xref: /openbmc/linux/drivers/atm/lanai.c (revision 58e481f6)
1 /* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
2  *
3  *  This program is free software; you can redistribute it and/or
4  *  modify it under the terms of the GNU General Public License
5  *  as published by the Free Software Foundation; either version
6  *  2 of the License, or (at your option) any later version.
7  *
8  * This driver supports ATM cards based on the Efficient "Lanai"
9  * chipset such as the Speedstream 3010 and the ENI-25p.  The
10  * Speedstream 3060 is currently not supported since we don't
11  * have the code to drive the on-board Alcatel DSL chipset (yet).
12  *
13  * Thanks to Efficient for supporting this project with hardware,
14  * documentation, and by answering my questions.
15  *
16  * Things not working yet:
17  *
18  * o  We don't support the Speedstream 3060 yet - this card has
19  *    an on-board DSL modem chip by Alcatel and the driver will
20  *    need some extra code added to handle it
21  *
22  * o  Note that due to limitations of the Lanai only one VCC can be
23  *    in CBR at once
24  *
25  * o We don't currently parse the EEPROM at all.  The code is all
26  *   there as per the spec, but it doesn't actually work.  I think
27  *   there may be some issues with the docs.  Anyway, do NOT
28  *   enable it yet - bugs in that code may actually damage your
29  *   hardware!  Because of this you should hardware an ESI before
30  *   trying to use this in a LANE or MPOA environment.
31  *
32  * o  AAL0 is stubbed in but the actual rx/tx path isn't written yet:
33  *	vcc_tx_aal0() needs to send or queue a SKB
34  *	vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
35  *	vcc_rx_aal0() needs to handle AAL0 interrupts
36  *    This isn't too much work - I just wanted to get other things
37  *    done first.
38  *
39  * o  lanai_change_qos() isn't written yet
40  *
41  * o  There aren't any ioctl's yet -- I'd like to eventually support
42  *    setting loopback and LED modes that way.
43  *
44  * o  If the segmentation engine or DMA gets shut down we should restart
45  *    card as per section 17.0i.  (see lanai_reset)
46  *
47  * o setsockopt(SO_CIRANGE) isn't done (although despite what the
48  *   API says it isn't exactly commonly implemented)
49  */
50 
51 /* Version history:
52  *   v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
53  *   v.0.02 -- 11-JAN-2000 -- Endian fixes
54  *   v.0.01 -- 30-NOV-1999 -- Initial release
55  */
56 
57 #include <linux/module.h>
58 #include <linux/slab.h>
59 #include <linux/mm.h>
60 #include <linux/atmdev.h>
61 #include <asm/io.h>
62 #include <asm/byteorder.h>
63 #include <linux/spinlock.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/init.h>
67 #include <linux/delay.h>
68 #include <linux/interrupt.h>
69 
70 /* -------------------- TUNABLE PARAMATERS: */
71 
72 /*
73  * Maximum number of VCIs per card.  Setting it lower could theoretically
74  * save some memory, but since we allocate our vcc list with get_free_pages,
75  * it's not really likely for most architectures
76  */
77 #define NUM_VCI			(1024)
78 
79 /*
80  * Enable extra debugging
81  */
82 #define DEBUG
83 /*
84  * Debug _all_ register operations with card, except the memory test.
85  * Also disables the timed poll to prevent extra chattiness.  This
86  * isn't for normal use
87  */
88 #undef DEBUG_RW
89 
90 /*
91  * The programming guide specifies a full test of the on-board SRAM
92  * at initialization time.  Undefine to remove this
93  */
94 #define FULL_MEMORY_TEST
95 
96 /*
97  * This is the number of (4 byte) service entries that we will
98  * try to allocate at startup.  Note that we will end up with
99  * one PAGE_SIZE's worth regardless of what this is set to
100  */
101 #define SERVICE_ENTRIES		(1024)
102 /* TODO: make above a module load-time option */
103 
104 /*
105  * We normally read the onboard EEPROM in order to discover our MAC
106  * address.  Undefine to _not_ do this
107  */
108 /* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
109 /* TODO: make above a module load-time option (also) */
110 
111 /*
112  * Depth of TX fifo (in 128 byte units; range 2-31)
113  * Smaller numbers are better for network latency
114  * Larger numbers are better for PCI latency
115  * I'm really sure where the best tradeoff is, but the BSD driver uses
116  * 7 and it seems to work ok.
117  */
118 #define TX_FIFO_DEPTH		(7)
119 /* TODO: make above a module load-time option */
120 
121 /*
122  * How often (in jiffies) we will try to unstick stuck connections -
123  * shouldn't need to happen much
124  */
125 #define LANAI_POLL_PERIOD	(10*HZ)
126 /* TODO: make above a module load-time option */
127 
128 /*
129  * When allocating an AAL5 receiving buffer, try to make it at least
130  * large enough to hold this many max_sdu sized PDUs
131  */
132 #define AAL5_RX_MULTIPLIER	(3)
133 /* TODO: make above a module load-time option */
134 
135 /*
136  * Same for transmitting buffer
137  */
138 #define AAL5_TX_MULTIPLIER	(3)
139 /* TODO: make above a module load-time option */
140 
141 /*
142  * When allocating an AAL0 transmiting buffer, how many cells should fit.
143  * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
144  * really critical
145  */
146 #define AAL0_TX_MULTIPLIER	(40)
147 /* TODO: make above a module load-time option */
148 
149 /*
150  * How large should we make the AAL0 receiving buffer.  Remember that this
151  * is shared between all AAL0 VC's
152  */
153 #define AAL0_RX_BUFFER_SIZE	(PAGE_SIZE)
154 /* TODO: make above a module load-time option */
155 
156 /*
157  * Should we use Lanai's "powerdown" feature when no vcc's are bound?
158  */
159 /* #define USE_POWERDOWN */
160 /* TODO: make above a module load-time option (also) */
161 
162 /* -------------------- DEBUGGING AIDS: */
163 
164 #define DEV_LABEL "lanai"
165 
166 #ifdef DEBUG
167 
168 #define DPRINTK(format, args...) \
169 	printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
170 #define APRINTK(truth, format, args...) \
171 	do { \
172 		if (unlikely(!(truth))) \
173 			printk(KERN_ERR DEV_LABEL ": " format, ##args); \
174 	} while (0)
175 
176 #else /* !DEBUG */
177 
178 #define DPRINTK(format, args...)
179 #define APRINTK(truth, format, args...)
180 
181 #endif /* DEBUG */
182 
183 #ifdef DEBUG_RW
184 #define RWDEBUG(format, args...) \
185 	printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
186 #else /* !DEBUG_RW */
187 #define RWDEBUG(format, args...)
188 #endif
189 
190 /* -------------------- DATA DEFINITIONS: */
191 
192 #define LANAI_MAPPING_SIZE	(0x40000)
193 #define LANAI_EEPROM_SIZE	(128)
194 
195 typedef int vci_t;
196 typedef void __iomem *bus_addr_t;
197 
198 /* DMA buffer in host memory for TX, RX, or service list. */
199 struct lanai_buffer {
200 	u32 *start;	/* From get_free_pages */
201 	u32 *end;	/* One past last byte */
202 	u32 *ptr;	/* Pointer to current host location */
203 	dma_addr_t dmaaddr;
204 };
205 
206 struct lanai_vcc_stats {
207 	unsigned rx_nomem;
208 	union {
209 		struct {
210 			unsigned rx_badlen;
211 			unsigned service_trash;
212 			unsigned service_stream;
213 			unsigned service_rxcrc;
214 		} aal5;
215 		struct {
216 		} aal0;
217 	} x;
218 };
219 
220 struct lanai_dev;			/* Forward declaration */
221 
222 /*
223  * This is the card-specific per-vcc data.  Note that unlike some other
224  * drivers there is NOT a 1-to-1 correspondance between these and
225  * atm_vcc's - each one of these represents an actual 2-way vcc, but
226  * an atm_vcc can be 1-way and share with a 1-way vcc in the other
227  * direction.  To make it weirder, there can even be 0-way vccs
228  * bound to us, waiting to do a change_qos
229  */
230 struct lanai_vcc {
231 	bus_addr_t vbase;		/* Base of VCC's registers */
232 	struct lanai_vcc_stats stats;
233 	int nref;			/* # of atm_vcc's who reference us */
234 	vci_t vci;
235 	struct {
236 		struct lanai_buffer buf;
237 		struct atm_vcc *atmvcc;	/* atm_vcc who is receiver */
238 	} rx;
239 	struct {
240 		struct lanai_buffer buf;
241 		struct atm_vcc *atmvcc;	/* atm_vcc who is transmitter */
242 		int endptr;		/* last endptr from service entry */
243 		struct sk_buff_head backlog;
244 		void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
245 	} tx;
246 };
247 
248 enum lanai_type {
249 	lanai2	= PCI_DEVICE_ID_EF_ATM_LANAI2,
250 	lanaihb	= PCI_DEVICE_ID_EF_ATM_LANAIHB
251 };
252 
253 struct lanai_dev_stats {
254 	unsigned ovfl_trash;	/* # of cells dropped - buffer overflow */
255 	unsigned vci_trash;	/* # of cells dropped - closed vci */
256 	unsigned hec_err;	/* # of cells dropped - bad HEC */
257 	unsigned atm_ovfl;	/* # of cells dropped - rx fifo overflow */
258 	unsigned pcierr_parity_detect;
259 	unsigned pcierr_serr_set;
260 	unsigned pcierr_master_abort;
261 	unsigned pcierr_m_target_abort;
262 	unsigned pcierr_s_target_abort;
263 	unsigned pcierr_master_parity;
264 	unsigned service_notx;
265 	unsigned service_norx;
266 	unsigned service_rxnotaal5;
267 	unsigned dma_reenable;
268 	unsigned card_reset;
269 };
270 
271 struct lanai_dev {
272 	bus_addr_t base;
273 	struct lanai_dev_stats stats;
274 	struct lanai_buffer service;
275 	struct lanai_vcc **vccs;
276 #ifdef USE_POWERDOWN
277 	int nbound;			/* number of bound vccs */
278 #endif
279 	enum lanai_type type;
280 	vci_t num_vci;			/* Currently just NUM_VCI */
281 	u8 eeprom[LANAI_EEPROM_SIZE];
282 	u32 serialno, magicno;
283 	struct pci_dev *pci;
284 	DECLARE_BITMAP(backlog_vccs, NUM_VCI);   /* VCCs with tx backlog */
285 	DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
286 	struct timer_list timer;
287 	int naal0;
288 	struct lanai_buffer aal0buf;	/* AAL0 RX buffers */
289 	u32 conf1, conf2;		/* CONFIG[12] registers */
290 	u32 status;			/* STATUS register */
291 	spinlock_t endtxlock;
292 	spinlock_t servicelock;
293 	struct atm_vcc *cbrvcc;
294 	int number;
295 	int board_rev;
296 /* TODO - look at race conditions with maintence of conf1/conf2 */
297 /* TODO - transmit locking: should we use _irq not _irqsave? */
298 /* TODO - organize above in some rational fashion (see <asm/cache.h>) */
299 };
300 
301 /*
302  * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
303  * This function iterates one of these, calling a given function for each
304  * vci with their bit set
305  */
306 static void vci_bitfield_iterate(struct lanai_dev *lanai,
307 	const unsigned long *lp,
308 	void (*func)(struct lanai_dev *,vci_t vci))
309 {
310 	vci_t vci;
311 
312 	for_each_set_bit(vci, lp, NUM_VCI)
313 		func(lanai, vci);
314 }
315 
316 /* -------------------- BUFFER  UTILITIES: */
317 
318 /*
319  * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
320  * usually any page allocation will do.  Just to be safe in case
321  * PAGE_SIZE is insanely tiny, though...
322  */
323 #define LANAI_PAGE_SIZE   ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
324 
325 /*
326  * Allocate a buffer in host RAM for service list, RX, or TX
327  * Returns buf->start==NULL if no memory
328  * Note that the size will be rounded up 2^n bytes, and
329  * if we can't allocate that we'll settle for something smaller
330  * until minbytes
331  */
332 static void lanai_buf_allocate(struct lanai_buffer *buf,
333 	size_t bytes, size_t minbytes, struct pci_dev *pci)
334 {
335 	int size;
336 
337 	if (bytes > (128 * 1024))	/* max lanai buffer size */
338 		bytes = 128 * 1024;
339 	for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
340 		;
341 	if (minbytes < LANAI_PAGE_SIZE)
342 		minbytes = LANAI_PAGE_SIZE;
343 	do {
344 		/*
345 		 * Technically we could use non-consistent mappings for
346 		 * everything, but the way the lanai uses DMA memory would
347 		 * make that a terrific pain.  This is much simpler.
348 		 */
349 		buf->start = pci_alloc_consistent(pci, size, &buf->dmaaddr);
350 		if (buf->start != NULL) {	/* Success */
351 			/* Lanai requires 256-byte alignment of DMA bufs */
352 			APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
353 			    "bad dmaaddr: 0x%lx\n",
354 			    (unsigned long) buf->dmaaddr);
355 			buf->ptr = buf->start;
356 			buf->end = (u32 *)
357 			    (&((unsigned char *) buf->start)[size]);
358 			memset(buf->start, 0, size);
359 			break;
360 		}
361 		size /= 2;
362 	} while (size >= minbytes);
363 }
364 
365 /* size of buffer in bytes */
366 static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
367 {
368 	return ((unsigned long) buf->end) - ((unsigned long) buf->start);
369 }
370 
371 static void lanai_buf_deallocate(struct lanai_buffer *buf,
372 	struct pci_dev *pci)
373 {
374 	if (buf->start != NULL) {
375 		pci_free_consistent(pci, lanai_buf_size(buf),
376 		    buf->start, buf->dmaaddr);
377 		buf->start = buf->end = buf->ptr = NULL;
378 	}
379 }
380 
381 /* size of buffer as "card order" (0=1k .. 7=128k) */
382 static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
383 {
384 	int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
385 
386 	/* This can only happen if PAGE_SIZE is gigantic, but just in case */
387 	if (order > 7)
388 		order = 7;
389 	return order;
390 }
391 
392 /* -------------------- PORT I/O UTILITIES: */
393 
394 /* Registers (and their bit-fields) */
395 enum lanai_register {
396 	Reset_Reg		= 0x00,	/* Reset; read for chip type; bits: */
397 #define   RESET_GET_BOARD_REV(x)    (((x)>> 0)&0x03)	/* Board revision */
398 #define   RESET_GET_BOARD_ID(x)	    (((x)>> 2)&0x03)	/* Board ID */
399 #define     BOARD_ID_LANAI256		(0)	/* 25.6M adapter card */
400 	Endian_Reg		= 0x04,	/* Endian setting */
401 	IntStatus_Reg		= 0x08,	/* Interrupt status */
402 	IntStatusMasked_Reg	= 0x0C,	/* Interrupt status (masked) */
403 	IntAck_Reg		= 0x10,	/* Interrupt acknowledge */
404 	IntAckMasked_Reg	= 0x14,	/* Interrupt acknowledge (masked) */
405 	IntStatusSet_Reg	= 0x18,	/* Get status + enable/disable */
406 	IntStatusSetMasked_Reg	= 0x1C,	/* Get status + en/di (masked) */
407 	IntControlEna_Reg	= 0x20,	/* Interrupt control enable */
408 	IntControlDis_Reg	= 0x24,	/* Interrupt control disable */
409 	Status_Reg		= 0x28,	/* Status */
410 #define   STATUS_PROMDATA	 (0x00000001)	/* PROM_DATA pin */
411 #define   STATUS_WAITING	 (0x00000002)	/* Interrupt being delayed */
412 #define	  STATUS_SOOL		 (0x00000004)	/* SOOL alarm */
413 #define   STATUS_LOCD		 (0x00000008)	/* LOCD alarm */
414 #define	  STATUS_LED		 (0x00000010)	/* LED (HAPPI) output */
415 #define   STATUS_GPIN		 (0x00000020)	/* GPIN pin */
416 #define   STATUS_BUTTBUSY	 (0x00000040)	/* Butt register is pending */
417 	Config1_Reg		= 0x2C,	/* Config word 1; bits: */
418 #define   CONFIG1_PROMDATA	 (0x00000001)	/* PROM_DATA pin */
419 #define   CONFIG1_PROMCLK	 (0x00000002)	/* PROM_CLK pin */
420 #define   CONFIG1_SET_READMODE(x) ((x)*0x004)	/* PCI BM reads; values: */
421 #define     READMODE_PLAIN	    (0)		/*   Plain memory read */
422 #define     READMODE_LINE	    (2)		/*   Memory read line */
423 #define     READMODE_MULTIPLE	    (3)		/*   Memory read multiple */
424 #define   CONFIG1_DMA_ENABLE	 (0x00000010)	/* Turn on DMA */
425 #define   CONFIG1_POWERDOWN	 (0x00000020)	/* Turn off clocks */
426 #define   CONFIG1_SET_LOOPMODE(x) ((x)*0x080)	/* Clock&loop mode; values: */
427 #define     LOOPMODE_NORMAL	    (0)		/*   Normal - no loop */
428 #define     LOOPMODE_TIME	    (1)
429 #define     LOOPMODE_DIAG	    (2)
430 #define     LOOPMODE_LINE	    (3)
431 #define   CONFIG1_MASK_LOOPMODE  (0x00000180)
432 #define   CONFIG1_SET_LEDMODE(x) ((x)*0x0200)	/* Mode of LED; values: */
433 #define     LEDMODE_NOT_SOOL	    (0)		/*   !SOOL */
434 #define	    LEDMODE_OFF		    (1)		/*   0     */
435 #define	    LEDMODE_ON		    (2)		/*   1     */
436 #define	    LEDMODE_NOT_LOCD	    (3)		/*   !LOCD */
437 #define	    LEDMORE_GPIN	    (4)		/*   GPIN  */
438 #define     LEDMODE_NOT_GPIN	    (7)		/*   !GPIN */
439 #define   CONFIG1_MASK_LEDMODE	 (0x00000E00)
440 #define   CONFIG1_GPOUT1	 (0x00001000)	/* Toggle for reset */
441 #define   CONFIG1_GPOUT2	 (0x00002000)	/* Loopback PHY */
442 #define   CONFIG1_GPOUT3	 (0x00004000)	/* Loopback lanai */
443 	Config2_Reg		= 0x30,	/* Config word 2; bits: */
444 #define   CONFIG2_HOWMANY	 (0x00000001)	/* >512 VCIs? */
445 #define   CONFIG2_PTI7_MODE	 (0x00000002)	/* Make PTI=7 RM, not OAM */
446 #define   CONFIG2_VPI_CHK_DIS	 (0x00000004)	/* Ignore RX VPI value */
447 #define   CONFIG2_HEC_DROP	 (0x00000008)	/* Drop cells w/ HEC errors */
448 #define   CONFIG2_VCI0_NORMAL	 (0x00000010)	/* Treat VCI=0 normally */
449 #define   CONFIG2_CBR_ENABLE	 (0x00000020)	/* Deal with CBR traffic */
450 #define   CONFIG2_TRASH_ALL	 (0x00000040)	/* Trashing incoming cells */
451 #define   CONFIG2_TX_DISABLE	 (0x00000080)	/* Trashing outgoing cells */
452 #define   CONFIG2_SET_TRASH	 (0x00000100)	/* Turn trashing on */
453 	Statistics_Reg		= 0x34,	/* Statistics; bits: */
454 #define   STATS_GET_FIFO_OVFL(x)    (((x)>> 0)&0xFF)	/* FIFO overflowed */
455 #define   STATS_GET_HEC_ERR(x)      (((x)>> 8)&0xFF)	/* HEC was bad */
456 #define   STATS_GET_BAD_VCI(x)      (((x)>>16)&0xFF)	/* VCI not open */
457 #define   STATS_GET_BUF_OVFL(x)     (((x)>>24)&0xFF)	/* VCC buffer full */
458 	ServiceStuff_Reg	= 0x38,	/* Service stuff; bits: */
459 #define   SSTUFF_SET_SIZE(x) ((x)*0x20000000)	/* size of service buffer */
460 #define   SSTUFF_SET_ADDR(x)	    ((x)>>8)	/* set address of buffer */
461 	ServWrite_Reg		= 0x3C,	/* ServWrite Pointer */
462 	ServRead_Reg		= 0x40,	/* ServRead Pointer */
463 	TxDepth_Reg		= 0x44,	/* FIFO Transmit Depth */
464 	Butt_Reg		= 0x48,	/* Butt register */
465 	CBR_ICG_Reg		= 0x50,
466 	CBR_PTR_Reg		= 0x54,
467 	PingCount_Reg		= 0x58,	/* Ping count */
468 	DMA_Addr_Reg		= 0x5C	/* DMA address */
469 };
470 
471 static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
472 	enum lanai_register reg)
473 {
474 	return lanai->base + reg;
475 }
476 
477 static inline u32 reg_read(const struct lanai_dev *lanai,
478 	enum lanai_register reg)
479 {
480 	u32 t;
481 	t = readl(reg_addr(lanai, reg));
482 	RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
483 	    (int) reg, t);
484 	return t;
485 }
486 
487 static inline void reg_write(const struct lanai_dev *lanai, u32 val,
488 	enum lanai_register reg)
489 {
490 	RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
491 	    (int) reg, val);
492 	writel(val, reg_addr(lanai, reg));
493 }
494 
495 static inline void conf1_write(const struct lanai_dev *lanai)
496 {
497 	reg_write(lanai, lanai->conf1, Config1_Reg);
498 }
499 
500 static inline void conf2_write(const struct lanai_dev *lanai)
501 {
502 	reg_write(lanai, lanai->conf2, Config2_Reg);
503 }
504 
505 /* Same as conf2_write(), but defers I/O if we're powered down */
506 static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
507 {
508 #ifdef USE_POWERDOWN
509 	if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
510 		return;
511 #endif /* USE_POWERDOWN */
512 	conf2_write(lanai);
513 }
514 
515 static inline void reset_board(const struct lanai_dev *lanai)
516 {
517 	DPRINTK("about to reset board\n");
518 	reg_write(lanai, 0, Reset_Reg);
519 	/*
520 	 * If we don't delay a little while here then we can end up
521 	 * leaving the card in a VERY weird state and lock up the
522 	 * PCI bus.  This isn't documented anywhere but I've convinced
523 	 * myself after a lot of painful experimentation
524 	 */
525 	udelay(5);
526 }
527 
528 /* -------------------- CARD SRAM UTILITIES: */
529 
530 /* The SRAM is mapped into normal PCI memory space - the only catch is
531  * that it is only 16-bits wide but must be accessed as 32-bit.  The
532  * 16 high bits will be zero.  We don't hide this, since they get
533  * programmed mostly like discrete registers anyway
534  */
535 #define SRAM_START (0x20000)
536 #define SRAM_BYTES (0x20000)	/* Again, half don't really exist */
537 
538 static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
539 {
540 	return lanai->base + SRAM_START + offset;
541 }
542 
543 static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
544 {
545 	return readl(sram_addr(lanai, offset));
546 }
547 
548 static inline void sram_write(const struct lanai_dev *lanai,
549 	u32 val, int offset)
550 {
551 	writel(val, sram_addr(lanai, offset));
552 }
553 
554 static int __devinit sram_test_word(const struct lanai_dev *lanai,
555 				    int offset, u32 pattern)
556 {
557 	u32 readback;
558 	sram_write(lanai, pattern, offset);
559 	readback = sram_read(lanai, offset);
560 	if (likely(readback == pattern))
561 		return 0;
562 	printk(KERN_ERR DEV_LABEL
563 	    "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
564 	    lanai->number, offset,
565 	    (unsigned int) pattern, (unsigned int) readback);
566 	return -EIO;
567 }
568 
569 static int __devinit sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
570 {
571 	int offset, result = 0;
572 	for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
573 		result = sram_test_word(lanai, offset, pattern);
574 	return result;
575 }
576 
577 static int __devinit sram_test_and_clear(const struct lanai_dev *lanai)
578 {
579 #ifdef FULL_MEMORY_TEST
580 	int result;
581 	DPRINTK("testing SRAM\n");
582 	if ((result = sram_test_pass(lanai, 0x5555)) != 0)
583 		return result;
584 	if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
585 		return result;
586 #endif
587 	DPRINTK("clearing SRAM\n");
588 	return sram_test_pass(lanai, 0x0000);
589 }
590 
591 /* -------------------- CARD-BASED VCC TABLE UTILITIES: */
592 
593 /* vcc table */
594 enum lanai_vcc_offset {
595 	vcc_rxaddr1		= 0x00,	/* Location1, plus bits: */
596 #define   RXADDR1_SET_SIZE(x) ((x)*0x0000100)	/* size of RX buffer */
597 #define   RXADDR1_SET_RMMODE(x) ((x)*0x00800)	/* RM cell action; values: */
598 #define     RMMODE_TRASH	  (0)		/*   discard */
599 #define     RMMODE_PRESERVE	  (1)		/*   input as AAL0 */
600 #define     RMMODE_PIPE		  (2)		/*   pipe to coscheduler */
601 #define     RMMODE_PIPEALL	  (3)		/*   pipe non-RM too */
602 #define   RXADDR1_OAM_PRESERVE	 (0x00002000)	/* Input OAM cells as AAL0 */
603 #define   RXADDR1_SET_MODE(x) ((x)*0x0004000)	/* Reassembly mode */
604 #define     RXMODE_TRASH	  (0)		/*   discard */
605 #define     RXMODE_AAL0		  (1)		/*   non-AAL5 mode */
606 #define     RXMODE_AAL5		  (2)		/*   AAL5, intr. each PDU */
607 #define     RXMODE_AAL5_STREAM	  (3)		/*   AAL5 w/o per-PDU intr */
608 	vcc_rxaddr2		= 0x04,	/* Location2 */
609 	vcc_rxcrc1		= 0x08,	/* RX CRC claculation space */
610 	vcc_rxcrc2		= 0x0C,
611 	vcc_rxwriteptr		= 0x10, /* RX writeptr, plus bits: */
612 #define   RXWRITEPTR_LASTEFCI	 (0x00002000)	/* Last PDU had EFCI bit */
613 #define   RXWRITEPTR_DROPPING	 (0x00004000)	/* Had error, dropping */
614 #define   RXWRITEPTR_TRASHING	 (0x00008000)	/* Trashing */
615 	vcc_rxbufstart		= 0x14,	/* RX bufstart, plus bits: */
616 #define   RXBUFSTART_CLP	 (0x00004000)
617 #define   RXBUFSTART_CI		 (0x00008000)
618 	vcc_rxreadptr		= 0x18,	/* RX readptr */
619 	vcc_txicg		= 0x1C, /* TX ICG */
620 	vcc_txaddr1		= 0x20,	/* Location1, plus bits: */
621 #define   TXADDR1_SET_SIZE(x) ((x)*0x0000100)	/* size of TX buffer */
622 #define   TXADDR1_ABR		 (0x00008000)	/* use ABR (doesn't work) */
623 	vcc_txaddr2		= 0x24,	/* Location2 */
624 	vcc_txcrc1		= 0x28,	/* TX CRC claculation space */
625 	vcc_txcrc2		= 0x2C,
626 	vcc_txreadptr		= 0x30, /* TX Readptr, plus bits: */
627 #define   TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
628 #define   TXREADPTR_MASK_DELTA	(0x0000E000)	/* ? */
629 	vcc_txendptr		= 0x34, /* TX Endptr, plus bits: */
630 #define   TXENDPTR_CLP		(0x00002000)
631 #define   TXENDPTR_MASK_PDUMODE	(0x0000C000)	/* PDU mode; values: */
632 #define     PDUMODE_AAL0	 (0*0x04000)
633 #define     PDUMODE_AAL5	 (2*0x04000)
634 #define     PDUMODE_AAL5STREAM	 (3*0x04000)
635 	vcc_txwriteptr		= 0x38,	/* TX Writeptr */
636 #define   TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
637 	vcc_txcbr_next		= 0x3C	/* # of next CBR VCI in ring */
638 #define   TXCBR_NEXT_BOZO	(0x00008000)	/* "bozo bit" */
639 };
640 
641 #define CARDVCC_SIZE	(0x40)
642 
643 static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
644 	vci_t vci)
645 {
646 	return sram_addr(lanai, vci * CARDVCC_SIZE);
647 }
648 
649 static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
650 	enum lanai_vcc_offset offset)
651 {
652 	u32 val;
653 	APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
654 	val= readl(lvcc->vbase + offset);
655 	RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
656 	    lvcc->vci, (int) offset, val);
657 	return val;
658 }
659 
660 static inline void cardvcc_write(const struct lanai_vcc *lvcc,
661 	u32 val, enum lanai_vcc_offset offset)
662 {
663 	APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
664 	APRINTK((val & ~0xFFFF) == 0,
665 	    "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
666 	    (unsigned int) val, lvcc->vci, (unsigned int) offset);
667 	RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
668 	    lvcc->vci, (unsigned int) offset, (unsigned int) val);
669 	writel(val, lvcc->vbase + offset);
670 }
671 
672 /* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
673 
674 /* How many bytes will an AAL5 PDU take to transmit - remember that:
675  *   o  we need to add 8 bytes for length, CPI, UU, and CRC
676  *   o  we need to round up to 48 bytes for cells
677  */
678 static inline int aal5_size(int size)
679 {
680 	int cells = (size + 8 + 47) / 48;
681 	return cells * 48;
682 }
683 
684 /* How many bytes can we send if we have "space" space, assuming we have
685  * to send full cells
686  */
687 static inline int aal5_spacefor(int space)
688 {
689 	int cells = space / 48;
690 	return cells * 48;
691 }
692 
693 /* -------------------- FREE AN ATM SKB: */
694 
695 static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
696 {
697 	if (atmvcc->pop != NULL)
698 		atmvcc->pop(atmvcc, skb);
699 	else
700 		dev_kfree_skb_any(skb);
701 }
702 
703 /* -------------------- TURN VCCS ON AND OFF: */
704 
705 static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
706 {
707 	u32 addr1;
708 	if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
709 		dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
710 		cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
711 		cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
712 		cardvcc_write(lvcc, 0, vcc_rxwriteptr);
713 		cardvcc_write(lvcc, 0, vcc_rxbufstart);
714 		cardvcc_write(lvcc, 0, vcc_rxreadptr);
715 		cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
716 		addr1 = ((dmaaddr >> 8) & 0xFF) |
717 		    RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
718 		    RXADDR1_SET_RMMODE(RMMODE_TRASH) |	/* ??? */
719 		 /* RXADDR1_OAM_PRESERVE |	--- no OAM support yet */
720 		    RXADDR1_SET_MODE(RXMODE_AAL5);
721 	} else
722 		addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
723 		    RXADDR1_OAM_PRESERVE |		      /* ??? */
724 		    RXADDR1_SET_MODE(RXMODE_AAL0);
725 	/* This one must be last! */
726 	cardvcc_write(lvcc, addr1, vcc_rxaddr1);
727 }
728 
729 static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
730 {
731 	dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
732 	cardvcc_write(lvcc, 0, vcc_txicg);
733 	cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
734 	cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
735 	cardvcc_write(lvcc, 0, vcc_txreadptr);
736 	cardvcc_write(lvcc, 0, vcc_txendptr);
737 	cardvcc_write(lvcc, 0, vcc_txwriteptr);
738 	cardvcc_write(lvcc,
739 		(lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
740 		TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
741 	cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
742 	cardvcc_write(lvcc,
743 	    ((dmaaddr >> 8) & 0xFF) |
744 	    TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
745 	    vcc_txaddr1);
746 }
747 
748 /* Shutdown receiving on card */
749 static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
750 {
751 	if (lvcc->vbase == NULL)	/* We were never bound to a VCI */
752 		return;
753 	/* 15.1.1 - set to trashing, wait one cell time (15us) */
754 	cardvcc_write(lvcc,
755 	    RXADDR1_SET_RMMODE(RMMODE_TRASH) |
756 	    RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
757 	udelay(15);
758 	/* 15.1.2 - clear rest of entries */
759 	cardvcc_write(lvcc, 0, vcc_rxaddr2);
760 	cardvcc_write(lvcc, 0, vcc_rxcrc1);
761 	cardvcc_write(lvcc, 0, vcc_rxcrc2);
762 	cardvcc_write(lvcc, 0, vcc_rxwriteptr);
763 	cardvcc_write(lvcc, 0, vcc_rxbufstart);
764 	cardvcc_write(lvcc, 0, vcc_rxreadptr);
765 }
766 
767 /* Shutdown transmitting on card.
768  * Unfortunately the lanai needs us to wait until all the data
769  * drains out of the buffer before we can dealloc it, so this
770  * can take awhile -- up to 370ms for a full 128KB buffer
771  * assuming everone else is quiet.  In theory the time is
772  * boundless if there's a CBR VCC holding things up.
773  */
774 static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
775 	struct lanai_vcc *lvcc)
776 {
777 	struct sk_buff *skb;
778 	unsigned long flags, timeout;
779 	int read, write, lastread = -1;
780 	APRINTK(!in_interrupt(),
781 	    "lanai_shutdown_tx_vci called w/o process context!\n");
782 	if (lvcc->vbase == NULL)	/* We were never bound to a VCI */
783 		return;
784 	/* 15.2.1 - wait for queue to drain */
785 	while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
786 		lanai_free_skb(lvcc->tx.atmvcc, skb);
787 	read_lock_irqsave(&vcc_sklist_lock, flags);
788 	__clear_bit(lvcc->vci, lanai->backlog_vccs);
789 	read_unlock_irqrestore(&vcc_sklist_lock, flags);
790 	/*
791 	 * We need to wait for the VCC to drain but don't wait forever.  We
792 	 * give each 1K of buffer size 1/128th of a second to clear out.
793 	 * TODO: maybe disable CBR if we're about to timeout?
794 	 */
795 	timeout = jiffies +
796 	    (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
797 	write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
798 	for (;;) {
799 		read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
800 		if (read == write &&	   /* Is TX buffer empty? */
801 		    (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
802 		    (cardvcc_read(lvcc, vcc_txcbr_next) &
803 		    TXCBR_NEXT_BOZO) == 0))
804 			break;
805 		if (read != lastread) {	   /* Has there been any progress? */
806 			lastread = read;
807 			timeout += HZ / 10;
808 		}
809 		if (unlikely(time_after(jiffies, timeout))) {
810 			printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
811 			    "backlog closing vci %d\n",
812 			    lvcc->tx.atmvcc->dev->number, lvcc->vci);
813 			DPRINTK("read, write = %d, %d\n", read, write);
814 			break;
815 		}
816 		msleep(40);
817 	}
818 	/* 15.2.2 - clear out all tx registers */
819 	cardvcc_write(lvcc, 0, vcc_txreadptr);
820 	cardvcc_write(lvcc, 0, vcc_txwriteptr);
821 	cardvcc_write(lvcc, 0, vcc_txendptr);
822 	cardvcc_write(lvcc, 0, vcc_txcrc1);
823 	cardvcc_write(lvcc, 0, vcc_txcrc2);
824 	cardvcc_write(lvcc, 0, vcc_txaddr2);
825 	cardvcc_write(lvcc, 0, vcc_txaddr1);
826 }
827 
828 /* -------------------- MANAGING AAL0 RX BUFFER: */
829 
830 static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
831 {
832 	DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
833 	lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
834 			   lanai->pci);
835 	return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
836 }
837 
838 static inline void aal0_buffer_free(struct lanai_dev *lanai)
839 {
840 	DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
841 	lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
842 }
843 
844 /* -------------------- EEPROM UTILITIES: */
845 
846 /* Offsets of data in the EEPROM */
847 #define EEPROM_COPYRIGHT	(0)
848 #define EEPROM_COPYRIGHT_LEN	(44)
849 #define EEPROM_CHECKSUM		(62)
850 #define EEPROM_CHECKSUM_REV	(63)
851 #define EEPROM_MAC		(64)
852 #define EEPROM_MAC_REV		(70)
853 #define EEPROM_SERIAL		(112)
854 #define EEPROM_SERIAL_REV	(116)
855 #define EEPROM_MAGIC		(120)
856 #define EEPROM_MAGIC_REV	(124)
857 
858 #define EEPROM_MAGIC_VALUE	(0x5AB478D2)
859 
860 #ifndef READ_EEPROM
861 
862 /* Stub functions to use if EEPROM reading is disabled */
863 static int __devinit eeprom_read(struct lanai_dev *lanai)
864 {
865 	printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
866 	    lanai->number);
867 	memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
868 	return 0;
869 }
870 
871 static int __devinit eeprom_validate(struct lanai_dev *lanai)
872 {
873 	lanai->serialno = 0;
874 	lanai->magicno = EEPROM_MAGIC_VALUE;
875 	return 0;
876 }
877 
878 #else /* READ_EEPROM */
879 
880 static int __devinit eeprom_read(struct lanai_dev *lanai)
881 {
882 	int i, address;
883 	u8 data;
884 	u32 tmp;
885 #define set_config1(x)   do { lanai->conf1 = x; conf1_write(lanai); \
886 			    } while (0)
887 #define clock_h()	 set_config1(lanai->conf1 | CONFIG1_PROMCLK)
888 #define clock_l()	 set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
889 #define data_h()	 set_config1(lanai->conf1 | CONFIG1_PROMDATA)
890 #define data_l()	 set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
891 #define pre_read()	 do { data_h(); clock_h(); udelay(5); } while (0)
892 #define read_pin()	 (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
893 #define send_stop()	 do { data_l(); udelay(5); clock_h(); udelay(5); \
894 			      data_h(); udelay(5); } while (0)
895 	/* start with both clock and data high */
896 	data_h(); clock_h(); udelay(5);
897 	for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
898 		data = (address << 1) | 1;	/* Command=read + address */
899 		/* send start bit */
900 		data_l(); udelay(5);
901 		clock_l(); udelay(5);
902 		for (i = 128; i != 0; i >>= 1) {   /* write command out */
903 			tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
904 			    ((data & i) ? CONFIG1_PROMDATA : 0);
905 			if (lanai->conf1 != tmp) {
906 				set_config1(tmp);
907 				udelay(5);	/* Let new data settle */
908 			}
909 			clock_h(); udelay(5); clock_l(); udelay(5);
910 		}
911 		/* look for ack */
912 		data_h(); clock_h(); udelay(5);
913 		if (read_pin() != 0)
914 			goto error;	/* No ack seen */
915 		clock_l(); udelay(5);
916 		/* read back result */
917 		for (data = 0, i = 7; i >= 0; i--) {
918 			data_h(); clock_h(); udelay(5);
919 			data = (data << 1) | !!read_pin();
920 			clock_l(); udelay(5);
921 		}
922 		/* look again for ack */
923 		data_h(); clock_h(); udelay(5);
924 		if (read_pin() == 0)
925 			goto error;	/* Spurious ack */
926 		clock_l(); udelay(5);
927 		send_stop();
928 		lanai->eeprom[address] = data;
929 		DPRINTK("EEPROM 0x%04X %02X\n",
930 		    (unsigned int) address, (unsigned int) data);
931 	}
932 	return 0;
933     error:
934 	clock_l(); udelay(5);		/* finish read */
935 	send_stop();
936 	printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
937 	    lanai->number, address);
938 	return -EIO;
939 #undef set_config1
940 #undef clock_h
941 #undef clock_l
942 #undef data_h
943 #undef data_l
944 #undef pre_read
945 #undef read_pin
946 #undef send_stop
947 }
948 
949 /* read a big-endian 4-byte value out of eeprom */
950 static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
951 {
952 	return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
953 }
954 
955 /* Checksum/validate EEPROM contents */
956 static int __devinit eeprom_validate(struct lanai_dev *lanai)
957 {
958 	int i, s;
959 	u32 v;
960 	const u8 *e = lanai->eeprom;
961 #ifdef DEBUG
962 	/* First, see if we can get an ASCIIZ string out of the copyright */
963 	for (i = EEPROM_COPYRIGHT;
964 	    i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
965 		if (e[i] < 0x20 || e[i] > 0x7E)
966 			break;
967 	if ( i != EEPROM_COPYRIGHT &&
968 	    i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
969 		DPRINTK("eeprom: copyright = \"%s\"\n",
970 		    (char *) &e[EEPROM_COPYRIGHT]);
971 	else
972 		DPRINTK("eeprom: copyright not found\n");
973 #endif
974 	/* Validate checksum */
975 	for (i = s = 0; i < EEPROM_CHECKSUM; i++)
976 		s += e[i];
977 	s &= 0xFF;
978 	if (s != e[EEPROM_CHECKSUM]) {
979 		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
980 		    "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
981 		    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
982 		return -EIO;
983 	}
984 	s ^= 0xFF;
985 	if (s != e[EEPROM_CHECKSUM_REV]) {
986 		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
987 		    "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
988 		    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
989 		return -EIO;
990 	}
991 	/* Verify MAC address */
992 	for (i = 0; i < 6; i++)
993 		if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
994 			printk(KERN_ERR DEV_LABEL
995 			    "(itf %d) : EEPROM MAC addresses don't match "
996 			    "(0x%02X, inverse 0x%02X)\n", lanai->number,
997 			    (unsigned int) e[EEPROM_MAC + i],
998 			    (unsigned int) e[EEPROM_MAC_REV + i]);
999 			return -EIO;
1000 		}
1001 	DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]);
1002 	/* Verify serial number */
1003 	lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
1004 	v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
1005 	if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
1006 		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
1007 		    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1008 		    (unsigned int) lanai->serialno, (unsigned int) v);
1009 		return -EIO;
1010 	}
1011 	DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
1012 	/* Verify magic number */
1013 	lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
1014 	v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
1015 	if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
1016 		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
1017 		    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1018 		    lanai->magicno, v);
1019 		return -EIO;
1020 	}
1021 	DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
1022 	if (lanai->magicno != EEPROM_MAGIC_VALUE)
1023 		printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
1024 		    "magic not what expected (got 0x%08X, not 0x%08X)\n",
1025 		    lanai->number, (unsigned int) lanai->magicno,
1026 		    (unsigned int) EEPROM_MAGIC_VALUE);
1027 	return 0;
1028 }
1029 
1030 #endif /* READ_EEPROM */
1031 
1032 static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
1033 {
1034 	return &lanai->eeprom[EEPROM_MAC];
1035 }
1036 
1037 /* -------------------- INTERRUPT HANDLING UTILITIES: */
1038 
1039 /* Interrupt types */
1040 #define INT_STATS	(0x00000002)	/* Statistics counter overflow */
1041 #define INT_SOOL	(0x00000004)	/* SOOL changed state */
1042 #define INT_LOCD	(0x00000008)	/* LOCD changed state */
1043 #define INT_LED		(0x00000010)	/* LED (HAPPI) changed state */
1044 #define INT_GPIN	(0x00000020)	/* GPIN changed state */
1045 #define INT_PING	(0x00000040)	/* PING_COUNT fulfilled */
1046 #define INT_WAKE	(0x00000080)	/* Lanai wants bus */
1047 #define INT_CBR0	(0x00000100)	/* CBR sched hit VCI 0 */
1048 #define INT_LOCK	(0x00000200)	/* Service list overflow */
1049 #define INT_MISMATCH	(0x00000400)	/* TX magic list mismatch */
1050 #define INT_AAL0_STR	(0x00000800)	/* Non-AAL5 buffer half filled */
1051 #define INT_AAL0	(0x00001000)	/* Non-AAL5 data available */
1052 #define INT_SERVICE	(0x00002000)	/* Service list entries available */
1053 #define INT_TABORTSENT	(0x00004000)	/* Target abort sent by lanai */
1054 #define INT_TABORTBM	(0x00008000)	/* Abort rcv'd as bus master */
1055 #define INT_TIMEOUTBM	(0x00010000)	/* No response to bus master */
1056 #define INT_PCIPARITY	(0x00020000)	/* Parity error on PCI */
1057 
1058 /* Sets of the above */
1059 #define INT_ALL		(0x0003FFFE)	/* All interrupts */
1060 #define INT_STATUS	(0x0000003C)	/* Some status pin changed */
1061 #define INT_DMASHUT	(0x00038000)	/* DMA engine got shut down */
1062 #define INT_SEGSHUT	(0x00000700)	/* Segmentation got shut down */
1063 
1064 static inline u32 intr_pending(const struct lanai_dev *lanai)
1065 {
1066 	return reg_read(lanai, IntStatusMasked_Reg);
1067 }
1068 
1069 static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
1070 {
1071 	reg_write(lanai, i, IntControlEna_Reg);
1072 }
1073 
1074 static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
1075 {
1076 	reg_write(lanai, i, IntControlDis_Reg);
1077 }
1078 
1079 /* -------------------- CARD/PCI STATUS: */
1080 
1081 static void status_message(int itf, const char *name, int status)
1082 {
1083 	static const char *onoff[2] = { "off to on", "on to off" };
1084 	printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
1085 	    itf, name, onoff[!status]);
1086 }
1087 
1088 static void lanai_check_status(struct lanai_dev *lanai)
1089 {
1090 	u32 new = reg_read(lanai, Status_Reg);
1091 	u32 changes = new ^ lanai->status;
1092 	lanai->status = new;
1093 #define e(flag, name) \
1094 		if (changes & flag) \
1095 			status_message(lanai->number, name, new & flag)
1096 	e(STATUS_SOOL, "SOOL");
1097 	e(STATUS_LOCD, "LOCD");
1098 	e(STATUS_LED, "LED");
1099 	e(STATUS_GPIN, "GPIN");
1100 #undef e
1101 }
1102 
1103 static void pcistatus_got(int itf, const char *name)
1104 {
1105 	printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
1106 }
1107 
1108 static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
1109 {
1110 	u16 s;
1111 	int result;
1112 	result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
1113 	if (result != PCIBIOS_SUCCESSFUL) {
1114 		printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
1115 		    "%d\n", lanai->number, result);
1116 		return;
1117 	}
1118 	s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1119 	    PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
1120 	    PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
1121 	if (s == 0)
1122 		return;
1123 	result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
1124 	if (result != PCIBIOS_SUCCESSFUL)
1125 		printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
1126 		    "%d\n", lanai->number, result);
1127 	if (clearonly)
1128 		return;
1129 #define e(flag, name, stat) \
1130 		if (s & flag) { \
1131 			pcistatus_got(lanai->number, name); \
1132 			++lanai->stats.pcierr_##stat; \
1133 		}
1134 	e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
1135 	e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
1136 	e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
1137 	e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
1138 	e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
1139 	e(PCI_STATUS_PARITY, "master parity", master_parity);
1140 #undef e
1141 }
1142 
1143 /* -------------------- VCC TX BUFFER UTILITIES: */
1144 
1145 /* space left in tx buffer in bytes */
1146 static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
1147 {
1148 	int r;
1149 	r = endptr * 16;
1150 	r -= ((unsigned long) lvcc->tx.buf.ptr) -
1151 	    ((unsigned long) lvcc->tx.buf.start);
1152 	r -= 16;	/* Leave "bubble" - if start==end it looks empty */
1153 	if (r < 0)
1154 		r += lanai_buf_size(&lvcc->tx.buf);
1155 	return r;
1156 }
1157 
1158 /* test if VCC is currently backlogged */
1159 static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
1160 {
1161 	return !skb_queue_empty(&lvcc->tx.backlog);
1162 }
1163 
1164 /* Bit fields in the segmentation buffer descriptor */
1165 #define DESCRIPTOR_MAGIC	(0xD0000000)
1166 #define DESCRIPTOR_AAL5		(0x00008000)
1167 #define DESCRIPTOR_AAL5_STREAM	(0x00004000)
1168 #define DESCRIPTOR_CLP		(0x00002000)
1169 
1170 /* Add 32-bit descriptor with its padding */
1171 static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
1172 	u32 flags, int len)
1173 {
1174 	int pos;
1175 	APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
1176 	    "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
1177 	lvcc->tx.buf.ptr += 4;	/* Hope the values REALLY don't matter */
1178 	pos = ((unsigned char *) lvcc->tx.buf.ptr) -
1179 	    (unsigned char *) lvcc->tx.buf.start;
1180 	APRINTK((pos & ~0x0001FFF0) == 0,
1181 	    "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
1182 	    "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1183 	    lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1184 	pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
1185 	APRINTK((pos & ~0x0001FFF0) == 0,
1186 	    "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
1187 	    "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1188 	    lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1189 	lvcc->tx.buf.ptr[-1] =
1190 	    cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
1191 	    ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
1192 	    DESCRIPTOR_CLP : 0) | flags | pos >> 4);
1193 	if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1194 		lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1195 }
1196 
1197 /* Add 32-bit AAL5 trailer and leave room for its CRC */
1198 static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
1199 	int len, int cpi, int uu)
1200 {
1201 	APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
1202 	    "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
1203 	lvcc->tx.buf.ptr += 2;
1204 	lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
1205 	if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1206 		lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1207 }
1208 
1209 static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
1210 	const unsigned char *src, int n)
1211 {
1212 	unsigned char *e;
1213 	int m;
1214 	e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1215 	m = e - (unsigned char *) lvcc->tx.buf.end;
1216 	if (m < 0)
1217 		m = 0;
1218 	memcpy(lvcc->tx.buf.ptr, src, n - m);
1219 	if (m != 0) {
1220 		memcpy(lvcc->tx.buf.start, src + n - m, m);
1221 		e = ((unsigned char *) lvcc->tx.buf.start) + m;
1222 	}
1223 	lvcc->tx.buf.ptr = (u32 *) e;
1224 }
1225 
1226 static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
1227 {
1228 	unsigned char *e;
1229 	int m;
1230 	if (n == 0)
1231 		return;
1232 	e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1233 	m = e - (unsigned char *) lvcc->tx.buf.end;
1234 	if (m < 0)
1235 		m = 0;
1236 	memset(lvcc->tx.buf.ptr, 0, n - m);
1237 	if (m != 0) {
1238 		memset(lvcc->tx.buf.start, 0, m);
1239 		e = ((unsigned char *) lvcc->tx.buf.start) + m;
1240 	}
1241 	lvcc->tx.buf.ptr = (u32 *) e;
1242 }
1243 
1244 /* Update "butt" register to specify new WritePtr */
1245 static inline void lanai_endtx(struct lanai_dev *lanai,
1246 	const struct lanai_vcc *lvcc)
1247 {
1248 	int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
1249 	    (unsigned char *) lvcc->tx.buf.start;
1250 	APRINTK((ptr & ~0x0001FFF0) == 0,
1251 	    "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
1252 	    ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
1253 	    lvcc->tx.buf.end);
1254 
1255 	/*
1256 	 * Since the "butt register" is a shared resounce on the card we
1257 	 * serialize all accesses to it through this spinlock.  This is
1258 	 * mostly just paranoia sicne the register is rarely "busy" anyway
1259 	 * but is needed for correctness.
1260 	 */
1261 	spin_lock(&lanai->endtxlock);
1262 	/*
1263 	 * We need to check if the "butt busy" bit is set before
1264 	 * updating the butt register.  In theory this should
1265 	 * never happen because the ATM card is plenty fast at
1266 	 * updating the register.  Still, we should make sure
1267 	 */
1268 	for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
1269 		if (unlikely(i > 50)) {
1270 			printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
1271 			    "always busy!\n", lanai->number);
1272 			break;
1273 		}
1274 		udelay(5);
1275 	}
1276 	/*
1277 	 * Before we tall the card to start work we need to be sure 100% of
1278 	 * the info in the service buffer has been written before we tell
1279 	 * the card about it
1280 	 */
1281 	wmb();
1282 	reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
1283 	spin_unlock(&lanai->endtxlock);
1284 }
1285 
1286 /*
1287  * Add one AAL5 PDU to lvcc's transmit buffer.  Caller garauntees there's
1288  * space available.  "pdusize" is the number of bytes the PDU will take
1289  */
1290 static void lanai_send_one_aal5(struct lanai_dev *lanai,
1291 	struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
1292 {
1293 	int pad;
1294 	APRINTK(pdusize == aal5_size(skb->len),
1295 	    "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
1296 	    pdusize, aal5_size(skb->len));
1297 	vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
1298 	pad = pdusize - skb->len - 8;
1299 	APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
1300 	APRINTK(pad < 48, "pad is too big (%d)\n", pad);
1301 	vcc_tx_memcpy(lvcc, skb->data, skb->len);
1302 	vcc_tx_memzero(lvcc, pad);
1303 	vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
1304 	lanai_endtx(lanai, lvcc);
1305 	lanai_free_skb(lvcc->tx.atmvcc, skb);
1306 	atomic_inc(&lvcc->tx.atmvcc->stats->tx);
1307 }
1308 
1309 /* Try to fill the buffer - don't call unless there is backlog */
1310 static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
1311 	struct lanai_vcc *lvcc, int endptr)
1312 {
1313 	int n;
1314 	struct sk_buff *skb;
1315 	int space = vcc_tx_space(lvcc, endptr);
1316 	APRINTK(vcc_is_backlogged(lvcc),
1317 	    "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
1318 	    lvcc->vci);
1319 	while (space >= 64) {
1320 		skb = skb_dequeue(&lvcc->tx.backlog);
1321 		if (skb == NULL)
1322 			goto no_backlog;
1323 		n = aal5_size(skb->len);
1324 		if (n + 16 > space) {
1325 			/* No room for this packet - put it back on queue */
1326 			skb_queue_head(&lvcc->tx.backlog, skb);
1327 			return;
1328 		}
1329 		lanai_send_one_aal5(lanai, lvcc, skb, n);
1330 		space -= n + 16;
1331 	}
1332 	if (!vcc_is_backlogged(lvcc)) {
1333 	    no_backlog:
1334 		__clear_bit(lvcc->vci, lanai->backlog_vccs);
1335 	}
1336 }
1337 
1338 /* Given an skb that we want to transmit either send it now or queue */
1339 static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1340 	struct sk_buff *skb)
1341 {
1342 	int space, n;
1343 	if (vcc_is_backlogged(lvcc))		/* Already backlogged */
1344 		goto queue_it;
1345 	space = vcc_tx_space(lvcc,
1346 		    TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
1347 	n = aal5_size(skb->len);
1348 	APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
1349 	if (space < n + 16) {			/* No space for this PDU */
1350 		__set_bit(lvcc->vci, lanai->backlog_vccs);
1351 	    queue_it:
1352 		skb_queue_tail(&lvcc->tx.backlog, skb);
1353 		return;
1354 	}
1355 	lanai_send_one_aal5(lanai, lvcc, skb, n);
1356 }
1357 
1358 static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
1359 	struct lanai_vcc *lvcc, int endptr)
1360 {
1361 	printk(KERN_INFO DEV_LABEL
1362 	    ": vcc_tx_unqueue_aal0: not implemented\n");
1363 }
1364 
1365 static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1366 	struct sk_buff *skb)
1367 {
1368 	printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
1369 	/* Remember to increment lvcc->tx.atmvcc->stats->tx */
1370 	lanai_free_skb(lvcc->tx.atmvcc, skb);
1371 }
1372 
1373 /* -------------------- VCC RX BUFFER UTILITIES: */
1374 
1375 /* unlike the _tx_ cousins, this doesn't update ptr */
1376 static inline void vcc_rx_memcpy(unsigned char *dest,
1377 	const struct lanai_vcc *lvcc, int n)
1378 {
1379 	int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
1380 	    ((const unsigned char *) (lvcc->rx.buf.end));
1381 	if (m < 0)
1382 		m = 0;
1383 	memcpy(dest, lvcc->rx.buf.ptr, n - m);
1384 	memcpy(dest + n - m, lvcc->rx.buf.start, m);
1385 	/* Make sure that these copies don't get reordered */
1386 	barrier();
1387 }
1388 
1389 /* Receive AAL5 data on a VCC with a particular endptr */
1390 static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
1391 {
1392 	int size;
1393 	struct sk_buff *skb;
1394 	const u32 *x;
1395 	u32 *end = &lvcc->rx.buf.start[endptr * 4];
1396 	int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
1397 	if (n < 0)
1398 		n += lanai_buf_size(&lvcc->rx.buf);
1399 	APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
1400 	    "vcc_rx_aal5: n out of range (%d/%Zu)\n",
1401 	    n, lanai_buf_size(&lvcc->rx.buf));
1402 	/* Recover the second-to-last word to get true pdu length */
1403 	if ((x = &end[-2]) < lvcc->rx.buf.start)
1404 		x = &lvcc->rx.buf.end[-2];
1405 	/*
1406 	 * Before we actually read from the buffer, make sure the memory
1407 	 * changes have arrived
1408 	 */
1409 	rmb();
1410 	size = be32_to_cpup(x) & 0xffff;
1411 	if (unlikely(n != aal5_size(size))) {
1412 		/* Make sure size matches padding */
1413 		printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
1414 		    "on vci=%d - size=%d n=%d\n",
1415 		    lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
1416 		lvcc->stats.x.aal5.rx_badlen++;
1417 		goto out;
1418 	}
1419 	skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
1420 	if (unlikely(skb == NULL)) {
1421 		lvcc->stats.rx_nomem++;
1422 		goto out;
1423 	}
1424 	skb_put(skb, size);
1425 	vcc_rx_memcpy(skb->data, lvcc, size);
1426 	ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
1427 	__net_timestamp(skb);
1428 	lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
1429 	atomic_inc(&lvcc->rx.atmvcc->stats->rx);
1430     out:
1431 	lvcc->rx.buf.ptr = end;
1432 	cardvcc_write(lvcc, endptr, vcc_rxreadptr);
1433 }
1434 
1435 static void vcc_rx_aal0(struct lanai_dev *lanai)
1436 {
1437 	printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
1438 	/* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
1439 	/* Remember to increment lvcc->rx.atmvcc->stats->rx */
1440 }
1441 
1442 /* -------------------- MANAGING HOST-BASED VCC TABLE: */
1443 
1444 /* Decide whether to use vmalloc or get_zeroed_page for VCC table */
1445 #if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
1446 #define VCCTABLE_GETFREEPAGE
1447 #else
1448 #include <linux/vmalloc.h>
1449 #endif
1450 
1451 static int __devinit vcc_table_allocate(struct lanai_dev *lanai)
1452 {
1453 #ifdef VCCTABLE_GETFREEPAGE
1454 	APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
1455 	    "vcc table > PAGE_SIZE!");
1456 	lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
1457 	return (lanai->vccs == NULL) ? -ENOMEM : 0;
1458 #else
1459 	int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
1460 	lanai->vccs = (struct lanai_vcc **) vmalloc(bytes);
1461 	if (unlikely(lanai->vccs == NULL))
1462 		return -ENOMEM;
1463 	memset(lanai->vccs, 0, bytes);
1464 	return 0;
1465 #endif
1466 }
1467 
1468 static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
1469 {
1470 #ifdef VCCTABLE_GETFREEPAGE
1471 	free_page((unsigned long) lanai->vccs);
1472 #else
1473 	vfree(lanai->vccs);
1474 #endif
1475 }
1476 
1477 /* Allocate a fresh lanai_vcc, with the appropriate things cleared */
1478 static inline struct lanai_vcc *new_lanai_vcc(void)
1479 {
1480 	struct lanai_vcc *lvcc;
1481 	lvcc =  kzalloc(sizeof(*lvcc), GFP_KERNEL);
1482 	if (likely(lvcc != NULL)) {
1483 		skb_queue_head_init(&lvcc->tx.backlog);
1484 #ifdef DEBUG
1485 		lvcc->vci = -1;
1486 #endif
1487 	}
1488 	return lvcc;
1489 }
1490 
1491 static int lanai_get_sized_buffer(struct lanai_dev *lanai,
1492 	struct lanai_buffer *buf, int max_sdu, int multiplier,
1493 	const char *name)
1494 {
1495 	int size;
1496 	if (unlikely(max_sdu < 1))
1497 		max_sdu = 1;
1498 	max_sdu = aal5_size(max_sdu);
1499 	size = (max_sdu + 16) * multiplier + 16;
1500 	lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
1501 	if (unlikely(buf->start == NULL))
1502 		return -ENOMEM;
1503 	if (unlikely(lanai_buf_size(buf) < size))
1504 		printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
1505 		    "for %s buffer, got only %Zu\n", lanai->number, size,
1506 		    name, lanai_buf_size(buf));
1507 	DPRINTK("Allocated %Zu byte %s buffer\n", lanai_buf_size(buf), name);
1508 	return 0;
1509 }
1510 
1511 /* Setup a RX buffer for a currently unbound AAL5 vci */
1512 static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
1513 	struct lanai_vcc *lvcc, const struct atm_qos *qos)
1514 {
1515 	return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
1516 	    qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
1517 }
1518 
1519 /* Setup a TX buffer for a currently unbound AAL5 vci */
1520 static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1521 	const struct atm_qos *qos)
1522 {
1523 	int max_sdu, multiplier;
1524 	if (qos->aal == ATM_AAL0) {
1525 		lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
1526 		max_sdu = ATM_CELL_SIZE - 1;
1527 		multiplier = AAL0_TX_MULTIPLIER;
1528 	} else {
1529 		lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
1530 		max_sdu = qos->txtp.max_sdu;
1531 		multiplier = AAL5_TX_MULTIPLIER;
1532 	}
1533 	return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
1534 	    multiplier, "TX");
1535 }
1536 
1537 static inline void host_vcc_bind(struct lanai_dev *lanai,
1538 	struct lanai_vcc *lvcc, vci_t vci)
1539 {
1540 	if (lvcc->vbase != NULL)
1541 		return;    /* We already were bound in the other direction */
1542 	DPRINTK("Binding vci %d\n", vci);
1543 #ifdef USE_POWERDOWN
1544 	if (lanai->nbound++ == 0) {
1545 		DPRINTK("Coming out of powerdown\n");
1546 		lanai->conf1 &= ~CONFIG1_POWERDOWN;
1547 		conf1_write(lanai);
1548 		conf2_write(lanai);
1549 	}
1550 #endif
1551 	lvcc->vbase = cardvcc_addr(lanai, vci);
1552 	lanai->vccs[lvcc->vci = vci] = lvcc;
1553 }
1554 
1555 static inline void host_vcc_unbind(struct lanai_dev *lanai,
1556 	struct lanai_vcc *lvcc)
1557 {
1558 	if (lvcc->vbase == NULL)
1559 		return;	/* This vcc was never bound */
1560 	DPRINTK("Unbinding vci %d\n", lvcc->vci);
1561 	lvcc->vbase = NULL;
1562 	lanai->vccs[lvcc->vci] = NULL;
1563 #ifdef USE_POWERDOWN
1564 	if (--lanai->nbound == 0) {
1565 		DPRINTK("Going into powerdown\n");
1566 		lanai->conf1 |= CONFIG1_POWERDOWN;
1567 		conf1_write(lanai);
1568 	}
1569 #endif
1570 }
1571 
1572 /* -------------------- RESET CARD: */
1573 
1574 static void lanai_reset(struct lanai_dev *lanai)
1575 {
1576 	printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* reseting - not "
1577 	    "implemented\n", lanai->number);
1578 	/* TODO */
1579 	/* The following is just a hack until we write the real
1580 	 * resetter - at least ack whatever interrupt sent us
1581 	 * here
1582 	 */
1583 	reg_write(lanai, INT_ALL, IntAck_Reg);
1584 	lanai->stats.card_reset++;
1585 }
1586 
1587 /* -------------------- SERVICE LIST UTILITIES: */
1588 
1589 /*
1590  * Allocate service buffer and tell card about it
1591  */
1592 static int __devinit service_buffer_allocate(struct lanai_dev *lanai)
1593 {
1594 	lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
1595 	    lanai->pci);
1596 	if (unlikely(lanai->service.start == NULL))
1597 		return -ENOMEM;
1598 	DPRINTK("allocated service buffer at 0x%08lX, size %Zu(%d)\n",
1599 	    (unsigned long) lanai->service.start,
1600 	    lanai_buf_size(&lanai->service),
1601 	    lanai_buf_size_cardorder(&lanai->service));
1602 	/* Clear ServWrite register to be safe */
1603 	reg_write(lanai, 0, ServWrite_Reg);
1604 	/* ServiceStuff register contains size and address of buffer */
1605 	reg_write(lanai,
1606 	    SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
1607 	    SSTUFF_SET_ADDR(lanai->service.dmaaddr),
1608 	    ServiceStuff_Reg);
1609 	return 0;
1610 }
1611 
1612 static inline void service_buffer_deallocate(struct lanai_dev *lanai)
1613 {
1614 	lanai_buf_deallocate(&lanai->service, lanai->pci);
1615 }
1616 
1617 /* Bitfields in service list */
1618 #define SERVICE_TX	(0x80000000)	/* Was from transmission */
1619 #define SERVICE_TRASH	(0x40000000)	/* RXed PDU was trashed */
1620 #define SERVICE_CRCERR	(0x20000000)	/* RXed PDU had CRC error */
1621 #define SERVICE_CI	(0x10000000)	/* RXed PDU had CI set */
1622 #define SERVICE_CLP	(0x08000000)	/* RXed PDU had CLP set */
1623 #define SERVICE_STREAM	(0x04000000)	/* RX Stream mode */
1624 #define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
1625 #define SERVICE_GET_END(x) ((x)&0x1FFF)
1626 
1627 /* Handle one thing from the service list - returns true if it marked a
1628  * VCC ready for xmit
1629  */
1630 static int handle_service(struct lanai_dev *lanai, u32 s)
1631 {
1632 	vci_t vci = SERVICE_GET_VCI(s);
1633 	struct lanai_vcc *lvcc;
1634 	read_lock(&vcc_sklist_lock);
1635 	lvcc = lanai->vccs[vci];
1636 	if (unlikely(lvcc == NULL)) {
1637 		read_unlock(&vcc_sklist_lock);
1638 		DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
1639 		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1640 		if (s & SERVICE_TX)
1641 			lanai->stats.service_notx++;
1642 		else
1643 			lanai->stats.service_norx++;
1644 		return 0;
1645 	}
1646 	if (s & SERVICE_TX) {			/* segmentation interrupt */
1647 		if (unlikely(lvcc->tx.atmvcc == NULL)) {
1648 			read_unlock(&vcc_sklist_lock);
1649 			DPRINTK("(itf %d) got service entry 0x%X for non-TX "
1650 			    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1651 			lanai->stats.service_notx++;
1652 			return 0;
1653 		}
1654 		__set_bit(vci, lanai->transmit_ready);
1655 		lvcc->tx.endptr = SERVICE_GET_END(s);
1656 		read_unlock(&vcc_sklist_lock);
1657 		return 1;
1658 	}
1659 	if (unlikely(lvcc->rx.atmvcc == NULL)) {
1660 		read_unlock(&vcc_sklist_lock);
1661 		DPRINTK("(itf %d) got service entry 0x%X for non-RX "
1662 		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1663 		lanai->stats.service_norx++;
1664 		return 0;
1665 	}
1666 	if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
1667 		read_unlock(&vcc_sklist_lock);
1668 		DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
1669 		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1670 		lanai->stats.service_rxnotaal5++;
1671 		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1672 		return 0;
1673 	}
1674 	if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
1675 		vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
1676 		read_unlock(&vcc_sklist_lock);
1677 		return 0;
1678 	}
1679 	if (s & SERVICE_TRASH) {
1680 		int bytes;
1681 		read_unlock(&vcc_sklist_lock);
1682 		DPRINTK("got trashed rx pdu on vci %d\n", vci);
1683 		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1684 		lvcc->stats.x.aal5.service_trash++;
1685 		bytes = (SERVICE_GET_END(s) * 16) -
1686 		    (((unsigned long) lvcc->rx.buf.ptr) -
1687 		    ((unsigned long) lvcc->rx.buf.start)) + 47;
1688 		if (bytes < 0)
1689 			bytes += lanai_buf_size(&lvcc->rx.buf);
1690 		lanai->stats.ovfl_trash += (bytes / 48);
1691 		return 0;
1692 	}
1693 	if (s & SERVICE_STREAM) {
1694 		read_unlock(&vcc_sklist_lock);
1695 		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1696 		lvcc->stats.x.aal5.service_stream++;
1697 		printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
1698 		    "PDU on VCI %d!\n", lanai->number, vci);
1699 		lanai_reset(lanai);
1700 		return 0;
1701 	}
1702 	DPRINTK("got rx crc error on vci %d\n", vci);
1703 	atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1704 	lvcc->stats.x.aal5.service_rxcrc++;
1705 	lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
1706 	cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
1707 	read_unlock(&vcc_sklist_lock);
1708 	return 0;
1709 }
1710 
1711 /* Try transmitting on all VCIs that we marked ready to serve */
1712 static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
1713 {
1714 	struct lanai_vcc *lvcc = lanai->vccs[vci];
1715 	if (vcc_is_backlogged(lvcc))
1716 		lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
1717 }
1718 
1719 /* Run service queue -- called from interrupt context or with
1720  * interrupts otherwise disabled and with the lanai->servicelock
1721  * lock held
1722  */
1723 static void run_service(struct lanai_dev *lanai)
1724 {
1725 	int ntx = 0;
1726 	u32 wreg = reg_read(lanai, ServWrite_Reg);
1727 	const u32 *end = lanai->service.start + wreg;
1728 	while (lanai->service.ptr != end) {
1729 		ntx += handle_service(lanai,
1730 		    le32_to_cpup(lanai->service.ptr++));
1731 		if (lanai->service.ptr >= lanai->service.end)
1732 			lanai->service.ptr = lanai->service.start;
1733 	}
1734 	reg_write(lanai, wreg, ServRead_Reg);
1735 	if (ntx != 0) {
1736 		read_lock(&vcc_sklist_lock);
1737 		vci_bitfield_iterate(lanai, lanai->transmit_ready,
1738 		    iter_transmit);
1739 		bitmap_zero(lanai->transmit_ready, NUM_VCI);
1740 		read_unlock(&vcc_sklist_lock);
1741 	}
1742 }
1743 
1744 /* -------------------- GATHER STATISTICS: */
1745 
1746 static void get_statistics(struct lanai_dev *lanai)
1747 {
1748 	u32 statreg = reg_read(lanai, Statistics_Reg);
1749 	lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
1750 	lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
1751 	lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
1752 	lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
1753 }
1754 
1755 /* -------------------- POLLING TIMER: */
1756 
1757 #ifndef DEBUG_RW
1758 /* Try to undequeue 1 backlogged vcc */
1759 static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
1760 {
1761 	struct lanai_vcc *lvcc = lanai->vccs[vci];
1762 	int endptr;
1763 	if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
1764 	    !vcc_is_backlogged(lvcc)) {
1765 		__clear_bit(vci, lanai->backlog_vccs);
1766 		return;
1767 	}
1768 	endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
1769 	lvcc->tx.unqueue(lanai, lvcc, endptr);
1770 }
1771 #endif /* !DEBUG_RW */
1772 
1773 static void lanai_timed_poll(unsigned long arg)
1774 {
1775 	struct lanai_dev *lanai = (struct lanai_dev *) arg;
1776 #ifndef DEBUG_RW
1777 	unsigned long flags;
1778 #ifdef USE_POWERDOWN
1779 	if (lanai->conf1 & CONFIG1_POWERDOWN)
1780 		return;
1781 #endif /* USE_POWERDOWN */
1782 	local_irq_save(flags);
1783 	/* If we can grab the spinlock, check if any services need to be run */
1784 	if (spin_trylock(&lanai->servicelock)) {
1785 		run_service(lanai);
1786 		spin_unlock(&lanai->servicelock);
1787 	}
1788 	/* ...and see if any backlogged VCs can make progress */
1789 	/* unfortunately linux has no read_trylock() currently */
1790 	read_lock(&vcc_sklist_lock);
1791 	vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
1792 	read_unlock(&vcc_sklist_lock);
1793 	local_irq_restore(flags);
1794 
1795 	get_statistics(lanai);
1796 #endif /* !DEBUG_RW */
1797 	mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
1798 }
1799 
1800 static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
1801 {
1802 	init_timer(&lanai->timer);
1803 	lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
1804 	lanai->timer.data = (unsigned long) lanai;
1805 	lanai->timer.function = lanai_timed_poll;
1806 	add_timer(&lanai->timer);
1807 }
1808 
1809 static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
1810 {
1811 	del_timer_sync(&lanai->timer);
1812 }
1813 
1814 /* -------------------- INTERRUPT SERVICE: */
1815 
1816 static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
1817 {
1818 	u32 ack = 0;
1819 	if (reason & INT_SERVICE) {
1820 		ack = INT_SERVICE;
1821 		spin_lock(&lanai->servicelock);
1822 		run_service(lanai);
1823 		spin_unlock(&lanai->servicelock);
1824 	}
1825 	if (reason & (INT_AAL0_STR | INT_AAL0)) {
1826 		ack |= reason & (INT_AAL0_STR | INT_AAL0);
1827 		vcc_rx_aal0(lanai);
1828 	}
1829 	/* The rest of the interrupts are pretty rare */
1830 	if (ack == reason)
1831 		goto done;
1832 	if (reason & INT_STATS) {
1833 		reason &= ~INT_STATS;	/* No need to ack */
1834 		get_statistics(lanai);
1835 	}
1836 	if (reason & INT_STATUS) {
1837 		ack |= reason & INT_STATUS;
1838 		lanai_check_status(lanai);
1839 	}
1840 	if (unlikely(reason & INT_DMASHUT)) {
1841 		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
1842 		    "shutdown, reason=0x%08X, address=0x%08X\n",
1843 		    lanai->number, (unsigned int) (reason & INT_DMASHUT),
1844 		    (unsigned int) reg_read(lanai, DMA_Addr_Reg));
1845 		if (reason & INT_TABORTBM) {
1846 			lanai_reset(lanai);
1847 			return;
1848 		}
1849 		ack |= (reason & INT_DMASHUT);
1850 		printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
1851 		    lanai->number);
1852 		conf1_write(lanai);
1853 		lanai->stats.dma_reenable++;
1854 		pcistatus_check(lanai, 0);
1855 	}
1856 	if (unlikely(reason & INT_TABORTSENT)) {
1857 		ack |= (reason & INT_TABORTSENT);
1858 		printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
1859 		    lanai->number);
1860 		pcistatus_check(lanai, 0);
1861 	}
1862 	if (unlikely(reason & INT_SEGSHUT)) {
1863 		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1864 		    "segmentation shutdown, reason=0x%08X\n", lanai->number,
1865 		    (unsigned int) (reason & INT_SEGSHUT));
1866 		lanai_reset(lanai);
1867 		return;
1868 	}
1869 	if (unlikely(reason & (INT_PING | INT_WAKE))) {
1870 		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1871 		    "unexpected interrupt 0x%08X, resetting\n",
1872 		    lanai->number,
1873 		    (unsigned int) (reason & (INT_PING | INT_WAKE)));
1874 		lanai_reset(lanai);
1875 		return;
1876 	}
1877 #ifdef DEBUG
1878 	if (unlikely(ack != reason)) {
1879 		DPRINTK("unacked ints: 0x%08X\n",
1880 		    (unsigned int) (reason & ~ack));
1881 		ack = reason;
1882 	}
1883 #endif
1884    done:
1885 	if (ack != 0)
1886 		reg_write(lanai, ack, IntAck_Reg);
1887 }
1888 
1889 static irqreturn_t lanai_int(int irq, void *devid)
1890 {
1891 	struct lanai_dev *lanai = devid;
1892 	u32 reason;
1893 
1894 #ifdef USE_POWERDOWN
1895 	/*
1896 	 * If we're powered down we shouldn't be generating any interrupts -
1897 	 * so assume that this is a shared interrupt line and it's for someone
1898 	 * else
1899 	 */
1900 	if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
1901 		return IRQ_NONE;
1902 #endif
1903 
1904 	reason = intr_pending(lanai);
1905 	if (reason == 0)
1906 		return IRQ_NONE;	/* Must be for someone else */
1907 
1908 	do {
1909 		if (unlikely(reason == 0xFFFFFFFF))
1910 			break;		/* Maybe we've been unplugged? */
1911 		lanai_int_1(lanai, reason);
1912 		reason = intr_pending(lanai);
1913 	} while (reason != 0);
1914 
1915 	return IRQ_HANDLED;
1916 }
1917 
1918 /* TODO - it would be nice if we could use the "delayed interrupt" system
1919  *   to some advantage
1920  */
1921 
1922 /* -------------------- CHECK BOARD ID/REV: */
1923 
1924 /*
1925  * The board id and revision are stored both in the reset register and
1926  * in the PCI configuration space - the documentation says to check
1927  * each of them.  If revp!=NULL we store the revision there
1928  */
1929 static int check_board_id_and_rev(const char *name, u32 val, int *revp)
1930 {
1931 	DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
1932 		(int) RESET_GET_BOARD_ID(val),
1933 		(int) RESET_GET_BOARD_REV(val));
1934 	if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
1935 		printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
1936 		    "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
1937 		return -ENODEV;
1938 	}
1939 	if (revp != NULL)
1940 		*revp = RESET_GET_BOARD_REV(val);
1941 	return 0;
1942 }
1943 
1944 /* -------------------- PCI INITIALIZATION/SHUTDOWN: */
1945 
1946 static int __devinit lanai_pci_start(struct lanai_dev *lanai)
1947 {
1948 	struct pci_dev *pci = lanai->pci;
1949 	int result;
1950 	u16 w;
1951 
1952 	if (pci_enable_device(pci) != 0) {
1953 		printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
1954 		    "PCI device", lanai->number);
1955 		return -ENXIO;
1956 	}
1957 	pci_set_master(pci);
1958 	if (pci_set_dma_mask(pci, DMA_BIT_MASK(32)) != 0) {
1959 		printk(KERN_WARNING DEV_LABEL
1960 		    "(itf %d): No suitable DMA available.\n", lanai->number);
1961 		return -EBUSY;
1962 	}
1963 	if (pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(32)) != 0) {
1964 		printk(KERN_WARNING DEV_LABEL
1965 		    "(itf %d): No suitable DMA available.\n", lanai->number);
1966 		return -EBUSY;
1967 	}
1968 	result = pci_read_config_word(pci, PCI_SUBSYSTEM_ID, &w);
1969 	if (result != PCIBIOS_SUCCESSFUL) {
1970 		printk(KERN_ERR DEV_LABEL "(itf %d): can't read "
1971 		    "PCI_SUBSYSTEM_ID: %d\n", lanai->number, result);
1972 		return -EINVAL;
1973 	}
1974 	result = check_board_id_and_rev("PCI", w, NULL);
1975 	if (result != 0)
1976 		return result;
1977 	/* Set latency timer to zero as per lanai docs */
1978 	result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
1979 	if (result != PCIBIOS_SUCCESSFUL) {
1980 		printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
1981 		    "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
1982 		return -EINVAL;
1983 	}
1984 	pcistatus_check(lanai, 1);
1985 	pcistatus_check(lanai, 0);
1986 	return 0;
1987 }
1988 
1989 /* -------------------- VPI/VCI ALLOCATION: */
1990 
1991 /*
1992  * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
1993  * get a CBRZERO interrupt), and we can use it only if noone is receiving
1994  * AAL0 traffic (since they will use the same queue) - according to the
1995  * docs we shouldn't even use it for AAL0 traffic
1996  */
1997 static inline int vci0_is_ok(struct lanai_dev *lanai,
1998 	const struct atm_qos *qos)
1999 {
2000 	if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
2001 		return 0;
2002 	if (qos->rxtp.traffic_class != ATM_NONE) {
2003 		if (lanai->naal0 != 0)
2004 			return 0;
2005 		lanai->conf2 |= CONFIG2_VCI0_NORMAL;
2006 		conf2_write_if_powerup(lanai);
2007 	}
2008 	return 1;
2009 }
2010 
2011 /* return true if vci is currently unused, or if requested qos is
2012  * compatible
2013  */
2014 static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
2015 	const struct atm_vcc *atmvcc)
2016 {
2017 	const struct atm_qos *qos = &atmvcc->qos;
2018 	const struct lanai_vcc *lvcc = lanai->vccs[vci];
2019 	if (vci == 0 && !vci0_is_ok(lanai, qos))
2020 		return 0;
2021 	if (unlikely(lvcc != NULL)) {
2022 		if (qos->rxtp.traffic_class != ATM_NONE &&
2023 		    lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
2024 			return 0;
2025 		if (qos->txtp.traffic_class != ATM_NONE &&
2026 		    lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
2027 			return 0;
2028 		if (qos->txtp.traffic_class == ATM_CBR &&
2029 		    lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
2030 			return 0;
2031 	}
2032 	if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
2033 	    qos->rxtp.traffic_class != ATM_NONE) {
2034 		const struct lanai_vcc *vci0 = lanai->vccs[0];
2035 		if (vci0 != NULL && vci0->rx.atmvcc != NULL)
2036 			return 0;
2037 		lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
2038 		conf2_write_if_powerup(lanai);
2039 	}
2040 	return 1;
2041 }
2042 
2043 static int lanai_normalize_ci(struct lanai_dev *lanai,
2044 	const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
2045 {
2046 	switch (*vpip) {
2047 		case ATM_VPI_ANY:
2048 			*vpip = 0;
2049 			/* FALLTHROUGH */
2050 		case 0:
2051 			break;
2052 		default:
2053 			return -EADDRINUSE;
2054 	}
2055 	switch (*vcip) {
2056 		case ATM_VCI_ANY:
2057 			for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
2058 			    (*vcip)++)
2059 				if (vci_is_ok(lanai, *vcip, atmvcc))
2060 					return 0;
2061 			return -EADDRINUSE;
2062 		default:
2063 			if (*vcip >= lanai->num_vci || *vcip < 0 ||
2064 			    !vci_is_ok(lanai, *vcip, atmvcc))
2065 				return -EADDRINUSE;
2066 	}
2067 	return 0;
2068 }
2069 
2070 /* -------------------- MANAGE CBR: */
2071 
2072 /*
2073  * CBR ICG is stored as a fixed-point number with 4 fractional bits.
2074  * Note that storing a number greater than 2046.0 will result in
2075  * incorrect shaping
2076  */
2077 #define CBRICG_FRAC_BITS	(4)
2078 #define CBRICG_MAX		(2046 << CBRICG_FRAC_BITS)
2079 
2080 /*
2081  * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
2082  * where MAXPCR is (according to the docs) 25600000/(54*8),
2083  * which is equal to (3125<<9)/27.
2084  *
2085  * Solving for ICG, we get:
2086  *    ICG = MAXPCR/PCR - 1
2087  *    ICG = (3125<<9)/(27*PCR) - 1
2088  *    ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
2089  *
2090  * The end result is supposed to be a fixed-point number with FRAC_BITS
2091  * bits of a fractional part, so we keep everything in the numerator
2092  * shifted by that much as we compute
2093  *
2094  */
2095 static int pcr_to_cbricg(const struct atm_qos *qos)
2096 {
2097 	int rounddown = 0;	/* 1 = Round PCR down, i.e. round ICG _up_ */
2098 	int x, icg, pcr = atm_pcr_goal(&qos->txtp);
2099 	if (pcr == 0)		/* Use maximum bandwidth */
2100 		return 0;
2101 	if (pcr < 0) {
2102 		rounddown = 1;
2103 		pcr = -pcr;
2104 	}
2105 	x = pcr * 27;
2106 	icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
2107 	if (rounddown)
2108 		icg += x - 1;
2109 	icg /= x;
2110 	if (icg > CBRICG_MAX)
2111 		icg = CBRICG_MAX;
2112 	DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
2113 	    pcr, rounddown ? 'Y' : 'N', icg);
2114 	return icg;
2115 }
2116 
2117 static inline void lanai_cbr_setup(struct lanai_dev *lanai)
2118 {
2119 	reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
2120 	reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
2121 	lanai->conf2 |= CONFIG2_CBR_ENABLE;
2122 	conf2_write(lanai);
2123 }
2124 
2125 static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
2126 {
2127 	lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
2128 	conf2_write(lanai);
2129 }
2130 
2131 /* -------------------- OPERATIONS: */
2132 
2133 /* setup a newly detected device */
2134 static int __devinit lanai_dev_open(struct atm_dev *atmdev)
2135 {
2136 	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2137 	unsigned long raw_base;
2138 	int result;
2139 
2140 	DPRINTK("In lanai_dev_open()\n");
2141 	/* Basic device fields */
2142 	lanai->number = atmdev->number;
2143 	lanai->num_vci = NUM_VCI;
2144 	bitmap_zero(lanai->backlog_vccs, NUM_VCI);
2145 	bitmap_zero(lanai->transmit_ready, NUM_VCI);
2146 	lanai->naal0 = 0;
2147 #ifdef USE_POWERDOWN
2148 	lanai->nbound = 0;
2149 #endif
2150 	lanai->cbrvcc = NULL;
2151 	memset(&lanai->stats, 0, sizeof lanai->stats);
2152 	spin_lock_init(&lanai->endtxlock);
2153 	spin_lock_init(&lanai->servicelock);
2154 	atmdev->ci_range.vpi_bits = 0;
2155 	atmdev->ci_range.vci_bits = 0;
2156 	while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
2157 		atmdev->ci_range.vci_bits++;
2158 	atmdev->link_rate = ATM_25_PCR;
2159 
2160 	/* 3.2: PCI initialization */
2161 	if ((result = lanai_pci_start(lanai)) != 0)
2162 		goto error;
2163 	raw_base = lanai->pci->resource[0].start;
2164 	lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
2165 	if (lanai->base == NULL) {
2166 		printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
2167 		goto error_pci;
2168 	}
2169 	/* 3.3: Reset lanai and PHY */
2170 	reset_board(lanai);
2171 	lanai->conf1 = reg_read(lanai, Config1_Reg);
2172 	lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
2173 	    CONFIG1_MASK_LEDMODE);
2174 	lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
2175 	reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2176 	udelay(1000);
2177 	conf1_write(lanai);
2178 
2179 	/*
2180 	 * 3.4: Turn on endian mode for big-endian hardware
2181 	 *   We don't actually want to do this - the actual bit fields
2182 	 *   in the endian register are not documented anywhere.
2183 	 *   Instead we do the bit-flipping ourselves on big-endian
2184 	 *   hardware.
2185 	 *
2186 	 * 3.5: get the board ID/rev by reading the reset register
2187 	 */
2188 	result = check_board_id_and_rev("register",
2189 	    reg_read(lanai, Reset_Reg), &lanai->board_rev);
2190 	if (result != 0)
2191 		goto error_unmap;
2192 
2193 	/* 3.6: read EEPROM */
2194 	if ((result = eeprom_read(lanai)) != 0)
2195 		goto error_unmap;
2196 	if ((result = eeprom_validate(lanai)) != 0)
2197 		goto error_unmap;
2198 
2199 	/* 3.7: re-reset PHY, do loopback tests, setup PHY */
2200 	reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2201 	udelay(1000);
2202 	conf1_write(lanai);
2203 	/* TODO - loopback tests */
2204 	lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
2205 	conf1_write(lanai);
2206 
2207 	/* 3.8/3.9: test and initialize card SRAM */
2208 	if ((result = sram_test_and_clear(lanai)) != 0)
2209 		goto error_unmap;
2210 
2211 	/* 3.10: initialize lanai registers */
2212 	lanai->conf1 |= CONFIG1_DMA_ENABLE;
2213 	conf1_write(lanai);
2214 	if ((result = service_buffer_allocate(lanai)) != 0)
2215 		goto error_unmap;
2216 	if ((result = vcc_table_allocate(lanai)) != 0)
2217 		goto error_service;
2218 	lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
2219 	    CONFIG2_HEC_DROP |	/* ??? */ CONFIG2_PTI7_MODE;
2220 	conf2_write(lanai);
2221 	reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
2222 	reg_write(lanai, 0, CBR_ICG_Reg);	/* CBR defaults to no limit */
2223 	if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
2224 	    DEV_LABEL, lanai)) != 0) {
2225 		printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
2226 		goto error_vcctable;
2227 	}
2228 	mb();				/* Make sure that all that made it */
2229 	intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
2230 	/* 3.11: initialize loop mode (i.e. turn looping off) */
2231 	lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
2232 	    CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
2233 	    CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
2234 	conf1_write(lanai);
2235 	lanai->status = reg_read(lanai, Status_Reg);
2236 	/* We're now done initializing this card */
2237 #ifdef USE_POWERDOWN
2238 	lanai->conf1 |= CONFIG1_POWERDOWN;
2239 	conf1_write(lanai);
2240 #endif
2241 	memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
2242 	lanai_timed_poll_start(lanai);
2243 	printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=0x%lx, irq=%u "
2244 		"(%pMF)\n", lanai->number, (int) lanai->pci->revision,
2245 		(unsigned long) lanai->base, lanai->pci->irq, atmdev->esi);
2246 	printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
2247 	    "board_rev=%d\n", lanai->number,
2248 	    lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
2249 	    (unsigned int) lanai->serialno, lanai->board_rev);
2250 	return 0;
2251 
2252     error_vcctable:
2253 	vcc_table_deallocate(lanai);
2254     error_service:
2255 	service_buffer_deallocate(lanai);
2256     error_unmap:
2257 	reset_board(lanai);
2258 #ifdef USE_POWERDOWN
2259 	lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
2260 	conf1_write(lanai);
2261 #endif
2262 	iounmap(lanai->base);
2263     error_pci:
2264 	pci_disable_device(lanai->pci);
2265     error:
2266 	return result;
2267 }
2268 
2269 /* called when device is being shutdown, and all vcc's are gone - higher
2270  * levels will deallocate the atm device for us
2271  */
2272 static void lanai_dev_close(struct atm_dev *atmdev)
2273 {
2274 	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2275 	printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
2276 	    lanai->number);
2277 	lanai_timed_poll_stop(lanai);
2278 #ifdef USE_POWERDOWN
2279 	lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
2280 	conf1_write(lanai);
2281 #endif
2282 	intr_disable(lanai, INT_ALL);
2283 	free_irq(lanai->pci->irq, lanai);
2284 	reset_board(lanai);
2285 #ifdef USE_POWERDOWN
2286 	lanai->conf1 |= CONFIG1_POWERDOWN;
2287 	conf1_write(lanai);
2288 #endif
2289 	pci_disable_device(lanai->pci);
2290 	vcc_table_deallocate(lanai);
2291 	service_buffer_deallocate(lanai);
2292 	iounmap(lanai->base);
2293 	kfree(lanai);
2294 }
2295 
2296 /* close a vcc */
2297 static void lanai_close(struct atm_vcc *atmvcc)
2298 {
2299 	struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2300 	struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2301 	if (lvcc == NULL)
2302 		return;
2303 	clear_bit(ATM_VF_READY, &atmvcc->flags);
2304 	clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
2305 	if (lvcc->rx.atmvcc == atmvcc) {
2306 		lanai_shutdown_rx_vci(lvcc);
2307 		if (atmvcc->qos.aal == ATM_AAL0) {
2308 			if (--lanai->naal0 <= 0)
2309 				aal0_buffer_free(lanai);
2310 		} else
2311 			lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
2312 		lvcc->rx.atmvcc = NULL;
2313 	}
2314 	if (lvcc->tx.atmvcc == atmvcc) {
2315 		if (atmvcc == lanai->cbrvcc) {
2316 			if (lvcc->vbase != NULL)
2317 				lanai_cbr_shutdown(lanai);
2318 			lanai->cbrvcc = NULL;
2319 		}
2320 		lanai_shutdown_tx_vci(lanai, lvcc);
2321 		lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
2322 		lvcc->tx.atmvcc = NULL;
2323 	}
2324 	if (--lvcc->nref == 0) {
2325 		host_vcc_unbind(lanai, lvcc);
2326 		kfree(lvcc);
2327 	}
2328 	atmvcc->dev_data = NULL;
2329 	clear_bit(ATM_VF_ADDR, &atmvcc->flags);
2330 }
2331 
2332 /* open a vcc on the card to vpi/vci */
2333 static int lanai_open(struct atm_vcc *atmvcc)
2334 {
2335 	struct lanai_dev *lanai;
2336 	struct lanai_vcc *lvcc;
2337 	int result = 0;
2338 	int vci = atmvcc->vci;
2339 	short vpi = atmvcc->vpi;
2340 	/* we don't support partial open - it's not really useful anyway */
2341 	if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
2342 	    (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
2343 		return -EINVAL;
2344 	lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2345 	result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
2346 	if (unlikely(result != 0))
2347 		goto out;
2348 	set_bit(ATM_VF_ADDR, &atmvcc->flags);
2349 	if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
2350 		return -EINVAL;
2351 	DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
2352 	    (int) vpi, vci);
2353 	lvcc = lanai->vccs[vci];
2354 	if (lvcc == NULL) {
2355 		lvcc = new_lanai_vcc();
2356 		if (unlikely(lvcc == NULL))
2357 			return -ENOMEM;
2358 		atmvcc->dev_data = lvcc;
2359 	}
2360 	lvcc->nref++;
2361 	if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
2362 		APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
2363 		    vci);
2364 		if (atmvcc->qos.aal == ATM_AAL0) {
2365 			if (lanai->naal0 == 0)
2366 				result = aal0_buffer_allocate(lanai);
2367 		} else
2368 			result = lanai_setup_rx_vci_aal5(
2369 			    lanai, lvcc, &atmvcc->qos);
2370 		if (unlikely(result != 0))
2371 			goto out_free;
2372 		lvcc->rx.atmvcc = atmvcc;
2373 		lvcc->stats.rx_nomem = 0;
2374 		lvcc->stats.x.aal5.rx_badlen = 0;
2375 		lvcc->stats.x.aal5.service_trash = 0;
2376 		lvcc->stats.x.aal5.service_stream = 0;
2377 		lvcc->stats.x.aal5.service_rxcrc = 0;
2378 		if (atmvcc->qos.aal == ATM_AAL0)
2379 			lanai->naal0++;
2380 	}
2381 	if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
2382 		APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
2383 		    vci);
2384 		result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
2385 		if (unlikely(result != 0))
2386 			goto out_free;
2387 		lvcc->tx.atmvcc = atmvcc;
2388 		if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
2389 			APRINTK(lanai->cbrvcc == NULL,
2390 			    "cbrvcc!=NULL, vci=%d\n", vci);
2391 			lanai->cbrvcc = atmvcc;
2392 		}
2393 	}
2394 	host_vcc_bind(lanai, lvcc, vci);
2395 	/*
2396 	 * Make sure everything made it to RAM before we tell the card about
2397 	 * the VCC
2398 	 */
2399 	wmb();
2400 	if (atmvcc == lvcc->rx.atmvcc)
2401 		host_vcc_start_rx(lvcc);
2402 	if (atmvcc == lvcc->tx.atmvcc) {
2403 		host_vcc_start_tx(lvcc);
2404 		if (lanai->cbrvcc == atmvcc)
2405 			lanai_cbr_setup(lanai);
2406 	}
2407 	set_bit(ATM_VF_READY, &atmvcc->flags);
2408 	return 0;
2409     out_free:
2410 	lanai_close(atmvcc);
2411     out:
2412 	return result;
2413 }
2414 
2415 static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
2416 {
2417 	struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2418 	struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2419 	unsigned long flags;
2420 	if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
2421 	      lvcc->tx.atmvcc != atmvcc))
2422 		goto einval;
2423 #ifdef DEBUG
2424 	if (unlikely(skb == NULL)) {
2425 		DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
2426 		goto einval;
2427 	}
2428 	if (unlikely(lanai == NULL)) {
2429 		DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
2430 		goto einval;
2431 	}
2432 #endif
2433 	ATM_SKB(skb)->vcc = atmvcc;
2434 	switch (atmvcc->qos.aal) {
2435 		case ATM_AAL5:
2436 			read_lock_irqsave(&vcc_sklist_lock, flags);
2437 			vcc_tx_aal5(lanai, lvcc, skb);
2438 			read_unlock_irqrestore(&vcc_sklist_lock, flags);
2439 			return 0;
2440 		case ATM_AAL0:
2441 			if (unlikely(skb->len != ATM_CELL_SIZE-1))
2442 				goto einval;
2443   /* NOTE - this next line is technically invalid - we haven't unshared skb */
2444 			cpu_to_be32s((u32 *) skb->data);
2445 			read_lock_irqsave(&vcc_sklist_lock, flags);
2446 			vcc_tx_aal0(lanai, lvcc, skb);
2447 			read_unlock_irqrestore(&vcc_sklist_lock, flags);
2448 			return 0;
2449 	}
2450 	DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
2451 	    atmvcc->vci);
2452     einval:
2453 	lanai_free_skb(atmvcc, skb);
2454 	return -EINVAL;
2455 }
2456 
2457 static int lanai_change_qos(struct atm_vcc *atmvcc,
2458 	/*const*/ struct atm_qos *qos, int flags)
2459 {
2460 	return -EBUSY;		/* TODO: need to write this */
2461 }
2462 
2463 #ifndef CONFIG_PROC_FS
2464 #define lanai_proc_read NULL
2465 #else
2466 static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
2467 {
2468 	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2469 	loff_t left = *pos;
2470 	struct lanai_vcc *lvcc;
2471 	if (left-- == 0)
2472 		return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
2473 		    "serial=%u, magic=0x%08X, num_vci=%d\n",
2474 		    atmdev->number, lanai->type==lanai2 ? "2" : "HB",
2475 		    (unsigned int) lanai->serialno,
2476 		    (unsigned int) lanai->magicno, lanai->num_vci);
2477 	if (left-- == 0)
2478 		return sprintf(page, "revision: board=%d, pci_if=%d\n",
2479 		    lanai->board_rev, (int) lanai->pci->revision);
2480 	if (left-- == 0)
2481 		return sprintf(page, "EEPROM ESI: %pM\n",
2482 		    &lanai->eeprom[EEPROM_MAC]);
2483 	if (left-- == 0)
2484 		return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
2485 		    "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
2486 		    (lanai->status & STATUS_LOCD) ? 1 : 0,
2487 		    (lanai->status & STATUS_LED) ? 1 : 0,
2488 		    (lanai->status & STATUS_GPIN) ? 1 : 0);
2489 	if (left-- == 0)
2490 		return sprintf(page, "global buffer sizes: service=%Zu, "
2491 		    "aal0_rx=%Zu\n", lanai_buf_size(&lanai->service),
2492 		    lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
2493 	if (left-- == 0) {
2494 		get_statistics(lanai);
2495 		return sprintf(page, "cells in error: overflow=%u, "
2496 		    "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
2497 		    lanai->stats.ovfl_trash, lanai->stats.vci_trash,
2498 		    lanai->stats.hec_err, lanai->stats.atm_ovfl);
2499 	}
2500 	if (left-- == 0)
2501 		return sprintf(page, "PCI errors: parity_detect=%u, "
2502 		    "master_abort=%u, master_target_abort=%u,\n",
2503 		    lanai->stats.pcierr_parity_detect,
2504 		    lanai->stats.pcierr_serr_set,
2505 		    lanai->stats.pcierr_m_target_abort);
2506 	if (left-- == 0)
2507 		return sprintf(page, "            slave_target_abort=%u, "
2508 		    "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
2509 		    lanai->stats.pcierr_master_parity);
2510 	if (left-- == 0)
2511 		return sprintf(page, "                     no_tx=%u, "
2512 		    "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
2513 		    lanai->stats.service_notx,
2514 		    lanai->stats.service_rxnotaal5);
2515 	if (left-- == 0)
2516 		return sprintf(page, "resets: dma=%u, card=%u\n",
2517 		    lanai->stats.dma_reenable, lanai->stats.card_reset);
2518 	/* At this point, "left" should be the VCI we're looking for */
2519 	read_lock(&vcc_sklist_lock);
2520 	for (; ; left++) {
2521 		if (left >= NUM_VCI) {
2522 			left = 0;
2523 			goto out;
2524 		}
2525 		if ((lvcc = lanai->vccs[left]) != NULL)
2526 			break;
2527 		(*pos)++;
2528 	}
2529 	/* Note that we re-use "left" here since we're done with it */
2530 	left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u",  (vci_t) left,
2531 	    lvcc->nref, lvcc->stats.rx_nomem);
2532 	if (lvcc->rx.atmvcc != NULL) {
2533 		left += sprintf(&page[left], ",\n          rx_AAL=%d",
2534 		    lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
2535 		if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
2536 			left += sprintf(&page[left], ", rx_buf_size=%Zu, "
2537 			    "rx_bad_len=%u,\n          rx_service_trash=%u, "
2538 			    "rx_service_stream=%u, rx_bad_crc=%u",
2539 			    lanai_buf_size(&lvcc->rx.buf),
2540 			    lvcc->stats.x.aal5.rx_badlen,
2541 			    lvcc->stats.x.aal5.service_trash,
2542 			    lvcc->stats.x.aal5.service_stream,
2543 			    lvcc->stats.x.aal5.service_rxcrc);
2544 	}
2545 	if (lvcc->tx.atmvcc != NULL)
2546 		left += sprintf(&page[left], ",\n          tx_AAL=%d, "
2547 		    "tx_buf_size=%Zu, tx_qos=%cBR, tx_backlogged=%c",
2548 		    lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
2549 		    lanai_buf_size(&lvcc->tx.buf),
2550 		    lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
2551 		    vcc_is_backlogged(lvcc) ? 'Y' : 'N');
2552 	page[left++] = '\n';
2553 	page[left] = '\0';
2554     out:
2555 	read_unlock(&vcc_sklist_lock);
2556 	return left;
2557 }
2558 #endif /* CONFIG_PROC_FS */
2559 
2560 /* -------------------- HOOKS: */
2561 
2562 static const struct atmdev_ops ops = {
2563 	.dev_close	= lanai_dev_close,
2564 	.open		= lanai_open,
2565 	.close		= lanai_close,
2566 	.getsockopt	= NULL,
2567 	.setsockopt	= NULL,
2568 	.send		= lanai_send,
2569 	.phy_put	= NULL,
2570 	.phy_get	= NULL,
2571 	.change_qos	= lanai_change_qos,
2572 	.proc_read	= lanai_proc_read,
2573 	.owner		= THIS_MODULE
2574 };
2575 
2576 /* initialize one probed card */
2577 static int __devinit lanai_init_one(struct pci_dev *pci,
2578 				    const struct pci_device_id *ident)
2579 {
2580 	struct lanai_dev *lanai;
2581 	struct atm_dev *atmdev;
2582 	int result;
2583 
2584 	lanai = kmalloc(sizeof(*lanai), GFP_KERNEL);
2585 	if (lanai == NULL) {
2586 		printk(KERN_ERR DEV_LABEL
2587 		       ": couldn't allocate dev_data structure!\n");
2588 		return -ENOMEM;
2589 	}
2590 
2591 	atmdev = atm_dev_register(DEV_LABEL, &ops, -1, NULL);
2592 	if (atmdev == NULL) {
2593 		printk(KERN_ERR DEV_LABEL
2594 		    ": couldn't register atm device!\n");
2595 		kfree(lanai);
2596 		return -EBUSY;
2597 	}
2598 
2599 	atmdev->dev_data = lanai;
2600 	lanai->pci = pci;
2601 	lanai->type = (enum lanai_type) ident->device;
2602 
2603 	result = lanai_dev_open(atmdev);
2604 	if (result != 0) {
2605 		DPRINTK("lanai_start() failed, err=%d\n", -result);
2606 		atm_dev_deregister(atmdev);
2607 		kfree(lanai);
2608 	}
2609 	return result;
2610 }
2611 
2612 static struct pci_device_id lanai_pci_tbl[] = {
2613 	{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) },
2614 	{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) },
2615 	{ 0, }	/* terminal entry */
2616 };
2617 MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
2618 
2619 static struct pci_driver lanai_driver = {
2620 	.name     = DEV_LABEL,
2621 	.id_table = lanai_pci_tbl,
2622 	.probe    = lanai_init_one,
2623 };
2624 
2625 static int __init lanai_module_init(void)
2626 {
2627 	int x;
2628 
2629 	x = pci_register_driver(&lanai_driver);
2630 	if (x != 0)
2631 		printk(KERN_ERR DEV_LABEL ": no adapter found\n");
2632 	return x;
2633 }
2634 
2635 static void __exit lanai_module_exit(void)
2636 {
2637 	/* We'll only get called when all the interfaces are already
2638 	 * gone, so there isn't much to do
2639 	 */
2640 	DPRINTK("cleanup_module()\n");
2641 	pci_unregister_driver(&lanai_driver);
2642 }
2643 
2644 module_init(lanai_module_init);
2645 module_exit(lanai_module_exit);
2646 
2647 MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
2648 MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
2649 MODULE_LICENSE("GPL");
2650