xref: /openbmc/linux/drivers/atm/lanai.c (revision c67e8ec0)
1 /* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
2  *
3  *  This program is free software; you can redistribute it and/or
4  *  modify it under the terms of the GNU General Public License
5  *  as published by the Free Software Foundation; either version
6  *  2 of the License, or (at your option) any later version.
7  *
8  * This driver supports ATM cards based on the Efficient "Lanai"
9  * chipset such as the Speedstream 3010 and the ENI-25p.  The
10  * Speedstream 3060 is currently not supported since we don't
11  * have the code to drive the on-board Alcatel DSL chipset (yet).
12  *
13  * Thanks to Efficient for supporting this project with hardware,
14  * documentation, and by answering my questions.
15  *
16  * Things not working yet:
17  *
18  * o  We don't support the Speedstream 3060 yet - this card has
19  *    an on-board DSL modem chip by Alcatel and the driver will
20  *    need some extra code added to handle it
21  *
22  * o  Note that due to limitations of the Lanai only one VCC can be
23  *    in CBR at once
24  *
25  * o We don't currently parse the EEPROM at all.  The code is all
26  *   there as per the spec, but it doesn't actually work.  I think
27  *   there may be some issues with the docs.  Anyway, do NOT
28  *   enable it yet - bugs in that code may actually damage your
29  *   hardware!  Because of this you should hardware an ESI before
30  *   trying to use this in a LANE or MPOA environment.
31  *
32  * o  AAL0 is stubbed in but the actual rx/tx path isn't written yet:
33  *	vcc_tx_aal0() needs to send or queue a SKB
34  *	vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
35  *	vcc_rx_aal0() needs to handle AAL0 interrupts
36  *    This isn't too much work - I just wanted to get other things
37  *    done first.
38  *
39  * o  lanai_change_qos() isn't written yet
40  *
41  * o  There aren't any ioctl's yet -- I'd like to eventually support
42  *    setting loopback and LED modes that way.
43  *
44  * o  If the segmentation engine or DMA gets shut down we should restart
45  *    card as per section 17.0i.  (see lanai_reset)
46  *
47  * o setsockopt(SO_CIRANGE) isn't done (although despite what the
48  *   API says it isn't exactly commonly implemented)
49  */
50 
51 /* Version history:
52  *   v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
53  *   v.0.02 -- 11-JAN-2000 -- Endian fixes
54  *   v.0.01 -- 30-NOV-1999 -- Initial release
55  */
56 
57 #include <linux/module.h>
58 #include <linux/slab.h>
59 #include <linux/mm.h>
60 #include <linux/atmdev.h>
61 #include <asm/io.h>
62 #include <asm/byteorder.h>
63 #include <linux/spinlock.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/init.h>
67 #include <linux/delay.h>
68 #include <linux/interrupt.h>
69 
70 /* -------------------- TUNABLE PARAMATERS: */
71 
72 /*
73  * Maximum number of VCIs per card.  Setting it lower could theoretically
74  * save some memory, but since we allocate our vcc list with get_free_pages,
75  * it's not really likely for most architectures
76  */
77 #define NUM_VCI			(1024)
78 
79 /*
80  * Enable extra debugging
81  */
82 #define DEBUG
83 /*
84  * Debug _all_ register operations with card, except the memory test.
85  * Also disables the timed poll to prevent extra chattiness.  This
86  * isn't for normal use
87  */
88 #undef DEBUG_RW
89 
90 /*
91  * The programming guide specifies a full test of the on-board SRAM
92  * at initialization time.  Undefine to remove this
93  */
94 #define FULL_MEMORY_TEST
95 
96 /*
97  * This is the number of (4 byte) service entries that we will
98  * try to allocate at startup.  Note that we will end up with
99  * one PAGE_SIZE's worth regardless of what this is set to
100  */
101 #define SERVICE_ENTRIES		(1024)
102 /* TODO: make above a module load-time option */
103 
104 /*
105  * We normally read the onboard EEPROM in order to discover our MAC
106  * address.  Undefine to _not_ do this
107  */
108 /* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
109 /* TODO: make above a module load-time option (also) */
110 
111 /*
112  * Depth of TX fifo (in 128 byte units; range 2-31)
113  * Smaller numbers are better for network latency
114  * Larger numbers are better for PCI latency
115  * I'm really sure where the best tradeoff is, but the BSD driver uses
116  * 7 and it seems to work ok.
117  */
118 #define TX_FIFO_DEPTH		(7)
119 /* TODO: make above a module load-time option */
120 
121 /*
122  * How often (in jiffies) we will try to unstick stuck connections -
123  * shouldn't need to happen much
124  */
125 #define LANAI_POLL_PERIOD	(10*HZ)
126 /* TODO: make above a module load-time option */
127 
128 /*
129  * When allocating an AAL5 receiving buffer, try to make it at least
130  * large enough to hold this many max_sdu sized PDUs
131  */
132 #define AAL5_RX_MULTIPLIER	(3)
133 /* TODO: make above a module load-time option */
134 
135 /*
136  * Same for transmitting buffer
137  */
138 #define AAL5_TX_MULTIPLIER	(3)
139 /* TODO: make above a module load-time option */
140 
141 /*
142  * When allocating an AAL0 transmiting buffer, how many cells should fit.
143  * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
144  * really critical
145  */
146 #define AAL0_TX_MULTIPLIER	(40)
147 /* TODO: make above a module load-time option */
148 
149 /*
150  * How large should we make the AAL0 receiving buffer.  Remember that this
151  * is shared between all AAL0 VC's
152  */
153 #define AAL0_RX_BUFFER_SIZE	(PAGE_SIZE)
154 /* TODO: make above a module load-time option */
155 
156 /*
157  * Should we use Lanai's "powerdown" feature when no vcc's are bound?
158  */
159 /* #define USE_POWERDOWN */
160 /* TODO: make above a module load-time option (also) */
161 
162 /* -------------------- DEBUGGING AIDS: */
163 
164 #define DEV_LABEL "lanai"
165 
166 #ifdef DEBUG
167 
168 #define DPRINTK(format, args...) \
169 	printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
170 #define APRINTK(truth, format, args...) \
171 	do { \
172 		if (unlikely(!(truth))) \
173 			printk(KERN_ERR DEV_LABEL ": " format, ##args); \
174 	} while (0)
175 
176 #else /* !DEBUG */
177 
178 #define DPRINTK(format, args...)
179 #define APRINTK(truth, format, args...)
180 
181 #endif /* DEBUG */
182 
183 #ifdef DEBUG_RW
184 #define RWDEBUG(format, args...) \
185 	printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
186 #else /* !DEBUG_RW */
187 #define RWDEBUG(format, args...)
188 #endif
189 
190 /* -------------------- DATA DEFINITIONS: */
191 
192 #define LANAI_MAPPING_SIZE	(0x40000)
193 #define LANAI_EEPROM_SIZE	(128)
194 
195 typedef int vci_t;
196 typedef void __iomem *bus_addr_t;
197 
198 /* DMA buffer in host memory for TX, RX, or service list. */
199 struct lanai_buffer {
200 	u32 *start;	/* From get_free_pages */
201 	u32 *end;	/* One past last byte */
202 	u32 *ptr;	/* Pointer to current host location */
203 	dma_addr_t dmaaddr;
204 };
205 
206 struct lanai_vcc_stats {
207 	unsigned rx_nomem;
208 	union {
209 		struct {
210 			unsigned rx_badlen;
211 			unsigned service_trash;
212 			unsigned service_stream;
213 			unsigned service_rxcrc;
214 		} aal5;
215 		struct {
216 		} aal0;
217 	} x;
218 };
219 
220 struct lanai_dev;			/* Forward declaration */
221 
222 /*
223  * This is the card-specific per-vcc data.  Note that unlike some other
224  * drivers there is NOT a 1-to-1 correspondance between these and
225  * atm_vcc's - each one of these represents an actual 2-way vcc, but
226  * an atm_vcc can be 1-way and share with a 1-way vcc in the other
227  * direction.  To make it weirder, there can even be 0-way vccs
228  * bound to us, waiting to do a change_qos
229  */
230 struct lanai_vcc {
231 	bus_addr_t vbase;		/* Base of VCC's registers */
232 	struct lanai_vcc_stats stats;
233 	int nref;			/* # of atm_vcc's who reference us */
234 	vci_t vci;
235 	struct {
236 		struct lanai_buffer buf;
237 		struct atm_vcc *atmvcc;	/* atm_vcc who is receiver */
238 	} rx;
239 	struct {
240 		struct lanai_buffer buf;
241 		struct atm_vcc *atmvcc;	/* atm_vcc who is transmitter */
242 		int endptr;		/* last endptr from service entry */
243 		struct sk_buff_head backlog;
244 		void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
245 	} tx;
246 };
247 
248 enum lanai_type {
249 	lanai2	= PCI_DEVICE_ID_EF_ATM_LANAI2,
250 	lanaihb	= PCI_DEVICE_ID_EF_ATM_LANAIHB
251 };
252 
253 struct lanai_dev_stats {
254 	unsigned ovfl_trash;	/* # of cells dropped - buffer overflow */
255 	unsigned vci_trash;	/* # of cells dropped - closed vci */
256 	unsigned hec_err;	/* # of cells dropped - bad HEC */
257 	unsigned atm_ovfl;	/* # of cells dropped - rx fifo overflow */
258 	unsigned pcierr_parity_detect;
259 	unsigned pcierr_serr_set;
260 	unsigned pcierr_master_abort;
261 	unsigned pcierr_m_target_abort;
262 	unsigned pcierr_s_target_abort;
263 	unsigned pcierr_master_parity;
264 	unsigned service_notx;
265 	unsigned service_norx;
266 	unsigned service_rxnotaal5;
267 	unsigned dma_reenable;
268 	unsigned card_reset;
269 };
270 
271 struct lanai_dev {
272 	bus_addr_t base;
273 	struct lanai_dev_stats stats;
274 	struct lanai_buffer service;
275 	struct lanai_vcc **vccs;
276 #ifdef USE_POWERDOWN
277 	int nbound;			/* number of bound vccs */
278 #endif
279 	enum lanai_type type;
280 	vci_t num_vci;			/* Currently just NUM_VCI */
281 	u8 eeprom[LANAI_EEPROM_SIZE];
282 	u32 serialno, magicno;
283 	struct pci_dev *pci;
284 	DECLARE_BITMAP(backlog_vccs, NUM_VCI);   /* VCCs with tx backlog */
285 	DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
286 	struct timer_list timer;
287 	int naal0;
288 	struct lanai_buffer aal0buf;	/* AAL0 RX buffers */
289 	u32 conf1, conf2;		/* CONFIG[12] registers */
290 	u32 status;			/* STATUS register */
291 	spinlock_t endtxlock;
292 	spinlock_t servicelock;
293 	struct atm_vcc *cbrvcc;
294 	int number;
295 	int board_rev;
296 /* TODO - look at race conditions with maintence of conf1/conf2 */
297 /* TODO - transmit locking: should we use _irq not _irqsave? */
298 /* TODO - organize above in some rational fashion (see <asm/cache.h>) */
299 };
300 
301 /*
302  * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
303  * This function iterates one of these, calling a given function for each
304  * vci with their bit set
305  */
306 static void vci_bitfield_iterate(struct lanai_dev *lanai,
307 	const unsigned long *lp,
308 	void (*func)(struct lanai_dev *,vci_t vci))
309 {
310 	vci_t vci;
311 
312 	for_each_set_bit(vci, lp, NUM_VCI)
313 		func(lanai, vci);
314 }
315 
316 /* -------------------- BUFFER  UTILITIES: */
317 
318 /*
319  * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
320  * usually any page allocation will do.  Just to be safe in case
321  * PAGE_SIZE is insanely tiny, though...
322  */
323 #define LANAI_PAGE_SIZE   ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
324 
325 /*
326  * Allocate a buffer in host RAM for service list, RX, or TX
327  * Returns buf->start==NULL if no memory
328  * Note that the size will be rounded up 2^n bytes, and
329  * if we can't allocate that we'll settle for something smaller
330  * until minbytes
331  */
332 static void lanai_buf_allocate(struct lanai_buffer *buf,
333 	size_t bytes, size_t minbytes, struct pci_dev *pci)
334 {
335 	int size;
336 
337 	if (bytes > (128 * 1024))	/* max lanai buffer size */
338 		bytes = 128 * 1024;
339 	for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
340 		;
341 	if (minbytes < LANAI_PAGE_SIZE)
342 		minbytes = LANAI_PAGE_SIZE;
343 	do {
344 		/*
345 		 * Technically we could use non-consistent mappings for
346 		 * everything, but the way the lanai uses DMA memory would
347 		 * make that a terrific pain.  This is much simpler.
348 		 */
349 		buf->start = dma_alloc_coherent(&pci->dev,
350 						size, &buf->dmaaddr, GFP_KERNEL);
351 		if (buf->start != NULL) {	/* Success */
352 			/* Lanai requires 256-byte alignment of DMA bufs */
353 			APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
354 			    "bad dmaaddr: 0x%lx\n",
355 			    (unsigned long) buf->dmaaddr);
356 			buf->ptr = buf->start;
357 			buf->end = (u32 *)
358 			    (&((unsigned char *) buf->start)[size]);
359 			memset(buf->start, 0, size);
360 			break;
361 		}
362 		size /= 2;
363 	} while (size >= minbytes);
364 }
365 
366 /* size of buffer in bytes */
367 static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
368 {
369 	return ((unsigned long) buf->end) - ((unsigned long) buf->start);
370 }
371 
372 static void lanai_buf_deallocate(struct lanai_buffer *buf,
373 	struct pci_dev *pci)
374 {
375 	if (buf->start != NULL) {
376 		dma_free_coherent(&pci->dev, lanai_buf_size(buf),
377 				  buf->start, buf->dmaaddr);
378 		buf->start = buf->end = buf->ptr = NULL;
379 	}
380 }
381 
382 /* size of buffer as "card order" (0=1k .. 7=128k) */
383 static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
384 {
385 	int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
386 
387 	/* This can only happen if PAGE_SIZE is gigantic, but just in case */
388 	if (order > 7)
389 		order = 7;
390 	return order;
391 }
392 
393 /* -------------------- PORT I/O UTILITIES: */
394 
395 /* Registers (and their bit-fields) */
396 enum lanai_register {
397 	Reset_Reg		= 0x00,	/* Reset; read for chip type; bits: */
398 #define   RESET_GET_BOARD_REV(x)    (((x)>> 0)&0x03)	/* Board revision */
399 #define   RESET_GET_BOARD_ID(x)	    (((x)>> 2)&0x03)	/* Board ID */
400 #define     BOARD_ID_LANAI256		(0)	/* 25.6M adapter card */
401 	Endian_Reg		= 0x04,	/* Endian setting */
402 	IntStatus_Reg		= 0x08,	/* Interrupt status */
403 	IntStatusMasked_Reg	= 0x0C,	/* Interrupt status (masked) */
404 	IntAck_Reg		= 0x10,	/* Interrupt acknowledge */
405 	IntAckMasked_Reg	= 0x14,	/* Interrupt acknowledge (masked) */
406 	IntStatusSet_Reg	= 0x18,	/* Get status + enable/disable */
407 	IntStatusSetMasked_Reg	= 0x1C,	/* Get status + en/di (masked) */
408 	IntControlEna_Reg	= 0x20,	/* Interrupt control enable */
409 	IntControlDis_Reg	= 0x24,	/* Interrupt control disable */
410 	Status_Reg		= 0x28,	/* Status */
411 #define   STATUS_PROMDATA	 (0x00000001)	/* PROM_DATA pin */
412 #define   STATUS_WAITING	 (0x00000002)	/* Interrupt being delayed */
413 #define	  STATUS_SOOL		 (0x00000004)	/* SOOL alarm */
414 #define   STATUS_LOCD		 (0x00000008)	/* LOCD alarm */
415 #define	  STATUS_LED		 (0x00000010)	/* LED (HAPPI) output */
416 #define   STATUS_GPIN		 (0x00000020)	/* GPIN pin */
417 #define   STATUS_BUTTBUSY	 (0x00000040)	/* Butt register is pending */
418 	Config1_Reg		= 0x2C,	/* Config word 1; bits: */
419 #define   CONFIG1_PROMDATA	 (0x00000001)	/* PROM_DATA pin */
420 #define   CONFIG1_PROMCLK	 (0x00000002)	/* PROM_CLK pin */
421 #define   CONFIG1_SET_READMODE(x) ((x)*0x004)	/* PCI BM reads; values: */
422 #define     READMODE_PLAIN	    (0)		/*   Plain memory read */
423 #define     READMODE_LINE	    (2)		/*   Memory read line */
424 #define     READMODE_MULTIPLE	    (3)		/*   Memory read multiple */
425 #define   CONFIG1_DMA_ENABLE	 (0x00000010)	/* Turn on DMA */
426 #define   CONFIG1_POWERDOWN	 (0x00000020)	/* Turn off clocks */
427 #define   CONFIG1_SET_LOOPMODE(x) ((x)*0x080)	/* Clock&loop mode; values: */
428 #define     LOOPMODE_NORMAL	    (0)		/*   Normal - no loop */
429 #define     LOOPMODE_TIME	    (1)
430 #define     LOOPMODE_DIAG	    (2)
431 #define     LOOPMODE_LINE	    (3)
432 #define   CONFIG1_MASK_LOOPMODE  (0x00000180)
433 #define   CONFIG1_SET_LEDMODE(x) ((x)*0x0200)	/* Mode of LED; values: */
434 #define     LEDMODE_NOT_SOOL	    (0)		/*   !SOOL */
435 #define	    LEDMODE_OFF		    (1)		/*   0     */
436 #define	    LEDMODE_ON		    (2)		/*   1     */
437 #define	    LEDMODE_NOT_LOCD	    (3)		/*   !LOCD */
438 #define	    LEDMORE_GPIN	    (4)		/*   GPIN  */
439 #define     LEDMODE_NOT_GPIN	    (7)		/*   !GPIN */
440 #define   CONFIG1_MASK_LEDMODE	 (0x00000E00)
441 #define   CONFIG1_GPOUT1	 (0x00001000)	/* Toggle for reset */
442 #define   CONFIG1_GPOUT2	 (0x00002000)	/* Loopback PHY */
443 #define   CONFIG1_GPOUT3	 (0x00004000)	/* Loopback lanai */
444 	Config2_Reg		= 0x30,	/* Config word 2; bits: */
445 #define   CONFIG2_HOWMANY	 (0x00000001)	/* >512 VCIs? */
446 #define   CONFIG2_PTI7_MODE	 (0x00000002)	/* Make PTI=7 RM, not OAM */
447 #define   CONFIG2_VPI_CHK_DIS	 (0x00000004)	/* Ignore RX VPI value */
448 #define   CONFIG2_HEC_DROP	 (0x00000008)	/* Drop cells w/ HEC errors */
449 #define   CONFIG2_VCI0_NORMAL	 (0x00000010)	/* Treat VCI=0 normally */
450 #define   CONFIG2_CBR_ENABLE	 (0x00000020)	/* Deal with CBR traffic */
451 #define   CONFIG2_TRASH_ALL	 (0x00000040)	/* Trashing incoming cells */
452 #define   CONFIG2_TX_DISABLE	 (0x00000080)	/* Trashing outgoing cells */
453 #define   CONFIG2_SET_TRASH	 (0x00000100)	/* Turn trashing on */
454 	Statistics_Reg		= 0x34,	/* Statistics; bits: */
455 #define   STATS_GET_FIFO_OVFL(x)    (((x)>> 0)&0xFF)	/* FIFO overflowed */
456 #define   STATS_GET_HEC_ERR(x)      (((x)>> 8)&0xFF)	/* HEC was bad */
457 #define   STATS_GET_BAD_VCI(x)      (((x)>>16)&0xFF)	/* VCI not open */
458 #define   STATS_GET_BUF_OVFL(x)     (((x)>>24)&0xFF)	/* VCC buffer full */
459 	ServiceStuff_Reg	= 0x38,	/* Service stuff; bits: */
460 #define   SSTUFF_SET_SIZE(x) ((x)*0x20000000)	/* size of service buffer */
461 #define   SSTUFF_SET_ADDR(x)	    ((x)>>8)	/* set address of buffer */
462 	ServWrite_Reg		= 0x3C,	/* ServWrite Pointer */
463 	ServRead_Reg		= 0x40,	/* ServRead Pointer */
464 	TxDepth_Reg		= 0x44,	/* FIFO Transmit Depth */
465 	Butt_Reg		= 0x48,	/* Butt register */
466 	CBR_ICG_Reg		= 0x50,
467 	CBR_PTR_Reg		= 0x54,
468 	PingCount_Reg		= 0x58,	/* Ping count */
469 	DMA_Addr_Reg		= 0x5C	/* DMA address */
470 };
471 
472 static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
473 	enum lanai_register reg)
474 {
475 	return lanai->base + reg;
476 }
477 
478 static inline u32 reg_read(const struct lanai_dev *lanai,
479 	enum lanai_register reg)
480 {
481 	u32 t;
482 	t = readl(reg_addr(lanai, reg));
483 	RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
484 	    (int) reg, t);
485 	return t;
486 }
487 
488 static inline void reg_write(const struct lanai_dev *lanai, u32 val,
489 	enum lanai_register reg)
490 {
491 	RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
492 	    (int) reg, val);
493 	writel(val, reg_addr(lanai, reg));
494 }
495 
496 static inline void conf1_write(const struct lanai_dev *lanai)
497 {
498 	reg_write(lanai, lanai->conf1, Config1_Reg);
499 }
500 
501 static inline void conf2_write(const struct lanai_dev *lanai)
502 {
503 	reg_write(lanai, lanai->conf2, Config2_Reg);
504 }
505 
506 /* Same as conf2_write(), but defers I/O if we're powered down */
507 static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
508 {
509 #ifdef USE_POWERDOWN
510 	if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
511 		return;
512 #endif /* USE_POWERDOWN */
513 	conf2_write(lanai);
514 }
515 
516 static inline void reset_board(const struct lanai_dev *lanai)
517 {
518 	DPRINTK("about to reset board\n");
519 	reg_write(lanai, 0, Reset_Reg);
520 	/*
521 	 * If we don't delay a little while here then we can end up
522 	 * leaving the card in a VERY weird state and lock up the
523 	 * PCI bus.  This isn't documented anywhere but I've convinced
524 	 * myself after a lot of painful experimentation
525 	 */
526 	udelay(5);
527 }
528 
529 /* -------------------- CARD SRAM UTILITIES: */
530 
531 /* The SRAM is mapped into normal PCI memory space - the only catch is
532  * that it is only 16-bits wide but must be accessed as 32-bit.  The
533  * 16 high bits will be zero.  We don't hide this, since they get
534  * programmed mostly like discrete registers anyway
535  */
536 #define SRAM_START (0x20000)
537 #define SRAM_BYTES (0x20000)	/* Again, half don't really exist */
538 
539 static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
540 {
541 	return lanai->base + SRAM_START + offset;
542 }
543 
544 static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
545 {
546 	return readl(sram_addr(lanai, offset));
547 }
548 
549 static inline void sram_write(const struct lanai_dev *lanai,
550 	u32 val, int offset)
551 {
552 	writel(val, sram_addr(lanai, offset));
553 }
554 
555 static int sram_test_word(const struct lanai_dev *lanai, int offset,
556 			  u32 pattern)
557 {
558 	u32 readback;
559 	sram_write(lanai, pattern, offset);
560 	readback = sram_read(lanai, offset);
561 	if (likely(readback == pattern))
562 		return 0;
563 	printk(KERN_ERR DEV_LABEL
564 	    "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
565 	    lanai->number, offset,
566 	    (unsigned int) pattern, (unsigned int) readback);
567 	return -EIO;
568 }
569 
570 static int sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
571 {
572 	int offset, result = 0;
573 	for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
574 		result = sram_test_word(lanai, offset, pattern);
575 	return result;
576 }
577 
578 static int sram_test_and_clear(const struct lanai_dev *lanai)
579 {
580 #ifdef FULL_MEMORY_TEST
581 	int result;
582 	DPRINTK("testing SRAM\n");
583 	if ((result = sram_test_pass(lanai, 0x5555)) != 0)
584 		return result;
585 	if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
586 		return result;
587 #endif
588 	DPRINTK("clearing SRAM\n");
589 	return sram_test_pass(lanai, 0x0000);
590 }
591 
592 /* -------------------- CARD-BASED VCC TABLE UTILITIES: */
593 
594 /* vcc table */
595 enum lanai_vcc_offset {
596 	vcc_rxaddr1		= 0x00,	/* Location1, plus bits: */
597 #define   RXADDR1_SET_SIZE(x) ((x)*0x0000100)	/* size of RX buffer */
598 #define   RXADDR1_SET_RMMODE(x) ((x)*0x00800)	/* RM cell action; values: */
599 #define     RMMODE_TRASH	  (0)		/*   discard */
600 #define     RMMODE_PRESERVE	  (1)		/*   input as AAL0 */
601 #define     RMMODE_PIPE		  (2)		/*   pipe to coscheduler */
602 #define     RMMODE_PIPEALL	  (3)		/*   pipe non-RM too */
603 #define   RXADDR1_OAM_PRESERVE	 (0x00002000)	/* Input OAM cells as AAL0 */
604 #define   RXADDR1_SET_MODE(x) ((x)*0x0004000)	/* Reassembly mode */
605 #define     RXMODE_TRASH	  (0)		/*   discard */
606 #define     RXMODE_AAL0		  (1)		/*   non-AAL5 mode */
607 #define     RXMODE_AAL5		  (2)		/*   AAL5, intr. each PDU */
608 #define     RXMODE_AAL5_STREAM	  (3)		/*   AAL5 w/o per-PDU intr */
609 	vcc_rxaddr2		= 0x04,	/* Location2 */
610 	vcc_rxcrc1		= 0x08,	/* RX CRC claculation space */
611 	vcc_rxcrc2		= 0x0C,
612 	vcc_rxwriteptr		= 0x10, /* RX writeptr, plus bits: */
613 #define   RXWRITEPTR_LASTEFCI	 (0x00002000)	/* Last PDU had EFCI bit */
614 #define   RXWRITEPTR_DROPPING	 (0x00004000)	/* Had error, dropping */
615 #define   RXWRITEPTR_TRASHING	 (0x00008000)	/* Trashing */
616 	vcc_rxbufstart		= 0x14,	/* RX bufstart, plus bits: */
617 #define   RXBUFSTART_CLP	 (0x00004000)
618 #define   RXBUFSTART_CI		 (0x00008000)
619 	vcc_rxreadptr		= 0x18,	/* RX readptr */
620 	vcc_txicg		= 0x1C, /* TX ICG */
621 	vcc_txaddr1		= 0x20,	/* Location1, plus bits: */
622 #define   TXADDR1_SET_SIZE(x) ((x)*0x0000100)	/* size of TX buffer */
623 #define   TXADDR1_ABR		 (0x00008000)	/* use ABR (doesn't work) */
624 	vcc_txaddr2		= 0x24,	/* Location2 */
625 	vcc_txcrc1		= 0x28,	/* TX CRC claculation space */
626 	vcc_txcrc2		= 0x2C,
627 	vcc_txreadptr		= 0x30, /* TX Readptr, plus bits: */
628 #define   TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
629 #define   TXREADPTR_MASK_DELTA	(0x0000E000)	/* ? */
630 	vcc_txendptr		= 0x34, /* TX Endptr, plus bits: */
631 #define   TXENDPTR_CLP		(0x00002000)
632 #define   TXENDPTR_MASK_PDUMODE	(0x0000C000)	/* PDU mode; values: */
633 #define     PDUMODE_AAL0	 (0*0x04000)
634 #define     PDUMODE_AAL5	 (2*0x04000)
635 #define     PDUMODE_AAL5STREAM	 (3*0x04000)
636 	vcc_txwriteptr		= 0x38,	/* TX Writeptr */
637 #define   TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
638 	vcc_txcbr_next		= 0x3C	/* # of next CBR VCI in ring */
639 #define   TXCBR_NEXT_BOZO	(0x00008000)	/* "bozo bit" */
640 };
641 
642 #define CARDVCC_SIZE	(0x40)
643 
644 static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
645 	vci_t vci)
646 {
647 	return sram_addr(lanai, vci * CARDVCC_SIZE);
648 }
649 
650 static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
651 	enum lanai_vcc_offset offset)
652 {
653 	u32 val;
654 	APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
655 	val= readl(lvcc->vbase + offset);
656 	RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
657 	    lvcc->vci, (int) offset, val);
658 	return val;
659 }
660 
661 static inline void cardvcc_write(const struct lanai_vcc *lvcc,
662 	u32 val, enum lanai_vcc_offset offset)
663 {
664 	APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
665 	APRINTK((val & ~0xFFFF) == 0,
666 	    "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
667 	    (unsigned int) val, lvcc->vci, (unsigned int) offset);
668 	RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
669 	    lvcc->vci, (unsigned int) offset, (unsigned int) val);
670 	writel(val, lvcc->vbase + offset);
671 }
672 
673 /* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
674 
675 /* How many bytes will an AAL5 PDU take to transmit - remember that:
676  *   o  we need to add 8 bytes for length, CPI, UU, and CRC
677  *   o  we need to round up to 48 bytes for cells
678  */
679 static inline int aal5_size(int size)
680 {
681 	int cells = (size + 8 + 47) / 48;
682 	return cells * 48;
683 }
684 
685 /* -------------------- FREE AN ATM SKB: */
686 
687 static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
688 {
689 	if (atmvcc->pop != NULL)
690 		atmvcc->pop(atmvcc, skb);
691 	else
692 		dev_kfree_skb_any(skb);
693 }
694 
695 /* -------------------- TURN VCCS ON AND OFF: */
696 
697 static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
698 {
699 	u32 addr1;
700 	if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
701 		dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
702 		cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
703 		cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
704 		cardvcc_write(lvcc, 0, vcc_rxwriteptr);
705 		cardvcc_write(lvcc, 0, vcc_rxbufstart);
706 		cardvcc_write(lvcc, 0, vcc_rxreadptr);
707 		cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
708 		addr1 = ((dmaaddr >> 8) & 0xFF) |
709 		    RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
710 		    RXADDR1_SET_RMMODE(RMMODE_TRASH) |	/* ??? */
711 		 /* RXADDR1_OAM_PRESERVE |	--- no OAM support yet */
712 		    RXADDR1_SET_MODE(RXMODE_AAL5);
713 	} else
714 		addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
715 		    RXADDR1_OAM_PRESERVE |		      /* ??? */
716 		    RXADDR1_SET_MODE(RXMODE_AAL0);
717 	/* This one must be last! */
718 	cardvcc_write(lvcc, addr1, vcc_rxaddr1);
719 }
720 
721 static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
722 {
723 	dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
724 	cardvcc_write(lvcc, 0, vcc_txicg);
725 	cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
726 	cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
727 	cardvcc_write(lvcc, 0, vcc_txreadptr);
728 	cardvcc_write(lvcc, 0, vcc_txendptr);
729 	cardvcc_write(lvcc, 0, vcc_txwriteptr);
730 	cardvcc_write(lvcc,
731 		(lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
732 		TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
733 	cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
734 	cardvcc_write(lvcc,
735 	    ((dmaaddr >> 8) & 0xFF) |
736 	    TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
737 	    vcc_txaddr1);
738 }
739 
740 /* Shutdown receiving on card */
741 static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
742 {
743 	if (lvcc->vbase == NULL)	/* We were never bound to a VCI */
744 		return;
745 	/* 15.1.1 - set to trashing, wait one cell time (15us) */
746 	cardvcc_write(lvcc,
747 	    RXADDR1_SET_RMMODE(RMMODE_TRASH) |
748 	    RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
749 	udelay(15);
750 	/* 15.1.2 - clear rest of entries */
751 	cardvcc_write(lvcc, 0, vcc_rxaddr2);
752 	cardvcc_write(lvcc, 0, vcc_rxcrc1);
753 	cardvcc_write(lvcc, 0, vcc_rxcrc2);
754 	cardvcc_write(lvcc, 0, vcc_rxwriteptr);
755 	cardvcc_write(lvcc, 0, vcc_rxbufstart);
756 	cardvcc_write(lvcc, 0, vcc_rxreadptr);
757 }
758 
759 /* Shutdown transmitting on card.
760  * Unfortunately the lanai needs us to wait until all the data
761  * drains out of the buffer before we can dealloc it, so this
762  * can take awhile -- up to 370ms for a full 128KB buffer
763  * assuming everone else is quiet.  In theory the time is
764  * boundless if there's a CBR VCC holding things up.
765  */
766 static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
767 	struct lanai_vcc *lvcc)
768 {
769 	struct sk_buff *skb;
770 	unsigned long flags, timeout;
771 	int read, write, lastread = -1;
772 	APRINTK(!in_interrupt(),
773 	    "lanai_shutdown_tx_vci called w/o process context!\n");
774 	if (lvcc->vbase == NULL)	/* We were never bound to a VCI */
775 		return;
776 	/* 15.2.1 - wait for queue to drain */
777 	while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
778 		lanai_free_skb(lvcc->tx.atmvcc, skb);
779 	read_lock_irqsave(&vcc_sklist_lock, flags);
780 	__clear_bit(lvcc->vci, lanai->backlog_vccs);
781 	read_unlock_irqrestore(&vcc_sklist_lock, flags);
782 	/*
783 	 * We need to wait for the VCC to drain but don't wait forever.  We
784 	 * give each 1K of buffer size 1/128th of a second to clear out.
785 	 * TODO: maybe disable CBR if we're about to timeout?
786 	 */
787 	timeout = jiffies +
788 	    (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
789 	write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
790 	for (;;) {
791 		read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
792 		if (read == write &&	   /* Is TX buffer empty? */
793 		    (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
794 		    (cardvcc_read(lvcc, vcc_txcbr_next) &
795 		    TXCBR_NEXT_BOZO) == 0))
796 			break;
797 		if (read != lastread) {	   /* Has there been any progress? */
798 			lastread = read;
799 			timeout += HZ / 10;
800 		}
801 		if (unlikely(time_after(jiffies, timeout))) {
802 			printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
803 			    "backlog closing vci %d\n",
804 			    lvcc->tx.atmvcc->dev->number, lvcc->vci);
805 			DPRINTK("read, write = %d, %d\n", read, write);
806 			break;
807 		}
808 		msleep(40);
809 	}
810 	/* 15.2.2 - clear out all tx registers */
811 	cardvcc_write(lvcc, 0, vcc_txreadptr);
812 	cardvcc_write(lvcc, 0, vcc_txwriteptr);
813 	cardvcc_write(lvcc, 0, vcc_txendptr);
814 	cardvcc_write(lvcc, 0, vcc_txcrc1);
815 	cardvcc_write(lvcc, 0, vcc_txcrc2);
816 	cardvcc_write(lvcc, 0, vcc_txaddr2);
817 	cardvcc_write(lvcc, 0, vcc_txaddr1);
818 }
819 
820 /* -------------------- MANAGING AAL0 RX BUFFER: */
821 
822 static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
823 {
824 	DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
825 	lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
826 			   lanai->pci);
827 	return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
828 }
829 
830 static inline void aal0_buffer_free(struct lanai_dev *lanai)
831 {
832 	DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
833 	lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
834 }
835 
836 /* -------------------- EEPROM UTILITIES: */
837 
838 /* Offsets of data in the EEPROM */
839 #define EEPROM_COPYRIGHT	(0)
840 #define EEPROM_COPYRIGHT_LEN	(44)
841 #define EEPROM_CHECKSUM		(62)
842 #define EEPROM_CHECKSUM_REV	(63)
843 #define EEPROM_MAC		(64)
844 #define EEPROM_MAC_REV		(70)
845 #define EEPROM_SERIAL		(112)
846 #define EEPROM_SERIAL_REV	(116)
847 #define EEPROM_MAGIC		(120)
848 #define EEPROM_MAGIC_REV	(124)
849 
850 #define EEPROM_MAGIC_VALUE	(0x5AB478D2)
851 
852 #ifndef READ_EEPROM
853 
854 /* Stub functions to use if EEPROM reading is disabled */
855 static int eeprom_read(struct lanai_dev *lanai)
856 {
857 	printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
858 	    lanai->number);
859 	memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
860 	return 0;
861 }
862 
863 static int eeprom_validate(struct lanai_dev *lanai)
864 {
865 	lanai->serialno = 0;
866 	lanai->magicno = EEPROM_MAGIC_VALUE;
867 	return 0;
868 }
869 
870 #else /* READ_EEPROM */
871 
872 static int eeprom_read(struct lanai_dev *lanai)
873 {
874 	int i, address;
875 	u8 data;
876 	u32 tmp;
877 #define set_config1(x)   do { lanai->conf1 = x; conf1_write(lanai); \
878 			    } while (0)
879 #define clock_h()	 set_config1(lanai->conf1 | CONFIG1_PROMCLK)
880 #define clock_l()	 set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
881 #define data_h()	 set_config1(lanai->conf1 | CONFIG1_PROMDATA)
882 #define data_l()	 set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
883 #define pre_read()	 do { data_h(); clock_h(); udelay(5); } while (0)
884 #define read_pin()	 (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
885 #define send_stop()	 do { data_l(); udelay(5); clock_h(); udelay(5); \
886 			      data_h(); udelay(5); } while (0)
887 	/* start with both clock and data high */
888 	data_h(); clock_h(); udelay(5);
889 	for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
890 		data = (address << 1) | 1;	/* Command=read + address */
891 		/* send start bit */
892 		data_l(); udelay(5);
893 		clock_l(); udelay(5);
894 		for (i = 128; i != 0; i >>= 1) {   /* write command out */
895 			tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
896 			    ((data & i) ? CONFIG1_PROMDATA : 0);
897 			if (lanai->conf1 != tmp) {
898 				set_config1(tmp);
899 				udelay(5);	/* Let new data settle */
900 			}
901 			clock_h(); udelay(5); clock_l(); udelay(5);
902 		}
903 		/* look for ack */
904 		data_h(); clock_h(); udelay(5);
905 		if (read_pin() != 0)
906 			goto error;	/* No ack seen */
907 		clock_l(); udelay(5);
908 		/* read back result */
909 		for (data = 0, i = 7; i >= 0; i--) {
910 			data_h(); clock_h(); udelay(5);
911 			data = (data << 1) | !!read_pin();
912 			clock_l(); udelay(5);
913 		}
914 		/* look again for ack */
915 		data_h(); clock_h(); udelay(5);
916 		if (read_pin() == 0)
917 			goto error;	/* Spurious ack */
918 		clock_l(); udelay(5);
919 		send_stop();
920 		lanai->eeprom[address] = data;
921 		DPRINTK("EEPROM 0x%04X %02X\n",
922 		    (unsigned int) address, (unsigned int) data);
923 	}
924 	return 0;
925     error:
926 	clock_l(); udelay(5);		/* finish read */
927 	send_stop();
928 	printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
929 	    lanai->number, address);
930 	return -EIO;
931 #undef set_config1
932 #undef clock_h
933 #undef clock_l
934 #undef data_h
935 #undef data_l
936 #undef pre_read
937 #undef read_pin
938 #undef send_stop
939 }
940 
941 /* read a big-endian 4-byte value out of eeprom */
942 static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
943 {
944 	return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
945 }
946 
947 /* Checksum/validate EEPROM contents */
948 static int eeprom_validate(struct lanai_dev *lanai)
949 {
950 	int i, s;
951 	u32 v;
952 	const u8 *e = lanai->eeprom;
953 #ifdef DEBUG
954 	/* First, see if we can get an ASCIIZ string out of the copyright */
955 	for (i = EEPROM_COPYRIGHT;
956 	    i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
957 		if (e[i] < 0x20 || e[i] > 0x7E)
958 			break;
959 	if ( i != EEPROM_COPYRIGHT &&
960 	    i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
961 		DPRINTK("eeprom: copyright = \"%s\"\n",
962 		    (char *) &e[EEPROM_COPYRIGHT]);
963 	else
964 		DPRINTK("eeprom: copyright not found\n");
965 #endif
966 	/* Validate checksum */
967 	for (i = s = 0; i < EEPROM_CHECKSUM; i++)
968 		s += e[i];
969 	s &= 0xFF;
970 	if (s != e[EEPROM_CHECKSUM]) {
971 		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
972 		    "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
973 		    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
974 		return -EIO;
975 	}
976 	s ^= 0xFF;
977 	if (s != e[EEPROM_CHECKSUM_REV]) {
978 		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
979 		    "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
980 		    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
981 		return -EIO;
982 	}
983 	/* Verify MAC address */
984 	for (i = 0; i < 6; i++)
985 		if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
986 			printk(KERN_ERR DEV_LABEL
987 			    "(itf %d) : EEPROM MAC addresses don't match "
988 			    "(0x%02X, inverse 0x%02X)\n", lanai->number,
989 			    (unsigned int) e[EEPROM_MAC + i],
990 			    (unsigned int) e[EEPROM_MAC_REV + i]);
991 			return -EIO;
992 		}
993 	DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]);
994 	/* Verify serial number */
995 	lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
996 	v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
997 	if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
998 		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
999 		    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1000 		    (unsigned int) lanai->serialno, (unsigned int) v);
1001 		return -EIO;
1002 	}
1003 	DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
1004 	/* Verify magic number */
1005 	lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
1006 	v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
1007 	if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
1008 		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
1009 		    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1010 		    lanai->magicno, v);
1011 		return -EIO;
1012 	}
1013 	DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
1014 	if (lanai->magicno != EEPROM_MAGIC_VALUE)
1015 		printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
1016 		    "magic not what expected (got 0x%08X, not 0x%08X)\n",
1017 		    lanai->number, (unsigned int) lanai->magicno,
1018 		    (unsigned int) EEPROM_MAGIC_VALUE);
1019 	return 0;
1020 }
1021 
1022 #endif /* READ_EEPROM */
1023 
1024 static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
1025 {
1026 	return &lanai->eeprom[EEPROM_MAC];
1027 }
1028 
1029 /* -------------------- INTERRUPT HANDLING UTILITIES: */
1030 
1031 /* Interrupt types */
1032 #define INT_STATS	(0x00000002)	/* Statistics counter overflow */
1033 #define INT_SOOL	(0x00000004)	/* SOOL changed state */
1034 #define INT_LOCD	(0x00000008)	/* LOCD changed state */
1035 #define INT_LED		(0x00000010)	/* LED (HAPPI) changed state */
1036 #define INT_GPIN	(0x00000020)	/* GPIN changed state */
1037 #define INT_PING	(0x00000040)	/* PING_COUNT fulfilled */
1038 #define INT_WAKE	(0x00000080)	/* Lanai wants bus */
1039 #define INT_CBR0	(0x00000100)	/* CBR sched hit VCI 0 */
1040 #define INT_LOCK	(0x00000200)	/* Service list overflow */
1041 #define INT_MISMATCH	(0x00000400)	/* TX magic list mismatch */
1042 #define INT_AAL0_STR	(0x00000800)	/* Non-AAL5 buffer half filled */
1043 #define INT_AAL0	(0x00001000)	/* Non-AAL5 data available */
1044 #define INT_SERVICE	(0x00002000)	/* Service list entries available */
1045 #define INT_TABORTSENT	(0x00004000)	/* Target abort sent by lanai */
1046 #define INT_TABORTBM	(0x00008000)	/* Abort rcv'd as bus master */
1047 #define INT_TIMEOUTBM	(0x00010000)	/* No response to bus master */
1048 #define INT_PCIPARITY	(0x00020000)	/* Parity error on PCI */
1049 
1050 /* Sets of the above */
1051 #define INT_ALL		(0x0003FFFE)	/* All interrupts */
1052 #define INT_STATUS	(0x0000003C)	/* Some status pin changed */
1053 #define INT_DMASHUT	(0x00038000)	/* DMA engine got shut down */
1054 #define INT_SEGSHUT	(0x00000700)	/* Segmentation got shut down */
1055 
1056 static inline u32 intr_pending(const struct lanai_dev *lanai)
1057 {
1058 	return reg_read(lanai, IntStatusMasked_Reg);
1059 }
1060 
1061 static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
1062 {
1063 	reg_write(lanai, i, IntControlEna_Reg);
1064 }
1065 
1066 static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
1067 {
1068 	reg_write(lanai, i, IntControlDis_Reg);
1069 }
1070 
1071 /* -------------------- CARD/PCI STATUS: */
1072 
1073 static void status_message(int itf, const char *name, int status)
1074 {
1075 	static const char *onoff[2] = { "off to on", "on to off" };
1076 	printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
1077 	    itf, name, onoff[!status]);
1078 }
1079 
1080 static void lanai_check_status(struct lanai_dev *lanai)
1081 {
1082 	u32 new = reg_read(lanai, Status_Reg);
1083 	u32 changes = new ^ lanai->status;
1084 	lanai->status = new;
1085 #define e(flag, name) \
1086 		if (changes & flag) \
1087 			status_message(lanai->number, name, new & flag)
1088 	e(STATUS_SOOL, "SOOL");
1089 	e(STATUS_LOCD, "LOCD");
1090 	e(STATUS_LED, "LED");
1091 	e(STATUS_GPIN, "GPIN");
1092 #undef e
1093 }
1094 
1095 static void pcistatus_got(int itf, const char *name)
1096 {
1097 	printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
1098 }
1099 
1100 static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
1101 {
1102 	u16 s;
1103 	int result;
1104 	result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
1105 	if (result != PCIBIOS_SUCCESSFUL) {
1106 		printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
1107 		    "%d\n", lanai->number, result);
1108 		return;
1109 	}
1110 	s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1111 	    PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
1112 	    PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
1113 	if (s == 0)
1114 		return;
1115 	result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
1116 	if (result != PCIBIOS_SUCCESSFUL)
1117 		printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
1118 		    "%d\n", lanai->number, result);
1119 	if (clearonly)
1120 		return;
1121 #define e(flag, name, stat) \
1122 		if (s & flag) { \
1123 			pcistatus_got(lanai->number, name); \
1124 			++lanai->stats.pcierr_##stat; \
1125 		}
1126 	e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
1127 	e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
1128 	e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
1129 	e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
1130 	e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
1131 	e(PCI_STATUS_PARITY, "master parity", master_parity);
1132 #undef e
1133 }
1134 
1135 /* -------------------- VCC TX BUFFER UTILITIES: */
1136 
1137 /* space left in tx buffer in bytes */
1138 static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
1139 {
1140 	int r;
1141 	r = endptr * 16;
1142 	r -= ((unsigned long) lvcc->tx.buf.ptr) -
1143 	    ((unsigned long) lvcc->tx.buf.start);
1144 	r -= 16;	/* Leave "bubble" - if start==end it looks empty */
1145 	if (r < 0)
1146 		r += lanai_buf_size(&lvcc->tx.buf);
1147 	return r;
1148 }
1149 
1150 /* test if VCC is currently backlogged */
1151 static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
1152 {
1153 	return !skb_queue_empty(&lvcc->tx.backlog);
1154 }
1155 
1156 /* Bit fields in the segmentation buffer descriptor */
1157 #define DESCRIPTOR_MAGIC	(0xD0000000)
1158 #define DESCRIPTOR_AAL5		(0x00008000)
1159 #define DESCRIPTOR_AAL5_STREAM	(0x00004000)
1160 #define DESCRIPTOR_CLP		(0x00002000)
1161 
1162 /* Add 32-bit descriptor with its padding */
1163 static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
1164 	u32 flags, int len)
1165 {
1166 	int pos;
1167 	APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
1168 	    "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
1169 	lvcc->tx.buf.ptr += 4;	/* Hope the values REALLY don't matter */
1170 	pos = ((unsigned char *) lvcc->tx.buf.ptr) -
1171 	    (unsigned char *) lvcc->tx.buf.start;
1172 	APRINTK((pos & ~0x0001FFF0) == 0,
1173 	    "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
1174 	    "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1175 	    lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1176 	pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
1177 	APRINTK((pos & ~0x0001FFF0) == 0,
1178 	    "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
1179 	    "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1180 	    lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1181 	lvcc->tx.buf.ptr[-1] =
1182 	    cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
1183 	    ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
1184 	    DESCRIPTOR_CLP : 0) | flags | pos >> 4);
1185 	if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1186 		lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1187 }
1188 
1189 /* Add 32-bit AAL5 trailer and leave room for its CRC */
1190 static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
1191 	int len, int cpi, int uu)
1192 {
1193 	APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
1194 	    "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
1195 	lvcc->tx.buf.ptr += 2;
1196 	lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
1197 	if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1198 		lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1199 }
1200 
1201 static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
1202 	const unsigned char *src, int n)
1203 {
1204 	unsigned char *e;
1205 	int m;
1206 	e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1207 	m = e - (unsigned char *) lvcc->tx.buf.end;
1208 	if (m < 0)
1209 		m = 0;
1210 	memcpy(lvcc->tx.buf.ptr, src, n - m);
1211 	if (m != 0) {
1212 		memcpy(lvcc->tx.buf.start, src + n - m, m);
1213 		e = ((unsigned char *) lvcc->tx.buf.start) + m;
1214 	}
1215 	lvcc->tx.buf.ptr = (u32 *) e;
1216 }
1217 
1218 static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
1219 {
1220 	unsigned char *e;
1221 	int m;
1222 	if (n == 0)
1223 		return;
1224 	e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1225 	m = e - (unsigned char *) lvcc->tx.buf.end;
1226 	if (m < 0)
1227 		m = 0;
1228 	memset(lvcc->tx.buf.ptr, 0, n - m);
1229 	if (m != 0) {
1230 		memset(lvcc->tx.buf.start, 0, m);
1231 		e = ((unsigned char *) lvcc->tx.buf.start) + m;
1232 	}
1233 	lvcc->tx.buf.ptr = (u32 *) e;
1234 }
1235 
1236 /* Update "butt" register to specify new WritePtr */
1237 static inline void lanai_endtx(struct lanai_dev *lanai,
1238 	const struct lanai_vcc *lvcc)
1239 {
1240 	int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
1241 	    (unsigned char *) lvcc->tx.buf.start;
1242 	APRINTK((ptr & ~0x0001FFF0) == 0,
1243 	    "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
1244 	    ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
1245 	    lvcc->tx.buf.end);
1246 
1247 	/*
1248 	 * Since the "butt register" is a shared resounce on the card we
1249 	 * serialize all accesses to it through this spinlock.  This is
1250 	 * mostly just paranoia since the register is rarely "busy" anyway
1251 	 * but is needed for correctness.
1252 	 */
1253 	spin_lock(&lanai->endtxlock);
1254 	/*
1255 	 * We need to check if the "butt busy" bit is set before
1256 	 * updating the butt register.  In theory this should
1257 	 * never happen because the ATM card is plenty fast at
1258 	 * updating the register.  Still, we should make sure
1259 	 */
1260 	for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
1261 		if (unlikely(i > 50)) {
1262 			printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
1263 			    "always busy!\n", lanai->number);
1264 			break;
1265 		}
1266 		udelay(5);
1267 	}
1268 	/*
1269 	 * Before we tall the card to start work we need to be sure 100% of
1270 	 * the info in the service buffer has been written before we tell
1271 	 * the card about it
1272 	 */
1273 	wmb();
1274 	reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
1275 	spin_unlock(&lanai->endtxlock);
1276 }
1277 
1278 /*
1279  * Add one AAL5 PDU to lvcc's transmit buffer.  Caller garauntees there's
1280  * space available.  "pdusize" is the number of bytes the PDU will take
1281  */
1282 static void lanai_send_one_aal5(struct lanai_dev *lanai,
1283 	struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
1284 {
1285 	int pad;
1286 	APRINTK(pdusize == aal5_size(skb->len),
1287 	    "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
1288 	    pdusize, aal5_size(skb->len));
1289 	vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
1290 	pad = pdusize - skb->len - 8;
1291 	APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
1292 	APRINTK(pad < 48, "pad is too big (%d)\n", pad);
1293 	vcc_tx_memcpy(lvcc, skb->data, skb->len);
1294 	vcc_tx_memzero(lvcc, pad);
1295 	vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
1296 	lanai_endtx(lanai, lvcc);
1297 	lanai_free_skb(lvcc->tx.atmvcc, skb);
1298 	atomic_inc(&lvcc->tx.atmvcc->stats->tx);
1299 }
1300 
1301 /* Try to fill the buffer - don't call unless there is backlog */
1302 static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
1303 	struct lanai_vcc *lvcc, int endptr)
1304 {
1305 	int n;
1306 	struct sk_buff *skb;
1307 	int space = vcc_tx_space(lvcc, endptr);
1308 	APRINTK(vcc_is_backlogged(lvcc),
1309 	    "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
1310 	    lvcc->vci);
1311 	while (space >= 64) {
1312 		skb = skb_dequeue(&lvcc->tx.backlog);
1313 		if (skb == NULL)
1314 			goto no_backlog;
1315 		n = aal5_size(skb->len);
1316 		if (n + 16 > space) {
1317 			/* No room for this packet - put it back on queue */
1318 			skb_queue_head(&lvcc->tx.backlog, skb);
1319 			return;
1320 		}
1321 		lanai_send_one_aal5(lanai, lvcc, skb, n);
1322 		space -= n + 16;
1323 	}
1324 	if (!vcc_is_backlogged(lvcc)) {
1325 	    no_backlog:
1326 		__clear_bit(lvcc->vci, lanai->backlog_vccs);
1327 	}
1328 }
1329 
1330 /* Given an skb that we want to transmit either send it now or queue */
1331 static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1332 	struct sk_buff *skb)
1333 {
1334 	int space, n;
1335 	if (vcc_is_backlogged(lvcc))		/* Already backlogged */
1336 		goto queue_it;
1337 	space = vcc_tx_space(lvcc,
1338 		    TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
1339 	n = aal5_size(skb->len);
1340 	APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
1341 	if (space < n + 16) {			/* No space for this PDU */
1342 		__set_bit(lvcc->vci, lanai->backlog_vccs);
1343 	    queue_it:
1344 		skb_queue_tail(&lvcc->tx.backlog, skb);
1345 		return;
1346 	}
1347 	lanai_send_one_aal5(lanai, lvcc, skb, n);
1348 }
1349 
1350 static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
1351 	struct lanai_vcc *lvcc, int endptr)
1352 {
1353 	printk(KERN_INFO DEV_LABEL
1354 	    ": vcc_tx_unqueue_aal0: not implemented\n");
1355 }
1356 
1357 static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1358 	struct sk_buff *skb)
1359 {
1360 	printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
1361 	/* Remember to increment lvcc->tx.atmvcc->stats->tx */
1362 	lanai_free_skb(lvcc->tx.atmvcc, skb);
1363 }
1364 
1365 /* -------------------- VCC RX BUFFER UTILITIES: */
1366 
1367 /* unlike the _tx_ cousins, this doesn't update ptr */
1368 static inline void vcc_rx_memcpy(unsigned char *dest,
1369 	const struct lanai_vcc *lvcc, int n)
1370 {
1371 	int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
1372 	    ((const unsigned char *) (lvcc->rx.buf.end));
1373 	if (m < 0)
1374 		m = 0;
1375 	memcpy(dest, lvcc->rx.buf.ptr, n - m);
1376 	memcpy(dest + n - m, lvcc->rx.buf.start, m);
1377 	/* Make sure that these copies don't get reordered */
1378 	barrier();
1379 }
1380 
1381 /* Receive AAL5 data on a VCC with a particular endptr */
1382 static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
1383 {
1384 	int size;
1385 	struct sk_buff *skb;
1386 	const u32 *x;
1387 	u32 *end = &lvcc->rx.buf.start[endptr * 4];
1388 	int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
1389 	if (n < 0)
1390 		n += lanai_buf_size(&lvcc->rx.buf);
1391 	APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
1392 	    "vcc_rx_aal5: n out of range (%d/%zu)\n",
1393 	    n, lanai_buf_size(&lvcc->rx.buf));
1394 	/* Recover the second-to-last word to get true pdu length */
1395 	if ((x = &end[-2]) < lvcc->rx.buf.start)
1396 		x = &lvcc->rx.buf.end[-2];
1397 	/*
1398 	 * Before we actually read from the buffer, make sure the memory
1399 	 * changes have arrived
1400 	 */
1401 	rmb();
1402 	size = be32_to_cpup(x) & 0xffff;
1403 	if (unlikely(n != aal5_size(size))) {
1404 		/* Make sure size matches padding */
1405 		printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
1406 		    "on vci=%d - size=%d n=%d\n",
1407 		    lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
1408 		lvcc->stats.x.aal5.rx_badlen++;
1409 		goto out;
1410 	}
1411 	skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
1412 	if (unlikely(skb == NULL)) {
1413 		lvcc->stats.rx_nomem++;
1414 		goto out;
1415 	}
1416 	skb_put(skb, size);
1417 	vcc_rx_memcpy(skb->data, lvcc, size);
1418 	ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
1419 	__net_timestamp(skb);
1420 	lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
1421 	atomic_inc(&lvcc->rx.atmvcc->stats->rx);
1422     out:
1423 	lvcc->rx.buf.ptr = end;
1424 	cardvcc_write(lvcc, endptr, vcc_rxreadptr);
1425 }
1426 
1427 static void vcc_rx_aal0(struct lanai_dev *lanai)
1428 {
1429 	printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
1430 	/* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
1431 	/* Remember to increment lvcc->rx.atmvcc->stats->rx */
1432 }
1433 
1434 /* -------------------- MANAGING HOST-BASED VCC TABLE: */
1435 
1436 /* Decide whether to use vmalloc or get_zeroed_page for VCC table */
1437 #if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
1438 #define VCCTABLE_GETFREEPAGE
1439 #else
1440 #include <linux/vmalloc.h>
1441 #endif
1442 
1443 static int vcc_table_allocate(struct lanai_dev *lanai)
1444 {
1445 #ifdef VCCTABLE_GETFREEPAGE
1446 	APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
1447 	    "vcc table > PAGE_SIZE!");
1448 	lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
1449 	return (lanai->vccs == NULL) ? -ENOMEM : 0;
1450 #else
1451 	int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
1452 	lanai->vccs = vzalloc(bytes);
1453 	if (unlikely(lanai->vccs == NULL))
1454 		return -ENOMEM;
1455 	return 0;
1456 #endif
1457 }
1458 
1459 static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
1460 {
1461 #ifdef VCCTABLE_GETFREEPAGE
1462 	free_page((unsigned long) lanai->vccs);
1463 #else
1464 	vfree(lanai->vccs);
1465 #endif
1466 }
1467 
1468 /* Allocate a fresh lanai_vcc, with the appropriate things cleared */
1469 static inline struct lanai_vcc *new_lanai_vcc(void)
1470 {
1471 	struct lanai_vcc *lvcc;
1472 	lvcc =  kzalloc(sizeof(*lvcc), GFP_KERNEL);
1473 	if (likely(lvcc != NULL)) {
1474 		skb_queue_head_init(&lvcc->tx.backlog);
1475 #ifdef DEBUG
1476 		lvcc->vci = -1;
1477 #endif
1478 	}
1479 	return lvcc;
1480 }
1481 
1482 static int lanai_get_sized_buffer(struct lanai_dev *lanai,
1483 	struct lanai_buffer *buf, int max_sdu, int multiplier,
1484 	const char *name)
1485 {
1486 	int size;
1487 	if (unlikely(max_sdu < 1))
1488 		max_sdu = 1;
1489 	max_sdu = aal5_size(max_sdu);
1490 	size = (max_sdu + 16) * multiplier + 16;
1491 	lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
1492 	if (unlikely(buf->start == NULL))
1493 		return -ENOMEM;
1494 	if (unlikely(lanai_buf_size(buf) < size))
1495 		printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
1496 		    "for %s buffer, got only %zu\n", lanai->number, size,
1497 		    name, lanai_buf_size(buf));
1498 	DPRINTK("Allocated %zu byte %s buffer\n", lanai_buf_size(buf), name);
1499 	return 0;
1500 }
1501 
1502 /* Setup a RX buffer for a currently unbound AAL5 vci */
1503 static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
1504 	struct lanai_vcc *lvcc, const struct atm_qos *qos)
1505 {
1506 	return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
1507 	    qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
1508 }
1509 
1510 /* Setup a TX buffer for a currently unbound AAL5 vci */
1511 static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1512 	const struct atm_qos *qos)
1513 {
1514 	int max_sdu, multiplier;
1515 	if (qos->aal == ATM_AAL0) {
1516 		lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
1517 		max_sdu = ATM_CELL_SIZE - 1;
1518 		multiplier = AAL0_TX_MULTIPLIER;
1519 	} else {
1520 		lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
1521 		max_sdu = qos->txtp.max_sdu;
1522 		multiplier = AAL5_TX_MULTIPLIER;
1523 	}
1524 	return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
1525 	    multiplier, "TX");
1526 }
1527 
1528 static inline void host_vcc_bind(struct lanai_dev *lanai,
1529 	struct lanai_vcc *lvcc, vci_t vci)
1530 {
1531 	if (lvcc->vbase != NULL)
1532 		return;    /* We already were bound in the other direction */
1533 	DPRINTK("Binding vci %d\n", vci);
1534 #ifdef USE_POWERDOWN
1535 	if (lanai->nbound++ == 0) {
1536 		DPRINTK("Coming out of powerdown\n");
1537 		lanai->conf1 &= ~CONFIG1_POWERDOWN;
1538 		conf1_write(lanai);
1539 		conf2_write(lanai);
1540 	}
1541 #endif
1542 	lvcc->vbase = cardvcc_addr(lanai, vci);
1543 	lanai->vccs[lvcc->vci = vci] = lvcc;
1544 }
1545 
1546 static inline void host_vcc_unbind(struct lanai_dev *lanai,
1547 	struct lanai_vcc *lvcc)
1548 {
1549 	if (lvcc->vbase == NULL)
1550 		return;	/* This vcc was never bound */
1551 	DPRINTK("Unbinding vci %d\n", lvcc->vci);
1552 	lvcc->vbase = NULL;
1553 	lanai->vccs[lvcc->vci] = NULL;
1554 #ifdef USE_POWERDOWN
1555 	if (--lanai->nbound == 0) {
1556 		DPRINTK("Going into powerdown\n");
1557 		lanai->conf1 |= CONFIG1_POWERDOWN;
1558 		conf1_write(lanai);
1559 	}
1560 #endif
1561 }
1562 
1563 /* -------------------- RESET CARD: */
1564 
1565 static void lanai_reset(struct lanai_dev *lanai)
1566 {
1567 	printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* resetting - not "
1568 	    "implemented\n", lanai->number);
1569 	/* TODO */
1570 	/* The following is just a hack until we write the real
1571 	 * resetter - at least ack whatever interrupt sent us
1572 	 * here
1573 	 */
1574 	reg_write(lanai, INT_ALL, IntAck_Reg);
1575 	lanai->stats.card_reset++;
1576 }
1577 
1578 /* -------------------- SERVICE LIST UTILITIES: */
1579 
1580 /*
1581  * Allocate service buffer and tell card about it
1582  */
1583 static int service_buffer_allocate(struct lanai_dev *lanai)
1584 {
1585 	lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
1586 	    lanai->pci);
1587 	if (unlikely(lanai->service.start == NULL))
1588 		return -ENOMEM;
1589 	DPRINTK("allocated service buffer at %p, size %zu(%d)\n",
1590 	    lanai->service.start,
1591 	    lanai_buf_size(&lanai->service),
1592 	    lanai_buf_size_cardorder(&lanai->service));
1593 	/* Clear ServWrite register to be safe */
1594 	reg_write(lanai, 0, ServWrite_Reg);
1595 	/* ServiceStuff register contains size and address of buffer */
1596 	reg_write(lanai,
1597 	    SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
1598 	    SSTUFF_SET_ADDR(lanai->service.dmaaddr),
1599 	    ServiceStuff_Reg);
1600 	return 0;
1601 }
1602 
1603 static inline void service_buffer_deallocate(struct lanai_dev *lanai)
1604 {
1605 	lanai_buf_deallocate(&lanai->service, lanai->pci);
1606 }
1607 
1608 /* Bitfields in service list */
1609 #define SERVICE_TX	(0x80000000)	/* Was from transmission */
1610 #define SERVICE_TRASH	(0x40000000)	/* RXed PDU was trashed */
1611 #define SERVICE_CRCERR	(0x20000000)	/* RXed PDU had CRC error */
1612 #define SERVICE_CI	(0x10000000)	/* RXed PDU had CI set */
1613 #define SERVICE_CLP	(0x08000000)	/* RXed PDU had CLP set */
1614 #define SERVICE_STREAM	(0x04000000)	/* RX Stream mode */
1615 #define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
1616 #define SERVICE_GET_END(x) ((x)&0x1FFF)
1617 
1618 /* Handle one thing from the service list - returns true if it marked a
1619  * VCC ready for xmit
1620  */
1621 static int handle_service(struct lanai_dev *lanai, u32 s)
1622 {
1623 	vci_t vci = SERVICE_GET_VCI(s);
1624 	struct lanai_vcc *lvcc;
1625 	read_lock(&vcc_sklist_lock);
1626 	lvcc = lanai->vccs[vci];
1627 	if (unlikely(lvcc == NULL)) {
1628 		read_unlock(&vcc_sklist_lock);
1629 		DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
1630 		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1631 		if (s & SERVICE_TX)
1632 			lanai->stats.service_notx++;
1633 		else
1634 			lanai->stats.service_norx++;
1635 		return 0;
1636 	}
1637 	if (s & SERVICE_TX) {			/* segmentation interrupt */
1638 		if (unlikely(lvcc->tx.atmvcc == NULL)) {
1639 			read_unlock(&vcc_sklist_lock);
1640 			DPRINTK("(itf %d) got service entry 0x%X for non-TX "
1641 			    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1642 			lanai->stats.service_notx++;
1643 			return 0;
1644 		}
1645 		__set_bit(vci, lanai->transmit_ready);
1646 		lvcc->tx.endptr = SERVICE_GET_END(s);
1647 		read_unlock(&vcc_sklist_lock);
1648 		return 1;
1649 	}
1650 	if (unlikely(lvcc->rx.atmvcc == NULL)) {
1651 		read_unlock(&vcc_sklist_lock);
1652 		DPRINTK("(itf %d) got service entry 0x%X for non-RX "
1653 		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1654 		lanai->stats.service_norx++;
1655 		return 0;
1656 	}
1657 	if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
1658 		read_unlock(&vcc_sklist_lock);
1659 		DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
1660 		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1661 		lanai->stats.service_rxnotaal5++;
1662 		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1663 		return 0;
1664 	}
1665 	if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
1666 		vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
1667 		read_unlock(&vcc_sklist_lock);
1668 		return 0;
1669 	}
1670 	if (s & SERVICE_TRASH) {
1671 		int bytes;
1672 		read_unlock(&vcc_sklist_lock);
1673 		DPRINTK("got trashed rx pdu on vci %d\n", vci);
1674 		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1675 		lvcc->stats.x.aal5.service_trash++;
1676 		bytes = (SERVICE_GET_END(s) * 16) -
1677 		    (((unsigned long) lvcc->rx.buf.ptr) -
1678 		    ((unsigned long) lvcc->rx.buf.start)) + 47;
1679 		if (bytes < 0)
1680 			bytes += lanai_buf_size(&lvcc->rx.buf);
1681 		lanai->stats.ovfl_trash += (bytes / 48);
1682 		return 0;
1683 	}
1684 	if (s & SERVICE_STREAM) {
1685 		read_unlock(&vcc_sklist_lock);
1686 		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1687 		lvcc->stats.x.aal5.service_stream++;
1688 		printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
1689 		    "PDU on VCI %d!\n", lanai->number, vci);
1690 		lanai_reset(lanai);
1691 		return 0;
1692 	}
1693 	DPRINTK("got rx crc error on vci %d\n", vci);
1694 	atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1695 	lvcc->stats.x.aal5.service_rxcrc++;
1696 	lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
1697 	cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
1698 	read_unlock(&vcc_sklist_lock);
1699 	return 0;
1700 }
1701 
1702 /* Try transmitting on all VCIs that we marked ready to serve */
1703 static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
1704 {
1705 	struct lanai_vcc *lvcc = lanai->vccs[vci];
1706 	if (vcc_is_backlogged(lvcc))
1707 		lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
1708 }
1709 
1710 /* Run service queue -- called from interrupt context or with
1711  * interrupts otherwise disabled and with the lanai->servicelock
1712  * lock held
1713  */
1714 static void run_service(struct lanai_dev *lanai)
1715 {
1716 	int ntx = 0;
1717 	u32 wreg = reg_read(lanai, ServWrite_Reg);
1718 	const u32 *end = lanai->service.start + wreg;
1719 	while (lanai->service.ptr != end) {
1720 		ntx += handle_service(lanai,
1721 		    le32_to_cpup(lanai->service.ptr++));
1722 		if (lanai->service.ptr >= lanai->service.end)
1723 			lanai->service.ptr = lanai->service.start;
1724 	}
1725 	reg_write(lanai, wreg, ServRead_Reg);
1726 	if (ntx != 0) {
1727 		read_lock(&vcc_sklist_lock);
1728 		vci_bitfield_iterate(lanai, lanai->transmit_ready,
1729 		    iter_transmit);
1730 		bitmap_zero(lanai->transmit_ready, NUM_VCI);
1731 		read_unlock(&vcc_sklist_lock);
1732 	}
1733 }
1734 
1735 /* -------------------- GATHER STATISTICS: */
1736 
1737 static void get_statistics(struct lanai_dev *lanai)
1738 {
1739 	u32 statreg = reg_read(lanai, Statistics_Reg);
1740 	lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
1741 	lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
1742 	lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
1743 	lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
1744 }
1745 
1746 /* -------------------- POLLING TIMER: */
1747 
1748 #ifndef DEBUG_RW
1749 /* Try to undequeue 1 backlogged vcc */
1750 static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
1751 {
1752 	struct lanai_vcc *lvcc = lanai->vccs[vci];
1753 	int endptr;
1754 	if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
1755 	    !vcc_is_backlogged(lvcc)) {
1756 		__clear_bit(vci, lanai->backlog_vccs);
1757 		return;
1758 	}
1759 	endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
1760 	lvcc->tx.unqueue(lanai, lvcc, endptr);
1761 }
1762 #endif /* !DEBUG_RW */
1763 
1764 static void lanai_timed_poll(struct timer_list *t)
1765 {
1766 	struct lanai_dev *lanai = from_timer(lanai, t, timer);
1767 #ifndef DEBUG_RW
1768 	unsigned long flags;
1769 #ifdef USE_POWERDOWN
1770 	if (lanai->conf1 & CONFIG1_POWERDOWN)
1771 		return;
1772 #endif /* USE_POWERDOWN */
1773 	local_irq_save(flags);
1774 	/* If we can grab the spinlock, check if any services need to be run */
1775 	if (spin_trylock(&lanai->servicelock)) {
1776 		run_service(lanai);
1777 		spin_unlock(&lanai->servicelock);
1778 	}
1779 	/* ...and see if any backlogged VCs can make progress */
1780 	/* unfortunately linux has no read_trylock() currently */
1781 	read_lock(&vcc_sklist_lock);
1782 	vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
1783 	read_unlock(&vcc_sklist_lock);
1784 	local_irq_restore(flags);
1785 
1786 	get_statistics(lanai);
1787 #endif /* !DEBUG_RW */
1788 	mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
1789 }
1790 
1791 static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
1792 {
1793 	timer_setup(&lanai->timer, lanai_timed_poll, 0);
1794 	lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
1795 	add_timer(&lanai->timer);
1796 }
1797 
1798 static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
1799 {
1800 	del_timer_sync(&lanai->timer);
1801 }
1802 
1803 /* -------------------- INTERRUPT SERVICE: */
1804 
1805 static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
1806 {
1807 	u32 ack = 0;
1808 	if (reason & INT_SERVICE) {
1809 		ack = INT_SERVICE;
1810 		spin_lock(&lanai->servicelock);
1811 		run_service(lanai);
1812 		spin_unlock(&lanai->servicelock);
1813 	}
1814 	if (reason & (INT_AAL0_STR | INT_AAL0)) {
1815 		ack |= reason & (INT_AAL0_STR | INT_AAL0);
1816 		vcc_rx_aal0(lanai);
1817 	}
1818 	/* The rest of the interrupts are pretty rare */
1819 	if (ack == reason)
1820 		goto done;
1821 	if (reason & INT_STATS) {
1822 		reason &= ~INT_STATS;	/* No need to ack */
1823 		get_statistics(lanai);
1824 	}
1825 	if (reason & INT_STATUS) {
1826 		ack |= reason & INT_STATUS;
1827 		lanai_check_status(lanai);
1828 	}
1829 	if (unlikely(reason & INT_DMASHUT)) {
1830 		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
1831 		    "shutdown, reason=0x%08X, address=0x%08X\n",
1832 		    lanai->number, (unsigned int) (reason & INT_DMASHUT),
1833 		    (unsigned int) reg_read(lanai, DMA_Addr_Reg));
1834 		if (reason & INT_TABORTBM) {
1835 			lanai_reset(lanai);
1836 			return;
1837 		}
1838 		ack |= (reason & INT_DMASHUT);
1839 		printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
1840 		    lanai->number);
1841 		conf1_write(lanai);
1842 		lanai->stats.dma_reenable++;
1843 		pcistatus_check(lanai, 0);
1844 	}
1845 	if (unlikely(reason & INT_TABORTSENT)) {
1846 		ack |= (reason & INT_TABORTSENT);
1847 		printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
1848 		    lanai->number);
1849 		pcistatus_check(lanai, 0);
1850 	}
1851 	if (unlikely(reason & INT_SEGSHUT)) {
1852 		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1853 		    "segmentation shutdown, reason=0x%08X\n", lanai->number,
1854 		    (unsigned int) (reason & INT_SEGSHUT));
1855 		lanai_reset(lanai);
1856 		return;
1857 	}
1858 	if (unlikely(reason & (INT_PING | INT_WAKE))) {
1859 		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1860 		    "unexpected interrupt 0x%08X, resetting\n",
1861 		    lanai->number,
1862 		    (unsigned int) (reason & (INT_PING | INT_WAKE)));
1863 		lanai_reset(lanai);
1864 		return;
1865 	}
1866 #ifdef DEBUG
1867 	if (unlikely(ack != reason)) {
1868 		DPRINTK("unacked ints: 0x%08X\n",
1869 		    (unsigned int) (reason & ~ack));
1870 		ack = reason;
1871 	}
1872 #endif
1873    done:
1874 	if (ack != 0)
1875 		reg_write(lanai, ack, IntAck_Reg);
1876 }
1877 
1878 static irqreturn_t lanai_int(int irq, void *devid)
1879 {
1880 	struct lanai_dev *lanai = devid;
1881 	u32 reason;
1882 
1883 #ifdef USE_POWERDOWN
1884 	/*
1885 	 * If we're powered down we shouldn't be generating any interrupts -
1886 	 * so assume that this is a shared interrupt line and it's for someone
1887 	 * else
1888 	 */
1889 	if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
1890 		return IRQ_NONE;
1891 #endif
1892 
1893 	reason = intr_pending(lanai);
1894 	if (reason == 0)
1895 		return IRQ_NONE;	/* Must be for someone else */
1896 
1897 	do {
1898 		if (unlikely(reason == 0xFFFFFFFF))
1899 			break;		/* Maybe we've been unplugged? */
1900 		lanai_int_1(lanai, reason);
1901 		reason = intr_pending(lanai);
1902 	} while (reason != 0);
1903 
1904 	return IRQ_HANDLED;
1905 }
1906 
1907 /* TODO - it would be nice if we could use the "delayed interrupt" system
1908  *   to some advantage
1909  */
1910 
1911 /* -------------------- CHECK BOARD ID/REV: */
1912 
1913 /*
1914  * The board id and revision are stored both in the reset register and
1915  * in the PCI configuration space - the documentation says to check
1916  * each of them.  If revp!=NULL we store the revision there
1917  */
1918 static int check_board_id_and_rev(const char *name, u32 val, int *revp)
1919 {
1920 	DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
1921 		(int) RESET_GET_BOARD_ID(val),
1922 		(int) RESET_GET_BOARD_REV(val));
1923 	if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
1924 		printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
1925 		    "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
1926 		return -ENODEV;
1927 	}
1928 	if (revp != NULL)
1929 		*revp = RESET_GET_BOARD_REV(val);
1930 	return 0;
1931 }
1932 
1933 /* -------------------- PCI INITIALIZATION/SHUTDOWN: */
1934 
1935 static int lanai_pci_start(struct lanai_dev *lanai)
1936 {
1937 	struct pci_dev *pci = lanai->pci;
1938 	int result;
1939 
1940 	if (pci_enable_device(pci) != 0) {
1941 		printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
1942 		    "PCI device", lanai->number);
1943 		return -ENXIO;
1944 	}
1945 	pci_set_master(pci);
1946 	if (dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(32)) != 0) {
1947 		printk(KERN_WARNING DEV_LABEL
1948 		    "(itf %d): No suitable DMA available.\n", lanai->number);
1949 		return -EBUSY;
1950 	}
1951 	result = check_board_id_and_rev("PCI", pci->subsystem_device, NULL);
1952 	if (result != 0)
1953 		return result;
1954 	/* Set latency timer to zero as per lanai docs */
1955 	result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
1956 	if (result != PCIBIOS_SUCCESSFUL) {
1957 		printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
1958 		    "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
1959 		return -EINVAL;
1960 	}
1961 	pcistatus_check(lanai, 1);
1962 	pcistatus_check(lanai, 0);
1963 	return 0;
1964 }
1965 
1966 /* -------------------- VPI/VCI ALLOCATION: */
1967 
1968 /*
1969  * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
1970  * get a CBRZERO interrupt), and we can use it only if no one is receiving
1971  * AAL0 traffic (since they will use the same queue) - according to the
1972  * docs we shouldn't even use it for AAL0 traffic
1973  */
1974 static inline int vci0_is_ok(struct lanai_dev *lanai,
1975 	const struct atm_qos *qos)
1976 {
1977 	if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
1978 		return 0;
1979 	if (qos->rxtp.traffic_class != ATM_NONE) {
1980 		if (lanai->naal0 != 0)
1981 			return 0;
1982 		lanai->conf2 |= CONFIG2_VCI0_NORMAL;
1983 		conf2_write_if_powerup(lanai);
1984 	}
1985 	return 1;
1986 }
1987 
1988 /* return true if vci is currently unused, or if requested qos is
1989  * compatible
1990  */
1991 static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
1992 	const struct atm_vcc *atmvcc)
1993 {
1994 	const struct atm_qos *qos = &atmvcc->qos;
1995 	const struct lanai_vcc *lvcc = lanai->vccs[vci];
1996 	if (vci == 0 && !vci0_is_ok(lanai, qos))
1997 		return 0;
1998 	if (unlikely(lvcc != NULL)) {
1999 		if (qos->rxtp.traffic_class != ATM_NONE &&
2000 		    lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
2001 			return 0;
2002 		if (qos->txtp.traffic_class != ATM_NONE &&
2003 		    lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
2004 			return 0;
2005 		if (qos->txtp.traffic_class == ATM_CBR &&
2006 		    lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
2007 			return 0;
2008 	}
2009 	if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
2010 	    qos->rxtp.traffic_class != ATM_NONE) {
2011 		const struct lanai_vcc *vci0 = lanai->vccs[0];
2012 		if (vci0 != NULL && vci0->rx.atmvcc != NULL)
2013 			return 0;
2014 		lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
2015 		conf2_write_if_powerup(lanai);
2016 	}
2017 	return 1;
2018 }
2019 
2020 static int lanai_normalize_ci(struct lanai_dev *lanai,
2021 	const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
2022 {
2023 	switch (*vpip) {
2024 		case ATM_VPI_ANY:
2025 			*vpip = 0;
2026 			/* FALLTHROUGH */
2027 		case 0:
2028 			break;
2029 		default:
2030 			return -EADDRINUSE;
2031 	}
2032 	switch (*vcip) {
2033 		case ATM_VCI_ANY:
2034 			for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
2035 			    (*vcip)++)
2036 				if (vci_is_ok(lanai, *vcip, atmvcc))
2037 					return 0;
2038 			return -EADDRINUSE;
2039 		default:
2040 			if (*vcip >= lanai->num_vci || *vcip < 0 ||
2041 			    !vci_is_ok(lanai, *vcip, atmvcc))
2042 				return -EADDRINUSE;
2043 	}
2044 	return 0;
2045 }
2046 
2047 /* -------------------- MANAGE CBR: */
2048 
2049 /*
2050  * CBR ICG is stored as a fixed-point number with 4 fractional bits.
2051  * Note that storing a number greater than 2046.0 will result in
2052  * incorrect shaping
2053  */
2054 #define CBRICG_FRAC_BITS	(4)
2055 #define CBRICG_MAX		(2046 << CBRICG_FRAC_BITS)
2056 
2057 /*
2058  * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
2059  * where MAXPCR is (according to the docs) 25600000/(54*8),
2060  * which is equal to (3125<<9)/27.
2061  *
2062  * Solving for ICG, we get:
2063  *    ICG = MAXPCR/PCR - 1
2064  *    ICG = (3125<<9)/(27*PCR) - 1
2065  *    ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
2066  *
2067  * The end result is supposed to be a fixed-point number with FRAC_BITS
2068  * bits of a fractional part, so we keep everything in the numerator
2069  * shifted by that much as we compute
2070  *
2071  */
2072 static int pcr_to_cbricg(const struct atm_qos *qos)
2073 {
2074 	int rounddown = 0;	/* 1 = Round PCR down, i.e. round ICG _up_ */
2075 	int x, icg, pcr = atm_pcr_goal(&qos->txtp);
2076 	if (pcr == 0)		/* Use maximum bandwidth */
2077 		return 0;
2078 	if (pcr < 0) {
2079 		rounddown = 1;
2080 		pcr = -pcr;
2081 	}
2082 	x = pcr * 27;
2083 	icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
2084 	if (rounddown)
2085 		icg += x - 1;
2086 	icg /= x;
2087 	if (icg > CBRICG_MAX)
2088 		icg = CBRICG_MAX;
2089 	DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
2090 	    pcr, rounddown ? 'Y' : 'N', icg);
2091 	return icg;
2092 }
2093 
2094 static inline void lanai_cbr_setup(struct lanai_dev *lanai)
2095 {
2096 	reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
2097 	reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
2098 	lanai->conf2 |= CONFIG2_CBR_ENABLE;
2099 	conf2_write(lanai);
2100 }
2101 
2102 static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
2103 {
2104 	lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
2105 	conf2_write(lanai);
2106 }
2107 
2108 /* -------------------- OPERATIONS: */
2109 
2110 /* setup a newly detected device */
2111 static int lanai_dev_open(struct atm_dev *atmdev)
2112 {
2113 	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2114 	unsigned long raw_base;
2115 	int result;
2116 
2117 	DPRINTK("In lanai_dev_open()\n");
2118 	/* Basic device fields */
2119 	lanai->number = atmdev->number;
2120 	lanai->num_vci = NUM_VCI;
2121 	bitmap_zero(lanai->backlog_vccs, NUM_VCI);
2122 	bitmap_zero(lanai->transmit_ready, NUM_VCI);
2123 	lanai->naal0 = 0;
2124 #ifdef USE_POWERDOWN
2125 	lanai->nbound = 0;
2126 #endif
2127 	lanai->cbrvcc = NULL;
2128 	memset(&lanai->stats, 0, sizeof lanai->stats);
2129 	spin_lock_init(&lanai->endtxlock);
2130 	spin_lock_init(&lanai->servicelock);
2131 	atmdev->ci_range.vpi_bits = 0;
2132 	atmdev->ci_range.vci_bits = 0;
2133 	while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
2134 		atmdev->ci_range.vci_bits++;
2135 	atmdev->link_rate = ATM_25_PCR;
2136 
2137 	/* 3.2: PCI initialization */
2138 	if ((result = lanai_pci_start(lanai)) != 0)
2139 		goto error;
2140 	raw_base = lanai->pci->resource[0].start;
2141 	lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
2142 	if (lanai->base == NULL) {
2143 		printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
2144 		result = -ENOMEM;
2145 		goto error_pci;
2146 	}
2147 	/* 3.3: Reset lanai and PHY */
2148 	reset_board(lanai);
2149 	lanai->conf1 = reg_read(lanai, Config1_Reg);
2150 	lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
2151 	    CONFIG1_MASK_LEDMODE);
2152 	lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
2153 	reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2154 	udelay(1000);
2155 	conf1_write(lanai);
2156 
2157 	/*
2158 	 * 3.4: Turn on endian mode for big-endian hardware
2159 	 *   We don't actually want to do this - the actual bit fields
2160 	 *   in the endian register are not documented anywhere.
2161 	 *   Instead we do the bit-flipping ourselves on big-endian
2162 	 *   hardware.
2163 	 *
2164 	 * 3.5: get the board ID/rev by reading the reset register
2165 	 */
2166 	result = check_board_id_and_rev("register",
2167 	    reg_read(lanai, Reset_Reg), &lanai->board_rev);
2168 	if (result != 0)
2169 		goto error_unmap;
2170 
2171 	/* 3.6: read EEPROM */
2172 	if ((result = eeprom_read(lanai)) != 0)
2173 		goto error_unmap;
2174 	if ((result = eeprom_validate(lanai)) != 0)
2175 		goto error_unmap;
2176 
2177 	/* 3.7: re-reset PHY, do loopback tests, setup PHY */
2178 	reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2179 	udelay(1000);
2180 	conf1_write(lanai);
2181 	/* TODO - loopback tests */
2182 	lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
2183 	conf1_write(lanai);
2184 
2185 	/* 3.8/3.9: test and initialize card SRAM */
2186 	if ((result = sram_test_and_clear(lanai)) != 0)
2187 		goto error_unmap;
2188 
2189 	/* 3.10: initialize lanai registers */
2190 	lanai->conf1 |= CONFIG1_DMA_ENABLE;
2191 	conf1_write(lanai);
2192 	if ((result = service_buffer_allocate(lanai)) != 0)
2193 		goto error_unmap;
2194 	if ((result = vcc_table_allocate(lanai)) != 0)
2195 		goto error_service;
2196 	lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
2197 	    CONFIG2_HEC_DROP |	/* ??? */ CONFIG2_PTI7_MODE;
2198 	conf2_write(lanai);
2199 	reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
2200 	reg_write(lanai, 0, CBR_ICG_Reg);	/* CBR defaults to no limit */
2201 	if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
2202 	    DEV_LABEL, lanai)) != 0) {
2203 		printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
2204 		goto error_vcctable;
2205 	}
2206 	mb();				/* Make sure that all that made it */
2207 	intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
2208 	/* 3.11: initialize loop mode (i.e. turn looping off) */
2209 	lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
2210 	    CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
2211 	    CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
2212 	conf1_write(lanai);
2213 	lanai->status = reg_read(lanai, Status_Reg);
2214 	/* We're now done initializing this card */
2215 #ifdef USE_POWERDOWN
2216 	lanai->conf1 |= CONFIG1_POWERDOWN;
2217 	conf1_write(lanai);
2218 #endif
2219 	memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
2220 	lanai_timed_poll_start(lanai);
2221 	printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=%p, irq=%u "
2222 		"(%pMF)\n", lanai->number, (int) lanai->pci->revision,
2223 		lanai->base, lanai->pci->irq, atmdev->esi);
2224 	printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
2225 	    "board_rev=%d\n", lanai->number,
2226 	    lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
2227 	    (unsigned int) lanai->serialno, lanai->board_rev);
2228 	return 0;
2229 
2230     error_vcctable:
2231 	vcc_table_deallocate(lanai);
2232     error_service:
2233 	service_buffer_deallocate(lanai);
2234     error_unmap:
2235 	reset_board(lanai);
2236 #ifdef USE_POWERDOWN
2237 	lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
2238 	conf1_write(lanai);
2239 #endif
2240 	iounmap(lanai->base);
2241     error_pci:
2242 	pci_disable_device(lanai->pci);
2243     error:
2244 	return result;
2245 }
2246 
2247 /* called when device is being shutdown, and all vcc's are gone - higher
2248  * levels will deallocate the atm device for us
2249  */
2250 static void lanai_dev_close(struct atm_dev *atmdev)
2251 {
2252 	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2253 	printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
2254 	    lanai->number);
2255 	lanai_timed_poll_stop(lanai);
2256 #ifdef USE_POWERDOWN
2257 	lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
2258 	conf1_write(lanai);
2259 #endif
2260 	intr_disable(lanai, INT_ALL);
2261 	free_irq(lanai->pci->irq, lanai);
2262 	reset_board(lanai);
2263 #ifdef USE_POWERDOWN
2264 	lanai->conf1 |= CONFIG1_POWERDOWN;
2265 	conf1_write(lanai);
2266 #endif
2267 	pci_disable_device(lanai->pci);
2268 	vcc_table_deallocate(lanai);
2269 	service_buffer_deallocate(lanai);
2270 	iounmap(lanai->base);
2271 	kfree(lanai);
2272 }
2273 
2274 /* close a vcc */
2275 static void lanai_close(struct atm_vcc *atmvcc)
2276 {
2277 	struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2278 	struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2279 	if (lvcc == NULL)
2280 		return;
2281 	clear_bit(ATM_VF_READY, &atmvcc->flags);
2282 	clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
2283 	if (lvcc->rx.atmvcc == atmvcc) {
2284 		lanai_shutdown_rx_vci(lvcc);
2285 		if (atmvcc->qos.aal == ATM_AAL0) {
2286 			if (--lanai->naal0 <= 0)
2287 				aal0_buffer_free(lanai);
2288 		} else
2289 			lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
2290 		lvcc->rx.atmvcc = NULL;
2291 	}
2292 	if (lvcc->tx.atmvcc == atmvcc) {
2293 		if (atmvcc == lanai->cbrvcc) {
2294 			if (lvcc->vbase != NULL)
2295 				lanai_cbr_shutdown(lanai);
2296 			lanai->cbrvcc = NULL;
2297 		}
2298 		lanai_shutdown_tx_vci(lanai, lvcc);
2299 		lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
2300 		lvcc->tx.atmvcc = NULL;
2301 	}
2302 	if (--lvcc->nref == 0) {
2303 		host_vcc_unbind(lanai, lvcc);
2304 		kfree(lvcc);
2305 	}
2306 	atmvcc->dev_data = NULL;
2307 	clear_bit(ATM_VF_ADDR, &atmvcc->flags);
2308 }
2309 
2310 /* open a vcc on the card to vpi/vci */
2311 static int lanai_open(struct atm_vcc *atmvcc)
2312 {
2313 	struct lanai_dev *lanai;
2314 	struct lanai_vcc *lvcc;
2315 	int result = 0;
2316 	int vci = atmvcc->vci;
2317 	short vpi = atmvcc->vpi;
2318 	/* we don't support partial open - it's not really useful anyway */
2319 	if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
2320 	    (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
2321 		return -EINVAL;
2322 	lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2323 	result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
2324 	if (unlikely(result != 0))
2325 		goto out;
2326 	set_bit(ATM_VF_ADDR, &atmvcc->flags);
2327 	if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
2328 		return -EINVAL;
2329 	DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
2330 	    (int) vpi, vci);
2331 	lvcc = lanai->vccs[vci];
2332 	if (lvcc == NULL) {
2333 		lvcc = new_lanai_vcc();
2334 		if (unlikely(lvcc == NULL))
2335 			return -ENOMEM;
2336 		atmvcc->dev_data = lvcc;
2337 	}
2338 	lvcc->nref++;
2339 	if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
2340 		APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
2341 		    vci);
2342 		if (atmvcc->qos.aal == ATM_AAL0) {
2343 			if (lanai->naal0 == 0)
2344 				result = aal0_buffer_allocate(lanai);
2345 		} else
2346 			result = lanai_setup_rx_vci_aal5(
2347 			    lanai, lvcc, &atmvcc->qos);
2348 		if (unlikely(result != 0))
2349 			goto out_free;
2350 		lvcc->rx.atmvcc = atmvcc;
2351 		lvcc->stats.rx_nomem = 0;
2352 		lvcc->stats.x.aal5.rx_badlen = 0;
2353 		lvcc->stats.x.aal5.service_trash = 0;
2354 		lvcc->stats.x.aal5.service_stream = 0;
2355 		lvcc->stats.x.aal5.service_rxcrc = 0;
2356 		if (atmvcc->qos.aal == ATM_AAL0)
2357 			lanai->naal0++;
2358 	}
2359 	if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
2360 		APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
2361 		    vci);
2362 		result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
2363 		if (unlikely(result != 0))
2364 			goto out_free;
2365 		lvcc->tx.atmvcc = atmvcc;
2366 		if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
2367 			APRINTK(lanai->cbrvcc == NULL,
2368 			    "cbrvcc!=NULL, vci=%d\n", vci);
2369 			lanai->cbrvcc = atmvcc;
2370 		}
2371 	}
2372 	host_vcc_bind(lanai, lvcc, vci);
2373 	/*
2374 	 * Make sure everything made it to RAM before we tell the card about
2375 	 * the VCC
2376 	 */
2377 	wmb();
2378 	if (atmvcc == lvcc->rx.atmvcc)
2379 		host_vcc_start_rx(lvcc);
2380 	if (atmvcc == lvcc->tx.atmvcc) {
2381 		host_vcc_start_tx(lvcc);
2382 		if (lanai->cbrvcc == atmvcc)
2383 			lanai_cbr_setup(lanai);
2384 	}
2385 	set_bit(ATM_VF_READY, &atmvcc->flags);
2386 	return 0;
2387     out_free:
2388 	lanai_close(atmvcc);
2389     out:
2390 	return result;
2391 }
2392 
2393 static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
2394 {
2395 	struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2396 	struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2397 	unsigned long flags;
2398 	if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
2399 	      lvcc->tx.atmvcc != atmvcc))
2400 		goto einval;
2401 #ifdef DEBUG
2402 	if (unlikely(skb == NULL)) {
2403 		DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
2404 		goto einval;
2405 	}
2406 	if (unlikely(lanai == NULL)) {
2407 		DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
2408 		goto einval;
2409 	}
2410 #endif
2411 	ATM_SKB(skb)->vcc = atmvcc;
2412 	switch (atmvcc->qos.aal) {
2413 		case ATM_AAL5:
2414 			read_lock_irqsave(&vcc_sklist_lock, flags);
2415 			vcc_tx_aal5(lanai, lvcc, skb);
2416 			read_unlock_irqrestore(&vcc_sklist_lock, flags);
2417 			return 0;
2418 		case ATM_AAL0:
2419 			if (unlikely(skb->len != ATM_CELL_SIZE-1))
2420 				goto einval;
2421   /* NOTE - this next line is technically invalid - we haven't unshared skb */
2422 			cpu_to_be32s((u32 *) skb->data);
2423 			read_lock_irqsave(&vcc_sklist_lock, flags);
2424 			vcc_tx_aal0(lanai, lvcc, skb);
2425 			read_unlock_irqrestore(&vcc_sklist_lock, flags);
2426 			return 0;
2427 	}
2428 	DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
2429 	    atmvcc->vci);
2430     einval:
2431 	lanai_free_skb(atmvcc, skb);
2432 	return -EINVAL;
2433 }
2434 
2435 static int lanai_change_qos(struct atm_vcc *atmvcc,
2436 	/*const*/ struct atm_qos *qos, int flags)
2437 {
2438 	return -EBUSY;		/* TODO: need to write this */
2439 }
2440 
2441 #ifndef CONFIG_PROC_FS
2442 #define lanai_proc_read NULL
2443 #else
2444 static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
2445 {
2446 	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2447 	loff_t left = *pos;
2448 	struct lanai_vcc *lvcc;
2449 	if (left-- == 0)
2450 		return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
2451 		    "serial=%u, magic=0x%08X, num_vci=%d\n",
2452 		    atmdev->number, lanai->type==lanai2 ? "2" : "HB",
2453 		    (unsigned int) lanai->serialno,
2454 		    (unsigned int) lanai->magicno, lanai->num_vci);
2455 	if (left-- == 0)
2456 		return sprintf(page, "revision: board=%d, pci_if=%d\n",
2457 		    lanai->board_rev, (int) lanai->pci->revision);
2458 	if (left-- == 0)
2459 		return sprintf(page, "EEPROM ESI: %pM\n",
2460 		    &lanai->eeprom[EEPROM_MAC]);
2461 	if (left-- == 0)
2462 		return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
2463 		    "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
2464 		    (lanai->status & STATUS_LOCD) ? 1 : 0,
2465 		    (lanai->status & STATUS_LED) ? 1 : 0,
2466 		    (lanai->status & STATUS_GPIN) ? 1 : 0);
2467 	if (left-- == 0)
2468 		return sprintf(page, "global buffer sizes: service=%zu, "
2469 		    "aal0_rx=%zu\n", lanai_buf_size(&lanai->service),
2470 		    lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
2471 	if (left-- == 0) {
2472 		get_statistics(lanai);
2473 		return sprintf(page, "cells in error: overflow=%u, "
2474 		    "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
2475 		    lanai->stats.ovfl_trash, lanai->stats.vci_trash,
2476 		    lanai->stats.hec_err, lanai->stats.atm_ovfl);
2477 	}
2478 	if (left-- == 0)
2479 		return sprintf(page, "PCI errors: parity_detect=%u, "
2480 		    "master_abort=%u, master_target_abort=%u,\n",
2481 		    lanai->stats.pcierr_parity_detect,
2482 		    lanai->stats.pcierr_serr_set,
2483 		    lanai->stats.pcierr_m_target_abort);
2484 	if (left-- == 0)
2485 		return sprintf(page, "            slave_target_abort=%u, "
2486 		    "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
2487 		    lanai->stats.pcierr_master_parity);
2488 	if (left-- == 0)
2489 		return sprintf(page, "                     no_tx=%u, "
2490 		    "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
2491 		    lanai->stats.service_notx,
2492 		    lanai->stats.service_rxnotaal5);
2493 	if (left-- == 0)
2494 		return sprintf(page, "resets: dma=%u, card=%u\n",
2495 		    lanai->stats.dma_reenable, lanai->stats.card_reset);
2496 	/* At this point, "left" should be the VCI we're looking for */
2497 	read_lock(&vcc_sklist_lock);
2498 	for (; ; left++) {
2499 		if (left >= NUM_VCI) {
2500 			left = 0;
2501 			goto out;
2502 		}
2503 		if ((lvcc = lanai->vccs[left]) != NULL)
2504 			break;
2505 		(*pos)++;
2506 	}
2507 	/* Note that we re-use "left" here since we're done with it */
2508 	left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u",  (vci_t) left,
2509 	    lvcc->nref, lvcc->stats.rx_nomem);
2510 	if (lvcc->rx.atmvcc != NULL) {
2511 		left += sprintf(&page[left], ",\n          rx_AAL=%d",
2512 		    lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
2513 		if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
2514 			left += sprintf(&page[left], ", rx_buf_size=%zu, "
2515 			    "rx_bad_len=%u,\n          rx_service_trash=%u, "
2516 			    "rx_service_stream=%u, rx_bad_crc=%u",
2517 			    lanai_buf_size(&lvcc->rx.buf),
2518 			    lvcc->stats.x.aal5.rx_badlen,
2519 			    lvcc->stats.x.aal5.service_trash,
2520 			    lvcc->stats.x.aal5.service_stream,
2521 			    lvcc->stats.x.aal5.service_rxcrc);
2522 	}
2523 	if (lvcc->tx.atmvcc != NULL)
2524 		left += sprintf(&page[left], ",\n          tx_AAL=%d, "
2525 		    "tx_buf_size=%zu, tx_qos=%cBR, tx_backlogged=%c",
2526 		    lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
2527 		    lanai_buf_size(&lvcc->tx.buf),
2528 		    lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
2529 		    vcc_is_backlogged(lvcc) ? 'Y' : 'N');
2530 	page[left++] = '\n';
2531 	page[left] = '\0';
2532     out:
2533 	read_unlock(&vcc_sklist_lock);
2534 	return left;
2535 }
2536 #endif /* CONFIG_PROC_FS */
2537 
2538 /* -------------------- HOOKS: */
2539 
2540 static const struct atmdev_ops ops = {
2541 	.dev_close	= lanai_dev_close,
2542 	.open		= lanai_open,
2543 	.close		= lanai_close,
2544 	.getsockopt	= NULL,
2545 	.setsockopt	= NULL,
2546 	.send		= lanai_send,
2547 	.phy_put	= NULL,
2548 	.phy_get	= NULL,
2549 	.change_qos	= lanai_change_qos,
2550 	.proc_read	= lanai_proc_read,
2551 	.owner		= THIS_MODULE
2552 };
2553 
2554 /* initialize one probed card */
2555 static int lanai_init_one(struct pci_dev *pci,
2556 			  const struct pci_device_id *ident)
2557 {
2558 	struct lanai_dev *lanai;
2559 	struct atm_dev *atmdev;
2560 	int result;
2561 
2562 	lanai = kmalloc(sizeof(*lanai), GFP_KERNEL);
2563 	if (lanai == NULL) {
2564 		printk(KERN_ERR DEV_LABEL
2565 		       ": couldn't allocate dev_data structure!\n");
2566 		return -ENOMEM;
2567 	}
2568 
2569 	atmdev = atm_dev_register(DEV_LABEL, &pci->dev, &ops, -1, NULL);
2570 	if (atmdev == NULL) {
2571 		printk(KERN_ERR DEV_LABEL
2572 		    ": couldn't register atm device!\n");
2573 		kfree(lanai);
2574 		return -EBUSY;
2575 	}
2576 
2577 	atmdev->dev_data = lanai;
2578 	lanai->pci = pci;
2579 	lanai->type = (enum lanai_type) ident->device;
2580 
2581 	result = lanai_dev_open(atmdev);
2582 	if (result != 0) {
2583 		DPRINTK("lanai_start() failed, err=%d\n", -result);
2584 		atm_dev_deregister(atmdev);
2585 		kfree(lanai);
2586 	}
2587 	return result;
2588 }
2589 
2590 static const struct pci_device_id lanai_pci_tbl[] = {
2591 	{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) },
2592 	{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) },
2593 	{ 0, }	/* terminal entry */
2594 };
2595 MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
2596 
2597 static struct pci_driver lanai_driver = {
2598 	.name     = DEV_LABEL,
2599 	.id_table = lanai_pci_tbl,
2600 	.probe    = lanai_init_one,
2601 };
2602 
2603 module_pci_driver(lanai_driver);
2604 
2605 MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
2606 MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
2607 MODULE_LICENSE("GPL");
2608