xref: /openbmc/linux/drivers/atm/lanai.c (revision c65176fd49f45bd5a5ffaa1790109745d1fa462c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
3  *
4  * This driver supports ATM cards based on the Efficient "Lanai"
5  * chipset such as the Speedstream 3010 and the ENI-25p.  The
6  * Speedstream 3060 is currently not supported since we don't
7  * have the code to drive the on-board Alcatel DSL chipset (yet).
8  *
9  * Thanks to Efficient for supporting this project with hardware,
10  * documentation, and by answering my questions.
11  *
12  * Things not working yet:
13  *
14  * o  We don't support the Speedstream 3060 yet - this card has
15  *    an on-board DSL modem chip by Alcatel and the driver will
16  *    need some extra code added to handle it
17  *
18  * o  Note that due to limitations of the Lanai only one VCC can be
19  *    in CBR at once
20  *
21  * o We don't currently parse the EEPROM at all.  The code is all
22  *   there as per the spec, but it doesn't actually work.  I think
23  *   there may be some issues with the docs.  Anyway, do NOT
24  *   enable it yet - bugs in that code may actually damage your
25  *   hardware!  Because of this you should hardware an ESI before
26  *   trying to use this in a LANE or MPOA environment.
27  *
28  * o  AAL0 is stubbed in but the actual rx/tx path isn't written yet:
29  *	vcc_tx_aal0() needs to send or queue a SKB
30  *	vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
31  *	vcc_rx_aal0() needs to handle AAL0 interrupts
32  *    This isn't too much work - I just wanted to get other things
33  *    done first.
34  *
35  * o  lanai_change_qos() isn't written yet
36  *
37  * o  There aren't any ioctl's yet -- I'd like to eventually support
38  *    setting loopback and LED modes that way.
39  *
40  * o  If the segmentation engine or DMA gets shut down we should restart
41  *    card as per section 17.0i.  (see lanai_reset)
42  *
43  * o setsockopt(SO_CIRANGE) isn't done (although despite what the
44  *   API says it isn't exactly commonly implemented)
45  */
46 
47 /* Version history:
48  *   v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
49  *   v.0.02 -- 11-JAN-2000 -- Endian fixes
50  *   v.0.01 -- 30-NOV-1999 -- Initial release
51  */
52 
53 #include <linux/module.h>
54 #include <linux/slab.h>
55 #include <linux/mm.h>
56 #include <linux/atmdev.h>
57 #include <asm/io.h>
58 #include <asm/byteorder.h>
59 #include <linux/spinlock.h>
60 #include <linux/pci.h>
61 #include <linux/dma-mapping.h>
62 #include <linux/init.h>
63 #include <linux/delay.h>
64 #include <linux/interrupt.h>
65 
66 /* -------------------- TUNABLE PARAMATERS: */
67 
68 /*
69  * Maximum number of VCIs per card.  Setting it lower could theoretically
70  * save some memory, but since we allocate our vcc list with get_free_pages,
71  * it's not really likely for most architectures
72  */
73 #define NUM_VCI			(1024)
74 
75 /*
76  * Enable extra debugging
77  */
78 #define DEBUG
79 /*
80  * Debug _all_ register operations with card, except the memory test.
81  * Also disables the timed poll to prevent extra chattiness.  This
82  * isn't for normal use
83  */
84 #undef DEBUG_RW
85 
86 /*
87  * The programming guide specifies a full test of the on-board SRAM
88  * at initialization time.  Undefine to remove this
89  */
90 #define FULL_MEMORY_TEST
91 
92 /*
93  * This is the number of (4 byte) service entries that we will
94  * try to allocate at startup.  Note that we will end up with
95  * one PAGE_SIZE's worth regardless of what this is set to
96  */
97 #define SERVICE_ENTRIES		(1024)
98 /* TODO: make above a module load-time option */
99 
100 /*
101  * We normally read the onboard EEPROM in order to discover our MAC
102  * address.  Undefine to _not_ do this
103  */
104 /* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
105 /* TODO: make above a module load-time option (also) */
106 
107 /*
108  * Depth of TX fifo (in 128 byte units; range 2-31)
109  * Smaller numbers are better for network latency
110  * Larger numbers are better for PCI latency
111  * I'm really sure where the best tradeoff is, but the BSD driver uses
112  * 7 and it seems to work ok.
113  */
114 #define TX_FIFO_DEPTH		(7)
115 /* TODO: make above a module load-time option */
116 
117 /*
118  * How often (in jiffies) we will try to unstick stuck connections -
119  * shouldn't need to happen much
120  */
121 #define LANAI_POLL_PERIOD	(10*HZ)
122 /* TODO: make above a module load-time option */
123 
124 /*
125  * When allocating an AAL5 receiving buffer, try to make it at least
126  * large enough to hold this many max_sdu sized PDUs
127  */
128 #define AAL5_RX_MULTIPLIER	(3)
129 /* TODO: make above a module load-time option */
130 
131 /*
132  * Same for transmitting buffer
133  */
134 #define AAL5_TX_MULTIPLIER	(3)
135 /* TODO: make above a module load-time option */
136 
137 /*
138  * When allocating an AAL0 transmiting buffer, how many cells should fit.
139  * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
140  * really critical
141  */
142 #define AAL0_TX_MULTIPLIER	(40)
143 /* TODO: make above a module load-time option */
144 
145 /*
146  * How large should we make the AAL0 receiving buffer.  Remember that this
147  * is shared between all AAL0 VC's
148  */
149 #define AAL0_RX_BUFFER_SIZE	(PAGE_SIZE)
150 /* TODO: make above a module load-time option */
151 
152 /*
153  * Should we use Lanai's "powerdown" feature when no vcc's are bound?
154  */
155 /* #define USE_POWERDOWN */
156 /* TODO: make above a module load-time option (also) */
157 
158 /* -------------------- DEBUGGING AIDS: */
159 
160 #define DEV_LABEL "lanai"
161 
162 #ifdef DEBUG
163 
164 #define DPRINTK(format, args...) \
165 	printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
166 #define APRINTK(truth, format, args...) \
167 	do { \
168 		if (unlikely(!(truth))) \
169 			printk(KERN_ERR DEV_LABEL ": " format, ##args); \
170 	} while (0)
171 
172 #else /* !DEBUG */
173 
174 #define DPRINTK(format, args...)
175 #define APRINTK(truth, format, args...)
176 
177 #endif /* DEBUG */
178 
179 #ifdef DEBUG_RW
180 #define RWDEBUG(format, args...) \
181 	printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
182 #else /* !DEBUG_RW */
183 #define RWDEBUG(format, args...)
184 #endif
185 
186 /* -------------------- DATA DEFINITIONS: */
187 
188 #define LANAI_MAPPING_SIZE	(0x40000)
189 #define LANAI_EEPROM_SIZE	(128)
190 
191 typedef int vci_t;
192 typedef void __iomem *bus_addr_t;
193 
194 /* DMA buffer in host memory for TX, RX, or service list. */
195 struct lanai_buffer {
196 	u32 *start;	/* From get_free_pages */
197 	u32 *end;	/* One past last byte */
198 	u32 *ptr;	/* Pointer to current host location */
199 	dma_addr_t dmaaddr;
200 };
201 
202 struct lanai_vcc_stats {
203 	unsigned rx_nomem;
204 	union {
205 		struct {
206 			unsigned rx_badlen;
207 			unsigned service_trash;
208 			unsigned service_stream;
209 			unsigned service_rxcrc;
210 		} aal5;
211 		struct {
212 		} aal0;
213 	} x;
214 };
215 
216 struct lanai_dev;			/* Forward declaration */
217 
218 /*
219  * This is the card-specific per-vcc data.  Note that unlike some other
220  * drivers there is NOT a 1-to-1 correspondance between these and
221  * atm_vcc's - each one of these represents an actual 2-way vcc, but
222  * an atm_vcc can be 1-way and share with a 1-way vcc in the other
223  * direction.  To make it weirder, there can even be 0-way vccs
224  * bound to us, waiting to do a change_qos
225  */
226 struct lanai_vcc {
227 	bus_addr_t vbase;		/* Base of VCC's registers */
228 	struct lanai_vcc_stats stats;
229 	int nref;			/* # of atm_vcc's who reference us */
230 	vci_t vci;
231 	struct {
232 		struct lanai_buffer buf;
233 		struct atm_vcc *atmvcc;	/* atm_vcc who is receiver */
234 	} rx;
235 	struct {
236 		struct lanai_buffer buf;
237 		struct atm_vcc *atmvcc;	/* atm_vcc who is transmitter */
238 		int endptr;		/* last endptr from service entry */
239 		struct sk_buff_head backlog;
240 		void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
241 	} tx;
242 };
243 
244 enum lanai_type {
245 	lanai2	= PCI_DEVICE_ID_EF_ATM_LANAI2,
246 	lanaihb	= PCI_DEVICE_ID_EF_ATM_LANAIHB
247 };
248 
249 struct lanai_dev_stats {
250 	unsigned ovfl_trash;	/* # of cells dropped - buffer overflow */
251 	unsigned vci_trash;	/* # of cells dropped - closed vci */
252 	unsigned hec_err;	/* # of cells dropped - bad HEC */
253 	unsigned atm_ovfl;	/* # of cells dropped - rx fifo overflow */
254 	unsigned pcierr_parity_detect;
255 	unsigned pcierr_serr_set;
256 	unsigned pcierr_master_abort;
257 	unsigned pcierr_m_target_abort;
258 	unsigned pcierr_s_target_abort;
259 	unsigned pcierr_master_parity;
260 	unsigned service_notx;
261 	unsigned service_norx;
262 	unsigned service_rxnotaal5;
263 	unsigned dma_reenable;
264 	unsigned card_reset;
265 };
266 
267 struct lanai_dev {
268 	bus_addr_t base;
269 	struct lanai_dev_stats stats;
270 	struct lanai_buffer service;
271 	struct lanai_vcc **vccs;
272 #ifdef USE_POWERDOWN
273 	int nbound;			/* number of bound vccs */
274 #endif
275 	enum lanai_type type;
276 	vci_t num_vci;			/* Currently just NUM_VCI */
277 	u8 eeprom[LANAI_EEPROM_SIZE];
278 	u32 serialno, magicno;
279 	struct pci_dev *pci;
280 	DECLARE_BITMAP(backlog_vccs, NUM_VCI);   /* VCCs with tx backlog */
281 	DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
282 	struct timer_list timer;
283 	int naal0;
284 	struct lanai_buffer aal0buf;	/* AAL0 RX buffers */
285 	u32 conf1, conf2;		/* CONFIG[12] registers */
286 	u32 status;			/* STATUS register */
287 	spinlock_t endtxlock;
288 	spinlock_t servicelock;
289 	struct atm_vcc *cbrvcc;
290 	int number;
291 	int board_rev;
292 /* TODO - look at race conditions with maintence of conf1/conf2 */
293 /* TODO - transmit locking: should we use _irq not _irqsave? */
294 /* TODO - organize above in some rational fashion (see <asm/cache.h>) */
295 };
296 
297 /*
298  * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
299  * This function iterates one of these, calling a given function for each
300  * vci with their bit set
301  */
302 static void vci_bitfield_iterate(struct lanai_dev *lanai,
303 	const unsigned long *lp,
304 	void (*func)(struct lanai_dev *,vci_t vci))
305 {
306 	vci_t vci;
307 
308 	for_each_set_bit(vci, lp, NUM_VCI)
309 		func(lanai, vci);
310 }
311 
312 /* -------------------- BUFFER  UTILITIES: */
313 
314 /*
315  * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
316  * usually any page allocation will do.  Just to be safe in case
317  * PAGE_SIZE is insanely tiny, though...
318  */
319 #define LANAI_PAGE_SIZE   ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
320 
321 /*
322  * Allocate a buffer in host RAM for service list, RX, or TX
323  * Returns buf->start==NULL if no memory
324  * Note that the size will be rounded up 2^n bytes, and
325  * if we can't allocate that we'll settle for something smaller
326  * until minbytes
327  */
328 static void lanai_buf_allocate(struct lanai_buffer *buf,
329 	size_t bytes, size_t minbytes, struct pci_dev *pci)
330 {
331 	int size;
332 
333 	if (bytes > (128 * 1024))	/* max lanai buffer size */
334 		bytes = 128 * 1024;
335 	for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
336 		;
337 	if (minbytes < LANAI_PAGE_SIZE)
338 		minbytes = LANAI_PAGE_SIZE;
339 	do {
340 		/*
341 		 * Technically we could use non-consistent mappings for
342 		 * everything, but the way the lanai uses DMA memory would
343 		 * make that a terrific pain.  This is much simpler.
344 		 */
345 		buf->start = dma_alloc_coherent(&pci->dev,
346 						size, &buf->dmaaddr, GFP_KERNEL);
347 		if (buf->start != NULL) {	/* Success */
348 			/* Lanai requires 256-byte alignment of DMA bufs */
349 			APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
350 			    "bad dmaaddr: 0x%lx\n",
351 			    (unsigned long) buf->dmaaddr);
352 			buf->ptr = buf->start;
353 			buf->end = (u32 *)
354 			    (&((unsigned char *) buf->start)[size]);
355 			memset(buf->start, 0, size);
356 			break;
357 		}
358 		size /= 2;
359 	} while (size >= minbytes);
360 }
361 
362 /* size of buffer in bytes */
363 static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
364 {
365 	return ((unsigned long) buf->end) - ((unsigned long) buf->start);
366 }
367 
368 static void lanai_buf_deallocate(struct lanai_buffer *buf,
369 	struct pci_dev *pci)
370 {
371 	if (buf->start != NULL) {
372 		dma_free_coherent(&pci->dev, lanai_buf_size(buf),
373 				  buf->start, buf->dmaaddr);
374 		buf->start = buf->end = buf->ptr = NULL;
375 	}
376 }
377 
378 /* size of buffer as "card order" (0=1k .. 7=128k) */
379 static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
380 {
381 	int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
382 
383 	/* This can only happen if PAGE_SIZE is gigantic, but just in case */
384 	if (order > 7)
385 		order = 7;
386 	return order;
387 }
388 
389 /* -------------------- PORT I/O UTILITIES: */
390 
391 /* Registers (and their bit-fields) */
392 enum lanai_register {
393 	Reset_Reg		= 0x00,	/* Reset; read for chip type; bits: */
394 #define   RESET_GET_BOARD_REV(x)    (((x)>> 0)&0x03)	/* Board revision */
395 #define   RESET_GET_BOARD_ID(x)	    (((x)>> 2)&0x03)	/* Board ID */
396 #define     BOARD_ID_LANAI256		(0)	/* 25.6M adapter card */
397 	Endian_Reg		= 0x04,	/* Endian setting */
398 	IntStatus_Reg		= 0x08,	/* Interrupt status */
399 	IntStatusMasked_Reg	= 0x0C,	/* Interrupt status (masked) */
400 	IntAck_Reg		= 0x10,	/* Interrupt acknowledge */
401 	IntAckMasked_Reg	= 0x14,	/* Interrupt acknowledge (masked) */
402 	IntStatusSet_Reg	= 0x18,	/* Get status + enable/disable */
403 	IntStatusSetMasked_Reg	= 0x1C,	/* Get status + en/di (masked) */
404 	IntControlEna_Reg	= 0x20,	/* Interrupt control enable */
405 	IntControlDis_Reg	= 0x24,	/* Interrupt control disable */
406 	Status_Reg		= 0x28,	/* Status */
407 #define   STATUS_PROMDATA	 (0x00000001)	/* PROM_DATA pin */
408 #define   STATUS_WAITING	 (0x00000002)	/* Interrupt being delayed */
409 #define	  STATUS_SOOL		 (0x00000004)	/* SOOL alarm */
410 #define   STATUS_LOCD		 (0x00000008)	/* LOCD alarm */
411 #define	  STATUS_LED		 (0x00000010)	/* LED (HAPPI) output */
412 #define   STATUS_GPIN		 (0x00000020)	/* GPIN pin */
413 #define   STATUS_BUTTBUSY	 (0x00000040)	/* Butt register is pending */
414 	Config1_Reg		= 0x2C,	/* Config word 1; bits: */
415 #define   CONFIG1_PROMDATA	 (0x00000001)	/* PROM_DATA pin */
416 #define   CONFIG1_PROMCLK	 (0x00000002)	/* PROM_CLK pin */
417 #define   CONFIG1_SET_READMODE(x) ((x)*0x004)	/* PCI BM reads; values: */
418 #define     READMODE_PLAIN	    (0)		/*   Plain memory read */
419 #define     READMODE_LINE	    (2)		/*   Memory read line */
420 #define     READMODE_MULTIPLE	    (3)		/*   Memory read multiple */
421 #define   CONFIG1_DMA_ENABLE	 (0x00000010)	/* Turn on DMA */
422 #define   CONFIG1_POWERDOWN	 (0x00000020)	/* Turn off clocks */
423 #define   CONFIG1_SET_LOOPMODE(x) ((x)*0x080)	/* Clock&loop mode; values: */
424 #define     LOOPMODE_NORMAL	    (0)		/*   Normal - no loop */
425 #define     LOOPMODE_TIME	    (1)
426 #define     LOOPMODE_DIAG	    (2)
427 #define     LOOPMODE_LINE	    (3)
428 #define   CONFIG1_MASK_LOOPMODE  (0x00000180)
429 #define   CONFIG1_SET_LEDMODE(x) ((x)*0x0200)	/* Mode of LED; values: */
430 #define     LEDMODE_NOT_SOOL	    (0)		/*   !SOOL */
431 #define	    LEDMODE_OFF		    (1)		/*   0     */
432 #define	    LEDMODE_ON		    (2)		/*   1     */
433 #define	    LEDMODE_NOT_LOCD	    (3)		/*   !LOCD */
434 #define	    LEDMORE_GPIN	    (4)		/*   GPIN  */
435 #define     LEDMODE_NOT_GPIN	    (7)		/*   !GPIN */
436 #define   CONFIG1_MASK_LEDMODE	 (0x00000E00)
437 #define   CONFIG1_GPOUT1	 (0x00001000)	/* Toggle for reset */
438 #define   CONFIG1_GPOUT2	 (0x00002000)	/* Loopback PHY */
439 #define   CONFIG1_GPOUT3	 (0x00004000)	/* Loopback lanai */
440 	Config2_Reg		= 0x30,	/* Config word 2; bits: */
441 #define   CONFIG2_HOWMANY	 (0x00000001)	/* >512 VCIs? */
442 #define   CONFIG2_PTI7_MODE	 (0x00000002)	/* Make PTI=7 RM, not OAM */
443 #define   CONFIG2_VPI_CHK_DIS	 (0x00000004)	/* Ignore RX VPI value */
444 #define   CONFIG2_HEC_DROP	 (0x00000008)	/* Drop cells w/ HEC errors */
445 #define   CONFIG2_VCI0_NORMAL	 (0x00000010)	/* Treat VCI=0 normally */
446 #define   CONFIG2_CBR_ENABLE	 (0x00000020)	/* Deal with CBR traffic */
447 #define   CONFIG2_TRASH_ALL	 (0x00000040)	/* Trashing incoming cells */
448 #define   CONFIG2_TX_DISABLE	 (0x00000080)	/* Trashing outgoing cells */
449 #define   CONFIG2_SET_TRASH	 (0x00000100)	/* Turn trashing on */
450 	Statistics_Reg		= 0x34,	/* Statistics; bits: */
451 #define   STATS_GET_FIFO_OVFL(x)    (((x)>> 0)&0xFF)	/* FIFO overflowed */
452 #define   STATS_GET_HEC_ERR(x)      (((x)>> 8)&0xFF)	/* HEC was bad */
453 #define   STATS_GET_BAD_VCI(x)      (((x)>>16)&0xFF)	/* VCI not open */
454 #define   STATS_GET_BUF_OVFL(x)     (((x)>>24)&0xFF)	/* VCC buffer full */
455 	ServiceStuff_Reg	= 0x38,	/* Service stuff; bits: */
456 #define   SSTUFF_SET_SIZE(x) ((x)*0x20000000)	/* size of service buffer */
457 #define   SSTUFF_SET_ADDR(x)	    ((x)>>8)	/* set address of buffer */
458 	ServWrite_Reg		= 0x3C,	/* ServWrite Pointer */
459 	ServRead_Reg		= 0x40,	/* ServRead Pointer */
460 	TxDepth_Reg		= 0x44,	/* FIFO Transmit Depth */
461 	Butt_Reg		= 0x48,	/* Butt register */
462 	CBR_ICG_Reg		= 0x50,
463 	CBR_PTR_Reg		= 0x54,
464 	PingCount_Reg		= 0x58,	/* Ping count */
465 	DMA_Addr_Reg		= 0x5C	/* DMA address */
466 };
467 
468 static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
469 	enum lanai_register reg)
470 {
471 	return lanai->base + reg;
472 }
473 
474 static inline u32 reg_read(const struct lanai_dev *lanai,
475 	enum lanai_register reg)
476 {
477 	u32 t;
478 	t = readl(reg_addr(lanai, reg));
479 	RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
480 	    (int) reg, t);
481 	return t;
482 }
483 
484 static inline void reg_write(const struct lanai_dev *lanai, u32 val,
485 	enum lanai_register reg)
486 {
487 	RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
488 	    (int) reg, val);
489 	writel(val, reg_addr(lanai, reg));
490 }
491 
492 static inline void conf1_write(const struct lanai_dev *lanai)
493 {
494 	reg_write(lanai, lanai->conf1, Config1_Reg);
495 }
496 
497 static inline void conf2_write(const struct lanai_dev *lanai)
498 {
499 	reg_write(lanai, lanai->conf2, Config2_Reg);
500 }
501 
502 /* Same as conf2_write(), but defers I/O if we're powered down */
503 static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
504 {
505 #ifdef USE_POWERDOWN
506 	if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
507 		return;
508 #endif /* USE_POWERDOWN */
509 	conf2_write(lanai);
510 }
511 
512 static inline void reset_board(const struct lanai_dev *lanai)
513 {
514 	DPRINTK("about to reset board\n");
515 	reg_write(lanai, 0, Reset_Reg);
516 	/*
517 	 * If we don't delay a little while here then we can end up
518 	 * leaving the card in a VERY weird state and lock up the
519 	 * PCI bus.  This isn't documented anywhere but I've convinced
520 	 * myself after a lot of painful experimentation
521 	 */
522 	udelay(5);
523 }
524 
525 /* -------------------- CARD SRAM UTILITIES: */
526 
527 /* The SRAM is mapped into normal PCI memory space - the only catch is
528  * that it is only 16-bits wide but must be accessed as 32-bit.  The
529  * 16 high bits will be zero.  We don't hide this, since they get
530  * programmed mostly like discrete registers anyway
531  */
532 #define SRAM_START (0x20000)
533 #define SRAM_BYTES (0x20000)	/* Again, half don't really exist */
534 
535 static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
536 {
537 	return lanai->base + SRAM_START + offset;
538 }
539 
540 static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
541 {
542 	return readl(sram_addr(lanai, offset));
543 }
544 
545 static inline void sram_write(const struct lanai_dev *lanai,
546 	u32 val, int offset)
547 {
548 	writel(val, sram_addr(lanai, offset));
549 }
550 
551 static int sram_test_word(const struct lanai_dev *lanai, int offset,
552 			  u32 pattern)
553 {
554 	u32 readback;
555 	sram_write(lanai, pattern, offset);
556 	readback = sram_read(lanai, offset);
557 	if (likely(readback == pattern))
558 		return 0;
559 	printk(KERN_ERR DEV_LABEL
560 	    "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
561 	    lanai->number, offset,
562 	    (unsigned int) pattern, (unsigned int) readback);
563 	return -EIO;
564 }
565 
566 static int sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
567 {
568 	int offset, result = 0;
569 	for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
570 		result = sram_test_word(lanai, offset, pattern);
571 	return result;
572 }
573 
574 static int sram_test_and_clear(const struct lanai_dev *lanai)
575 {
576 #ifdef FULL_MEMORY_TEST
577 	int result;
578 	DPRINTK("testing SRAM\n");
579 	if ((result = sram_test_pass(lanai, 0x5555)) != 0)
580 		return result;
581 	if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
582 		return result;
583 #endif
584 	DPRINTK("clearing SRAM\n");
585 	return sram_test_pass(lanai, 0x0000);
586 }
587 
588 /* -------------------- CARD-BASED VCC TABLE UTILITIES: */
589 
590 /* vcc table */
591 enum lanai_vcc_offset {
592 	vcc_rxaddr1		= 0x00,	/* Location1, plus bits: */
593 #define   RXADDR1_SET_SIZE(x) ((x)*0x0000100)	/* size of RX buffer */
594 #define   RXADDR1_SET_RMMODE(x) ((x)*0x00800)	/* RM cell action; values: */
595 #define     RMMODE_TRASH	  (0)		/*   discard */
596 #define     RMMODE_PRESERVE	  (1)		/*   input as AAL0 */
597 #define     RMMODE_PIPE		  (2)		/*   pipe to coscheduler */
598 #define     RMMODE_PIPEALL	  (3)		/*   pipe non-RM too */
599 #define   RXADDR1_OAM_PRESERVE	 (0x00002000)	/* Input OAM cells as AAL0 */
600 #define   RXADDR1_SET_MODE(x) ((x)*0x0004000)	/* Reassembly mode */
601 #define     RXMODE_TRASH	  (0)		/*   discard */
602 #define     RXMODE_AAL0		  (1)		/*   non-AAL5 mode */
603 #define     RXMODE_AAL5		  (2)		/*   AAL5, intr. each PDU */
604 #define     RXMODE_AAL5_STREAM	  (3)		/*   AAL5 w/o per-PDU intr */
605 	vcc_rxaddr2		= 0x04,	/* Location2 */
606 	vcc_rxcrc1		= 0x08,	/* RX CRC claculation space */
607 	vcc_rxcrc2		= 0x0C,
608 	vcc_rxwriteptr		= 0x10, /* RX writeptr, plus bits: */
609 #define   RXWRITEPTR_LASTEFCI	 (0x00002000)	/* Last PDU had EFCI bit */
610 #define   RXWRITEPTR_DROPPING	 (0x00004000)	/* Had error, dropping */
611 #define   RXWRITEPTR_TRASHING	 (0x00008000)	/* Trashing */
612 	vcc_rxbufstart		= 0x14,	/* RX bufstart, plus bits: */
613 #define   RXBUFSTART_CLP	 (0x00004000)
614 #define   RXBUFSTART_CI		 (0x00008000)
615 	vcc_rxreadptr		= 0x18,	/* RX readptr */
616 	vcc_txicg		= 0x1C, /* TX ICG */
617 	vcc_txaddr1		= 0x20,	/* Location1, plus bits: */
618 #define   TXADDR1_SET_SIZE(x) ((x)*0x0000100)	/* size of TX buffer */
619 #define   TXADDR1_ABR		 (0x00008000)	/* use ABR (doesn't work) */
620 	vcc_txaddr2		= 0x24,	/* Location2 */
621 	vcc_txcrc1		= 0x28,	/* TX CRC claculation space */
622 	vcc_txcrc2		= 0x2C,
623 	vcc_txreadptr		= 0x30, /* TX Readptr, plus bits: */
624 #define   TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
625 #define   TXREADPTR_MASK_DELTA	(0x0000E000)	/* ? */
626 	vcc_txendptr		= 0x34, /* TX Endptr, plus bits: */
627 #define   TXENDPTR_CLP		(0x00002000)
628 #define   TXENDPTR_MASK_PDUMODE	(0x0000C000)	/* PDU mode; values: */
629 #define     PDUMODE_AAL0	 (0*0x04000)
630 #define     PDUMODE_AAL5	 (2*0x04000)
631 #define     PDUMODE_AAL5STREAM	 (3*0x04000)
632 	vcc_txwriteptr		= 0x38,	/* TX Writeptr */
633 #define   TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
634 	vcc_txcbr_next		= 0x3C	/* # of next CBR VCI in ring */
635 #define   TXCBR_NEXT_BOZO	(0x00008000)	/* "bozo bit" */
636 };
637 
638 #define CARDVCC_SIZE	(0x40)
639 
640 static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
641 	vci_t vci)
642 {
643 	return sram_addr(lanai, vci * CARDVCC_SIZE);
644 }
645 
646 static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
647 	enum lanai_vcc_offset offset)
648 {
649 	u32 val;
650 	APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
651 	val= readl(lvcc->vbase + offset);
652 	RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
653 	    lvcc->vci, (int) offset, val);
654 	return val;
655 }
656 
657 static inline void cardvcc_write(const struct lanai_vcc *lvcc,
658 	u32 val, enum lanai_vcc_offset offset)
659 {
660 	APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
661 	APRINTK((val & ~0xFFFF) == 0,
662 	    "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
663 	    (unsigned int) val, lvcc->vci, (unsigned int) offset);
664 	RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
665 	    lvcc->vci, (unsigned int) offset, (unsigned int) val);
666 	writel(val, lvcc->vbase + offset);
667 }
668 
669 /* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
670 
671 /* How many bytes will an AAL5 PDU take to transmit - remember that:
672  *   o  we need to add 8 bytes for length, CPI, UU, and CRC
673  *   o  we need to round up to 48 bytes for cells
674  */
675 static inline int aal5_size(int size)
676 {
677 	int cells = (size + 8 + 47) / 48;
678 	return cells * 48;
679 }
680 
681 /* -------------------- FREE AN ATM SKB: */
682 
683 static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
684 {
685 	if (atmvcc->pop != NULL)
686 		atmvcc->pop(atmvcc, skb);
687 	else
688 		dev_kfree_skb_any(skb);
689 }
690 
691 /* -------------------- TURN VCCS ON AND OFF: */
692 
693 static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
694 {
695 	u32 addr1;
696 	if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
697 		dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
698 		cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
699 		cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
700 		cardvcc_write(lvcc, 0, vcc_rxwriteptr);
701 		cardvcc_write(lvcc, 0, vcc_rxbufstart);
702 		cardvcc_write(lvcc, 0, vcc_rxreadptr);
703 		cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
704 		addr1 = ((dmaaddr >> 8) & 0xFF) |
705 		    RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
706 		    RXADDR1_SET_RMMODE(RMMODE_TRASH) |	/* ??? */
707 		 /* RXADDR1_OAM_PRESERVE |	--- no OAM support yet */
708 		    RXADDR1_SET_MODE(RXMODE_AAL5);
709 	} else
710 		addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
711 		    RXADDR1_OAM_PRESERVE |		      /* ??? */
712 		    RXADDR1_SET_MODE(RXMODE_AAL0);
713 	/* This one must be last! */
714 	cardvcc_write(lvcc, addr1, vcc_rxaddr1);
715 }
716 
717 static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
718 {
719 	dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
720 	cardvcc_write(lvcc, 0, vcc_txicg);
721 	cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
722 	cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
723 	cardvcc_write(lvcc, 0, vcc_txreadptr);
724 	cardvcc_write(lvcc, 0, vcc_txendptr);
725 	cardvcc_write(lvcc, 0, vcc_txwriteptr);
726 	cardvcc_write(lvcc,
727 		(lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
728 		TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
729 	cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
730 	cardvcc_write(lvcc,
731 	    ((dmaaddr >> 8) & 0xFF) |
732 	    TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
733 	    vcc_txaddr1);
734 }
735 
736 /* Shutdown receiving on card */
737 static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
738 {
739 	if (lvcc->vbase == NULL)	/* We were never bound to a VCI */
740 		return;
741 	/* 15.1.1 - set to trashing, wait one cell time (15us) */
742 	cardvcc_write(lvcc,
743 	    RXADDR1_SET_RMMODE(RMMODE_TRASH) |
744 	    RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
745 	udelay(15);
746 	/* 15.1.2 - clear rest of entries */
747 	cardvcc_write(lvcc, 0, vcc_rxaddr2);
748 	cardvcc_write(lvcc, 0, vcc_rxcrc1);
749 	cardvcc_write(lvcc, 0, vcc_rxcrc2);
750 	cardvcc_write(lvcc, 0, vcc_rxwriteptr);
751 	cardvcc_write(lvcc, 0, vcc_rxbufstart);
752 	cardvcc_write(lvcc, 0, vcc_rxreadptr);
753 }
754 
755 /* Shutdown transmitting on card.
756  * Unfortunately the lanai needs us to wait until all the data
757  * drains out of the buffer before we can dealloc it, so this
758  * can take awhile -- up to 370ms for a full 128KB buffer
759  * assuming everone else is quiet.  In theory the time is
760  * boundless if there's a CBR VCC holding things up.
761  */
762 static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
763 	struct lanai_vcc *lvcc)
764 {
765 	struct sk_buff *skb;
766 	unsigned long flags, timeout;
767 	int read, write, lastread = -1;
768 	APRINTK(!in_interrupt(),
769 	    "lanai_shutdown_tx_vci called w/o process context!\n");
770 	if (lvcc->vbase == NULL)	/* We were never bound to a VCI */
771 		return;
772 	/* 15.2.1 - wait for queue to drain */
773 	while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
774 		lanai_free_skb(lvcc->tx.atmvcc, skb);
775 	read_lock_irqsave(&vcc_sklist_lock, flags);
776 	__clear_bit(lvcc->vci, lanai->backlog_vccs);
777 	read_unlock_irqrestore(&vcc_sklist_lock, flags);
778 	/*
779 	 * We need to wait for the VCC to drain but don't wait forever.  We
780 	 * give each 1K of buffer size 1/128th of a second to clear out.
781 	 * TODO: maybe disable CBR if we're about to timeout?
782 	 */
783 	timeout = jiffies +
784 	    (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
785 	write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
786 	for (;;) {
787 		read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
788 		if (read == write &&	   /* Is TX buffer empty? */
789 		    (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
790 		    (cardvcc_read(lvcc, vcc_txcbr_next) &
791 		    TXCBR_NEXT_BOZO) == 0))
792 			break;
793 		if (read != lastread) {	   /* Has there been any progress? */
794 			lastread = read;
795 			timeout += HZ / 10;
796 		}
797 		if (unlikely(time_after(jiffies, timeout))) {
798 			printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
799 			    "backlog closing vci %d\n",
800 			    lvcc->tx.atmvcc->dev->number, lvcc->vci);
801 			DPRINTK("read, write = %d, %d\n", read, write);
802 			break;
803 		}
804 		msleep(40);
805 	}
806 	/* 15.2.2 - clear out all tx registers */
807 	cardvcc_write(lvcc, 0, vcc_txreadptr);
808 	cardvcc_write(lvcc, 0, vcc_txwriteptr);
809 	cardvcc_write(lvcc, 0, vcc_txendptr);
810 	cardvcc_write(lvcc, 0, vcc_txcrc1);
811 	cardvcc_write(lvcc, 0, vcc_txcrc2);
812 	cardvcc_write(lvcc, 0, vcc_txaddr2);
813 	cardvcc_write(lvcc, 0, vcc_txaddr1);
814 }
815 
816 /* -------------------- MANAGING AAL0 RX BUFFER: */
817 
818 static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
819 {
820 	DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
821 	lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
822 			   lanai->pci);
823 	return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
824 }
825 
826 static inline void aal0_buffer_free(struct lanai_dev *lanai)
827 {
828 	DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
829 	lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
830 }
831 
832 /* -------------------- EEPROM UTILITIES: */
833 
834 /* Offsets of data in the EEPROM */
835 #define EEPROM_COPYRIGHT	(0)
836 #define EEPROM_COPYRIGHT_LEN	(44)
837 #define EEPROM_CHECKSUM		(62)
838 #define EEPROM_CHECKSUM_REV	(63)
839 #define EEPROM_MAC		(64)
840 #define EEPROM_MAC_REV		(70)
841 #define EEPROM_SERIAL		(112)
842 #define EEPROM_SERIAL_REV	(116)
843 #define EEPROM_MAGIC		(120)
844 #define EEPROM_MAGIC_REV	(124)
845 
846 #define EEPROM_MAGIC_VALUE	(0x5AB478D2)
847 
848 #ifndef READ_EEPROM
849 
850 /* Stub functions to use if EEPROM reading is disabled */
851 static int eeprom_read(struct lanai_dev *lanai)
852 {
853 	printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
854 	    lanai->number);
855 	memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
856 	return 0;
857 }
858 
859 static int eeprom_validate(struct lanai_dev *lanai)
860 {
861 	lanai->serialno = 0;
862 	lanai->magicno = EEPROM_MAGIC_VALUE;
863 	return 0;
864 }
865 
866 #else /* READ_EEPROM */
867 
868 static int eeprom_read(struct lanai_dev *lanai)
869 {
870 	int i, address;
871 	u8 data;
872 	u32 tmp;
873 #define set_config1(x)   do { lanai->conf1 = x; conf1_write(lanai); \
874 			    } while (0)
875 #define clock_h()	 set_config1(lanai->conf1 | CONFIG1_PROMCLK)
876 #define clock_l()	 set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
877 #define data_h()	 set_config1(lanai->conf1 | CONFIG1_PROMDATA)
878 #define data_l()	 set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
879 #define pre_read()	 do { data_h(); clock_h(); udelay(5); } while (0)
880 #define read_pin()	 (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
881 #define send_stop()	 do { data_l(); udelay(5); clock_h(); udelay(5); \
882 			      data_h(); udelay(5); } while (0)
883 	/* start with both clock and data high */
884 	data_h(); clock_h(); udelay(5);
885 	for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
886 		data = (address << 1) | 1;	/* Command=read + address */
887 		/* send start bit */
888 		data_l(); udelay(5);
889 		clock_l(); udelay(5);
890 		for (i = 128; i != 0; i >>= 1) {   /* write command out */
891 			tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
892 			    ((data & i) ? CONFIG1_PROMDATA : 0);
893 			if (lanai->conf1 != tmp) {
894 				set_config1(tmp);
895 				udelay(5);	/* Let new data settle */
896 			}
897 			clock_h(); udelay(5); clock_l(); udelay(5);
898 		}
899 		/* look for ack */
900 		data_h(); clock_h(); udelay(5);
901 		if (read_pin() != 0)
902 			goto error;	/* No ack seen */
903 		clock_l(); udelay(5);
904 		/* read back result */
905 		for (data = 0, i = 7; i >= 0; i--) {
906 			data_h(); clock_h(); udelay(5);
907 			data = (data << 1) | !!read_pin();
908 			clock_l(); udelay(5);
909 		}
910 		/* look again for ack */
911 		data_h(); clock_h(); udelay(5);
912 		if (read_pin() == 0)
913 			goto error;	/* Spurious ack */
914 		clock_l(); udelay(5);
915 		send_stop();
916 		lanai->eeprom[address] = data;
917 		DPRINTK("EEPROM 0x%04X %02X\n",
918 		    (unsigned int) address, (unsigned int) data);
919 	}
920 	return 0;
921     error:
922 	clock_l(); udelay(5);		/* finish read */
923 	send_stop();
924 	printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
925 	    lanai->number, address);
926 	return -EIO;
927 #undef set_config1
928 #undef clock_h
929 #undef clock_l
930 #undef data_h
931 #undef data_l
932 #undef pre_read
933 #undef read_pin
934 #undef send_stop
935 }
936 
937 /* read a big-endian 4-byte value out of eeprom */
938 static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
939 {
940 	return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
941 }
942 
943 /* Checksum/validate EEPROM contents */
944 static int eeprom_validate(struct lanai_dev *lanai)
945 {
946 	int i, s;
947 	u32 v;
948 	const u8 *e = lanai->eeprom;
949 #ifdef DEBUG
950 	/* First, see if we can get an ASCIIZ string out of the copyright */
951 	for (i = EEPROM_COPYRIGHT;
952 	    i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
953 		if (e[i] < 0x20 || e[i] > 0x7E)
954 			break;
955 	if ( i != EEPROM_COPYRIGHT &&
956 	    i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
957 		DPRINTK("eeprom: copyright = \"%s\"\n",
958 		    (char *) &e[EEPROM_COPYRIGHT]);
959 	else
960 		DPRINTK("eeprom: copyright not found\n");
961 #endif
962 	/* Validate checksum */
963 	for (i = s = 0; i < EEPROM_CHECKSUM; i++)
964 		s += e[i];
965 	s &= 0xFF;
966 	if (s != e[EEPROM_CHECKSUM]) {
967 		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
968 		    "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
969 		    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
970 		return -EIO;
971 	}
972 	s ^= 0xFF;
973 	if (s != e[EEPROM_CHECKSUM_REV]) {
974 		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
975 		    "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
976 		    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
977 		return -EIO;
978 	}
979 	/* Verify MAC address */
980 	for (i = 0; i < 6; i++)
981 		if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
982 			printk(KERN_ERR DEV_LABEL
983 			    "(itf %d) : EEPROM MAC addresses don't match "
984 			    "(0x%02X, inverse 0x%02X)\n", lanai->number,
985 			    (unsigned int) e[EEPROM_MAC + i],
986 			    (unsigned int) e[EEPROM_MAC_REV + i]);
987 			return -EIO;
988 		}
989 	DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]);
990 	/* Verify serial number */
991 	lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
992 	v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
993 	if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
994 		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
995 		    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
996 		    (unsigned int) lanai->serialno, (unsigned int) v);
997 		return -EIO;
998 	}
999 	DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
1000 	/* Verify magic number */
1001 	lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
1002 	v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
1003 	if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
1004 		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
1005 		    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1006 		    lanai->magicno, v);
1007 		return -EIO;
1008 	}
1009 	DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
1010 	if (lanai->magicno != EEPROM_MAGIC_VALUE)
1011 		printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
1012 		    "magic not what expected (got 0x%08X, not 0x%08X)\n",
1013 		    lanai->number, (unsigned int) lanai->magicno,
1014 		    (unsigned int) EEPROM_MAGIC_VALUE);
1015 	return 0;
1016 }
1017 
1018 #endif /* READ_EEPROM */
1019 
1020 static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
1021 {
1022 	return &lanai->eeprom[EEPROM_MAC];
1023 }
1024 
1025 /* -------------------- INTERRUPT HANDLING UTILITIES: */
1026 
1027 /* Interrupt types */
1028 #define INT_STATS	(0x00000002)	/* Statistics counter overflow */
1029 #define INT_SOOL	(0x00000004)	/* SOOL changed state */
1030 #define INT_LOCD	(0x00000008)	/* LOCD changed state */
1031 #define INT_LED		(0x00000010)	/* LED (HAPPI) changed state */
1032 #define INT_GPIN	(0x00000020)	/* GPIN changed state */
1033 #define INT_PING	(0x00000040)	/* PING_COUNT fulfilled */
1034 #define INT_WAKE	(0x00000080)	/* Lanai wants bus */
1035 #define INT_CBR0	(0x00000100)	/* CBR sched hit VCI 0 */
1036 #define INT_LOCK	(0x00000200)	/* Service list overflow */
1037 #define INT_MISMATCH	(0x00000400)	/* TX magic list mismatch */
1038 #define INT_AAL0_STR	(0x00000800)	/* Non-AAL5 buffer half filled */
1039 #define INT_AAL0	(0x00001000)	/* Non-AAL5 data available */
1040 #define INT_SERVICE	(0x00002000)	/* Service list entries available */
1041 #define INT_TABORTSENT	(0x00004000)	/* Target abort sent by lanai */
1042 #define INT_TABORTBM	(0x00008000)	/* Abort rcv'd as bus master */
1043 #define INT_TIMEOUTBM	(0x00010000)	/* No response to bus master */
1044 #define INT_PCIPARITY	(0x00020000)	/* Parity error on PCI */
1045 
1046 /* Sets of the above */
1047 #define INT_ALL		(0x0003FFFE)	/* All interrupts */
1048 #define INT_STATUS	(0x0000003C)	/* Some status pin changed */
1049 #define INT_DMASHUT	(0x00038000)	/* DMA engine got shut down */
1050 #define INT_SEGSHUT	(0x00000700)	/* Segmentation got shut down */
1051 
1052 static inline u32 intr_pending(const struct lanai_dev *lanai)
1053 {
1054 	return reg_read(lanai, IntStatusMasked_Reg);
1055 }
1056 
1057 static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
1058 {
1059 	reg_write(lanai, i, IntControlEna_Reg);
1060 }
1061 
1062 static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
1063 {
1064 	reg_write(lanai, i, IntControlDis_Reg);
1065 }
1066 
1067 /* -------------------- CARD/PCI STATUS: */
1068 
1069 static void status_message(int itf, const char *name, int status)
1070 {
1071 	static const char *onoff[2] = { "off to on", "on to off" };
1072 	printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
1073 	    itf, name, onoff[!status]);
1074 }
1075 
1076 static void lanai_check_status(struct lanai_dev *lanai)
1077 {
1078 	u32 new = reg_read(lanai, Status_Reg);
1079 	u32 changes = new ^ lanai->status;
1080 	lanai->status = new;
1081 #define e(flag, name) \
1082 		if (changes & flag) \
1083 			status_message(lanai->number, name, new & flag)
1084 	e(STATUS_SOOL, "SOOL");
1085 	e(STATUS_LOCD, "LOCD");
1086 	e(STATUS_LED, "LED");
1087 	e(STATUS_GPIN, "GPIN");
1088 #undef e
1089 }
1090 
1091 static void pcistatus_got(int itf, const char *name)
1092 {
1093 	printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
1094 }
1095 
1096 static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
1097 {
1098 	u16 s;
1099 	int result;
1100 	result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
1101 	if (result != PCIBIOS_SUCCESSFUL) {
1102 		printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
1103 		    "%d\n", lanai->number, result);
1104 		return;
1105 	}
1106 	s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1107 	    PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
1108 	    PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
1109 	if (s == 0)
1110 		return;
1111 	result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
1112 	if (result != PCIBIOS_SUCCESSFUL)
1113 		printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
1114 		    "%d\n", lanai->number, result);
1115 	if (clearonly)
1116 		return;
1117 #define e(flag, name, stat) \
1118 		if (s & flag) { \
1119 			pcistatus_got(lanai->number, name); \
1120 			++lanai->stats.pcierr_##stat; \
1121 		}
1122 	e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
1123 	e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
1124 	e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
1125 	e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
1126 	e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
1127 	e(PCI_STATUS_PARITY, "master parity", master_parity);
1128 #undef e
1129 }
1130 
1131 /* -------------------- VCC TX BUFFER UTILITIES: */
1132 
1133 /* space left in tx buffer in bytes */
1134 static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
1135 {
1136 	int r;
1137 	r = endptr * 16;
1138 	r -= ((unsigned long) lvcc->tx.buf.ptr) -
1139 	    ((unsigned long) lvcc->tx.buf.start);
1140 	r -= 16;	/* Leave "bubble" - if start==end it looks empty */
1141 	if (r < 0)
1142 		r += lanai_buf_size(&lvcc->tx.buf);
1143 	return r;
1144 }
1145 
1146 /* test if VCC is currently backlogged */
1147 static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
1148 {
1149 	return !skb_queue_empty(&lvcc->tx.backlog);
1150 }
1151 
1152 /* Bit fields in the segmentation buffer descriptor */
1153 #define DESCRIPTOR_MAGIC	(0xD0000000)
1154 #define DESCRIPTOR_AAL5		(0x00008000)
1155 #define DESCRIPTOR_AAL5_STREAM	(0x00004000)
1156 #define DESCRIPTOR_CLP		(0x00002000)
1157 
1158 /* Add 32-bit descriptor with its padding */
1159 static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
1160 	u32 flags, int len)
1161 {
1162 	int pos;
1163 	APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
1164 	    "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
1165 	lvcc->tx.buf.ptr += 4;	/* Hope the values REALLY don't matter */
1166 	pos = ((unsigned char *) lvcc->tx.buf.ptr) -
1167 	    (unsigned char *) lvcc->tx.buf.start;
1168 	APRINTK((pos & ~0x0001FFF0) == 0,
1169 	    "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
1170 	    "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1171 	    lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1172 	pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
1173 	APRINTK((pos & ~0x0001FFF0) == 0,
1174 	    "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
1175 	    "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1176 	    lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1177 	lvcc->tx.buf.ptr[-1] =
1178 	    cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
1179 	    ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
1180 	    DESCRIPTOR_CLP : 0) | flags | pos >> 4);
1181 	if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1182 		lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1183 }
1184 
1185 /* Add 32-bit AAL5 trailer and leave room for its CRC */
1186 static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
1187 	int len, int cpi, int uu)
1188 {
1189 	APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
1190 	    "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
1191 	lvcc->tx.buf.ptr += 2;
1192 	lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
1193 	if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1194 		lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1195 }
1196 
1197 static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
1198 	const unsigned char *src, int n)
1199 {
1200 	unsigned char *e;
1201 	int m;
1202 	e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1203 	m = e - (unsigned char *) lvcc->tx.buf.end;
1204 	if (m < 0)
1205 		m = 0;
1206 	memcpy(lvcc->tx.buf.ptr, src, n - m);
1207 	if (m != 0) {
1208 		memcpy(lvcc->tx.buf.start, src + n - m, m);
1209 		e = ((unsigned char *) lvcc->tx.buf.start) + m;
1210 	}
1211 	lvcc->tx.buf.ptr = (u32 *) e;
1212 }
1213 
1214 static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
1215 {
1216 	unsigned char *e;
1217 	int m;
1218 	if (n == 0)
1219 		return;
1220 	e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1221 	m = e - (unsigned char *) lvcc->tx.buf.end;
1222 	if (m < 0)
1223 		m = 0;
1224 	memset(lvcc->tx.buf.ptr, 0, n - m);
1225 	if (m != 0) {
1226 		memset(lvcc->tx.buf.start, 0, m);
1227 		e = ((unsigned char *) lvcc->tx.buf.start) + m;
1228 	}
1229 	lvcc->tx.buf.ptr = (u32 *) e;
1230 }
1231 
1232 /* Update "butt" register to specify new WritePtr */
1233 static inline void lanai_endtx(struct lanai_dev *lanai,
1234 	const struct lanai_vcc *lvcc)
1235 {
1236 	int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
1237 	    (unsigned char *) lvcc->tx.buf.start;
1238 	APRINTK((ptr & ~0x0001FFF0) == 0,
1239 	    "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
1240 	    ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
1241 	    lvcc->tx.buf.end);
1242 
1243 	/*
1244 	 * Since the "butt register" is a shared resounce on the card we
1245 	 * serialize all accesses to it through this spinlock.  This is
1246 	 * mostly just paranoia since the register is rarely "busy" anyway
1247 	 * but is needed for correctness.
1248 	 */
1249 	spin_lock(&lanai->endtxlock);
1250 	/*
1251 	 * We need to check if the "butt busy" bit is set before
1252 	 * updating the butt register.  In theory this should
1253 	 * never happen because the ATM card is plenty fast at
1254 	 * updating the register.  Still, we should make sure
1255 	 */
1256 	for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
1257 		if (unlikely(i > 50)) {
1258 			printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
1259 			    "always busy!\n", lanai->number);
1260 			break;
1261 		}
1262 		udelay(5);
1263 	}
1264 	/*
1265 	 * Before we tall the card to start work we need to be sure 100% of
1266 	 * the info in the service buffer has been written before we tell
1267 	 * the card about it
1268 	 */
1269 	wmb();
1270 	reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
1271 	spin_unlock(&lanai->endtxlock);
1272 }
1273 
1274 /*
1275  * Add one AAL5 PDU to lvcc's transmit buffer.  Caller garauntees there's
1276  * space available.  "pdusize" is the number of bytes the PDU will take
1277  */
1278 static void lanai_send_one_aal5(struct lanai_dev *lanai,
1279 	struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
1280 {
1281 	int pad;
1282 	APRINTK(pdusize == aal5_size(skb->len),
1283 	    "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
1284 	    pdusize, aal5_size(skb->len));
1285 	vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
1286 	pad = pdusize - skb->len - 8;
1287 	APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
1288 	APRINTK(pad < 48, "pad is too big (%d)\n", pad);
1289 	vcc_tx_memcpy(lvcc, skb->data, skb->len);
1290 	vcc_tx_memzero(lvcc, pad);
1291 	vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
1292 	lanai_endtx(lanai, lvcc);
1293 	lanai_free_skb(lvcc->tx.atmvcc, skb);
1294 	atomic_inc(&lvcc->tx.atmvcc->stats->tx);
1295 }
1296 
1297 /* Try to fill the buffer - don't call unless there is backlog */
1298 static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
1299 	struct lanai_vcc *lvcc, int endptr)
1300 {
1301 	int n;
1302 	struct sk_buff *skb;
1303 	int space = vcc_tx_space(lvcc, endptr);
1304 	APRINTK(vcc_is_backlogged(lvcc),
1305 	    "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
1306 	    lvcc->vci);
1307 	while (space >= 64) {
1308 		skb = skb_dequeue(&lvcc->tx.backlog);
1309 		if (skb == NULL)
1310 			goto no_backlog;
1311 		n = aal5_size(skb->len);
1312 		if (n + 16 > space) {
1313 			/* No room for this packet - put it back on queue */
1314 			skb_queue_head(&lvcc->tx.backlog, skb);
1315 			return;
1316 		}
1317 		lanai_send_one_aal5(lanai, lvcc, skb, n);
1318 		space -= n + 16;
1319 	}
1320 	if (!vcc_is_backlogged(lvcc)) {
1321 	    no_backlog:
1322 		__clear_bit(lvcc->vci, lanai->backlog_vccs);
1323 	}
1324 }
1325 
1326 /* Given an skb that we want to transmit either send it now or queue */
1327 static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1328 	struct sk_buff *skb)
1329 {
1330 	int space, n;
1331 	if (vcc_is_backlogged(lvcc))		/* Already backlogged */
1332 		goto queue_it;
1333 	space = vcc_tx_space(lvcc,
1334 		    TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
1335 	n = aal5_size(skb->len);
1336 	APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
1337 	if (space < n + 16) {			/* No space for this PDU */
1338 		__set_bit(lvcc->vci, lanai->backlog_vccs);
1339 	    queue_it:
1340 		skb_queue_tail(&lvcc->tx.backlog, skb);
1341 		return;
1342 	}
1343 	lanai_send_one_aal5(lanai, lvcc, skb, n);
1344 }
1345 
1346 static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
1347 	struct lanai_vcc *lvcc, int endptr)
1348 {
1349 	printk(KERN_INFO DEV_LABEL
1350 	    ": vcc_tx_unqueue_aal0: not implemented\n");
1351 }
1352 
1353 static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1354 	struct sk_buff *skb)
1355 {
1356 	printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
1357 	/* Remember to increment lvcc->tx.atmvcc->stats->tx */
1358 	lanai_free_skb(lvcc->tx.atmvcc, skb);
1359 }
1360 
1361 /* -------------------- VCC RX BUFFER UTILITIES: */
1362 
1363 /* unlike the _tx_ cousins, this doesn't update ptr */
1364 static inline void vcc_rx_memcpy(unsigned char *dest,
1365 	const struct lanai_vcc *lvcc, int n)
1366 {
1367 	int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
1368 	    ((const unsigned char *) (lvcc->rx.buf.end));
1369 	if (m < 0)
1370 		m = 0;
1371 	memcpy(dest, lvcc->rx.buf.ptr, n - m);
1372 	memcpy(dest + n - m, lvcc->rx.buf.start, m);
1373 	/* Make sure that these copies don't get reordered */
1374 	barrier();
1375 }
1376 
1377 /* Receive AAL5 data on a VCC with a particular endptr */
1378 static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
1379 {
1380 	int size;
1381 	struct sk_buff *skb;
1382 	const u32 *x;
1383 	u32 *end = &lvcc->rx.buf.start[endptr * 4];
1384 	int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
1385 	if (n < 0)
1386 		n += lanai_buf_size(&lvcc->rx.buf);
1387 	APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
1388 	    "vcc_rx_aal5: n out of range (%d/%zu)\n",
1389 	    n, lanai_buf_size(&lvcc->rx.buf));
1390 	/* Recover the second-to-last word to get true pdu length */
1391 	if ((x = &end[-2]) < lvcc->rx.buf.start)
1392 		x = &lvcc->rx.buf.end[-2];
1393 	/*
1394 	 * Before we actually read from the buffer, make sure the memory
1395 	 * changes have arrived
1396 	 */
1397 	rmb();
1398 	size = be32_to_cpup(x) & 0xffff;
1399 	if (unlikely(n != aal5_size(size))) {
1400 		/* Make sure size matches padding */
1401 		printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
1402 		    "on vci=%d - size=%d n=%d\n",
1403 		    lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
1404 		lvcc->stats.x.aal5.rx_badlen++;
1405 		goto out;
1406 	}
1407 	skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
1408 	if (unlikely(skb == NULL)) {
1409 		lvcc->stats.rx_nomem++;
1410 		goto out;
1411 	}
1412 	skb_put(skb, size);
1413 	vcc_rx_memcpy(skb->data, lvcc, size);
1414 	ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
1415 	__net_timestamp(skb);
1416 	lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
1417 	atomic_inc(&lvcc->rx.atmvcc->stats->rx);
1418     out:
1419 	lvcc->rx.buf.ptr = end;
1420 	cardvcc_write(lvcc, endptr, vcc_rxreadptr);
1421 }
1422 
1423 static void vcc_rx_aal0(struct lanai_dev *lanai)
1424 {
1425 	printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
1426 	/* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
1427 	/* Remember to increment lvcc->rx.atmvcc->stats->rx */
1428 }
1429 
1430 /* -------------------- MANAGING HOST-BASED VCC TABLE: */
1431 
1432 /* Decide whether to use vmalloc or get_zeroed_page for VCC table */
1433 #if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
1434 #define VCCTABLE_GETFREEPAGE
1435 #else
1436 #include <linux/vmalloc.h>
1437 #endif
1438 
1439 static int vcc_table_allocate(struct lanai_dev *lanai)
1440 {
1441 #ifdef VCCTABLE_GETFREEPAGE
1442 	APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
1443 	    "vcc table > PAGE_SIZE!");
1444 	lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
1445 	return (lanai->vccs == NULL) ? -ENOMEM : 0;
1446 #else
1447 	int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
1448 	lanai->vccs = vzalloc(bytes);
1449 	if (unlikely(lanai->vccs == NULL))
1450 		return -ENOMEM;
1451 	return 0;
1452 #endif
1453 }
1454 
1455 static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
1456 {
1457 #ifdef VCCTABLE_GETFREEPAGE
1458 	free_page((unsigned long) lanai->vccs);
1459 #else
1460 	vfree(lanai->vccs);
1461 #endif
1462 }
1463 
1464 /* Allocate a fresh lanai_vcc, with the appropriate things cleared */
1465 static inline struct lanai_vcc *new_lanai_vcc(void)
1466 {
1467 	struct lanai_vcc *lvcc;
1468 	lvcc =  kzalloc(sizeof(*lvcc), GFP_KERNEL);
1469 	if (likely(lvcc != NULL)) {
1470 		skb_queue_head_init(&lvcc->tx.backlog);
1471 #ifdef DEBUG
1472 		lvcc->vci = -1;
1473 #endif
1474 	}
1475 	return lvcc;
1476 }
1477 
1478 static int lanai_get_sized_buffer(struct lanai_dev *lanai,
1479 	struct lanai_buffer *buf, int max_sdu, int multiplier,
1480 	const char *name)
1481 {
1482 	int size;
1483 	if (unlikely(max_sdu < 1))
1484 		max_sdu = 1;
1485 	max_sdu = aal5_size(max_sdu);
1486 	size = (max_sdu + 16) * multiplier + 16;
1487 	lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
1488 	if (unlikely(buf->start == NULL))
1489 		return -ENOMEM;
1490 	if (unlikely(lanai_buf_size(buf) < size))
1491 		printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
1492 		    "for %s buffer, got only %zu\n", lanai->number, size,
1493 		    name, lanai_buf_size(buf));
1494 	DPRINTK("Allocated %zu byte %s buffer\n", lanai_buf_size(buf), name);
1495 	return 0;
1496 }
1497 
1498 /* Setup a RX buffer for a currently unbound AAL5 vci */
1499 static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
1500 	struct lanai_vcc *lvcc, const struct atm_qos *qos)
1501 {
1502 	return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
1503 	    qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
1504 }
1505 
1506 /* Setup a TX buffer for a currently unbound AAL5 vci */
1507 static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1508 	const struct atm_qos *qos)
1509 {
1510 	int max_sdu, multiplier;
1511 	if (qos->aal == ATM_AAL0) {
1512 		lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
1513 		max_sdu = ATM_CELL_SIZE - 1;
1514 		multiplier = AAL0_TX_MULTIPLIER;
1515 	} else {
1516 		lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
1517 		max_sdu = qos->txtp.max_sdu;
1518 		multiplier = AAL5_TX_MULTIPLIER;
1519 	}
1520 	return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
1521 	    multiplier, "TX");
1522 }
1523 
1524 static inline void host_vcc_bind(struct lanai_dev *lanai,
1525 	struct lanai_vcc *lvcc, vci_t vci)
1526 {
1527 	if (lvcc->vbase != NULL)
1528 		return;    /* We already were bound in the other direction */
1529 	DPRINTK("Binding vci %d\n", vci);
1530 #ifdef USE_POWERDOWN
1531 	if (lanai->nbound++ == 0) {
1532 		DPRINTK("Coming out of powerdown\n");
1533 		lanai->conf1 &= ~CONFIG1_POWERDOWN;
1534 		conf1_write(lanai);
1535 		conf2_write(lanai);
1536 	}
1537 #endif
1538 	lvcc->vbase = cardvcc_addr(lanai, vci);
1539 	lanai->vccs[lvcc->vci = vci] = lvcc;
1540 }
1541 
1542 static inline void host_vcc_unbind(struct lanai_dev *lanai,
1543 	struct lanai_vcc *lvcc)
1544 {
1545 	if (lvcc->vbase == NULL)
1546 		return;	/* This vcc was never bound */
1547 	DPRINTK("Unbinding vci %d\n", lvcc->vci);
1548 	lvcc->vbase = NULL;
1549 	lanai->vccs[lvcc->vci] = NULL;
1550 #ifdef USE_POWERDOWN
1551 	if (--lanai->nbound == 0) {
1552 		DPRINTK("Going into powerdown\n");
1553 		lanai->conf1 |= CONFIG1_POWERDOWN;
1554 		conf1_write(lanai);
1555 	}
1556 #endif
1557 }
1558 
1559 /* -------------------- RESET CARD: */
1560 
1561 static void lanai_reset(struct lanai_dev *lanai)
1562 {
1563 	printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* resetting - not "
1564 	    "implemented\n", lanai->number);
1565 	/* TODO */
1566 	/* The following is just a hack until we write the real
1567 	 * resetter - at least ack whatever interrupt sent us
1568 	 * here
1569 	 */
1570 	reg_write(lanai, INT_ALL, IntAck_Reg);
1571 	lanai->stats.card_reset++;
1572 }
1573 
1574 /* -------------------- SERVICE LIST UTILITIES: */
1575 
1576 /*
1577  * Allocate service buffer and tell card about it
1578  */
1579 static int service_buffer_allocate(struct lanai_dev *lanai)
1580 {
1581 	lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
1582 	    lanai->pci);
1583 	if (unlikely(lanai->service.start == NULL))
1584 		return -ENOMEM;
1585 	DPRINTK("allocated service buffer at %p, size %zu(%d)\n",
1586 	    lanai->service.start,
1587 	    lanai_buf_size(&lanai->service),
1588 	    lanai_buf_size_cardorder(&lanai->service));
1589 	/* Clear ServWrite register to be safe */
1590 	reg_write(lanai, 0, ServWrite_Reg);
1591 	/* ServiceStuff register contains size and address of buffer */
1592 	reg_write(lanai,
1593 	    SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
1594 	    SSTUFF_SET_ADDR(lanai->service.dmaaddr),
1595 	    ServiceStuff_Reg);
1596 	return 0;
1597 }
1598 
1599 static inline void service_buffer_deallocate(struct lanai_dev *lanai)
1600 {
1601 	lanai_buf_deallocate(&lanai->service, lanai->pci);
1602 }
1603 
1604 /* Bitfields in service list */
1605 #define SERVICE_TX	(0x80000000)	/* Was from transmission */
1606 #define SERVICE_TRASH	(0x40000000)	/* RXed PDU was trashed */
1607 #define SERVICE_CRCERR	(0x20000000)	/* RXed PDU had CRC error */
1608 #define SERVICE_CI	(0x10000000)	/* RXed PDU had CI set */
1609 #define SERVICE_CLP	(0x08000000)	/* RXed PDU had CLP set */
1610 #define SERVICE_STREAM	(0x04000000)	/* RX Stream mode */
1611 #define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
1612 #define SERVICE_GET_END(x) ((x)&0x1FFF)
1613 
1614 /* Handle one thing from the service list - returns true if it marked a
1615  * VCC ready for xmit
1616  */
1617 static int handle_service(struct lanai_dev *lanai, u32 s)
1618 {
1619 	vci_t vci = SERVICE_GET_VCI(s);
1620 	struct lanai_vcc *lvcc;
1621 	read_lock(&vcc_sklist_lock);
1622 	lvcc = lanai->vccs[vci];
1623 	if (unlikely(lvcc == NULL)) {
1624 		read_unlock(&vcc_sklist_lock);
1625 		DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
1626 		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1627 		if (s & SERVICE_TX)
1628 			lanai->stats.service_notx++;
1629 		else
1630 			lanai->stats.service_norx++;
1631 		return 0;
1632 	}
1633 	if (s & SERVICE_TX) {			/* segmentation interrupt */
1634 		if (unlikely(lvcc->tx.atmvcc == NULL)) {
1635 			read_unlock(&vcc_sklist_lock);
1636 			DPRINTK("(itf %d) got service entry 0x%X for non-TX "
1637 			    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1638 			lanai->stats.service_notx++;
1639 			return 0;
1640 		}
1641 		__set_bit(vci, lanai->transmit_ready);
1642 		lvcc->tx.endptr = SERVICE_GET_END(s);
1643 		read_unlock(&vcc_sklist_lock);
1644 		return 1;
1645 	}
1646 	if (unlikely(lvcc->rx.atmvcc == NULL)) {
1647 		read_unlock(&vcc_sklist_lock);
1648 		DPRINTK("(itf %d) got service entry 0x%X for non-RX "
1649 		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1650 		lanai->stats.service_norx++;
1651 		return 0;
1652 	}
1653 	if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
1654 		read_unlock(&vcc_sklist_lock);
1655 		DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
1656 		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1657 		lanai->stats.service_rxnotaal5++;
1658 		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1659 		return 0;
1660 	}
1661 	if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
1662 		vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
1663 		read_unlock(&vcc_sklist_lock);
1664 		return 0;
1665 	}
1666 	if (s & SERVICE_TRASH) {
1667 		int bytes;
1668 		read_unlock(&vcc_sklist_lock);
1669 		DPRINTK("got trashed rx pdu on vci %d\n", vci);
1670 		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1671 		lvcc->stats.x.aal5.service_trash++;
1672 		bytes = (SERVICE_GET_END(s) * 16) -
1673 		    (((unsigned long) lvcc->rx.buf.ptr) -
1674 		    ((unsigned long) lvcc->rx.buf.start)) + 47;
1675 		if (bytes < 0)
1676 			bytes += lanai_buf_size(&lvcc->rx.buf);
1677 		lanai->stats.ovfl_trash += (bytes / 48);
1678 		return 0;
1679 	}
1680 	if (s & SERVICE_STREAM) {
1681 		read_unlock(&vcc_sklist_lock);
1682 		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1683 		lvcc->stats.x.aal5.service_stream++;
1684 		printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
1685 		    "PDU on VCI %d!\n", lanai->number, vci);
1686 		lanai_reset(lanai);
1687 		return 0;
1688 	}
1689 	DPRINTK("got rx crc error on vci %d\n", vci);
1690 	atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1691 	lvcc->stats.x.aal5.service_rxcrc++;
1692 	lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
1693 	cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
1694 	read_unlock(&vcc_sklist_lock);
1695 	return 0;
1696 }
1697 
1698 /* Try transmitting on all VCIs that we marked ready to serve */
1699 static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
1700 {
1701 	struct lanai_vcc *lvcc = lanai->vccs[vci];
1702 	if (vcc_is_backlogged(lvcc))
1703 		lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
1704 }
1705 
1706 /* Run service queue -- called from interrupt context or with
1707  * interrupts otherwise disabled and with the lanai->servicelock
1708  * lock held
1709  */
1710 static void run_service(struct lanai_dev *lanai)
1711 {
1712 	int ntx = 0;
1713 	u32 wreg = reg_read(lanai, ServWrite_Reg);
1714 	const u32 *end = lanai->service.start + wreg;
1715 	while (lanai->service.ptr != end) {
1716 		ntx += handle_service(lanai,
1717 		    le32_to_cpup(lanai->service.ptr++));
1718 		if (lanai->service.ptr >= lanai->service.end)
1719 			lanai->service.ptr = lanai->service.start;
1720 	}
1721 	reg_write(lanai, wreg, ServRead_Reg);
1722 	if (ntx != 0) {
1723 		read_lock(&vcc_sklist_lock);
1724 		vci_bitfield_iterate(lanai, lanai->transmit_ready,
1725 		    iter_transmit);
1726 		bitmap_zero(lanai->transmit_ready, NUM_VCI);
1727 		read_unlock(&vcc_sklist_lock);
1728 	}
1729 }
1730 
1731 /* -------------------- GATHER STATISTICS: */
1732 
1733 static void get_statistics(struct lanai_dev *lanai)
1734 {
1735 	u32 statreg = reg_read(lanai, Statistics_Reg);
1736 	lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
1737 	lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
1738 	lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
1739 	lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
1740 }
1741 
1742 /* -------------------- POLLING TIMER: */
1743 
1744 #ifndef DEBUG_RW
1745 /* Try to undequeue 1 backlogged vcc */
1746 static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
1747 {
1748 	struct lanai_vcc *lvcc = lanai->vccs[vci];
1749 	int endptr;
1750 	if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
1751 	    !vcc_is_backlogged(lvcc)) {
1752 		__clear_bit(vci, lanai->backlog_vccs);
1753 		return;
1754 	}
1755 	endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
1756 	lvcc->tx.unqueue(lanai, lvcc, endptr);
1757 }
1758 #endif /* !DEBUG_RW */
1759 
1760 static void lanai_timed_poll(struct timer_list *t)
1761 {
1762 	struct lanai_dev *lanai = from_timer(lanai, t, timer);
1763 #ifndef DEBUG_RW
1764 	unsigned long flags;
1765 #ifdef USE_POWERDOWN
1766 	if (lanai->conf1 & CONFIG1_POWERDOWN)
1767 		return;
1768 #endif /* USE_POWERDOWN */
1769 	local_irq_save(flags);
1770 	/* If we can grab the spinlock, check if any services need to be run */
1771 	if (spin_trylock(&lanai->servicelock)) {
1772 		run_service(lanai);
1773 		spin_unlock(&lanai->servicelock);
1774 	}
1775 	/* ...and see if any backlogged VCs can make progress */
1776 	/* unfortunately linux has no read_trylock() currently */
1777 	read_lock(&vcc_sklist_lock);
1778 	vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
1779 	read_unlock(&vcc_sklist_lock);
1780 	local_irq_restore(flags);
1781 
1782 	get_statistics(lanai);
1783 #endif /* !DEBUG_RW */
1784 	mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
1785 }
1786 
1787 static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
1788 {
1789 	timer_setup(&lanai->timer, lanai_timed_poll, 0);
1790 	lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
1791 	add_timer(&lanai->timer);
1792 }
1793 
1794 static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
1795 {
1796 	del_timer_sync(&lanai->timer);
1797 }
1798 
1799 /* -------------------- INTERRUPT SERVICE: */
1800 
1801 static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
1802 {
1803 	u32 ack = 0;
1804 	if (reason & INT_SERVICE) {
1805 		ack = INT_SERVICE;
1806 		spin_lock(&lanai->servicelock);
1807 		run_service(lanai);
1808 		spin_unlock(&lanai->servicelock);
1809 	}
1810 	if (reason & (INT_AAL0_STR | INT_AAL0)) {
1811 		ack |= reason & (INT_AAL0_STR | INT_AAL0);
1812 		vcc_rx_aal0(lanai);
1813 	}
1814 	/* The rest of the interrupts are pretty rare */
1815 	if (ack == reason)
1816 		goto done;
1817 	if (reason & INT_STATS) {
1818 		reason &= ~INT_STATS;	/* No need to ack */
1819 		get_statistics(lanai);
1820 	}
1821 	if (reason & INT_STATUS) {
1822 		ack |= reason & INT_STATUS;
1823 		lanai_check_status(lanai);
1824 	}
1825 	if (unlikely(reason & INT_DMASHUT)) {
1826 		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
1827 		    "shutdown, reason=0x%08X, address=0x%08X\n",
1828 		    lanai->number, (unsigned int) (reason & INT_DMASHUT),
1829 		    (unsigned int) reg_read(lanai, DMA_Addr_Reg));
1830 		if (reason & INT_TABORTBM) {
1831 			lanai_reset(lanai);
1832 			return;
1833 		}
1834 		ack |= (reason & INT_DMASHUT);
1835 		printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
1836 		    lanai->number);
1837 		conf1_write(lanai);
1838 		lanai->stats.dma_reenable++;
1839 		pcistatus_check(lanai, 0);
1840 	}
1841 	if (unlikely(reason & INT_TABORTSENT)) {
1842 		ack |= (reason & INT_TABORTSENT);
1843 		printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
1844 		    lanai->number);
1845 		pcistatus_check(lanai, 0);
1846 	}
1847 	if (unlikely(reason & INT_SEGSHUT)) {
1848 		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1849 		    "segmentation shutdown, reason=0x%08X\n", lanai->number,
1850 		    (unsigned int) (reason & INT_SEGSHUT));
1851 		lanai_reset(lanai);
1852 		return;
1853 	}
1854 	if (unlikely(reason & (INT_PING | INT_WAKE))) {
1855 		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1856 		    "unexpected interrupt 0x%08X, resetting\n",
1857 		    lanai->number,
1858 		    (unsigned int) (reason & (INT_PING | INT_WAKE)));
1859 		lanai_reset(lanai);
1860 		return;
1861 	}
1862 #ifdef DEBUG
1863 	if (unlikely(ack != reason)) {
1864 		DPRINTK("unacked ints: 0x%08X\n",
1865 		    (unsigned int) (reason & ~ack));
1866 		ack = reason;
1867 	}
1868 #endif
1869    done:
1870 	if (ack != 0)
1871 		reg_write(lanai, ack, IntAck_Reg);
1872 }
1873 
1874 static irqreturn_t lanai_int(int irq, void *devid)
1875 {
1876 	struct lanai_dev *lanai = devid;
1877 	u32 reason;
1878 
1879 #ifdef USE_POWERDOWN
1880 	/*
1881 	 * If we're powered down we shouldn't be generating any interrupts -
1882 	 * so assume that this is a shared interrupt line and it's for someone
1883 	 * else
1884 	 */
1885 	if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
1886 		return IRQ_NONE;
1887 #endif
1888 
1889 	reason = intr_pending(lanai);
1890 	if (reason == 0)
1891 		return IRQ_NONE;	/* Must be for someone else */
1892 
1893 	do {
1894 		if (unlikely(reason == 0xFFFFFFFF))
1895 			break;		/* Maybe we've been unplugged? */
1896 		lanai_int_1(lanai, reason);
1897 		reason = intr_pending(lanai);
1898 	} while (reason != 0);
1899 
1900 	return IRQ_HANDLED;
1901 }
1902 
1903 /* TODO - it would be nice if we could use the "delayed interrupt" system
1904  *   to some advantage
1905  */
1906 
1907 /* -------------------- CHECK BOARD ID/REV: */
1908 
1909 /*
1910  * The board id and revision are stored both in the reset register and
1911  * in the PCI configuration space - the documentation says to check
1912  * each of them.  If revp!=NULL we store the revision there
1913  */
1914 static int check_board_id_and_rev(const char *name, u32 val, int *revp)
1915 {
1916 	DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
1917 		(int) RESET_GET_BOARD_ID(val),
1918 		(int) RESET_GET_BOARD_REV(val));
1919 	if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
1920 		printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
1921 		    "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
1922 		return -ENODEV;
1923 	}
1924 	if (revp != NULL)
1925 		*revp = RESET_GET_BOARD_REV(val);
1926 	return 0;
1927 }
1928 
1929 /* -------------------- PCI INITIALIZATION/SHUTDOWN: */
1930 
1931 static int lanai_pci_start(struct lanai_dev *lanai)
1932 {
1933 	struct pci_dev *pci = lanai->pci;
1934 	int result;
1935 
1936 	if (pci_enable_device(pci) != 0) {
1937 		printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
1938 		    "PCI device", lanai->number);
1939 		return -ENXIO;
1940 	}
1941 	pci_set_master(pci);
1942 	if (dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(32)) != 0) {
1943 		printk(KERN_WARNING DEV_LABEL
1944 		    "(itf %d): No suitable DMA available.\n", lanai->number);
1945 		return -EBUSY;
1946 	}
1947 	result = check_board_id_and_rev("PCI", pci->subsystem_device, NULL);
1948 	if (result != 0)
1949 		return result;
1950 	/* Set latency timer to zero as per lanai docs */
1951 	result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
1952 	if (result != PCIBIOS_SUCCESSFUL) {
1953 		printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
1954 		    "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
1955 		return -EINVAL;
1956 	}
1957 	pcistatus_check(lanai, 1);
1958 	pcistatus_check(lanai, 0);
1959 	return 0;
1960 }
1961 
1962 /* -------------------- VPI/VCI ALLOCATION: */
1963 
1964 /*
1965  * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
1966  * get a CBRZERO interrupt), and we can use it only if no one is receiving
1967  * AAL0 traffic (since they will use the same queue) - according to the
1968  * docs we shouldn't even use it for AAL0 traffic
1969  */
1970 static inline int vci0_is_ok(struct lanai_dev *lanai,
1971 	const struct atm_qos *qos)
1972 {
1973 	if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
1974 		return 0;
1975 	if (qos->rxtp.traffic_class != ATM_NONE) {
1976 		if (lanai->naal0 != 0)
1977 			return 0;
1978 		lanai->conf2 |= CONFIG2_VCI0_NORMAL;
1979 		conf2_write_if_powerup(lanai);
1980 	}
1981 	return 1;
1982 }
1983 
1984 /* return true if vci is currently unused, or if requested qos is
1985  * compatible
1986  */
1987 static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
1988 	const struct atm_vcc *atmvcc)
1989 {
1990 	const struct atm_qos *qos = &atmvcc->qos;
1991 	const struct lanai_vcc *lvcc = lanai->vccs[vci];
1992 	if (vci == 0 && !vci0_is_ok(lanai, qos))
1993 		return 0;
1994 	if (unlikely(lvcc != NULL)) {
1995 		if (qos->rxtp.traffic_class != ATM_NONE &&
1996 		    lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
1997 			return 0;
1998 		if (qos->txtp.traffic_class != ATM_NONE &&
1999 		    lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
2000 			return 0;
2001 		if (qos->txtp.traffic_class == ATM_CBR &&
2002 		    lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
2003 			return 0;
2004 	}
2005 	if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
2006 	    qos->rxtp.traffic_class != ATM_NONE) {
2007 		const struct lanai_vcc *vci0 = lanai->vccs[0];
2008 		if (vci0 != NULL && vci0->rx.atmvcc != NULL)
2009 			return 0;
2010 		lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
2011 		conf2_write_if_powerup(lanai);
2012 	}
2013 	return 1;
2014 }
2015 
2016 static int lanai_normalize_ci(struct lanai_dev *lanai,
2017 	const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
2018 {
2019 	switch (*vpip) {
2020 		case ATM_VPI_ANY:
2021 			*vpip = 0;
2022 			fallthrough;
2023 		case 0:
2024 			break;
2025 		default:
2026 			return -EADDRINUSE;
2027 	}
2028 	switch (*vcip) {
2029 		case ATM_VCI_ANY:
2030 			for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
2031 			    (*vcip)++)
2032 				if (vci_is_ok(lanai, *vcip, atmvcc))
2033 					return 0;
2034 			return -EADDRINUSE;
2035 		default:
2036 			if (*vcip >= lanai->num_vci || *vcip < 0 ||
2037 			    !vci_is_ok(lanai, *vcip, atmvcc))
2038 				return -EADDRINUSE;
2039 	}
2040 	return 0;
2041 }
2042 
2043 /* -------------------- MANAGE CBR: */
2044 
2045 /*
2046  * CBR ICG is stored as a fixed-point number with 4 fractional bits.
2047  * Note that storing a number greater than 2046.0 will result in
2048  * incorrect shaping
2049  */
2050 #define CBRICG_FRAC_BITS	(4)
2051 #define CBRICG_MAX		(2046 << CBRICG_FRAC_BITS)
2052 
2053 /*
2054  * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
2055  * where MAXPCR is (according to the docs) 25600000/(54*8),
2056  * which is equal to (3125<<9)/27.
2057  *
2058  * Solving for ICG, we get:
2059  *    ICG = MAXPCR/PCR - 1
2060  *    ICG = (3125<<9)/(27*PCR) - 1
2061  *    ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
2062  *
2063  * The end result is supposed to be a fixed-point number with FRAC_BITS
2064  * bits of a fractional part, so we keep everything in the numerator
2065  * shifted by that much as we compute
2066  *
2067  */
2068 static int pcr_to_cbricg(const struct atm_qos *qos)
2069 {
2070 	int rounddown = 0;	/* 1 = Round PCR down, i.e. round ICG _up_ */
2071 	int x, icg, pcr = atm_pcr_goal(&qos->txtp);
2072 	if (pcr == 0)		/* Use maximum bandwidth */
2073 		return 0;
2074 	if (pcr < 0) {
2075 		rounddown = 1;
2076 		pcr = -pcr;
2077 	}
2078 	x = pcr * 27;
2079 	icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
2080 	if (rounddown)
2081 		icg += x - 1;
2082 	icg /= x;
2083 	if (icg > CBRICG_MAX)
2084 		icg = CBRICG_MAX;
2085 	DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
2086 	    pcr, rounddown ? 'Y' : 'N', icg);
2087 	return icg;
2088 }
2089 
2090 static inline void lanai_cbr_setup(struct lanai_dev *lanai)
2091 {
2092 	reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
2093 	reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
2094 	lanai->conf2 |= CONFIG2_CBR_ENABLE;
2095 	conf2_write(lanai);
2096 }
2097 
2098 static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
2099 {
2100 	lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
2101 	conf2_write(lanai);
2102 }
2103 
2104 /* -------------------- OPERATIONS: */
2105 
2106 /* setup a newly detected device */
2107 static int lanai_dev_open(struct atm_dev *atmdev)
2108 {
2109 	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2110 	unsigned long raw_base;
2111 	int result;
2112 
2113 	DPRINTK("In lanai_dev_open()\n");
2114 	/* Basic device fields */
2115 	lanai->number = atmdev->number;
2116 	lanai->num_vci = NUM_VCI;
2117 	bitmap_zero(lanai->backlog_vccs, NUM_VCI);
2118 	bitmap_zero(lanai->transmit_ready, NUM_VCI);
2119 	lanai->naal0 = 0;
2120 #ifdef USE_POWERDOWN
2121 	lanai->nbound = 0;
2122 #endif
2123 	lanai->cbrvcc = NULL;
2124 	memset(&lanai->stats, 0, sizeof lanai->stats);
2125 	spin_lock_init(&lanai->endtxlock);
2126 	spin_lock_init(&lanai->servicelock);
2127 	atmdev->ci_range.vpi_bits = 0;
2128 	atmdev->ci_range.vci_bits = 0;
2129 	while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
2130 		atmdev->ci_range.vci_bits++;
2131 	atmdev->link_rate = ATM_25_PCR;
2132 
2133 	/* 3.2: PCI initialization */
2134 	if ((result = lanai_pci_start(lanai)) != 0)
2135 		goto error;
2136 	raw_base = lanai->pci->resource[0].start;
2137 	lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
2138 	if (lanai->base == NULL) {
2139 		printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
2140 		result = -ENOMEM;
2141 		goto error_pci;
2142 	}
2143 	/* 3.3: Reset lanai and PHY */
2144 	reset_board(lanai);
2145 	lanai->conf1 = reg_read(lanai, Config1_Reg);
2146 	lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
2147 	    CONFIG1_MASK_LEDMODE);
2148 	lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
2149 	reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2150 	udelay(1000);
2151 	conf1_write(lanai);
2152 
2153 	/*
2154 	 * 3.4: Turn on endian mode for big-endian hardware
2155 	 *   We don't actually want to do this - the actual bit fields
2156 	 *   in the endian register are not documented anywhere.
2157 	 *   Instead we do the bit-flipping ourselves on big-endian
2158 	 *   hardware.
2159 	 *
2160 	 * 3.5: get the board ID/rev by reading the reset register
2161 	 */
2162 	result = check_board_id_and_rev("register",
2163 	    reg_read(lanai, Reset_Reg), &lanai->board_rev);
2164 	if (result != 0)
2165 		goto error_unmap;
2166 
2167 	/* 3.6: read EEPROM */
2168 	if ((result = eeprom_read(lanai)) != 0)
2169 		goto error_unmap;
2170 	if ((result = eeprom_validate(lanai)) != 0)
2171 		goto error_unmap;
2172 
2173 	/* 3.7: re-reset PHY, do loopback tests, setup PHY */
2174 	reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2175 	udelay(1000);
2176 	conf1_write(lanai);
2177 	/* TODO - loopback tests */
2178 	lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
2179 	conf1_write(lanai);
2180 
2181 	/* 3.8/3.9: test and initialize card SRAM */
2182 	if ((result = sram_test_and_clear(lanai)) != 0)
2183 		goto error_unmap;
2184 
2185 	/* 3.10: initialize lanai registers */
2186 	lanai->conf1 |= CONFIG1_DMA_ENABLE;
2187 	conf1_write(lanai);
2188 	if ((result = service_buffer_allocate(lanai)) != 0)
2189 		goto error_unmap;
2190 	if ((result = vcc_table_allocate(lanai)) != 0)
2191 		goto error_service;
2192 	lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
2193 	    CONFIG2_HEC_DROP |	/* ??? */ CONFIG2_PTI7_MODE;
2194 	conf2_write(lanai);
2195 	reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
2196 	reg_write(lanai, 0, CBR_ICG_Reg);	/* CBR defaults to no limit */
2197 	if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
2198 	    DEV_LABEL, lanai)) != 0) {
2199 		printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
2200 		goto error_vcctable;
2201 	}
2202 	mb();				/* Make sure that all that made it */
2203 	intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
2204 	/* 3.11: initialize loop mode (i.e. turn looping off) */
2205 	lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
2206 	    CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
2207 	    CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
2208 	conf1_write(lanai);
2209 	lanai->status = reg_read(lanai, Status_Reg);
2210 	/* We're now done initializing this card */
2211 #ifdef USE_POWERDOWN
2212 	lanai->conf1 |= CONFIG1_POWERDOWN;
2213 	conf1_write(lanai);
2214 #endif
2215 	memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
2216 	lanai_timed_poll_start(lanai);
2217 	printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=%p, irq=%u "
2218 		"(%pMF)\n", lanai->number, (int) lanai->pci->revision,
2219 		lanai->base, lanai->pci->irq, atmdev->esi);
2220 	printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
2221 	    "board_rev=%d\n", lanai->number,
2222 	    lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
2223 	    (unsigned int) lanai->serialno, lanai->board_rev);
2224 	return 0;
2225 
2226     error_vcctable:
2227 	vcc_table_deallocate(lanai);
2228     error_service:
2229 	service_buffer_deallocate(lanai);
2230     error_unmap:
2231 	reset_board(lanai);
2232 #ifdef USE_POWERDOWN
2233 	lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
2234 	conf1_write(lanai);
2235 #endif
2236 	iounmap(lanai->base);
2237     error_pci:
2238 	pci_disable_device(lanai->pci);
2239     error:
2240 	return result;
2241 }
2242 
2243 /* called when device is being shutdown, and all vcc's are gone - higher
2244  * levels will deallocate the atm device for us
2245  */
2246 static void lanai_dev_close(struct atm_dev *atmdev)
2247 {
2248 	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2249 	printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
2250 	    lanai->number);
2251 	lanai_timed_poll_stop(lanai);
2252 #ifdef USE_POWERDOWN
2253 	lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
2254 	conf1_write(lanai);
2255 #endif
2256 	intr_disable(lanai, INT_ALL);
2257 	free_irq(lanai->pci->irq, lanai);
2258 	reset_board(lanai);
2259 #ifdef USE_POWERDOWN
2260 	lanai->conf1 |= CONFIG1_POWERDOWN;
2261 	conf1_write(lanai);
2262 #endif
2263 	pci_disable_device(lanai->pci);
2264 	vcc_table_deallocate(lanai);
2265 	service_buffer_deallocate(lanai);
2266 	iounmap(lanai->base);
2267 	kfree(lanai);
2268 }
2269 
2270 /* close a vcc */
2271 static void lanai_close(struct atm_vcc *atmvcc)
2272 {
2273 	struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2274 	struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2275 	if (lvcc == NULL)
2276 		return;
2277 	clear_bit(ATM_VF_READY, &atmvcc->flags);
2278 	clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
2279 	if (lvcc->rx.atmvcc == atmvcc) {
2280 		lanai_shutdown_rx_vci(lvcc);
2281 		if (atmvcc->qos.aal == ATM_AAL0) {
2282 			if (--lanai->naal0 <= 0)
2283 				aal0_buffer_free(lanai);
2284 		} else
2285 			lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
2286 		lvcc->rx.atmvcc = NULL;
2287 	}
2288 	if (lvcc->tx.atmvcc == atmvcc) {
2289 		if (atmvcc == lanai->cbrvcc) {
2290 			if (lvcc->vbase != NULL)
2291 				lanai_cbr_shutdown(lanai);
2292 			lanai->cbrvcc = NULL;
2293 		}
2294 		lanai_shutdown_tx_vci(lanai, lvcc);
2295 		lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
2296 		lvcc->tx.atmvcc = NULL;
2297 	}
2298 	if (--lvcc->nref == 0) {
2299 		host_vcc_unbind(lanai, lvcc);
2300 		kfree(lvcc);
2301 	}
2302 	atmvcc->dev_data = NULL;
2303 	clear_bit(ATM_VF_ADDR, &atmvcc->flags);
2304 }
2305 
2306 /* open a vcc on the card to vpi/vci */
2307 static int lanai_open(struct atm_vcc *atmvcc)
2308 {
2309 	struct lanai_dev *lanai;
2310 	struct lanai_vcc *lvcc;
2311 	int result = 0;
2312 	int vci = atmvcc->vci;
2313 	short vpi = atmvcc->vpi;
2314 	/* we don't support partial open - it's not really useful anyway */
2315 	if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
2316 	    (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
2317 		return -EINVAL;
2318 	lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2319 	result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
2320 	if (unlikely(result != 0))
2321 		goto out;
2322 	set_bit(ATM_VF_ADDR, &atmvcc->flags);
2323 	if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
2324 		return -EINVAL;
2325 	DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
2326 	    (int) vpi, vci);
2327 	lvcc = lanai->vccs[vci];
2328 	if (lvcc == NULL) {
2329 		lvcc = new_lanai_vcc();
2330 		if (unlikely(lvcc == NULL))
2331 			return -ENOMEM;
2332 		atmvcc->dev_data = lvcc;
2333 	}
2334 	lvcc->nref++;
2335 	if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
2336 		APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
2337 		    vci);
2338 		if (atmvcc->qos.aal == ATM_AAL0) {
2339 			if (lanai->naal0 == 0)
2340 				result = aal0_buffer_allocate(lanai);
2341 		} else
2342 			result = lanai_setup_rx_vci_aal5(
2343 			    lanai, lvcc, &atmvcc->qos);
2344 		if (unlikely(result != 0))
2345 			goto out_free;
2346 		lvcc->rx.atmvcc = atmvcc;
2347 		lvcc->stats.rx_nomem = 0;
2348 		lvcc->stats.x.aal5.rx_badlen = 0;
2349 		lvcc->stats.x.aal5.service_trash = 0;
2350 		lvcc->stats.x.aal5.service_stream = 0;
2351 		lvcc->stats.x.aal5.service_rxcrc = 0;
2352 		if (atmvcc->qos.aal == ATM_AAL0)
2353 			lanai->naal0++;
2354 	}
2355 	if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
2356 		APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
2357 		    vci);
2358 		result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
2359 		if (unlikely(result != 0))
2360 			goto out_free;
2361 		lvcc->tx.atmvcc = atmvcc;
2362 		if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
2363 			APRINTK(lanai->cbrvcc == NULL,
2364 			    "cbrvcc!=NULL, vci=%d\n", vci);
2365 			lanai->cbrvcc = atmvcc;
2366 		}
2367 	}
2368 	host_vcc_bind(lanai, lvcc, vci);
2369 	/*
2370 	 * Make sure everything made it to RAM before we tell the card about
2371 	 * the VCC
2372 	 */
2373 	wmb();
2374 	if (atmvcc == lvcc->rx.atmvcc)
2375 		host_vcc_start_rx(lvcc);
2376 	if (atmvcc == lvcc->tx.atmvcc) {
2377 		host_vcc_start_tx(lvcc);
2378 		if (lanai->cbrvcc == atmvcc)
2379 			lanai_cbr_setup(lanai);
2380 	}
2381 	set_bit(ATM_VF_READY, &atmvcc->flags);
2382 	return 0;
2383     out_free:
2384 	lanai_close(atmvcc);
2385     out:
2386 	return result;
2387 }
2388 
2389 static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
2390 {
2391 	struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2392 	struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2393 	unsigned long flags;
2394 	if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
2395 	      lvcc->tx.atmvcc != atmvcc))
2396 		goto einval;
2397 #ifdef DEBUG
2398 	if (unlikely(skb == NULL)) {
2399 		DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
2400 		goto einval;
2401 	}
2402 	if (unlikely(lanai == NULL)) {
2403 		DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
2404 		goto einval;
2405 	}
2406 #endif
2407 	ATM_SKB(skb)->vcc = atmvcc;
2408 	switch (atmvcc->qos.aal) {
2409 		case ATM_AAL5:
2410 			read_lock_irqsave(&vcc_sklist_lock, flags);
2411 			vcc_tx_aal5(lanai, lvcc, skb);
2412 			read_unlock_irqrestore(&vcc_sklist_lock, flags);
2413 			return 0;
2414 		case ATM_AAL0:
2415 			if (unlikely(skb->len != ATM_CELL_SIZE-1))
2416 				goto einval;
2417   /* NOTE - this next line is technically invalid - we haven't unshared skb */
2418 			cpu_to_be32s((u32 *) skb->data);
2419 			read_lock_irqsave(&vcc_sklist_lock, flags);
2420 			vcc_tx_aal0(lanai, lvcc, skb);
2421 			read_unlock_irqrestore(&vcc_sklist_lock, flags);
2422 			return 0;
2423 	}
2424 	DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
2425 	    atmvcc->vci);
2426     einval:
2427 	lanai_free_skb(atmvcc, skb);
2428 	return -EINVAL;
2429 }
2430 
2431 static int lanai_change_qos(struct atm_vcc *atmvcc,
2432 	/*const*/ struct atm_qos *qos, int flags)
2433 {
2434 	return -EBUSY;		/* TODO: need to write this */
2435 }
2436 
2437 #ifndef CONFIG_PROC_FS
2438 #define lanai_proc_read NULL
2439 #else
2440 static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
2441 {
2442 	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2443 	loff_t left = *pos;
2444 	struct lanai_vcc *lvcc;
2445 	if (left-- == 0)
2446 		return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
2447 		    "serial=%u, magic=0x%08X, num_vci=%d\n",
2448 		    atmdev->number, lanai->type==lanai2 ? "2" : "HB",
2449 		    (unsigned int) lanai->serialno,
2450 		    (unsigned int) lanai->magicno, lanai->num_vci);
2451 	if (left-- == 0)
2452 		return sprintf(page, "revision: board=%d, pci_if=%d\n",
2453 		    lanai->board_rev, (int) lanai->pci->revision);
2454 	if (left-- == 0)
2455 		return sprintf(page, "EEPROM ESI: %pM\n",
2456 		    &lanai->eeprom[EEPROM_MAC]);
2457 	if (left-- == 0)
2458 		return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
2459 		    "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
2460 		    (lanai->status & STATUS_LOCD) ? 1 : 0,
2461 		    (lanai->status & STATUS_LED) ? 1 : 0,
2462 		    (lanai->status & STATUS_GPIN) ? 1 : 0);
2463 	if (left-- == 0)
2464 		return sprintf(page, "global buffer sizes: service=%zu, "
2465 		    "aal0_rx=%zu\n", lanai_buf_size(&lanai->service),
2466 		    lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
2467 	if (left-- == 0) {
2468 		get_statistics(lanai);
2469 		return sprintf(page, "cells in error: overflow=%u, "
2470 		    "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
2471 		    lanai->stats.ovfl_trash, lanai->stats.vci_trash,
2472 		    lanai->stats.hec_err, lanai->stats.atm_ovfl);
2473 	}
2474 	if (left-- == 0)
2475 		return sprintf(page, "PCI errors: parity_detect=%u, "
2476 		    "master_abort=%u, master_target_abort=%u,\n",
2477 		    lanai->stats.pcierr_parity_detect,
2478 		    lanai->stats.pcierr_serr_set,
2479 		    lanai->stats.pcierr_m_target_abort);
2480 	if (left-- == 0)
2481 		return sprintf(page, "            slave_target_abort=%u, "
2482 		    "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
2483 		    lanai->stats.pcierr_master_parity);
2484 	if (left-- == 0)
2485 		return sprintf(page, "                     no_tx=%u, "
2486 		    "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
2487 		    lanai->stats.service_notx,
2488 		    lanai->stats.service_rxnotaal5);
2489 	if (left-- == 0)
2490 		return sprintf(page, "resets: dma=%u, card=%u\n",
2491 		    lanai->stats.dma_reenable, lanai->stats.card_reset);
2492 	/* At this point, "left" should be the VCI we're looking for */
2493 	read_lock(&vcc_sklist_lock);
2494 	for (; ; left++) {
2495 		if (left >= NUM_VCI) {
2496 			left = 0;
2497 			goto out;
2498 		}
2499 		if ((lvcc = lanai->vccs[left]) != NULL)
2500 			break;
2501 		(*pos)++;
2502 	}
2503 	/* Note that we re-use "left" here since we're done with it */
2504 	left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u",  (vci_t) left,
2505 	    lvcc->nref, lvcc->stats.rx_nomem);
2506 	if (lvcc->rx.atmvcc != NULL) {
2507 		left += sprintf(&page[left], ",\n          rx_AAL=%d",
2508 		    lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
2509 		if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
2510 			left += sprintf(&page[left], ", rx_buf_size=%zu, "
2511 			    "rx_bad_len=%u,\n          rx_service_trash=%u, "
2512 			    "rx_service_stream=%u, rx_bad_crc=%u",
2513 			    lanai_buf_size(&lvcc->rx.buf),
2514 			    lvcc->stats.x.aal5.rx_badlen,
2515 			    lvcc->stats.x.aal5.service_trash,
2516 			    lvcc->stats.x.aal5.service_stream,
2517 			    lvcc->stats.x.aal5.service_rxcrc);
2518 	}
2519 	if (lvcc->tx.atmvcc != NULL)
2520 		left += sprintf(&page[left], ",\n          tx_AAL=%d, "
2521 		    "tx_buf_size=%zu, tx_qos=%cBR, tx_backlogged=%c",
2522 		    lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
2523 		    lanai_buf_size(&lvcc->tx.buf),
2524 		    lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
2525 		    vcc_is_backlogged(lvcc) ? 'Y' : 'N');
2526 	page[left++] = '\n';
2527 	page[left] = '\0';
2528     out:
2529 	read_unlock(&vcc_sklist_lock);
2530 	return left;
2531 }
2532 #endif /* CONFIG_PROC_FS */
2533 
2534 /* -------------------- HOOKS: */
2535 
2536 static const struct atmdev_ops ops = {
2537 	.dev_close	= lanai_dev_close,
2538 	.open		= lanai_open,
2539 	.close		= lanai_close,
2540 	.send		= lanai_send,
2541 	.phy_put	= NULL,
2542 	.phy_get	= NULL,
2543 	.change_qos	= lanai_change_qos,
2544 	.proc_read	= lanai_proc_read,
2545 	.owner		= THIS_MODULE
2546 };
2547 
2548 /* initialize one probed card */
2549 static int lanai_init_one(struct pci_dev *pci,
2550 			  const struct pci_device_id *ident)
2551 {
2552 	struct lanai_dev *lanai;
2553 	struct atm_dev *atmdev;
2554 	int result;
2555 
2556 	lanai = kmalloc(sizeof(*lanai), GFP_KERNEL);
2557 	if (lanai == NULL) {
2558 		printk(KERN_ERR DEV_LABEL
2559 		       ": couldn't allocate dev_data structure!\n");
2560 		return -ENOMEM;
2561 	}
2562 
2563 	atmdev = atm_dev_register(DEV_LABEL, &pci->dev, &ops, -1, NULL);
2564 	if (atmdev == NULL) {
2565 		printk(KERN_ERR DEV_LABEL
2566 		    ": couldn't register atm device!\n");
2567 		kfree(lanai);
2568 		return -EBUSY;
2569 	}
2570 
2571 	atmdev->dev_data = lanai;
2572 	lanai->pci = pci;
2573 	lanai->type = (enum lanai_type) ident->device;
2574 
2575 	result = lanai_dev_open(atmdev);
2576 	if (result != 0) {
2577 		DPRINTK("lanai_start() failed, err=%d\n", -result);
2578 		atm_dev_deregister(atmdev);
2579 		kfree(lanai);
2580 	}
2581 	return result;
2582 }
2583 
2584 static const struct pci_device_id lanai_pci_tbl[] = {
2585 	{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) },
2586 	{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) },
2587 	{ 0, }	/* terminal entry */
2588 };
2589 MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
2590 
2591 static struct pci_driver lanai_driver = {
2592 	.name     = DEV_LABEL,
2593 	.id_table = lanai_pci_tbl,
2594 	.probe    = lanai_init_one,
2595 };
2596 
2597 module_pci_driver(lanai_driver);
2598 
2599 MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
2600 MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
2601 MODULE_LICENSE("GPL");
2602