) {
1087 			if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1088 			    (seq_no != qca_memdump->current_seq_no))
1089 				bt_dev_err(hu->hdev,
1090 					   "QCA memdump unexpected packet %d",
1091 					   seq_no);
1092 			bt_dev_dbg(hu->hdev,
1093 				   "QCA memdump packet %d with length %d",
1094 				   seq_no, skb->len);
1095 			memcpy(memdump_buf, (unsigned char *)skb->data,
1096 			       skb->len);
1097 			memdump_buf = memdump_buf + skb->len;
1098 			qca_memdump->memdump_buf_tail = memdump_buf;
1099 			qca_memdump->current_seq_no = seq_no + 1;
1100 			qca_memdump->received_dump += skb->len;
1101 		} else {
1102 			bt_dev_err(hu->hdev,
1103 				   "QCA memdump received %d, no space for packet %d",
1104 				   qca_memdump->received_dump, seq_no);
1105 		}
1106 		qca->qca_memdump = qca_memdump;
1107 		kfree_skb(skb);
1108 		if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1109 			bt_dev_info(hu->hdev,
1110 				    "QCA memdump Done, received %d, total %d",
1111 				    qca_memdump->received_dump,
1112 				    qca_memdump->ram_dump_size);
1113 			memdump_buf = qca_memdump->memdump_buf_head;
1114 			dev_coredumpv(&hu->serdev->dev, memdump_buf,
1115 				      qca_memdump->received_dump, GFP_KERNEL);
1116 			cancel_delayed_work(&qca->ctrl_memdump_timeout);
1117 			kfree(qca->qca_memdump);
1118 			qca->qca_memdump = NULL;
1119 			qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1120 			clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1121 		}
1122 
1123 		mutex_unlock(&qca->hci_memdump_lock);
1124 	}
1125 
1126 }
1127 
1128 static int qca_controller_memdump_event(struct hci_dev *hdev,
1129 					struct sk_buff *skb)
1130 {
1131 	struct hci_uart *hu = hci_get_drvdata(hdev);
1132 	struct qca_data *qca = hu->priv;
1133 
1134 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1135 	skb_queue_tail(&qca->rx_memdump_q, skb);
1136 	queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1137 
1138 	return 0;
1139 }
1140 
1141 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1142 {
1143 	struct hci_uart *hu = hci_get_drvdata(hdev);
1144 	struct qca_data *qca = hu->priv;
1145 
1146 	if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1147 		struct hci_event_hdr *hdr = (void *)skb->data;
1148 
1149 		/* For the WCN3990 the vendor command for a baudrate change
1150 		 * isn't sent as synchronous HCI command, because the
1151 		 * controller sends the corresponding vendor event with the
1152 		 * new baudrate. The event is received and properly decoded
1153 		 * after changing the baudrate of the host port. It needs to
1154 		 * be dropped, otherwise it can be misinterpreted as
1155 		 * response to a later firmware download command (also a
1156 		 * vendor command).
1157 		 */
1158 
1159 		if (hdr->evt == HCI_EV_VENDOR)
1160 			complete(&qca->drop_ev_comp);
1161 
1162 		kfree_skb(skb);
1163 
1164 		return 0;
1165 	}
1166 	/* We receive chip memory dump as an event packet, With a dedicated
1167 	 * handler followed by a hardware error event. When this event is
1168 	 * received we store dump into a file before closing hci. This
1169 	 * dump will help in triaging the issues.
1170 	 */
1171 	if ((skb->data[0] == HCI_VENDOR_PKT) &&
1172 	    (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1173 		return qca_controller_memdump_event(hdev, skb);
1174 
1175 	return hci_recv_frame(hdev, skb);
1176 }
1177 
1178 #define QCA_IBS_SLEEP_IND_EVENT \
1179 	.type = HCI_IBS_SLEEP_IND, \
1180 	.hlen = 0, \
1181 	.loff = 0, \
1182 	.lsize = 0, \
1183 	.maxlen = HCI_MAX_IBS_SIZE
1184 
1185 #define QCA_IBS_WAKE_IND_EVENT \
1186 	.type = HCI_IBS_WAKE_IND, \
1187 	.hlen = 0, \
1188 	.loff = 0, \
1189 	.lsize = 0, \
1190 	.maxlen = HCI_MAX_IBS_SIZE
1191 
1192 #define QCA_IBS_WAKE_ACK_EVENT \
1193 	.type = HCI_IBS_WAKE_ACK, \
1194 	.hlen = 0, \
1195 	.loff = 0, \
1196 	.lsize = 0, \
1197 	.maxlen = HCI_MAX_IBS_SIZE
1198 
1199 static const struct h4_recv_pkt qca_recv_pkts[] = {
1200 	{ H4_RECV_ACL,             .recv = qca_recv_acl_data },
1201 	{ H4_RECV_SCO,             .recv = hci_recv_frame    },
1202 	{ H4_RECV_EVENT,           .recv = qca_recv_event    },
1203 	{ QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1204 	{ QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1205 	{ QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1206 };
1207 
1208 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1209 {
1210 	struct qca_data *qca = hu->priv;
1211 
1212 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1213 		return -EUNATCH;
1214 
1215 	qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1216 				  qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1217 	if (IS_ERR(qca->rx_skb)) {
1218 		int err = PTR_ERR(qca->rx_skb);
1219 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1220 		qca->rx_skb = NULL;
1221 		return err;
1222 	}
1223 
1224 	return count;
1225 }
1226 
1227 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1228 {
1229 	struct qca_data *qca = hu->priv;
1230 
1231 	return skb_dequeue(&qca->txq);
1232 }
1233 
1234 static uint8_t qca_get_baudrate_value(int speed)
1235 {
1236 	switch (speed) {
1237 	case 9600:
1238 		return QCA_BAUDRATE_9600;
1239 	case 19200:
1240 		return QCA_BAUDRATE_19200;
1241 	case 38400:
1242 		return QCA_BAUDRATE_38400;
1243 	case 57600:
1244 		return QCA_BAUDRATE_57600;
1245 	case 115200:
1246 		return QCA_BAUDRATE_115200;
1247 	case 230400:
1248 		return QCA_BAUDRATE_230400;
1249 	case 460800:
1250 		return QCA_BAUDRATE_460800;
1251 	case 500000:
1252 		return QCA_BAUDRATE_500000;
1253 	case 921600:
1254 		return QCA_BAUDRATE_921600;
1255 	case 1000000:
1256 		return QCA_BAUDRATE_1000000;
1257 	case 2000000:
1258 		return QCA_BAUDRATE_2000000;
1259 	case 3000000:
1260 		return QCA_BAUDRATE_3000000;
1261 	case 3200000:
1262 		return QCA_BAUDRATE_3200000;
1263 	case 3500000:
1264 		return QCA_BAUDRATE_3500000;
1265 	default:
1266 		return QCA_BAUDRATE_115200;
1267 	}
1268 }
1269 
1270 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1271 {
1272 	struct hci_uart *hu = hci_get_drvdata(hdev);
1273 	struct qca_data *qca = hu->priv;
1274 	struct sk_buff *skb;
1275 	u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1276 
1277 	if (baudrate > QCA_BAUDRATE_3200000)
1278 		return -EINVAL;
1279 
1280 	cmd[4] = baudrate;
1281 
1282 	skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1283 	if (!skb) {
1284 		bt_dev_err(hdev, "Failed to allocate baudrate packet");
1285 		return -ENOMEM;
1286 	}
1287 
1288 	/* Assign commands to change baudrate and packet type. */
1289 	skb_put_data(skb, cmd, sizeof(cmd));
1290 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1291 
1292 	skb_queue_tail(&qca->txq, skb);
1293 	hci_uart_tx_wakeup(hu);
1294 
1295 	/* Wait for the baudrate change request to be sent */
1296 
1297 	while (!skb_queue_empty(&qca->txq))
1298 		usleep_range(100, 200);
1299 
1300 	if (hu->serdev)
1301 		serdev_device_wait_until_sent(hu->serdev,
1302 		      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1303 
1304 	/* Give the controller time to process the request */
1305 	if (qca_is_wcn399x(qca_soc_type(hu)))
1306 		msleep(10);
1307 	else
1308 		msleep(300);
1309 
1310 	return 0;
1311 }
1312 
1313 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1314 {
1315 	if (hu->serdev)
1316 		serdev_device_set_baudrate(hu->serdev, speed);
1317 	else
1318 		hci_uart_set_baudrate(hu, speed);
1319 }
1320 
1321 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1322 {
1323 	int ret;
1324 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1325 	u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1326 
1327 	/* These power pulses are single byte command which are sent
1328 	 * at required baudrate to wcn3990. On wcn3990, we have an external
1329 	 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1330 	 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1331 	 * and also we use the same power inputs to turn on and off for
1332 	 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1333 	 * we send a power on pulse at 115200 bps. This algorithm will help to
1334 	 * save power. Disabling hardware flow control is mandatory while
1335 	 * sending power pulses to SoC.
1336 	 */
1337 	bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1338 
1339 	serdev_device_write_flush(hu->serdev);
1340 	hci_uart_set_flow_control(hu, true);
1341 	ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1342 	if (ret < 0) {
1343 		bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1344 		return ret;
1345 	}
1346 
1347 	serdev_device_wait_until_sent(hu->serdev, timeout);
1348 	hci_uart_set_flow_control(hu, false);
1349 
1350 	/* Give to controller time to boot/shutdown */
1351 	if (on)
1352 		msleep(100);
1353 	else
1354 		msleep(10);
1355 
1356 	return 0;
1357 }
1358 
1359 static unsigned int qca_get_speed(struct hci_uart *hu,
1360 				  enum qca_speed_type speed_type)
1361 {
1362 	unsigned int speed = 0;
1363 
1364 	if (speed_type == QCA_INIT_SPEED) {
1365 		if (hu->init_speed)
1366 			speed = hu->init_speed;
1367 		else if (hu->proto->init_speed)
1368 			speed = hu->proto->init_speed;
1369 	} else {
1370 		if (hu->oper_speed)
1371 			speed = hu->oper_speed;
1372 		else if (hu->proto->oper_speed)
1373 			speed = hu->proto->oper_speed;
1374 	}
1375 
1376 	return speed;
1377 }
1378 
1379 static int qca_check_speeds(struct hci_uart *hu)
1380 {
1381 	if (qca_is_wcn399x(qca_soc_type(hu))) {
1382 		if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1383 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1384 			return -EINVAL;
1385 	} else {
1386 		if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1387 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1388 			return -EINVAL;
1389 	}
1390 
1391 	return 0;
1392 }
1393 
1394 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1395 {
1396 	unsigned int speed, qca_baudrate;
1397 	struct qca_data *qca = hu->priv;
1398 	int ret = 0;
1399 
1400 	if (speed_type == QCA_INIT_SPEED) {
1401 		speed = qca_get_speed(hu, QCA_INIT_SPEED);
1402 		if (speed)
1403 			host_set_baudrate(hu, speed);
1404 	} else {
1405 		enum qca_btsoc_type soc_type = qca_soc_type(hu);
1406 
1407 		speed = qca_get_speed(hu, QCA_OPER_SPEED);
1408 		if (!speed)
1409 			return 0;
1410 
1411 		/* Disable flow control for wcn3990 to deassert RTS while
1412 		 * changing the baudrate of chip and host.
1413 		 */
1414 		if (qca_is_wcn399x(soc_type))
1415 			hci_uart_set_flow_control(hu, true);
1416 
1417 		if (soc_type == QCA_WCN3990) {
1418 			reinit_completion(&qca->drop_ev_comp);
1419 			set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1420 		}
1421 
1422 		qca_baudrate = qca_get_baudrate_value(speed);
1423 		bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1424 		ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1425 		if (ret)
1426 			goto error;
1427 
1428 		host_set_baudrate(hu, speed);
1429 
1430 error:
1431 		if (qca_is_wcn399x(soc_type))
1432 			hci_uart_set_flow_control(hu, false);
1433 
1434 		if (soc_type == QCA_WCN3990) {
1435 			/* Wait for the controller to send the vendor event
1436 			 * for the baudrate change command.
1437 			 */
1438 			if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1439 						 msecs_to_jiffies(100))) {
1440 				bt_dev_err(hu->hdev,
1441 					   "Failed to change controller baudrate\n");
1442 				ret = -ETIMEDOUT;
1443 			}
1444 
1445 			clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1446 		}
1447 	}
1448 
1449 	return ret;
1450 }
1451 
1452 static int qca_send_crashbuffer(struct hci_uart *hu)
1453 {
1454 	struct qca_data *qca = hu->priv;
1455 	struct sk_buff *skb;
1456 
1457 	skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1458 	if (!skb) {
1459 		bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1460 		return -ENOMEM;
1461 	}
1462 
1463 	/* We forcefully crash the controller, by sending 0xfb byte for
1464 	 * 1024 times. We also might have chance of losing data, To be
1465 	 * on safer side we send 1096 bytes to the SoC.
1466 	 */
1467 	memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1468 	       QCA_CRASHBYTE_PACKET_LEN);
1469 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1470 	bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1471 	skb_queue_tail(&qca->txq, skb);
1472 	hci_uart_tx_wakeup(hu);
1473 
1474 	return 0;
1475 }
1476 
1477 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1478 {
1479 	struct hci_uart *hu = hci_get_drvdata(hdev);
1480 	struct qca_data *qca = hu->priv;
1481 
1482 	wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1483 			    TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1484 
1485 	clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1486 }
1487 
1488 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1489 {
1490 	struct hci_uart *hu = hci_get_drvdata(hdev);
1491 	struct qca_data *qca = hu->priv;
1492 
1493 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1494 	set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1495 	bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1496 
1497 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1498 		/* If hardware error event received for other than QCA
1499 		 * soc memory dump event, then we need to crash the SOC
1500 		 * and wait here for 8 seconds to get the dump packets.
1501 		 * This will block main thread to be on hold until we
1502 		 * collect dump.
1503 		 */
1504 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1505 		qca_send_crashbuffer(hu);
1506 		qca_wait_for_dump_collection(hdev);
1507 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1508 		/* Let us wait here until memory dump collected or
1509 		 * memory dump timer expired.
1510 		 */
1511 		bt_dev_info(hdev, "waiting for dump to complete");
1512 		qca_wait_for_dump_collection(hdev);
1513 	}
1514 
1515 	mutex_lock(&qca->hci_memdump_lock);
1516 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1517 		bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1518 		if (qca->qca_memdump) {
1519 			vfree(qca->qca_memdump->memdump_buf_head);
1520 			kfree(qca->qca_memdump);
1521 			qca->qca_memdump = NULL;
1522 		}
1523 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1524 		cancel_delayed_work(&qca->ctrl_memdump_timeout);
1525 	}
1526 	mutex_unlock(&qca->hci_memdump_lock);
1527 
1528 	if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1529 	    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1530 		cancel_work_sync(&qca->ctrl_memdump_evt);
1531 		skb_queue_purge(&qca->rx_memdump_q);
1532 	}
1533 
1534 	clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1535 }
1536 
1537 static void qca_cmd_timeout(struct hci_dev *hdev)
1538 {
1539 	struct hci_uart *hu = hci_get_drvdata(hdev);
1540 	struct qca_data *qca = hu->priv;
1541 
1542 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1543 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1544 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1545 		qca_send_crashbuffer(hu);
1546 		qca_wait_for_dump_collection(hdev);
1547 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1548 		/* Let us wait here until memory dump collected or
1549 		 * memory dump timer expired.
1550 		 */
1551 		bt_dev_info(hdev, "waiting for dump to complete");
1552 		qca_wait_for_dump_collection(hdev);
1553 	}
1554 
1555 	mutex_lock(&qca->hci_memdump_lock);
1556 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1557 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1558 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1559 			/* Inject hw error event to reset the device
1560 			 * and driver.
1561 			 */
1562 			hci_reset_dev(hu->hdev);
1563 		}
1564 	}
1565 	mutex_unlock(&qca->hci_memdump_lock);
1566 }
1567 
1568 static int qca_wcn3990_init(struct hci_uart *hu)
1569 {
1570 	struct qca_serdev *qcadev;
1571 	int ret;
1572 
1573 	/* Check for vregs status, may be hci down has turned
1574 	 * off the voltage regulator.
1575 	 */
1576 	qcadev = serdev_device_get_drvdata(hu->serdev);
1577 	if (!qcadev->bt_power->vregs_on) {
1578 		serdev_device_close(hu->serdev);
1579 		ret = qca_regulator_enable(qcadev);
1580 		if (ret)
1581 			return ret;
1582 
1583 		ret = serdev_device_open(hu->serdev);
1584 		if (ret) {
1585 			bt_dev_err(hu->hdev, "failed to open port");
1586 			return ret;
1587 		}
1588 	}
1589 
1590 	/* Forcefully enable wcn3990 to enter in to boot mode. */
1591 	host_set_baudrate(hu, 2400);
1592 	ret = qca_send_power_pulse(hu, false);
1593 	if (ret)
1594 		return ret;
1595 
1596 	qca_set_speed(hu, QCA_INIT_SPEED);
1597 	ret = qca_send_power_pulse(hu, true);
1598 	if (ret)
1599 		return ret;
1600 
1601 	/* Now the device is in ready state to communicate with host.
1602 	 * To sync host with device we need to reopen port.
1603 	 * Without this, we will have RTS and CTS synchronization
1604 	 * issues.
1605 	 */
1606 	serdev_device_close(hu->serdev);
1607 	ret = serdev_device_open(hu->serdev);
1608 	if (ret) {
1609 		bt_dev_err(hu->hdev, "failed to open port");
1610 		return ret;
1611 	}
1612 
1613 	hci_uart_set_flow_control(hu, false);
1614 
1615 	return 0;
1616 }
1617 
1618 static int qca_power_on(struct hci_dev *hdev)
1619 {
1620 	struct hci_uart *hu = hci_get_drvdata(hdev);
1621 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1622 	struct qca_serdev *qcadev;
1623 	int ret = 0;
1624 
1625 	/* Non-serdev device usually is powered by external power
1626 	 * and don't need additional action in driver for power on
1627 	 */
1628 	if (!hu->serdev)
1629 		return 0;
1630 
1631 	if (qca_is_wcn399x(soc_type)) {
1632 		ret = qca_wcn3990_init(hu);
1633 	} else {
1634 		qcadev = serdev_device_get_drvdata(hu->serdev);
1635 		if (qcadev->bt_en) {
1636 			gpiod_set_value_cansleep(qcadev->bt_en, 1);
1637 			/* Controller needs time to bootup. */
1638 			msleep(150);
1639 		}
1640 	}
1641 
1642 	return ret;
1643 }
1644 
1645 static int qca_setup(struct hci_uart *hu)
1646 {
1647 	struct hci_dev *hdev = hu->hdev;
1648 	struct qca_data *qca = hu->priv;
1649 	unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1650 	unsigned int retries = 0;
1651 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1652 	const char *firmware_name = qca_get_firmware_name(hu);
1653 	int ret;
1654 	int soc_ver = 0;
1655 
1656 	ret = qca_check_speeds(hu);
1657 	if (ret)
1658 		return ret;
1659 
1660 	/* Patch downloading has to be done without IBS mode */
1661 	clear_bit(QCA_IBS_ENABLED, &qca->flags);
1662 
1663 	/* Enable controller to do both LE scan and BR/EDR inquiry
1664 	 * simultaneously.
1665 	 */
1666 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1667 
1668 	bt_dev_info(hdev, "setting up %s",
1669 		qca_is_wcn399x(soc_type) ? "wcn399x" : "ROME/QCA6390");
1670 
1671 	qca->memdump_state = QCA_MEMDUMP_IDLE;
1672 
1673 retry:
1674 	ret = qca_power_on(hdev);
1675 	if (ret)
1676 		return ret;
1677 
1678 	clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1679 
1680 	if (qca_is_wcn399x(soc_type)) {
1681 		set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1682 
1683 		ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1684 		if (ret)
1685 			return ret;
1686 	} else {
1687 		qca_set_speed(hu, QCA_INIT_SPEED);
1688 	}
1689 
1690 	/* Setup user speed if needed */
1691 	speed = qca_get_speed(hu, QCA_OPER_SPEED);
1692 	if (speed) {
1693 		ret = qca_set_speed(hu, QCA_OPER_SPEED);
1694 		if (ret)
1695 			return ret;
1696 
1697 		qca_baudrate = qca_get_baudrate_value(speed);
1698 	}
1699 
1700 	if (!qca_is_wcn399x(soc_type)) {
1701 		/* Get QCA version information */
1702 		ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1703 		if (ret)
1704 			return ret;
1705 	}
1706 
1707 	bt_dev_info(hdev, "QCA controller version 0x%08x", soc_ver);
1708 	/* Setup patch / NVM configurations */
1709 	ret = qca_uart_setup(hdev, qca_baudrate, soc_type, soc_ver,
1710 			firmware_name);
1711 	if (!ret) {
1712 		set_bit(QCA_IBS_ENABLED, &qca->flags);
1713 		qca_debugfs_init(hdev);
1714 		hu->hdev->hw_error = qca_hw_error;
1715 		hu->hdev->cmd_timeout = qca_cmd_timeout;
1716 	} else if (ret == -ENOENT) {
1717 		/* No patch/nvm-config found, run with original fw/config */
1718 		ret = 0;
1719 	} else if (ret == -EAGAIN) {
1720 		/*
1721 		 * Userspace firmware loader will return -EAGAIN in case no
1722 		 * patch/nvm-config is found, so run with original fw/config.
1723 		 */
1724 		ret = 0;
1725 	} else {
1726 		if (retries < MAX_INIT_RETRIES) {
1727 			qca_power_shutdown(hu);
1728 			if (hu->serdev) {
1729 				serdev_device_close(hu->serdev);
1730 				ret = serdev_device_open(hu->serdev);
1731 				if (ret) {
1732 					bt_dev_err(hdev, "failed to open port");
1733 					return ret;
1734 				}
1735 			}
1736 			retries++;
1737 			goto retry;
1738 		}
1739 	}
1740 
1741 	/* Setup bdaddr */
1742 	if (soc_type == QCA_ROME)
1743 		hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1744 	else
1745 		hu->hdev->set_bdaddr = qca_set_bdaddr;
1746 
1747 	return ret;
1748 }
1749 
1750 static const struct hci_uart_proto qca_proto = {
1751 	.id		= HCI_UART_QCA,
1752 	.name		= "QCA",
1753 	.manufacturer	= 29,
1754 	.init_speed	= 115200,
1755 	.oper_speed	= 3000000,
1756 	.open		= qca_open,
1757 	.close		= qca_close,
1758 	.flush		= qca_flush,
1759 	.setup		= qca_setup,
1760 	.recv		= qca_recv,
1761 	.enqueue	= qca_enqueue,
1762 	.dequeue	= qca_dequeue,
1763 };
1764 
1765 static const struct qca_device_data qca_soc_data_wcn3990 = {
1766 	.soc_type = QCA_WCN3990,
1767 	.vregs = (struct qca_vreg []) {
1768 		{ "vddio", 15000  },
1769 		{ "vddxo", 80000  },
1770 		{ "vddrf", 300000 },
1771 		{ "vddch0", 450000 },
1772 	},
1773 	.num_vregs = 4,
1774 };
1775 
1776 static const struct qca_device_data qca_soc_data_wcn3991 = {
1777 	.soc_type = QCA_WCN3991,
1778 	.vregs = (struct qca_vreg []) {
1779 		{ "vddio", 15000  },
1780 		{ "vddxo", 80000  },
1781 		{ "vddrf", 300000 },
1782 		{ "vddch0", 450000 },
1783 	},
1784 	.num_vregs = 4,
1785 	.capabilities = QCA_CAP_WIDEBAND_SPEECH,
1786 };
1787 
1788 static const struct qca_device_data qca_soc_data_wcn3998 = {
1789 	.soc_type = QCA_WCN3998,
1790 	.vregs = (struct qca_vreg []) {
1791 		{ "vddio", 10000  },
1792 		{ "vddxo", 80000  },
1793 		{ "vddrf", 300000 },
1794 		{ "vddch0", 450000 },
1795 	},
1796 	.num_vregs = 4,
1797 };
1798 
1799 static const struct qca_device_data qca_soc_data_qca6390 = {
1800 	.soc_type = QCA_QCA6390,
1801 	.num_vregs = 0,
1802 };
1803 
1804 static void qca_power_shutdown(struct hci_uart *hu)
1805 {
1806 	struct qca_serdev *qcadev;
1807 	struct qca_data *qca = hu->priv;
1808 	unsigned long flags;
1809 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1810 
1811 	qcadev = serdev_device_get_drvdata(hu->serdev);
1812 
1813 	/* From this point we go into power off state. But serial port is
1814 	 * still open, stop queueing the IBS data and flush all the buffered
1815 	 * data in skb's.
1816 	 */
1817 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
1818 	clear_bit(QCA_IBS_ENABLED, &qca->flags);
1819 	qca_flush(hu);
1820 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
1821 
1822 	/* Non-serdev device usually is powered by external power
1823 	 * and don't need additional action in driver for power down
1824 	 */
1825 	if (!hu->serdev)
1826 		return;
1827 
1828 	if (qca_is_wcn399x(soc_type)) {
1829 		host_set_baudrate(hu, 2400);
1830 		qca_send_power_pulse(hu, false);
1831 		qca_regulator_disable(qcadev);
1832 	} else if (qcadev->bt_en) {
1833 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
1834 	}
1835 }
1836 
1837 static int qca_power_off(struct hci_dev *hdev)
1838 {
1839 	struct hci_uart *hu = hci_get_drvdata(hdev);
1840 	struct qca_data *qca = hu->priv;
1841 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1842 
1843 	hu->hdev->hw_error = NULL;
1844 	hu->hdev->cmd_timeout = NULL;
1845 
1846 	/* Stop sending shutdown command if soc crashes. */
1847 	if (soc_type != QCA_ROME
1848 		&& qca->memdump_state == QCA_MEMDUMP_IDLE) {
1849 		qca_send_pre_shutdown_cmd(hdev);
1850 		usleep_range(8000, 10000);
1851 	}
1852 
1853 	qca_power_shutdown(hu);
1854 	return 0;
1855 }
1856 
1857 static int qca_regulator_enable(struct qca_serdev *qcadev)
1858 {
1859 	struct qca_power *power = qcadev->bt_power;
1860 	int ret;
1861 
1862 	/* Already enabled */
1863 	if (power->vregs_on)
1864 		return 0;
1865 
1866 	BT_DBG("enabling %d regulators)", power->num_vregs);
1867 
1868 	ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
1869 	if (ret)
1870 		return ret;
1871 
1872 	power->vregs_on = true;
1873 
1874 	ret = clk_prepare_enable(qcadev->susclk);
1875 	if (ret)
1876 		qca_regulator_disable(qcadev);
1877 
1878 	return ret;
1879 }
1880 
1881 static void qca_regulator_disable(struct qca_serdev *qcadev)
1882 {
1883 	struct qca_power *power;
1884 
1885 	if (!qcadev)
1886 		return;
1887 
1888 	power = qcadev->bt_power;
1889 
1890 	/* Already disabled? */
1891 	if (!power->vregs_on)
1892 		return;
1893 
1894 	regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
1895 	power->vregs_on = false;
1896 
1897 	clk_disable_unprepare(qcadev->susclk);
1898 }
1899 
1900 static int qca_init_regulators(struct qca_power *qca,
1901 				const struct qca_vreg *vregs, size_t num_vregs)
1902 {
1903 	struct regulator_bulk_data *bulk;
1904 	int ret;
1905 	int i;
1906 
1907 	bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
1908 	if (!bulk)
1909 		return -ENOMEM;
1910 
1911 	for (i = 0; i < num_vregs; i++)
1912 		bulk[i].supply = vregs[i].name;
1913 
1914 	ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
1915 	if (ret < 0)
1916 		return ret;
1917 
1918 	for (i = 0; i < num_vregs; i++) {
1919 		ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
1920 		if (ret)
1921 			return ret;
1922 	}
1923 
1924 	qca->vreg_bulk = bulk;
1925 	qca->num_vregs = num_vregs;
1926 
1927 	return 0;
1928 }
1929 
1930 static int qca_serdev_probe(struct serdev_device *serdev)
1931 {
1932 	struct qca_serdev *qcadev;
1933 	struct hci_dev *hdev;
1934 	const struct qca_device_data *data;
1935 	int err;
1936 	bool power_ctrl_enabled = true;
1937 
1938 	qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
1939 	if (!qcadev)
1940 		return -ENOMEM;
1941 
1942 	qcadev->serdev_hu.serdev = serdev;
1943 	data = device_get_match_data(&serdev->dev);
1944 	serdev_device_set_drvdata(serdev, qcadev);
1945 	device_property_read_string(&serdev->dev, "firmware-name",
1946 					 &qcadev->firmware_name);
1947 	device_property_read_u32(&serdev->dev, "max-speed",
1948 				 &qcadev->oper_speed);
1949 	if (!qcadev->oper_speed)
1950 		BT_DBG("UART will pick default operating speed");
1951 
1952 	if (data && qca_is_wcn399x(data->soc_type)) {
1953 		qcadev->btsoc_type = data->soc_type;
1954 		qcadev->bt_power = devm_kzalloc(&serdev->dev,
1955 						sizeof(struct qca_power),
1956 						GFP_KERNEL);
1957 		if (!qcadev->bt_power)
1958 			return -ENOMEM;
1959 
1960 		qcadev->bt_power->dev = &serdev->dev;
1961 		err = qca_init_regulators(qcadev->bt_power, data->vregs,
1962 					  data->num_vregs);
1963 		if (err) {
1964 			BT_ERR("Failed to init regulators:%d", err);
1965 			return err;
1966 		}
1967 
1968 		qcadev->bt_power->vregs_on = false;
1969 
1970 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
1971 		if (IS_ERR(qcadev->susclk)) {
1972 			dev_err(&serdev->dev, "failed to acquire clk\n");
1973 			return PTR_ERR(qcadev->susclk);
1974 		}
1975 
1976 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
1977 		if (err) {
1978 			BT_ERR("wcn3990 serdev registration failed");
1979 			return err;
1980 		}
1981 	} else {
1982 		if (data)
1983 			qcadev->btsoc_type = data->soc_type;
1984 		else
1985 			qcadev->btsoc_type = QCA_ROME;
1986 
1987 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
1988 					       GPIOD_OUT_LOW);
1989 		if (!qcadev->bt_en) {
1990 			dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
1991 			power_ctrl_enabled = false;
1992 		}
1993 
1994 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
1995 		if (IS_ERR(qcadev->susclk)) {
1996 			dev_warn(&serdev->dev, "failed to acquire clk\n");
1997 			return PTR_ERR(qcadev->susclk);
1998 		}
1999 		err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
2000 		if (err)
2001 			return err;
2002 
2003 		err = clk_prepare_enable(qcadev->susclk);
2004 		if (err)
2005 			return err;
2006 
2007 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2008 		if (err) {
2009 			BT_ERR("Rome serdev registration failed");
2010 			if (qcadev->susclk)
2011 				clk_disable_unprepare(qcadev->susclk);
2012 			return err;
2013 		}
2014 	}
2015 
2016 	hdev = qcadev->serdev_hu.hdev;
2017 
2018 	if (power_ctrl_enabled) {
2019 		set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2020 		hdev->shutdown = qca_power_off;
2021 	}
2022 
2023 	/* Wideband speech support must be set per driver since it can't be
2024 	 * queried via hci.
2025 	 */
2026 	if (data && (data->capabilities & QCA_CAP_WIDEBAND_SPEECH))
2027 		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
2028 
2029 	return 0;
2030 }
2031 
2032 static void qca_serdev_remove(struct serdev_device *serdev)
2033 {
2034 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2035 
2036 	if (qca_is_wcn399x(qcadev->btsoc_type))
2037 		qca_power_shutdown(&qcadev->serdev_hu);
2038 	else if (qcadev->susclk)
2039 		clk_disable_unprepare(qcadev->susclk);
2040 
2041 	hci_uart_unregister_device(&qcadev->serdev_hu);
2042 }
2043 
2044 static void qca_serdev_shutdown(struct device *dev)
2045 {
2046 	int ret;
2047 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2048 	struct serdev_device *serdev = to_serdev_device(dev);
2049 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2050 	const u8 ibs_wake_cmd[] = { 0xFD };
2051 	const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2052 
2053 	if (qcadev->btsoc_type == QCA_QCA6390) {
2054 		serdev_device_write_flush(serdev);
2055 		ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2056 					      sizeof(ibs_wake_cmd));
2057 		if (ret < 0) {
2058 			BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2059 			return;
2060 		}
2061 		serdev_device_wait_until_sent(serdev, timeout);
2062 		usleep_range(8000, 10000);
2063 
2064 		serdev_device_write_flush(serdev);
2065 		ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2066 					      sizeof(edl_reset_soc_cmd));
2067 		if (ret < 0) {
2068 			BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2069 			return;
2070 		}
2071 		serdev_device_wait_until_sent(serdev, timeout);
2072 		usleep_range(8000, 10000);
2073 	}
2074 }
2075 
2076 static int __maybe_unused qca_suspend(struct device *dev)
2077 {
2078 	struct serdev_device *serdev = to_serdev_device(dev);
2079 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2080 	struct hci_uart *hu = &qcadev->serdev_hu;
2081 	struct qca_data *qca = hu->priv;
2082 	unsigned long flags;
2083 	bool tx_pending = false;
2084 	int ret = 0;
2085 	u8 cmd;
2086 
2087 	set_bit(QCA_SUSPENDING, &qca->flags);
2088 
2089 	/* Device is downloading patch or doesn't support in-band sleep. */
2090 	if (!test_bit(QCA_IBS_ENABLED, &qca->flags))
2091 		return 0;
2092 
2093 	cancel_work_sync(&qca->ws_awake_device);
2094 	cancel_work_sync(&qca->ws_awake_rx);
2095 
2096 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2097 				 flags, SINGLE_DEPTH_NESTING);
2098 
2099 	switch (qca->tx_ibs_state) {
2100 	case HCI_IBS_TX_WAKING:
2101 		del_timer(&qca->wake_retrans_timer);
2102 		fallthrough;
2103 	case HCI_IBS_TX_AWAKE:
2104 		del_timer(&qca->tx_idle_timer);
2105 
2106 		serdev_device_write_flush(hu->serdev);
2107 		cmd = HCI_IBS_SLEEP_IND;
2108 		ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2109 
2110 		if (ret < 0) {
2111 			BT_ERR("Failed to send SLEEP to device");
2112 			break;
2113 		}
2114 
2115 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2116 		qca->ibs_sent_slps++;
2117 		tx_pending = true;
2118 		break;
2119 
2120 	case HCI_IBS_TX_ASLEEP:
2121 		break;
2122 
2123 	default:
2124 		BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2125 		ret = -EINVAL;
2126 		break;
2127 	}
2128 
2129 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2130 
2131 	if (ret < 0)
2132 		goto error;
2133 
2134 	if (tx_pending) {
2135 		serdev_device_wait_until_sent(hu->serdev,
2136 					      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2137 		serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2138 	}
2139 
2140 	/* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2141 	 * to sleep, so that the packet does not wake the system later.
2142 	 */
2143 	ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2144 			qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2145 			msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2146 	if (ret == 0) {
2147 		ret = -ETIMEDOUT;
2148 		goto error;
2149 	}
2150 
2151 	return 0;
2152 
2153 error:
2154 	clear_bit(QCA_SUSPENDING, &qca->flags);
2155 
2156 	return ret;
2157 }
2158 
2159 static int __maybe_unused qca_resume(struct device *dev)
2160 {
2161 	struct serdev_device *serdev = to_serdev_device(dev);
2162 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2163 	struct hci_uart *hu = &qcadev->serdev_hu;
2164 	struct qca_data *qca = hu->priv;
2165 
2166 	clear_bit(QCA_SUSPENDING, &qca->flags);
2167 
2168 	return 0;
2169 }
2170 
2171 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2172 
2173 #ifdef CONFIG_OF
2174 static const struct of_device_id qca_bluetooth_of_match[] = {
2175 	{ .compatible = "qcom,qca6174-bt" },
2176 	{ .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2177 	{ .compatible = "qcom,qca9377-bt" },
2178 	{ .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2179 	{ .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2180 	{ .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2181 	{ /* sentinel */ }
2182 };
2183 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2184 #endif
2185 
2186 #ifdef CONFIG_ACPI
2187 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2188 	{ "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2189 	{ "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2190 	{ "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2191 	{ "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2192 	{ },
2193 };
2194 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2195 #endif
2196 
2197 
2198 static struct serdev_device_driver qca_serdev_driver = {
2199 	.probe = qca_serdev_probe,
2200 	.remove = qca_serdev_remove,
2201 	.driver = {
2202 		.name = "hci_uart_qca",
2203 		.of_match_table = of_match_ptr(qca_bluetooth_of_match),
2204 		.acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2205 		.shutdown = qca_serdev_shutdown,
2206 		.pm = &qca_pm_ops,
2207 	},
2208 };
2209 
2210 int __init qca_init(void)
2211 {
2212 	serdev_device_driver_register(&qca_serdev_driver);
2213 
2214 	return hci_uart_register_proto(&qca_proto);
2215 }
2216 
2217 int __exit qca_deinit(void)
2218 {
2219 	serdev_device_driver_unregister(&qca_serdev_driver);
2220 
2221 	return hci_uart_unregister_proto(&qca_proto);
2222 }
2223