1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Bluetooth Software UART Qualcomm protocol 4 * 5 * HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management 6 * protocol extension to H4. 7 * 8 * Copyright (C) 2007 Texas Instruments, Inc. 9 * Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved. 10 * 11 * Acknowledgements: 12 * This file is based on hci_ll.c, which was... 13 * Written by Ohad Ben-Cohen <ohad@bencohen.org> 14 * which was in turn based on hci_h4.c, which was written 15 * by Maxim Krasnyansky and Marcel Holtmann. 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/clk.h> 20 #include <linux/completion.h> 21 #include <linux/debugfs.h> 22 #include <linux/delay.h> 23 #include <linux/devcoredump.h> 24 #include <linux/device.h> 25 #include <linux/gpio/consumer.h> 26 #include <linux/mod_devicetable.h> 27 #include <linux/module.h> 28 #include <linux/of_device.h> 29 #include <linux/acpi.h> 30 #include <linux/platform_device.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/serdev.h> 33 #include <linux/mutex.h> 34 #include <asm/unaligned.h> 35 36 #include <net/bluetooth/bluetooth.h> 37 #include <net/bluetooth/hci_core.h> 38 39 #include "hci_uart.h" 40 #include "btqca.h" 41 42 /* HCI_IBS protocol messages */ 43 #define HCI_IBS_SLEEP_IND 0xFE 44 #define HCI_IBS_WAKE_IND 0xFD 45 #define HCI_IBS_WAKE_ACK 0xFC 46 #define HCI_MAX_IBS_SIZE 10 47 48 #define IBS_WAKE_RETRANS_TIMEOUT_MS 100 49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS 200 50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS 2000 51 #define CMD_TRANS_TIMEOUT_MS 100 52 #define MEMDUMP_TIMEOUT_MS 8000 53 #define IBS_DISABLE_SSR_TIMEOUT_MS (MEMDUMP_TIMEOUT_MS + 1000) 54 #define FW_DOWNLOAD_TIMEOUT_MS 3000 55 56 /* susclk rate */ 57 #define SUSCLK_RATE_32KHZ 32768 58 59 /* Controller debug log header */ 60 #define QCA_DEBUG_HANDLE 0x2EDC 61 62 /* max retry count when init fails */ 63 #define MAX_INIT_RETRIES 3 64 65 /* Controller dump header */ 66 #define QCA_SSR_DUMP_HANDLE 0x0108 67 #define QCA_DUMP_PACKET_SIZE 255 68 #define QCA_LAST_SEQUENCE_NUM 0xFFFF 69 #define QCA_CRASHBYTE_PACKET_LEN 1096 70 #define QCA_MEMDUMP_BYTE 0xFB 71 72 enum qca_flags { 73 QCA_IBS_DISABLED, 74 QCA_DROP_VENDOR_EVENT, 75 QCA_SUSPENDING, 76 QCA_MEMDUMP_COLLECTION, 77 QCA_HW_ERROR_EVENT, 78 QCA_SSR_TRIGGERED, 79 QCA_BT_OFF 80 }; 81 82 enum qca_capabilities { 83 QCA_CAP_WIDEBAND_SPEECH = BIT(0), 84 QCA_CAP_VALID_LE_STATES = BIT(1), 85 }; 86 87 /* HCI_IBS transmit side sleep protocol states */ 88 enum tx_ibs_states { 89 HCI_IBS_TX_ASLEEP, 90 HCI_IBS_TX_WAKING, 91 HCI_IBS_TX_AWAKE, 92 }; 93 94 /* HCI_IBS receive side sleep protocol states */ 95 enum rx_states { 96 HCI_IBS_RX_ASLEEP, 97 HCI_IBS_RX_AWAKE, 98 }; 99 100 /* HCI_IBS transmit and receive side clock state vote */ 101 enum hci_ibs_clock_state_vote { 102 HCI_IBS_VOTE_STATS_UPDATE, 103 HCI_IBS_TX_VOTE_CLOCK_ON, 104 HCI_IBS_TX_VOTE_CLOCK_OFF, 105 HCI_IBS_RX_VOTE_CLOCK_ON, 106 HCI_IBS_RX_VOTE_CLOCK_OFF, 107 }; 108 109 /* Controller memory dump states */ 110 enum qca_memdump_states { 111 QCA_MEMDUMP_IDLE, 112 QCA_MEMDUMP_COLLECTING, 113 QCA_MEMDUMP_COLLECTED, 114 QCA_MEMDUMP_TIMEOUT, 115 }; 116 117 struct qca_memdump_data { 118 char *memdump_buf_head; 119 char *memdump_buf_tail; 120 u32 current_seq_no; 121 u32 received_dump; 122 u32 ram_dump_size; 123 }; 124 125 struct qca_memdump_event_hdr { 126 __u8 evt; 127 __u8 plen; 128 __u16 opcode; 129 __u16 seq_no; 130 __u8 reserved; 131 } __packed; 132 133 134 struct qca_dump_size { 135 u32 dump_size; 136 } __packed; 137 138 struct qca_data { 139 struct hci_uart *hu; 140 struct sk_buff *rx_skb; 141 struct sk_buff_head txq; 142 struct sk_buff_head tx_wait_q; /* HCI_IBS wait queue */ 143 struct sk_buff_head rx_memdump_q; /* Memdump wait queue */ 144 spinlock_t hci_ibs_lock; /* HCI_IBS state lock */ 145 u8 tx_ibs_state; /* HCI_IBS transmit side power state*/ 146 u8 rx_ibs_state; /* HCI_IBS receive side power state */ 147 bool tx_vote; /* Clock must be on for TX */ 148 bool rx_vote; /* Clock must be on for RX */ 149 struct timer_list tx_idle_timer; 150 u32 tx_idle_delay; 151 struct timer_list wake_retrans_timer; 152 u32 wake_retrans; 153 struct workqueue_struct *workqueue; 154 struct work_struct ws_awake_rx; 155 struct work_struct ws_awake_device; 156 struct work_struct ws_rx_vote_off; 157 struct work_struct ws_tx_vote_off; 158 struct work_struct ctrl_memdump_evt; 159 struct delayed_work ctrl_memdump_timeout; 160 struct qca_memdump_data *qca_memdump; 161 unsigned long flags; 162 struct completion drop_ev_comp; 163 wait_queue_head_t suspend_wait_q; 164 enum qca_memdump_states memdump_state; 165 struct mutex hci_memdump_lock; 166 167 /* For debugging purpose */ 168 u64 ibs_sent_wacks; 169 u64 ibs_sent_slps; 170 u64 ibs_sent_wakes; 171 u64 ibs_recv_wacks; 172 u64 ibs_recv_slps; 173 u64 ibs_recv_wakes; 174 u64 vote_last_jif; 175 u32 vote_on_ms; 176 u32 vote_off_ms; 177 u64 tx_votes_on; 178 u64 rx_votes_on; 179 u64 tx_votes_off; 180 u64 rx_votes_off; 181 u64 votes_on; 182 u64 votes_off; 183 }; 184 185 enum qca_speed_type { 186 QCA_INIT_SPEED = 1, 187 QCA_OPER_SPEED 188 }; 189 190 /* 191 * Voltage regulator information required for configuring the 192 * QCA Bluetooth chipset 193 */ 194 struct qca_vreg { 195 const char *name; 196 unsigned int load_uA; 197 }; 198 199 struct qca_device_data { 200 enum qca_btsoc_type soc_type; 201 struct qca_vreg *vregs; 202 size_t num_vregs; 203 uint32_t capabilities; 204 }; 205 206 /* 207 * Platform data for the QCA Bluetooth power driver. 208 */ 209 struct qca_power { 210 struct device *dev; 211 struct regulator_bulk_data *vreg_bulk; 212 int num_vregs; 213 bool vregs_on; 214 }; 215 216 struct qca_serdev { 217 struct hci_uart serdev_hu; 218 struct gpio_desc *bt_en; 219 struct clk *susclk; 220 enum qca_btsoc_type btsoc_type; 221 struct qca_power *bt_power; 222 u32 init_speed; 223 u32 oper_speed; 224 const char *firmware_name; 225 }; 226 227 static int qca_regulator_enable(struct qca_serdev *qcadev); 228 static void qca_regulator_disable(struct qca_serdev *qcadev); 229 static void qca_power_shutdown(struct hci_uart *hu); 230 static int qca_power_off(struct hci_dev *hdev); 231 static void qca_controller_memdump(struct work_struct *work); 232 233 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu) 234 { 235 enum qca_btsoc_type soc_type; 236 237 if (hu->serdev) { 238 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev); 239 240 soc_type = qsd->btsoc_type; 241 } else { 242 soc_type = QCA_ROME; 243 } 244 245 return soc_type; 246 } 247 248 static const char *qca_get_firmware_name(struct hci_uart *hu) 249 { 250 if (hu->serdev) { 251 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev); 252 253 return qsd->firmware_name; 254 } else { 255 return NULL; 256 } 257 } 258 259 static void __serial_clock_on(struct tty_struct *tty) 260 { 261 /* TODO: Some chipset requires to enable UART clock on client 262 * side to save power consumption or manual work is required. 263 * Please put your code to control UART clock here if needed 264 */ 265 } 266 267 static void __serial_clock_off(struct tty_struct *tty) 268 { 269 /* TODO: Some chipset requires to disable UART clock on client 270 * side to save power consumption or manual work is required. 271 * Please put your code to control UART clock off here if needed 272 */ 273 } 274 275 /* serial_clock_vote needs to be called with the ibs lock held */ 276 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu) 277 { 278 struct qca_data *qca = hu->priv; 279 unsigned int diff; 280 281 bool old_vote = (qca->tx_vote | qca->rx_vote); 282 bool new_vote; 283 284 switch (vote) { 285 case HCI_IBS_VOTE_STATS_UPDATE: 286 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif); 287 288 if (old_vote) 289 qca->vote_off_ms += diff; 290 else 291 qca->vote_on_ms += diff; 292 return; 293 294 case HCI_IBS_TX_VOTE_CLOCK_ON: 295 qca->tx_vote = true; 296 qca->tx_votes_on++; 297 break; 298 299 case HCI_IBS_RX_VOTE_CLOCK_ON: 300 qca->rx_vote = true; 301 qca->rx_votes_on++; 302 break; 303 304 case HCI_IBS_TX_VOTE_CLOCK_OFF: 305 qca->tx_vote = false; 306 qca->tx_votes_off++; 307 break; 308 309 case HCI_IBS_RX_VOTE_CLOCK_OFF: 310 qca->rx_vote = false; 311 qca->rx_votes_off++; 312 break; 313 314 default: 315 BT_ERR("Voting irregularity"); 316 return; 317 } 318 319 new_vote = qca->rx_vote | qca->tx_vote; 320 321 if (new_vote != old_vote) { 322 if (new_vote) 323 __serial_clock_on(hu->tty); 324 else 325 __serial_clock_off(hu->tty); 326 327 BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false", 328 vote ? "true" : "false"); 329 330 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif); 331 332 if (new_vote) { 333 qca->votes_on++; 334 qca->vote_off_ms += diff; 335 } else { 336 qca->votes_off++; 337 qca->vote_on_ms += diff; 338 } 339 qca->vote_last_jif = jiffies; 340 } 341 } 342 343 /* Builds and sends an HCI_IBS command packet. 344 * These are very simple packets with only 1 cmd byte. 345 */ 346 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu) 347 { 348 int err = 0; 349 struct sk_buff *skb = NULL; 350 struct qca_data *qca = hu->priv; 351 352 BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd); 353 354 skb = bt_skb_alloc(1, GFP_ATOMIC); 355 if (!skb) { 356 BT_ERR("Failed to allocate memory for HCI_IBS packet"); 357 return -ENOMEM; 358 } 359 360 /* Assign HCI_IBS type */ 361 skb_put_u8(skb, cmd); 362 363 skb_queue_tail(&qca->txq, skb); 364 365 return err; 366 } 367 368 static void qca_wq_awake_device(struct work_struct *work) 369 { 370 struct qca_data *qca = container_of(work, struct qca_data, 371 ws_awake_device); 372 struct hci_uart *hu = qca->hu; 373 unsigned long retrans_delay; 374 unsigned long flags; 375 376 BT_DBG("hu %p wq awake device", hu); 377 378 /* Vote for serial clock */ 379 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu); 380 381 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 382 383 /* Send wake indication to device */ 384 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) 385 BT_ERR("Failed to send WAKE to device"); 386 387 qca->ibs_sent_wakes++; 388 389 /* Start retransmit timer */ 390 retrans_delay = msecs_to_jiffies(qca->wake_retrans); 391 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay); 392 393 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 394 395 /* Actually send the packets */ 396 hci_uart_tx_wakeup(hu); 397 } 398 399 static void qca_wq_awake_rx(struct work_struct *work) 400 { 401 struct qca_data *qca = container_of(work, struct qca_data, 402 ws_awake_rx); 403 struct hci_uart *hu = qca->hu; 404 unsigned long flags; 405 406 BT_DBG("hu %p wq awake rx", hu); 407 408 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu); 409 410 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 411 qca->rx_ibs_state = HCI_IBS_RX_AWAKE; 412 413 /* Always acknowledge device wake up, 414 * sending IBS message doesn't count as TX ON. 415 */ 416 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) 417 BT_ERR("Failed to acknowledge device wake up"); 418 419 qca->ibs_sent_wacks++; 420 421 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 422 423 /* Actually send the packets */ 424 hci_uart_tx_wakeup(hu); 425 } 426 427 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work) 428 { 429 struct qca_data *qca = container_of(work, struct qca_data, 430 ws_rx_vote_off); 431 struct hci_uart *hu = qca->hu; 432 433 BT_DBG("hu %p rx clock vote off", hu); 434 435 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu); 436 } 437 438 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work) 439 { 440 struct qca_data *qca = container_of(work, struct qca_data, 441 ws_tx_vote_off); 442 struct hci_uart *hu = qca->hu; 443 444 BT_DBG("hu %p tx clock vote off", hu); 445 446 /* Run HCI tx handling unlocked */ 447 hci_uart_tx_wakeup(hu); 448 449 /* Now that message queued to tty driver, vote for tty clocks off. 450 * It is up to the tty driver to pend the clocks off until tx done. 451 */ 452 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu); 453 } 454 455 static void hci_ibs_tx_idle_timeout(struct timer_list *t) 456 { 457 struct qca_data *qca = from_timer(qca, t, tx_idle_timer); 458 struct hci_uart *hu = qca->hu; 459 unsigned long flags; 460 461 BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state); 462 463 spin_lock_irqsave_nested(&qca->hci_ibs_lock, 464 flags, SINGLE_DEPTH_NESTING); 465 466 switch (qca->tx_ibs_state) { 467 case HCI_IBS_TX_AWAKE: 468 /* TX_IDLE, go to SLEEP */ 469 if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) { 470 BT_ERR("Failed to send SLEEP to device"); 471 break; 472 } 473 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; 474 qca->ibs_sent_slps++; 475 queue_work(qca->workqueue, &qca->ws_tx_vote_off); 476 break; 477 478 case HCI_IBS_TX_ASLEEP: 479 case HCI_IBS_TX_WAKING: 480 default: 481 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state); 482 break; 483 } 484 485 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 486 } 487 488 static void hci_ibs_wake_retrans_timeout(struct timer_list *t) 489 { 490 struct qca_data *qca = from_timer(qca, t, wake_retrans_timer); 491 struct hci_uart *hu = qca->hu; 492 unsigned long flags, retrans_delay; 493 bool retransmit = false; 494 495 BT_DBG("hu %p wake retransmit timeout in %d state", 496 hu, qca->tx_ibs_state); 497 498 spin_lock_irqsave_nested(&qca->hci_ibs_lock, 499 flags, SINGLE_DEPTH_NESTING); 500 501 /* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */ 502 if (test_bit(QCA_SUSPENDING, &qca->flags)) { 503 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 504 return; 505 } 506 507 switch (qca->tx_ibs_state) { 508 case HCI_IBS_TX_WAKING: 509 /* No WAKE_ACK, retransmit WAKE */ 510 retransmit = true; 511 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) { 512 BT_ERR("Failed to acknowledge device wake up"); 513 break; 514 } 515 qca->ibs_sent_wakes++; 516 retrans_delay = msecs_to_jiffies(qca->wake_retrans); 517 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay); 518 break; 519 520 case HCI_IBS_TX_ASLEEP: 521 case HCI_IBS_TX_AWAKE: 522 default: 523 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state); 524 break; 525 } 526 527 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 528 529 if (retransmit) 530 hci_uart_tx_wakeup(hu); 531 } 532 533 534 static void qca_controller_memdump_timeout(struct work_struct *work) 535 { 536 struct qca_data *qca = container_of(work, struct qca_data, 537 ctrl_memdump_timeout.work); 538 struct hci_uart *hu = qca->hu; 539 540 mutex_lock(&qca->hci_memdump_lock); 541 if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) { 542 qca->memdump_state = QCA_MEMDUMP_TIMEOUT; 543 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) { 544 /* Inject hw error event to reset the device 545 * and driver. 546 */ 547 hci_reset_dev(hu->hdev); 548 } 549 } 550 551 mutex_unlock(&qca->hci_memdump_lock); 552 } 553 554 555 /* Initialize protocol */ 556 static int qca_open(struct hci_uart *hu) 557 { 558 struct qca_serdev *qcadev; 559 struct qca_data *qca; 560 561 BT_DBG("hu %p qca_open", hu); 562 563 if (!hci_uart_has_flow_control(hu)) 564 return -EOPNOTSUPP; 565 566 qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL); 567 if (!qca) 568 return -ENOMEM; 569 570 skb_queue_head_init(&qca->txq); 571 skb_queue_head_init(&qca->tx_wait_q); 572 skb_queue_head_init(&qca->rx_memdump_q); 573 spin_lock_init(&qca->hci_ibs_lock); 574 mutex_init(&qca->hci_memdump_lock); 575 qca->workqueue = alloc_ordered_workqueue("qca_wq", 0); 576 if (!qca->workqueue) { 577 BT_ERR("QCA Workqueue not initialized properly"); 578 kfree(qca); 579 return -ENOMEM; 580 } 581 582 INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx); 583 INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device); 584 INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off); 585 INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off); 586 INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump); 587 INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout, 588 qca_controller_memdump_timeout); 589 init_waitqueue_head(&qca->suspend_wait_q); 590 591 qca->hu = hu; 592 init_completion(&qca->drop_ev_comp); 593 594 /* Assume we start with both sides asleep -- extra wakes OK */ 595 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; 596 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP; 597 598 qca->vote_last_jif = jiffies; 599 600 hu->priv = qca; 601 602 if (hu->serdev) { 603 qcadev = serdev_device_get_drvdata(hu->serdev); 604 605 if (qca_is_wcn399x(qcadev->btsoc_type)) 606 hu->init_speed = qcadev->init_speed; 607 608 if (qcadev->oper_speed) 609 hu->oper_speed = qcadev->oper_speed; 610 } 611 612 timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0); 613 qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS; 614 615 timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0); 616 qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS; 617 618 BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u", 619 qca->tx_idle_delay, qca->wake_retrans); 620 621 return 0; 622 } 623 624 static void qca_debugfs_init(struct hci_dev *hdev) 625 { 626 struct hci_uart *hu = hci_get_drvdata(hdev); 627 struct qca_data *qca = hu->priv; 628 struct dentry *ibs_dir; 629 umode_t mode; 630 631 if (!hdev->debugfs) 632 return; 633 634 ibs_dir = debugfs_create_dir("ibs", hdev->debugfs); 635 636 /* read only */ 637 mode = 0444; 638 debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state); 639 debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state); 640 debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir, 641 &qca->ibs_sent_slps); 642 debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir, 643 &qca->ibs_sent_wakes); 644 debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir, 645 &qca->ibs_sent_wacks); 646 debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir, 647 &qca->ibs_recv_slps); 648 debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir, 649 &qca->ibs_recv_wakes); 650 debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir, 651 &qca->ibs_recv_wacks); 652 debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote); 653 debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on); 654 debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off); 655 debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote); 656 debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on); 657 debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off); 658 debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on); 659 debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off); 660 debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms); 661 debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms); 662 663 /* read/write */ 664 mode = 0644; 665 debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans); 666 debugfs_create_u32("tx_idle_delay", mode, ibs_dir, 667 &qca->tx_idle_delay); 668 } 669 670 /* Flush protocol data */ 671 static int qca_flush(struct hci_uart *hu) 672 { 673 struct qca_data *qca = hu->priv; 674 675 BT_DBG("hu %p qca flush", hu); 676 677 skb_queue_purge(&qca->tx_wait_q); 678 skb_queue_purge(&qca->txq); 679 680 return 0; 681 } 682 683 /* Close protocol */ 684 static int qca_close(struct hci_uart *hu) 685 { 686 struct qca_data *qca = hu->priv; 687 688 BT_DBG("hu %p qca close", hu); 689 690 serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu); 691 692 skb_queue_purge(&qca->tx_wait_q); 693 skb_queue_purge(&qca->txq); 694 skb_queue_purge(&qca->rx_memdump_q); 695 del_timer(&qca->tx_idle_timer); 696 del_timer(&qca->wake_retrans_timer); 697 destroy_workqueue(qca->workqueue); 698 qca->hu = NULL; 699 700 kfree_skb(qca->rx_skb); 701 702 hu->priv = NULL; 703 704 kfree(qca); 705 706 return 0; 707 } 708 709 /* Called upon a wake-up-indication from the device. 710 */ 711 static void device_want_to_wakeup(struct hci_uart *hu) 712 { 713 unsigned long flags; 714 struct qca_data *qca = hu->priv; 715 716 BT_DBG("hu %p want to wake up", hu); 717 718 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 719 720 qca->ibs_recv_wakes++; 721 722 /* Don't wake the rx up when suspending. */ 723 if (test_bit(QCA_SUSPENDING, &qca->flags)) { 724 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 725 return; 726 } 727 728 switch (qca->rx_ibs_state) { 729 case HCI_IBS_RX_ASLEEP: 730 /* Make sure clock is on - we may have turned clock off since 731 * receiving the wake up indicator awake rx clock. 732 */ 733 queue_work(qca->workqueue, &qca->ws_awake_rx); 734 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 735 return; 736 737 case HCI_IBS_RX_AWAKE: 738 /* Always acknowledge device wake up, 739 * sending IBS message doesn't count as TX ON. 740 */ 741 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) { 742 BT_ERR("Failed to acknowledge device wake up"); 743 break; 744 } 745 qca->ibs_sent_wacks++; 746 break; 747 748 default: 749 /* Any other state is illegal */ 750 BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d", 751 qca->rx_ibs_state); 752 break; 753 } 754 755 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 756 757 /* Actually send the packets */ 758 hci_uart_tx_wakeup(hu); 759 } 760 761 /* Called upon a sleep-indication from the device. 762 */ 763 static void device_want_to_sleep(struct hci_uart *hu) 764 { 765 unsigned long flags; 766 struct qca_data *qca = hu->priv; 767 768 BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state); 769 770 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 771 772 qca->ibs_recv_slps++; 773 774 switch (qca->rx_ibs_state) { 775 case HCI_IBS_RX_AWAKE: 776 /* Update state */ 777 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP; 778 /* Vote off rx clock under workqueue */ 779 queue_work(qca->workqueue, &qca->ws_rx_vote_off); 780 break; 781 782 case HCI_IBS_RX_ASLEEP: 783 break; 784 785 default: 786 /* Any other state is illegal */ 787 BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d", 788 qca->rx_ibs_state); 789 break; 790 } 791 792 wake_up_interruptible(&qca->suspend_wait_q); 793 794 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 795 } 796 797 /* Called upon wake-up-acknowledgement from the device 798 */ 799 static void device_woke_up(struct hci_uart *hu) 800 { 801 unsigned long flags, idle_delay; 802 struct qca_data *qca = hu->priv; 803 struct sk_buff *skb = NULL; 804 805 BT_DBG("hu %p woke up", hu); 806 807 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 808 809 qca->ibs_recv_wacks++; 810 811 /* Don't react to the wake-up-acknowledgment when suspending. */ 812 if (test_bit(QCA_SUSPENDING, &qca->flags)) { 813 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 814 return; 815 } 816 817 switch (qca->tx_ibs_state) { 818 case HCI_IBS_TX_AWAKE: 819 /* Expect one if we send 2 WAKEs */ 820 BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d", 821 qca->tx_ibs_state); 822 break; 823 824 case HCI_IBS_TX_WAKING: 825 /* Send pending packets */ 826 while ((skb = skb_dequeue(&qca->tx_wait_q))) 827 skb_queue_tail(&qca->txq, skb); 828 829 /* Switch timers and change state to HCI_IBS_TX_AWAKE */ 830 del_timer(&qca->wake_retrans_timer); 831 idle_delay = msecs_to_jiffies(qca->tx_idle_delay); 832 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay); 833 qca->tx_ibs_state = HCI_IBS_TX_AWAKE; 834 break; 835 836 case HCI_IBS_TX_ASLEEP: 837 default: 838 BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d", 839 qca->tx_ibs_state); 840 break; 841 } 842 843 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 844 845 /* Actually send the packets */ 846 hci_uart_tx_wakeup(hu); 847 } 848 849 /* Enqueue frame for transmittion (padding, crc, etc) may be called from 850 * two simultaneous tasklets. 851 */ 852 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb) 853 { 854 unsigned long flags = 0, idle_delay; 855 struct qca_data *qca = hu->priv; 856 857 BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb, 858 qca->tx_ibs_state); 859 860 if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) { 861 /* As SSR is in progress, ignore the packets */ 862 bt_dev_dbg(hu->hdev, "SSR is in progress"); 863 kfree_skb(skb); 864 return 0; 865 } 866 867 /* Prepend skb with frame type */ 868 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1); 869 870 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 871 872 /* Don't go to sleep in middle of patch download or 873 * Out-Of-Band(GPIOs control) sleep is selected. 874 * Don't wake the device up when suspending. 875 */ 876 if (test_bit(QCA_IBS_DISABLED, &qca->flags) || 877 test_bit(QCA_SUSPENDING, &qca->flags)) { 878 skb_queue_tail(&qca->txq, skb); 879 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 880 return 0; 881 } 882 883 /* Act according to current state */ 884 switch (qca->tx_ibs_state) { 885 case HCI_IBS_TX_AWAKE: 886 BT_DBG("Device awake, sending normally"); 887 skb_queue_tail(&qca->txq, skb); 888 idle_delay = msecs_to_jiffies(qca->tx_idle_delay); 889 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay); 890 break; 891 892 case HCI_IBS_TX_ASLEEP: 893 BT_DBG("Device asleep, waking up and queueing packet"); 894 /* Save packet for later */ 895 skb_queue_tail(&qca->tx_wait_q, skb); 896 897 qca->tx_ibs_state = HCI_IBS_TX_WAKING; 898 /* Schedule a work queue to wake up device */ 899 queue_work(qca->workqueue, &qca->ws_awake_device); 900 break; 901 902 case HCI_IBS_TX_WAKING: 903 BT_DBG("Device waking up, queueing packet"); 904 /* Transient state; just keep packet for later */ 905 skb_queue_tail(&qca->tx_wait_q, skb); 906 break; 907 908 default: 909 BT_ERR("Illegal tx state: %d (losing packet)", 910 qca->tx_ibs_state); 911 kfree_skb(skb); 912 break; 913 } 914 915 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 916 917 return 0; 918 } 919 920 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb) 921 { 922 struct hci_uart *hu = hci_get_drvdata(hdev); 923 924 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND); 925 926 device_want_to_sleep(hu); 927 928 kfree_skb(skb); 929 return 0; 930 } 931 932 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb) 933 { 934 struct hci_uart *hu = hci_get_drvdata(hdev); 935 936 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND); 937 938 device_want_to_wakeup(hu); 939 940 kfree_skb(skb); 941 return 0; 942 } 943 944 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb) 945 { 946 struct hci_uart *hu = hci_get_drvdata(hdev); 947 948 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK); 949 950 device_woke_up(hu); 951 952 kfree_skb(skb); 953 return 0; 954 } 955 956 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb) 957 { 958 /* We receive debug logs from chip as an ACL packets. 959 * Instead of sending the data to ACL to decode the 960 * received data, we are pushing them to the above layers 961 * as a diagnostic packet. 962 */ 963 if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE) 964 return hci_recv_diag(hdev, skb); 965 966 return hci_recv_frame(hdev, skb); 967 } 968 969 static void qca_controller_memdump(struct work_struct *work) 970 { 971 struct qca_data *qca = container_of(work, struct qca_data, 972 ctrl_memdump_evt); 973 struct hci_uart *hu = qca->hu; 974 struct sk_buff *skb; 975 struct qca_memdump_event_hdr *cmd_hdr; 976 struct qca_memdump_data *qca_memdump = qca->qca_memdump; 977 struct qca_dump_size *dump; 978 char *memdump_buf; 979 char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 }; 980 u16 seq_no; 981 u32 dump_size; 982 u32 rx_size; 983 enum qca_btsoc_type soc_type = qca_soc_type(hu); 984 985 while ((skb = skb_dequeue(&qca->rx_memdump_q))) { 986 987 mutex_lock(&qca->hci_memdump_lock); 988 /* Skip processing the received packets if timeout detected 989 * or memdump collection completed. 990 */ 991 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT || 992 qca->memdump_state == QCA_MEMDUMP_COLLECTED) { 993 mutex_unlock(&qca->hci_memdump_lock); 994 return; 995 } 996 997 if (!qca_memdump) { 998 qca_memdump = kzalloc(sizeof(struct qca_memdump_data), 999 GFP_ATOMIC); 1000 if (!qca_memdump) { 1001 mutex_unlock(&qca->hci_memdump_lock); 1002 return; 1003 } 1004 1005 qca->qca_memdump = qca_memdump; 1006 } 1007 1008 qca->memdump_state = QCA_MEMDUMP_COLLECTING; 1009 cmd_hdr = (void *) skb->data; 1010 seq_no = __le16_to_cpu(cmd_hdr->seq_no); 1011 skb_pull(skb, sizeof(struct qca_memdump_event_hdr)); 1012 1013 if (!seq_no) { 1014 1015 /* This is the first frame of memdump packet from 1016 * the controller, Disable IBS to recevie dump 1017 * with out any interruption, ideally time required for 1018 * the controller to send the dump is 8 seconds. let us 1019 * start timer to handle this asynchronous activity. 1020 */ 1021 set_bit(QCA_IBS_DISABLED, &qca->flags); 1022 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1023 dump = (void *) skb->data; 1024 dump_size = __le32_to_cpu(dump->dump_size); 1025 if (!(dump_size)) { 1026 bt_dev_err(hu->hdev, "Rx invalid memdump size"); 1027 kfree_skb(skb); 1028 mutex_unlock(&qca->hci_memdump_lock); 1029 return; 1030 } 1031 1032 bt_dev_info(hu->hdev, "QCA collecting dump of size:%u", 1033 dump_size); 1034 queue_delayed_work(qca->workqueue, 1035 &qca->ctrl_memdump_timeout, 1036 msecs_to_jiffies(MEMDUMP_TIMEOUT_MS) 1037 ); 1038 1039 skb_pull(skb, sizeof(dump_size)); 1040 memdump_buf = vmalloc(dump_size); 1041 qca_memdump->ram_dump_size = dump_size; 1042 qca_memdump->memdump_buf_head = memdump_buf; 1043 qca_memdump->memdump_buf_tail = memdump_buf; 1044 } 1045 1046 memdump_buf = qca_memdump->memdump_buf_tail; 1047 1048 /* If sequence no 0 is missed then there is no point in 1049 * accepting the other sequences. 1050 */ 1051 if (!memdump_buf) { 1052 bt_dev_err(hu->hdev, "QCA: Discarding other packets"); 1053 kfree(qca_memdump); 1054 kfree_skb(skb); 1055 qca->qca_memdump = NULL; 1056 mutex_unlock(&qca->hci_memdump_lock); 1057 return; 1058 } 1059 1060 /* There could be chance of missing some packets from 1061 * the controller. In such cases let us store the dummy 1062 * packets in the buffer. 1063 */ 1064 /* For QCA6390, controller does not lost packets but 1065 * sequence number field of packat sometimes has error 1066 * bits, so skip this checking for missing packet. 1067 */ 1068 while ((seq_no > qca_memdump->current_seq_no + 1) && 1069 (soc_type != QCA_QCA6390) && 1070 seq_no != QCA_LAST_SEQUENCE_NUM) { 1071 bt_dev_err(hu->hdev, "QCA controller missed packet:%d", 1072 qca_memdump->current_seq_no); 1073 rx_size = qca_memdump->received_dump; 1074 rx_size += QCA_DUMP_PACKET_SIZE; 1075 if (rx_size > qca_memdump->ram_dump_size) { 1076 bt_dev_err(hu->hdev, 1077 "QCA memdump received %d, no space for missed packet", 1078 qca_memdump->received_dump); 1079 break; 1080 } 1081 memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE); 1082 memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE; 1083 qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE; 1084 qca_memdump->current_seq_no++; 1085 } 1086 1087 rx_size = qca_memdump->received_dump + skb->len; 1088 if (rx_size <= qca_memdump->ram_dump_size) { 1089 if ((seq_no != QCA_LAST_SEQUENCE_NUM) && 1090 (seq_no != qca_memdump->current_seq_no)) 1091 bt_dev_err(hu->hdev, 1092 "QCA memdump unexpected packet %d", 1093 seq_no); 1094 bt_dev_dbg(hu->hdev, 1095 "QCA memdump packet %d with length %d", 1096 seq_no, skb->len); 1097 memcpy(memdump_buf, (unsigned char *)skb->data, 1098 skb->len); 1099 memdump_buf = memdump_buf + skb->len; 1100 qca_memdump->memdump_buf_tail = memdump_buf; 1101 qca_memdump->current_seq_no = seq_no + 1; 1102 qca_memdump->received_dump += skb->len; 1103 } else { 1104 bt_dev_err(hu->hdev, 1105 "QCA memdump received %d, no space for packet %d", 1106 qca_memdump->received_dump, seq_no); 1107 } 1108 qca->qca_memdump = qca_memdump; 1109 kfree_skb(skb); 1110 if (seq_no == QCA_LAST_SEQUENCE_NUM) { 1111 bt_dev_info(hu->hdev, 1112 "QCA memdump Done, received %d, total %d", 1113 qca_memdump->received_dump, 1114 qca_memdump->ram_dump_size); 1115 memdump_buf = qca_memdump->memdump_buf_head; 1116 dev_coredumpv(&hu->serdev->dev, memdump_buf, 1117 qca_memdump->received_dump, GFP_KERNEL); 1118 cancel_delayed_work(&qca->ctrl_memdump_timeout); 1119 kfree(qca->qca_memdump); 1120 qca->qca_memdump = NULL; 1121 qca->memdump_state = QCA_MEMDUMP_COLLECTED; 1122 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1123 } 1124 1125 mutex_unlock(&qca->hci_memdump_lock); 1126 } 1127 1128 } 1129 1130 static int qca_controller_memdump_event(struct hci_dev *hdev, 1131 struct sk_buff *skb) 1132 { 1133 struct hci_uart *hu = hci_get_drvdata(hdev); 1134 struct qca_data *qca = hu->priv; 1135 1136 set_bit(QCA_SSR_TRIGGERED, &qca->flags); 1137 skb_queue_tail(&qca->rx_memdump_q, skb); 1138 queue_work(qca->workqueue, &qca->ctrl_memdump_evt); 1139 1140 return 0; 1141 } 1142 1143 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb) 1144 { 1145 struct hci_uart *hu = hci_get_drvdata(hdev); 1146 struct qca_data *qca = hu->priv; 1147 1148 if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) { 1149 struct hci_event_hdr *hdr = (void *)skb->data; 1150 1151 /* For the WCN3990 the vendor command for a baudrate change 1152 * isn't sent as synchronous HCI command, because the 1153 * controller sends the corresponding vendor event with the 1154 * new baudrate. The event is received and properly decoded 1155 * after changing the baudrate of the host port. It needs to 1156 * be dropped, otherwise it can be misinterpreted as 1157 * response to a later firmware download command (also a 1158 * vendor command). 1159 */ 1160 1161 if (hdr->evt == HCI_EV_VENDOR) 1162 complete(&qca->drop_ev_comp); 1163 1164 kfree_skb(skb); 1165 1166 return 0; 1167 } 1168 /* We receive chip memory dump as an event packet, With a dedicated 1169 * handler followed by a hardware error event. When this event is 1170 * received we store dump into a file before closing hci. This 1171 * dump will help in triaging the issues. 1172 */ 1173 if ((skb->data[0] == HCI_VENDOR_PKT) && 1174 (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE)) 1175 return qca_controller_memdump_event(hdev, skb); 1176 1177 return hci_recv_frame(hdev, skb); 1178 } 1179 1180 #define QCA_IBS_SLEEP_IND_EVENT \ 1181 .type = HCI_IBS_SLEEP_IND, \ 1182 .hlen = 0, \ 1183 .loff = 0, \ 1184 .lsize = 0, \ 1185 .maxlen = HCI_MAX_IBS_SIZE 1186 1187 #define QCA_IBS_WAKE_IND_EVENT \ 1188 .type = HCI_IBS_WAKE_IND, \ 1189 .hlen = 0, \ 1190 .loff = 0, \ 1191 .lsize = 0, \ 1192 .maxlen = HCI_MAX_IBS_SIZE 1193 1194 #define QCA_IBS_WAKE_ACK_EVENT \ 1195 .type = HCI_IBS_WAKE_ACK, \ 1196 .hlen = 0, \ 1197 .loff = 0, \ 1198 .lsize = 0, \ 1199 .maxlen = HCI_MAX_IBS_SIZE 1200 1201 static const struct h4_recv_pkt qca_recv_pkts[] = { 1202 { H4_RECV_ACL, .recv = qca_recv_acl_data }, 1203 { H4_RECV_SCO, .recv = hci_recv_frame }, 1204 { H4_RECV_EVENT, .recv = qca_recv_event }, 1205 { QCA_IBS_WAKE_IND_EVENT, .recv = qca_ibs_wake_ind }, 1206 { QCA_IBS_WAKE_ACK_EVENT, .recv = qca_ibs_wake_ack }, 1207 { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind }, 1208 }; 1209 1210 static int qca_recv(struct hci_uart *hu, const void *data, int count) 1211 { 1212 struct qca_data *qca = hu->priv; 1213 1214 if (!test_bit(HCI_UART_REGISTERED, &hu->flags)) 1215 return -EUNATCH; 1216 1217 qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count, 1218 qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts)); 1219 if (IS_ERR(qca->rx_skb)) { 1220 int err = PTR_ERR(qca->rx_skb); 1221 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err); 1222 qca->rx_skb = NULL; 1223 return err; 1224 } 1225 1226 return count; 1227 } 1228 1229 static struct sk_buff *qca_dequeue(struct hci_uart *hu) 1230 { 1231 struct qca_data *qca = hu->priv; 1232 1233 return skb_dequeue(&qca->txq); 1234 } 1235 1236 static uint8_t qca_get_baudrate_value(int speed) 1237 { 1238 switch (speed) { 1239 case 9600: 1240 return QCA_BAUDRATE_9600; 1241 case 19200: 1242 return QCA_BAUDRATE_19200; 1243 case 38400: 1244 return QCA_BAUDRATE_38400; 1245 case 57600: 1246 return QCA_BAUDRATE_57600; 1247 case 115200: 1248 return QCA_BAUDRATE_115200; 1249 case 230400: 1250 return QCA_BAUDRATE_230400; 1251 case 460800: 1252 return QCA_BAUDRATE_460800; 1253 case 500000: 1254 return QCA_BAUDRATE_500000; 1255 case 921600: 1256 return QCA_BAUDRATE_921600; 1257 case 1000000: 1258 return QCA_BAUDRATE_1000000; 1259 case 2000000: 1260 return QCA_BAUDRATE_2000000; 1261 case 3000000: 1262 return QCA_BAUDRATE_3000000; 1263 case 3200000: 1264 return QCA_BAUDRATE_3200000; 1265 case 3500000: 1266 return QCA_BAUDRATE_3500000; 1267 default: 1268 return QCA_BAUDRATE_115200; 1269 } 1270 } 1271 1272 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate) 1273 { 1274 struct hci_uart *hu = hci_get_drvdata(hdev); 1275 struct qca_data *qca = hu->priv; 1276 struct sk_buff *skb; 1277 u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 }; 1278 1279 if (baudrate > QCA_BAUDRATE_3200000) 1280 return -EINVAL; 1281 1282 cmd[4] = baudrate; 1283 1284 skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL); 1285 if (!skb) { 1286 bt_dev_err(hdev, "Failed to allocate baudrate packet"); 1287 return -ENOMEM; 1288 } 1289 1290 /* Assign commands to change baudrate and packet type. */ 1291 skb_put_data(skb, cmd, sizeof(cmd)); 1292 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 1293 1294 skb_queue_tail(&qca->txq, skb); 1295 hci_uart_tx_wakeup(hu); 1296 1297 /* Wait for the baudrate change request to be sent */ 1298 1299 while (!skb_queue_empty(&qca->txq)) 1300 usleep_range(100, 200); 1301 1302 if (hu->serdev) 1303 serdev_device_wait_until_sent(hu->serdev, 1304 msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS)); 1305 1306 /* Give the controller time to process the request */ 1307 if (qca_is_wcn399x(qca_soc_type(hu))) 1308 usleep_range(1000, 10000); 1309 else 1310 msleep(300); 1311 1312 return 0; 1313 } 1314 1315 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed) 1316 { 1317 if (hu->serdev) 1318 serdev_device_set_baudrate(hu->serdev, speed); 1319 else 1320 hci_uart_set_baudrate(hu, speed); 1321 } 1322 1323 static int qca_send_power_pulse(struct hci_uart *hu, bool on) 1324 { 1325 int ret; 1326 int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS); 1327 u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE; 1328 1329 /* These power pulses are single byte command which are sent 1330 * at required baudrate to wcn3990. On wcn3990, we have an external 1331 * circuit at Tx pin which decodes the pulse sent at specific baudrate. 1332 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT 1333 * and also we use the same power inputs to turn on and off for 1334 * Wi-Fi/BT. Powering up the power sources will not enable BT, until 1335 * we send a power on pulse at 115200 bps. This algorithm will help to 1336 * save power. Disabling hardware flow control is mandatory while 1337 * sending power pulses to SoC. 1338 */ 1339 bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd); 1340 1341 serdev_device_write_flush(hu->serdev); 1342 hci_uart_set_flow_control(hu, true); 1343 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd)); 1344 if (ret < 0) { 1345 bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd); 1346 return ret; 1347 } 1348 1349 serdev_device_wait_until_sent(hu->serdev, timeout); 1350 hci_uart_set_flow_control(hu, false); 1351 1352 /* Give to controller time to boot/shutdown */ 1353 if (on) 1354 msleep(100); 1355 else 1356 usleep_range(1000, 10000); 1357 1358 return 0; 1359 } 1360 1361 static unsigned int qca_get_speed(struct hci_uart *hu, 1362 enum qca_speed_type speed_type) 1363 { 1364 unsigned int speed = 0; 1365 1366 if (speed_type == QCA_INIT_SPEED) { 1367 if (hu->init_speed) 1368 speed = hu->init_speed; 1369 else if (hu->proto->init_speed) 1370 speed = hu->proto->init_speed; 1371 } else { 1372 if (hu->oper_speed) 1373 speed = hu->oper_speed; 1374 else if (hu->proto->oper_speed) 1375 speed = hu->proto->oper_speed; 1376 } 1377 1378 return speed; 1379 } 1380 1381 static int qca_check_speeds(struct hci_uart *hu) 1382 { 1383 if (qca_is_wcn399x(qca_soc_type(hu))) { 1384 if (!qca_get_speed(hu, QCA_INIT_SPEED) && 1385 !qca_get_speed(hu, QCA_OPER_SPEED)) 1386 return -EINVAL; 1387 } else { 1388 if (!qca_get_speed(hu, QCA_INIT_SPEED) || 1389 !qca_get_speed(hu, QCA_OPER_SPEED)) 1390 return -EINVAL; 1391 } 1392 1393 return 0; 1394 } 1395 1396 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type) 1397 { 1398 unsigned int speed, qca_baudrate; 1399 struct qca_data *qca = hu->priv; 1400 int ret = 0; 1401 1402 if (speed_type == QCA_INIT_SPEED) { 1403 speed = qca_get_speed(hu, QCA_INIT_SPEED); 1404 if (speed) 1405 host_set_baudrate(hu, speed); 1406 } else { 1407 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1408 1409 speed = qca_get_speed(hu, QCA_OPER_SPEED); 1410 if (!speed) 1411 return 0; 1412 1413 /* Disable flow control for wcn3990 to deassert RTS while 1414 * changing the baudrate of chip and host. 1415 */ 1416 if (qca_is_wcn399x(soc_type)) 1417 hci_uart_set_flow_control(hu, true); 1418 1419 if (soc_type == QCA_WCN3990) { 1420 reinit_completion(&qca->drop_ev_comp); 1421 set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags); 1422 } 1423 1424 qca_baudrate = qca_get_baudrate_value(speed); 1425 bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed); 1426 ret = qca_set_baudrate(hu->hdev, qca_baudrate); 1427 if (ret) 1428 goto error; 1429 1430 host_set_baudrate(hu, speed); 1431 1432 error: 1433 if (qca_is_wcn399x(soc_type)) 1434 hci_uart_set_flow_control(hu, false); 1435 1436 if (soc_type == QCA_WCN3990) { 1437 /* Wait for the controller to send the vendor event 1438 * for the baudrate change command. 1439 */ 1440 if (!wait_for_completion_timeout(&qca->drop_ev_comp, 1441 msecs_to_jiffies(100))) { 1442 bt_dev_err(hu->hdev, 1443 "Failed to change controller baudrate\n"); 1444 ret = -ETIMEDOUT; 1445 } 1446 1447 clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags); 1448 } 1449 } 1450 1451 return ret; 1452 } 1453 1454 static int qca_send_crashbuffer(struct hci_uart *hu) 1455 { 1456 struct qca_data *qca = hu->priv; 1457 struct sk_buff *skb; 1458 1459 skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL); 1460 if (!skb) { 1461 bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet"); 1462 return -ENOMEM; 1463 } 1464 1465 /* We forcefully crash the controller, by sending 0xfb byte for 1466 * 1024 times. We also might have chance of losing data, To be 1467 * on safer side we send 1096 bytes to the SoC. 1468 */ 1469 memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE, 1470 QCA_CRASHBYTE_PACKET_LEN); 1471 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 1472 bt_dev_info(hu->hdev, "crash the soc to collect controller dump"); 1473 skb_queue_tail(&qca->txq, skb); 1474 hci_uart_tx_wakeup(hu); 1475 1476 return 0; 1477 } 1478 1479 static void qca_wait_for_dump_collection(struct hci_dev *hdev) 1480 { 1481 struct hci_uart *hu = hci_get_drvdata(hdev); 1482 struct qca_data *qca = hu->priv; 1483 1484 wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION, 1485 TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS); 1486 1487 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1488 } 1489 1490 static void qca_hw_error(struct hci_dev *hdev, u8 code) 1491 { 1492 struct hci_uart *hu = hci_get_drvdata(hdev); 1493 struct qca_data *qca = hu->priv; 1494 1495 set_bit(QCA_SSR_TRIGGERED, &qca->flags); 1496 set_bit(QCA_HW_ERROR_EVENT, &qca->flags); 1497 bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state); 1498 1499 if (qca->memdump_state == QCA_MEMDUMP_IDLE) { 1500 /* If hardware error event received for other than QCA 1501 * soc memory dump event, then we need to crash the SOC 1502 * and wait here for 8 seconds to get the dump packets. 1503 * This will block main thread to be on hold until we 1504 * collect dump. 1505 */ 1506 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1507 qca_send_crashbuffer(hu); 1508 qca_wait_for_dump_collection(hdev); 1509 } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) { 1510 /* Let us wait here until memory dump collected or 1511 * memory dump timer expired. 1512 */ 1513 bt_dev_info(hdev, "waiting for dump to complete"); 1514 qca_wait_for_dump_collection(hdev); 1515 } 1516 1517 mutex_lock(&qca->hci_memdump_lock); 1518 if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) { 1519 bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout"); 1520 if (qca->qca_memdump) { 1521 vfree(qca->qca_memdump->memdump_buf_head); 1522 kfree(qca->qca_memdump); 1523 qca->qca_memdump = NULL; 1524 } 1525 qca->memdump_state = QCA_MEMDUMP_TIMEOUT; 1526 cancel_delayed_work(&qca->ctrl_memdump_timeout); 1527 } 1528 mutex_unlock(&qca->hci_memdump_lock); 1529 1530 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT || 1531 qca->memdump_state == QCA_MEMDUMP_COLLECTED) { 1532 cancel_work_sync(&qca->ctrl_memdump_evt); 1533 skb_queue_purge(&qca->rx_memdump_q); 1534 } 1535 1536 clear_bit(QCA_HW_ERROR_EVENT, &qca->flags); 1537 } 1538 1539 static void qca_cmd_timeout(struct hci_dev *hdev) 1540 { 1541 struct hci_uart *hu = hci_get_drvdata(hdev); 1542 struct qca_data *qca = hu->priv; 1543 1544 set_bit(QCA_SSR_TRIGGERED, &qca->flags); 1545 if (qca->memdump_state == QCA_MEMDUMP_IDLE) { 1546 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags); 1547 qca_send_crashbuffer(hu); 1548 qca_wait_for_dump_collection(hdev); 1549 } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) { 1550 /* Let us wait here until memory dump collected or 1551 * memory dump timer expired. 1552 */ 1553 bt_dev_info(hdev, "waiting for dump to complete"); 1554 qca_wait_for_dump_collection(hdev); 1555 } 1556 1557 mutex_lock(&qca->hci_memdump_lock); 1558 if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) { 1559 qca->memdump_state = QCA_MEMDUMP_TIMEOUT; 1560 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) { 1561 /* Inject hw error event to reset the device 1562 * and driver. 1563 */ 1564 hci_reset_dev(hu->hdev); 1565 } 1566 } 1567 mutex_unlock(&qca->hci_memdump_lock); 1568 } 1569 1570 static int qca_wcn3990_init(struct hci_uart *hu) 1571 { 1572 struct qca_serdev *qcadev; 1573 int ret; 1574 1575 /* Check for vregs status, may be hci down has turned 1576 * off the voltage regulator. 1577 */ 1578 qcadev = serdev_device_get_drvdata(hu->serdev); 1579 if (!qcadev->bt_power->vregs_on) { 1580 serdev_device_close(hu->serdev); 1581 ret = qca_regulator_enable(qcadev); 1582 if (ret) 1583 return ret; 1584 1585 ret = serdev_device_open(hu->serdev); 1586 if (ret) { 1587 bt_dev_err(hu->hdev, "failed to open port"); 1588 return ret; 1589 } 1590 } 1591 1592 /* Forcefully enable wcn3990 to enter in to boot mode. */ 1593 host_set_baudrate(hu, 2400); 1594 ret = qca_send_power_pulse(hu, false); 1595 if (ret) 1596 return ret; 1597 1598 qca_set_speed(hu, QCA_INIT_SPEED); 1599 ret = qca_send_power_pulse(hu, true); 1600 if (ret) 1601 return ret; 1602 1603 /* Now the device is in ready state to communicate with host. 1604 * To sync host with device we need to reopen port. 1605 * Without this, we will have RTS and CTS synchronization 1606 * issues. 1607 */ 1608 serdev_device_close(hu->serdev); 1609 ret = serdev_device_open(hu->serdev); 1610 if (ret) { 1611 bt_dev_err(hu->hdev, "failed to open port"); 1612 return ret; 1613 } 1614 1615 hci_uart_set_flow_control(hu, false); 1616 1617 return 0; 1618 } 1619 1620 static int qca_power_on(struct hci_dev *hdev) 1621 { 1622 struct hci_uart *hu = hci_get_drvdata(hdev); 1623 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1624 struct qca_serdev *qcadev; 1625 struct qca_data *qca = hu->priv; 1626 int ret = 0; 1627 1628 /* Non-serdev device usually is powered by external power 1629 * and don't need additional action in driver for power on 1630 */ 1631 if (!hu->serdev) 1632 return 0; 1633 1634 if (qca_is_wcn399x(soc_type)) { 1635 ret = qca_wcn3990_init(hu); 1636 } else { 1637 qcadev = serdev_device_get_drvdata(hu->serdev); 1638 if (qcadev->bt_en) { 1639 gpiod_set_value_cansleep(qcadev->bt_en, 1); 1640 /* Controller needs time to bootup. */ 1641 msleep(150); 1642 } 1643 } 1644 1645 clear_bit(QCA_BT_OFF, &qca->flags); 1646 return ret; 1647 } 1648 1649 static int qca_setup(struct hci_uart *hu) 1650 { 1651 struct hci_dev *hdev = hu->hdev; 1652 struct qca_data *qca = hu->priv; 1653 unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200; 1654 unsigned int retries = 0; 1655 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1656 const char *firmware_name = qca_get_firmware_name(hu); 1657 int ret; 1658 struct qca_btsoc_version ver; 1659 1660 ret = qca_check_speeds(hu); 1661 if (ret) 1662 return ret; 1663 1664 /* Patch downloading has to be done without IBS mode */ 1665 set_bit(QCA_IBS_DISABLED, &qca->flags); 1666 1667 /* Enable controller to do both LE scan and BR/EDR inquiry 1668 * simultaneously. 1669 */ 1670 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks); 1671 1672 bt_dev_info(hdev, "setting up %s", 1673 qca_is_wcn399x(soc_type) ? "wcn399x" : "ROME/QCA6390"); 1674 1675 qca->memdump_state = QCA_MEMDUMP_IDLE; 1676 1677 retry: 1678 ret = qca_power_on(hdev); 1679 if (ret) 1680 goto out; 1681 1682 clear_bit(QCA_SSR_TRIGGERED, &qca->flags); 1683 1684 if (qca_is_wcn399x(soc_type)) { 1685 set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks); 1686 1687 ret = qca_read_soc_version(hdev, &ver, soc_type); 1688 if (ret) 1689 goto out; 1690 } else { 1691 qca_set_speed(hu, QCA_INIT_SPEED); 1692 } 1693 1694 /* Setup user speed if needed */ 1695 speed = qca_get_speed(hu, QCA_OPER_SPEED); 1696 if (speed) { 1697 ret = qca_set_speed(hu, QCA_OPER_SPEED); 1698 if (ret) 1699 goto out; 1700 1701 qca_baudrate = qca_get_baudrate_value(speed); 1702 } 1703 1704 if (!qca_is_wcn399x(soc_type)) { 1705 /* Get QCA version information */ 1706 ret = qca_read_soc_version(hdev, &ver, soc_type); 1707 if (ret) 1708 goto out; 1709 } 1710 1711 /* Setup patch / NVM configurations */ 1712 ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver, 1713 firmware_name); 1714 if (!ret) { 1715 clear_bit(QCA_IBS_DISABLED, &qca->flags); 1716 qca_debugfs_init(hdev); 1717 hu->hdev->hw_error = qca_hw_error; 1718 hu->hdev->cmd_timeout = qca_cmd_timeout; 1719 } else if (ret == -ENOENT) { 1720 /* No patch/nvm-config found, run with original fw/config */ 1721 ret = 0; 1722 } else if (ret == -EAGAIN) { 1723 /* 1724 * Userspace firmware loader will return -EAGAIN in case no 1725 * patch/nvm-config is found, so run with original fw/config. 1726 */ 1727 ret = 0; 1728 } 1729 1730 out: 1731 if (ret && retries < MAX_INIT_RETRIES) { 1732 bt_dev_warn(hdev, "Retry BT power ON:%d", retries); 1733 qca_power_shutdown(hu); 1734 if (hu->serdev) { 1735 serdev_device_close(hu->serdev); 1736 ret = serdev_device_open(hu->serdev); 1737 if (ret) { 1738 bt_dev_err(hdev, "failed to open port"); 1739 return ret; 1740 } 1741 } 1742 retries++; 1743 goto retry; 1744 } 1745 1746 /* Setup bdaddr */ 1747 if (soc_type == QCA_ROME) 1748 hu->hdev->set_bdaddr = qca_set_bdaddr_rome; 1749 else 1750 hu->hdev->set_bdaddr = qca_set_bdaddr; 1751 1752 return ret; 1753 } 1754 1755 static const struct hci_uart_proto qca_proto = { 1756 .id = HCI_UART_QCA, 1757 .name = "QCA", 1758 .manufacturer = 29, 1759 .init_speed = 115200, 1760 .oper_speed = 3000000, 1761 .open = qca_open, 1762 .close = qca_close, 1763 .flush = qca_flush, 1764 .setup = qca_setup, 1765 .recv = qca_recv, 1766 .enqueue = qca_enqueue, 1767 .dequeue = qca_dequeue, 1768 }; 1769 1770 static const struct qca_device_data qca_soc_data_wcn3990 = { 1771 .soc_type = QCA_WCN3990, 1772 .vregs = (struct qca_vreg []) { 1773 { "vddio", 15000 }, 1774 { "vddxo", 80000 }, 1775 { "vddrf", 300000 }, 1776 { "vddch0", 450000 }, 1777 }, 1778 .num_vregs = 4, 1779 }; 1780 1781 static const struct qca_device_data qca_soc_data_wcn3991 = { 1782 .soc_type = QCA_WCN3991, 1783 .vregs = (struct qca_vreg []) { 1784 { "vddio", 15000 }, 1785 { "vddxo", 80000 }, 1786 { "vddrf", 300000 }, 1787 { "vddch0", 450000 }, 1788 }, 1789 .num_vregs = 4, 1790 .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES, 1791 }; 1792 1793 static const struct qca_device_data qca_soc_data_wcn3998 = { 1794 .soc_type = QCA_WCN3998, 1795 .vregs = (struct qca_vreg []) { 1796 { "vddio", 10000 }, 1797 { "vddxo", 80000 }, 1798 { "vddrf", 300000 }, 1799 { "vddch0", 450000 }, 1800 }, 1801 .num_vregs = 4, 1802 }; 1803 1804 static const struct qca_device_data qca_soc_data_qca6390 = { 1805 .soc_type = QCA_QCA6390, 1806 .num_vregs = 0, 1807 }; 1808 1809 static void qca_power_shutdown(struct hci_uart *hu) 1810 { 1811 struct qca_serdev *qcadev; 1812 struct qca_data *qca = hu->priv; 1813 unsigned long flags; 1814 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1815 1816 qcadev = serdev_device_get_drvdata(hu->serdev); 1817 1818 /* From this point we go into power off state. But serial port is 1819 * still open, stop queueing the IBS data and flush all the buffered 1820 * data in skb's. 1821 */ 1822 spin_lock_irqsave(&qca->hci_ibs_lock, flags); 1823 set_bit(QCA_IBS_DISABLED, &qca->flags); 1824 qca_flush(hu); 1825 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 1826 1827 /* Non-serdev device usually is powered by external power 1828 * and don't need additional action in driver for power down 1829 */ 1830 if (!hu->serdev) 1831 return; 1832 1833 if (qca_is_wcn399x(soc_type)) { 1834 host_set_baudrate(hu, 2400); 1835 qca_send_power_pulse(hu, false); 1836 qca_regulator_disable(qcadev); 1837 } else if (qcadev->bt_en) { 1838 gpiod_set_value_cansleep(qcadev->bt_en, 0); 1839 } 1840 1841 set_bit(QCA_BT_OFF, &qca->flags); 1842 } 1843 1844 static int qca_power_off(struct hci_dev *hdev) 1845 { 1846 struct hci_uart *hu = hci_get_drvdata(hdev); 1847 struct qca_data *qca = hu->priv; 1848 enum qca_btsoc_type soc_type = qca_soc_type(hu); 1849 1850 hu->hdev->hw_error = NULL; 1851 hu->hdev->cmd_timeout = NULL; 1852 1853 /* Stop sending shutdown command if soc crashes. */ 1854 if (soc_type != QCA_ROME 1855 && qca->memdump_state == QCA_MEMDUMP_IDLE) { 1856 qca_send_pre_shutdown_cmd(hdev); 1857 usleep_range(8000, 10000); 1858 } 1859 1860 qca_power_shutdown(hu); 1861 return 0; 1862 } 1863 1864 static int qca_regulator_enable(struct qca_serdev *qcadev) 1865 { 1866 struct qca_power *power = qcadev->bt_power; 1867 int ret; 1868 1869 /* Already enabled */ 1870 if (power->vregs_on) 1871 return 0; 1872 1873 BT_DBG("enabling %d regulators)", power->num_vregs); 1874 1875 ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk); 1876 if (ret) 1877 return ret; 1878 1879 power->vregs_on = true; 1880 1881 ret = clk_prepare_enable(qcadev->susclk); 1882 if (ret) 1883 qca_regulator_disable(qcadev); 1884 1885 return ret; 1886 } 1887 1888 static void qca_regulator_disable(struct qca_serdev *qcadev) 1889 { 1890 struct qca_power *power; 1891 1892 if (!qcadev) 1893 return; 1894 1895 power = qcadev->bt_power; 1896 1897 /* Already disabled? */ 1898 if (!power->vregs_on) 1899 return; 1900 1901 regulator_bulk_disable(power->num_vregs, power->vreg_bulk); 1902 power->vregs_on = false; 1903 1904 clk_disable_unprepare(qcadev->susclk); 1905 } 1906 1907 static int qca_init_regulators(struct qca_power *qca, 1908 const struct qca_vreg *vregs, size_t num_vregs) 1909 { 1910 struct regulator_bulk_data *bulk; 1911 int ret; 1912 int i; 1913 1914 bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL); 1915 if (!bulk) 1916 return -ENOMEM; 1917 1918 for (i = 0; i < num_vregs; i++) 1919 bulk[i].supply = vregs[i].name; 1920 1921 ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk); 1922 if (ret < 0) 1923 return ret; 1924 1925 for (i = 0; i < num_vregs; i++) { 1926 ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA); 1927 if (ret) 1928 return ret; 1929 } 1930 1931 qca->vreg_bulk = bulk; 1932 qca->num_vregs = num_vregs; 1933 1934 return 0; 1935 } 1936 1937 static int qca_serdev_probe(struct serdev_device *serdev) 1938 { 1939 struct qca_serdev *qcadev; 1940 struct hci_dev *hdev; 1941 const struct qca_device_data *data; 1942 int err; 1943 bool power_ctrl_enabled = true; 1944 1945 qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL); 1946 if (!qcadev) 1947 return -ENOMEM; 1948 1949 qcadev->serdev_hu.serdev = serdev; 1950 data = device_get_match_data(&serdev->dev); 1951 serdev_device_set_drvdata(serdev, qcadev); 1952 device_property_read_string(&serdev->dev, "firmware-name", 1953 &qcadev->firmware_name); 1954 device_property_read_u32(&serdev->dev, "max-speed", 1955 &qcadev->oper_speed); 1956 if (!qcadev->oper_speed) 1957 BT_DBG("UART will pick default operating speed"); 1958 1959 if (data && qca_is_wcn399x(data->soc_type)) { 1960 qcadev->btsoc_type = data->soc_type; 1961 qcadev->bt_power = devm_kzalloc(&serdev->dev, 1962 sizeof(struct qca_power), 1963 GFP_KERNEL); 1964 if (!qcadev->bt_power) 1965 return -ENOMEM; 1966 1967 qcadev->bt_power->dev = &serdev->dev; 1968 err = qca_init_regulators(qcadev->bt_power, data->vregs, 1969 data->num_vregs); 1970 if (err) { 1971 BT_ERR("Failed to init regulators:%d", err); 1972 return err; 1973 } 1974 1975 qcadev->bt_power->vregs_on = false; 1976 1977 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL); 1978 if (IS_ERR(qcadev->susclk)) { 1979 dev_err(&serdev->dev, "failed to acquire clk\n"); 1980 return PTR_ERR(qcadev->susclk); 1981 } 1982 1983 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto); 1984 if (err) { 1985 BT_ERR("wcn3990 serdev registration failed"); 1986 return err; 1987 } 1988 } else { 1989 if (data) 1990 qcadev->btsoc_type = data->soc_type; 1991 else 1992 qcadev->btsoc_type = QCA_ROME; 1993 1994 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable", 1995 GPIOD_OUT_LOW); 1996 if (!qcadev->bt_en) { 1997 dev_warn(&serdev->dev, "failed to acquire enable gpio\n"); 1998 power_ctrl_enabled = false; 1999 } 2000 2001 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL); 2002 if (IS_ERR(qcadev->susclk)) { 2003 dev_warn(&serdev->dev, "failed to acquire clk\n"); 2004 return PTR_ERR(qcadev->susclk); 2005 } 2006 err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ); 2007 if (err) 2008 return err; 2009 2010 err = clk_prepare_enable(qcadev->susclk); 2011 if (err) 2012 return err; 2013 2014 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto); 2015 if (err) { 2016 BT_ERR("Rome serdev registration failed"); 2017 clk_disable_unprepare(qcadev->susclk); 2018 return err; 2019 } 2020 } 2021 2022 hdev = qcadev->serdev_hu.hdev; 2023 2024 if (power_ctrl_enabled) { 2025 set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks); 2026 hdev->shutdown = qca_power_off; 2027 } 2028 2029 if (data) { 2030 /* Wideband speech support must be set per driver since it can't 2031 * be queried via hci. Same with the valid le states quirk. 2032 */ 2033 if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH) 2034 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, 2035 &hdev->quirks); 2036 2037 if (data->capabilities & QCA_CAP_VALID_LE_STATES) 2038 set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks); 2039 } 2040 2041 return 0; 2042 } 2043 2044 static void qca_serdev_remove(struct serdev_device *serdev) 2045 { 2046 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); 2047 struct qca_power *power = qcadev->bt_power; 2048 2049 if (qca_is_wcn399x(qcadev->btsoc_type) && power->vregs_on) 2050 qca_power_shutdown(&qcadev->serdev_hu); 2051 else if (qcadev->susclk) 2052 clk_disable_unprepare(qcadev->susclk); 2053 2054 hci_uart_unregister_device(&qcadev->serdev_hu); 2055 } 2056 2057 static void qca_serdev_shutdown(struct device *dev) 2058 { 2059 int ret; 2060 int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS); 2061 struct serdev_device *serdev = to_serdev_device(dev); 2062 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); 2063 const u8 ibs_wake_cmd[] = { 0xFD }; 2064 const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 }; 2065 2066 if (qcadev->btsoc_type == QCA_QCA6390) { 2067 serdev_device_write_flush(serdev); 2068 ret = serdev_device_write_buf(serdev, ibs_wake_cmd, 2069 sizeof(ibs_wake_cmd)); 2070 if (ret < 0) { 2071 BT_ERR("QCA send IBS_WAKE_IND error: %d", ret); 2072 return; 2073 } 2074 serdev_device_wait_until_sent(serdev, timeout); 2075 usleep_range(8000, 10000); 2076 2077 serdev_device_write_flush(serdev); 2078 ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd, 2079 sizeof(edl_reset_soc_cmd)); 2080 if (ret < 0) { 2081 BT_ERR("QCA send EDL_RESET_REQ error: %d", ret); 2082 return; 2083 } 2084 serdev_device_wait_until_sent(serdev, timeout); 2085 usleep_range(8000, 10000); 2086 } 2087 } 2088 2089 static int __maybe_unused qca_suspend(struct device *dev) 2090 { 2091 struct serdev_device *serdev = to_serdev_device(dev); 2092 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); 2093 struct hci_uart *hu = &qcadev->serdev_hu; 2094 struct qca_data *qca = hu->priv; 2095 unsigned long flags; 2096 bool tx_pending = false; 2097 int ret = 0; 2098 u8 cmd; 2099 u32 wait_timeout = 0; 2100 2101 set_bit(QCA_SUSPENDING, &qca->flags); 2102 2103 if (test_bit(QCA_BT_OFF, &qca->flags)) 2104 return 0; 2105 2106 if (test_bit(QCA_IBS_DISABLED, &qca->flags)) { 2107 wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ? 2108 IBS_DISABLE_SSR_TIMEOUT_MS : 2109 FW_DOWNLOAD_TIMEOUT_MS; 2110 2111 /* QCA_IBS_DISABLED flag is set to true, During FW download 2112 * and during memory dump collection. It is reset to false, 2113 * After FW download complete and after memory dump collections. 2114 */ 2115 wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED, 2116 TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout)); 2117 2118 if (test_bit(QCA_IBS_DISABLED, &qca->flags)) { 2119 bt_dev_err(hu->hdev, "SSR or FW download time out"); 2120 ret = -ETIMEDOUT; 2121 goto error; 2122 } 2123 } 2124 2125 /* After memory dump collection, Controller is powered off.*/ 2126 if (test_bit(QCA_BT_OFF, &qca->flags)) 2127 return 0; 2128 2129 cancel_work_sync(&qca->ws_awake_device); 2130 cancel_work_sync(&qca->ws_awake_rx); 2131 2132 spin_lock_irqsave_nested(&qca->hci_ibs_lock, 2133 flags, SINGLE_DEPTH_NESTING); 2134 2135 switch (qca->tx_ibs_state) { 2136 case HCI_IBS_TX_WAKING: 2137 del_timer(&qca->wake_retrans_timer); 2138 fallthrough; 2139 case HCI_IBS_TX_AWAKE: 2140 del_timer(&qca->tx_idle_timer); 2141 2142 serdev_device_write_flush(hu->serdev); 2143 cmd = HCI_IBS_SLEEP_IND; 2144 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd)); 2145 2146 if (ret < 0) { 2147 BT_ERR("Failed to send SLEEP to device"); 2148 break; 2149 } 2150 2151 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP; 2152 qca->ibs_sent_slps++; 2153 tx_pending = true; 2154 break; 2155 2156 case HCI_IBS_TX_ASLEEP: 2157 break; 2158 2159 default: 2160 BT_ERR("Spurious tx state %d", qca->tx_ibs_state); 2161 ret = -EINVAL; 2162 break; 2163 } 2164 2165 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags); 2166 2167 if (ret < 0) 2168 goto error; 2169 2170 if (tx_pending) { 2171 serdev_device_wait_until_sent(hu->serdev, 2172 msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS)); 2173 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu); 2174 } 2175 2176 /* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going 2177 * to sleep, so that the packet does not wake the system later. 2178 */ 2179 ret = wait_event_interruptible_timeout(qca->suspend_wait_q, 2180 qca->rx_ibs_state == HCI_IBS_RX_ASLEEP, 2181 msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS)); 2182 if (ret == 0) { 2183 ret = -ETIMEDOUT; 2184 goto error; 2185 } 2186 2187 return 0; 2188 2189 error: 2190 clear_bit(QCA_SUSPENDING, &qca->flags); 2191 2192 return ret; 2193 } 2194 2195 static int __maybe_unused qca_resume(struct device *dev) 2196 { 2197 struct serdev_device *serdev = to_serdev_device(dev); 2198 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev); 2199 struct hci_uart *hu = &qcadev->serdev_hu; 2200 struct qca_data *qca = hu->priv; 2201 2202 clear_bit(QCA_SUSPENDING, &qca->flags); 2203 2204 return 0; 2205 } 2206 2207 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume); 2208 2209 #ifdef CONFIG_OF 2210 static const struct of_device_id qca_bluetooth_of_match[] = { 2211 { .compatible = "qcom,qca6174-bt" }, 2212 { .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390}, 2213 { .compatible = "qcom,qca9377-bt" }, 2214 { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990}, 2215 { .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991}, 2216 { .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998}, 2217 { /* sentinel */ } 2218 }; 2219 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match); 2220 #endif 2221 2222 #ifdef CONFIG_ACPI 2223 static const struct acpi_device_id qca_bluetooth_acpi_match[] = { 2224 { "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 }, 2225 { "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 }, 2226 { "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 }, 2227 { "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 }, 2228 { }, 2229 }; 2230 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match); 2231 #endif 2232 2233 2234 static struct serdev_device_driver qca_serdev_driver = { 2235 .probe = qca_serdev_probe, 2236 .remove = qca_serdev_remove, 2237 .driver = { 2238 .name = "hci_uart_qca", 2239 .of_match_table = of_match_ptr(qca_bluetooth_of_match), 2240 .acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match), 2241 .shutdown = qca_serdev_shutdown, 2242 .pm = &qca_pm_ops, 2243 }, 2244 }; 2245 2246 int __init qca_init(void) 2247 { 2248 serdev_device_driver_register(&qca_serdev_driver); 2249 2250 return hci_uart_register_proto(&qca_proto); 2251 } 2252 2253 int __exit qca_deinit(void) 2254 { 2255 serdev_device_driver_unregister(&qca_serdev_driver); 2256 2257 return hci_uart_unregister_proto(&qca_proto); 2258 } 2259