1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
3 *
4 * This driver supports ATM cards based on the Efficient "Lanai"
5 * chipset such as the Speedstream 3010 and the ENI-25p. The
6 * Speedstream 3060 is currently not supported since we don't
7 * have the code to drive the on-board Alcatel DSL chipset (yet).
8 *
9 * Thanks to Efficient for supporting this project with hardware,
10 * documentation, and by answering my questions.
11 *
12 * Things not working yet:
13 *
14 * o We don't support the Speedstream 3060 yet - this card has
15 * an on-board DSL modem chip by Alcatel and the driver will
16 * need some extra code added to handle it
17 *
18 * o Note that due to limitations of the Lanai only one VCC can be
19 * in CBR at once
20 *
21 * o We don't currently parse the EEPROM at all. The code is all
22 * there as per the spec, but it doesn't actually work. I think
23 * there may be some issues with the docs. Anyway, do NOT
24 * enable it yet - bugs in that code may actually damage your
25 * hardware! Because of this you should hardware an ESI before
26 * trying to use this in a LANE or MPOA environment.
27 *
28 * o AAL0 is stubbed in but the actual rx/tx path isn't written yet:
29 * vcc_tx_aal0() needs to send or queue a SKB
30 * vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
31 * vcc_rx_aal0() needs to handle AAL0 interrupts
32 * This isn't too much work - I just wanted to get other things
33 * done first.
34 *
35 * o lanai_change_qos() isn't written yet
36 *
37 * o There aren't any ioctl's yet -- I'd like to eventually support
38 * setting loopback and LED modes that way.
39 *
40 * o If the segmentation engine or DMA gets shut down we should restart
41 * card as per section 17.0i. (see lanai_reset)
42 *
43 * o setsockopt(SO_CIRANGE) isn't done (although despite what the
44 * API says it isn't exactly commonly implemented)
45 */
46
47 /* Version history:
48 * v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
49 * v.0.02 -- 11-JAN-2000 -- Endian fixes
50 * v.0.01 -- 30-NOV-1999 -- Initial release
51 */
52
53 #include <linux/module.h>
54 #include <linux/slab.h>
55 #include <linux/mm.h>
56 #include <linux/atmdev.h>
57 #include <asm/io.h>
58 #include <asm/byteorder.h>
59 #include <linux/spinlock.h>
60 #include <linux/pci.h>
61 #include <linux/dma-mapping.h>
62 #include <linux/init.h>
63 #include <linux/delay.h>
64 #include <linux/interrupt.h>
65
66 /* -------------------- TUNABLE PARAMATERS: */
67
68 /*
69 * Maximum number of VCIs per card. Setting it lower could theoretically
70 * save some memory, but since we allocate our vcc list with get_free_pages,
71 * it's not really likely for most architectures
72 */
73 #define NUM_VCI (1024)
74
75 /*
76 * Enable extra debugging
77 */
78 #define DEBUG
79 /*
80 * Debug _all_ register operations with card, except the memory test.
81 * Also disables the timed poll to prevent extra chattiness. This
82 * isn't for normal use
83 */
84 #undef DEBUG_RW
85
86 /*
87 * The programming guide specifies a full test of the on-board SRAM
88 * at initialization time. Undefine to remove this
89 */
90 #define FULL_MEMORY_TEST
91
92 /*
93 * This is the number of (4 byte) service entries that we will
94 * try to allocate at startup. Note that we will end up with
95 * one PAGE_SIZE's worth regardless of what this is set to
96 */
97 #define SERVICE_ENTRIES (1024)
98 /* TODO: make above a module load-time option */
99
100 /*
101 * We normally read the onboard EEPROM in order to discover our MAC
102 * address. Undefine to _not_ do this
103 */
104 /* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
105 /* TODO: make above a module load-time option (also) */
106
107 /*
108 * Depth of TX fifo (in 128 byte units; range 2-31)
109 * Smaller numbers are better for network latency
110 * Larger numbers are better for PCI latency
111 * I'm really sure where the best tradeoff is, but the BSD driver uses
112 * 7 and it seems to work ok.
113 */
114 #define TX_FIFO_DEPTH (7)
115 /* TODO: make above a module load-time option */
116
117 /*
118 * How often (in jiffies) we will try to unstick stuck connections -
119 * shouldn't need to happen much
120 */
121 #define LANAI_POLL_PERIOD (10*HZ)
122 /* TODO: make above a module load-time option */
123
124 /*
125 * When allocating an AAL5 receiving buffer, try to make it at least
126 * large enough to hold this many max_sdu sized PDUs
127 */
128 #define AAL5_RX_MULTIPLIER (3)
129 /* TODO: make above a module load-time option */
130
131 /*
132 * Same for transmitting buffer
133 */
134 #define AAL5_TX_MULTIPLIER (3)
135 /* TODO: make above a module load-time option */
136
137 /*
138 * When allocating an AAL0 transmiting buffer, how many cells should fit.
139 * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
140 * really critical
141 */
142 #define AAL0_TX_MULTIPLIER (40)
143 /* TODO: make above a module load-time option */
144
145 /*
146 * How large should we make the AAL0 receiving buffer. Remember that this
147 * is shared between all AAL0 VC's
148 */
149 #define AAL0_RX_BUFFER_SIZE (PAGE_SIZE)
150 /* TODO: make above a module load-time option */
151
152 /*
153 * Should we use Lanai's "powerdown" feature when no vcc's are bound?
154 */
155 /* #define USE_POWERDOWN */
156 /* TODO: make above a module load-time option (also) */
157
158 /* -------------------- DEBUGGING AIDS: */
159
160 #define DEV_LABEL "lanai"
161
162 #ifdef DEBUG
163
164 #define DPRINTK(format, args...) \
165 printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
166 #define APRINTK(truth, format, args...) \
167 do { \
168 if (unlikely(!(truth))) \
169 printk(KERN_ERR DEV_LABEL ": " format, ##args); \
170 } while (0)
171
172 #else /* !DEBUG */
173
174 #define DPRINTK(format, args...)
175 #define APRINTK(truth, format, args...)
176
177 #endif /* DEBUG */
178
179 #ifdef DEBUG_RW
180 #define RWDEBUG(format, args...) \
181 printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
182 #else /* !DEBUG_RW */
183 #define RWDEBUG(format, args...)
184 #endif
185
186 /* -------------------- DATA DEFINITIONS: */
187
188 #define LANAI_MAPPING_SIZE (0x40000)
189 #define LANAI_EEPROM_SIZE (128)
190
191 typedef int vci_t;
192 typedef void __iomem *bus_addr_t;
193
194 /* DMA buffer in host memory for TX, RX, or service list. */
195 struct lanai_buffer {
196 u32 *start; /* From get_free_pages */
197 u32 *end; /* One past last byte */
198 u32 *ptr; /* Pointer to current host location */
199 dma_addr_t dmaaddr;
200 };
201
202 struct lanai_vcc_stats {
203 unsigned rx_nomem;
204 union {
205 struct {
206 unsigned rx_badlen;
207 unsigned service_trash;
208 unsigned service_stream;
209 unsigned service_rxcrc;
210 } aal5;
211 struct {
212 } aal0;
213 } x;
214 };
215
216 struct lanai_dev; /* Forward declaration */
217
218 /*
219 * This is the card-specific per-vcc data. Note that unlike some other
220 * drivers there is NOT a 1-to-1 correspondance between these and
221 * atm_vcc's - each one of these represents an actual 2-way vcc, but
222 * an atm_vcc can be 1-way and share with a 1-way vcc in the other
223 * direction. To make it weirder, there can even be 0-way vccs
224 * bound to us, waiting to do a change_qos
225 */
226 struct lanai_vcc {
227 bus_addr_t vbase; /* Base of VCC's registers */
228 struct lanai_vcc_stats stats;
229 int nref; /* # of atm_vcc's who reference us */
230 vci_t vci;
231 struct {
232 struct lanai_buffer buf;
233 struct atm_vcc *atmvcc; /* atm_vcc who is receiver */
234 } rx;
235 struct {
236 struct lanai_buffer buf;
237 struct atm_vcc *atmvcc; /* atm_vcc who is transmitter */
238 int endptr; /* last endptr from service entry */
239 struct sk_buff_head backlog;
240 void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
241 } tx;
242 };
243
244 enum lanai_type {
245 lanai2 = PCI_DEVICE_ID_EF_ATM_LANAI2,
246 lanaihb = PCI_DEVICE_ID_EF_ATM_LANAIHB
247 };
248
249 struct lanai_dev_stats {
250 unsigned ovfl_trash; /* # of cells dropped - buffer overflow */
251 unsigned vci_trash; /* # of cells dropped - closed vci */
252 unsigned hec_err; /* # of cells dropped - bad HEC */
253 unsigned atm_ovfl; /* # of cells dropped - rx fifo overflow */
254 unsigned pcierr_parity_detect;
255 unsigned pcierr_serr_set;
256 unsigned pcierr_master_abort;
257 unsigned pcierr_m_target_abort;
258 unsigned pcierr_s_target_abort;
259 unsigned pcierr_master_parity;
260 unsigned service_notx;
261 unsigned service_norx;
262 unsigned service_rxnotaal5;
263 unsigned dma_reenable;
264 unsigned card_reset;
265 };
266
267 struct lanai_dev {
268 bus_addr_t base;
269 struct lanai_dev_stats stats;
270 struct lanai_buffer service;
271 struct lanai_vcc **vccs;
272 #ifdef USE_POWERDOWN
273 int nbound; /* number of bound vccs */
274 #endif
275 enum lanai_type type;
276 vci_t num_vci; /* Currently just NUM_VCI */
277 u8 eeprom[LANAI_EEPROM_SIZE];
278 u32 serialno, magicno;
279 struct pci_dev *pci;
280 DECLARE_BITMAP(backlog_vccs, NUM_VCI); /* VCCs with tx backlog */
281 DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
282 struct timer_list timer;
283 int naal0;
284 struct lanai_buffer aal0buf; /* AAL0 RX buffers */
285 u32 conf1, conf2; /* CONFIG[12] registers */
286 u32 status; /* STATUS register */
287 spinlock_t endtxlock;
288 spinlock_t servicelock;
289 struct atm_vcc *cbrvcc;
290 int number;
291 int board_rev;
292 /* TODO - look at race conditions with maintence of conf1/conf2 */
293 /* TODO - transmit locking: should we use _irq not _irqsave? */
294 /* TODO - organize above in some rational fashion (see <asm/cache.h>) */
295 };
296
297 /*
298 * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
299 * This function iterates one of these, calling a given function for each
300 * vci with their bit set
301 */
vci_bitfield_iterate(struct lanai_dev * lanai,const unsigned long * lp,void (* func)(struct lanai_dev *,vci_t vci))302 static void vci_bitfield_iterate(struct lanai_dev *lanai,
303 const unsigned long *lp,
304 void (*func)(struct lanai_dev *,vci_t vci))
305 {
306 vci_t vci;
307
308 for_each_set_bit(vci, lp, NUM_VCI)
309 func(lanai, vci);
310 }
311
312 /* -------------------- BUFFER UTILITIES: */
313
314 /*
315 * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
316 * usually any page allocation will do. Just to be safe in case
317 * PAGE_SIZE is insanely tiny, though...
318 */
319 #define LANAI_PAGE_SIZE ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
320
321 /*
322 * Allocate a buffer in host RAM for service list, RX, or TX
323 * Returns buf->start==NULL if no memory
324 * Note that the size will be rounded up 2^n bytes, and
325 * if we can't allocate that we'll settle for something smaller
326 * until minbytes
327 */
lanai_buf_allocate(struct lanai_buffer * buf,size_t bytes,size_t minbytes,struct pci_dev * pci)328 static void lanai_buf_allocate(struct lanai_buffer *buf,
329 size_t bytes, size_t minbytes, struct pci_dev *pci)
330 {
331 int size;
332
333 if (bytes > (128 * 1024)) /* max lanai buffer size */
334 bytes = 128 * 1024;
335 for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
336 ;
337 if (minbytes < LANAI_PAGE_SIZE)
338 minbytes = LANAI_PAGE_SIZE;
339 do {
340 /*
341 * Technically we could use non-consistent mappings for
342 * everything, but the way the lanai uses DMA memory would
343 * make that a terrific pain. This is much simpler.
344 */
345 buf->start = dma_alloc_coherent(&pci->dev,
346 size, &buf->dmaaddr, GFP_KERNEL);
347 if (buf->start != NULL) { /* Success */
348 /* Lanai requires 256-byte alignment of DMA bufs */
349 APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
350 "bad dmaaddr: 0x%lx\n",
351 (unsigned long) buf->dmaaddr);
352 buf->ptr = buf->start;
353 buf->end = (u32 *)
354 (&((unsigned char *) buf->start)[size]);
355 memset(buf->start, 0, size);
356 break;
357 }
358 size /= 2;
359 } while (size >= minbytes);
360 }
361
362 /* size of buffer in bytes */
lanai_buf_size(const struct lanai_buffer * buf)363 static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
364 {
365 return ((unsigned long) buf->end) - ((unsigned long) buf->start);
366 }
367
lanai_buf_deallocate(struct lanai_buffer * buf,struct pci_dev * pci)368 static void lanai_buf_deallocate(struct lanai_buffer *buf,
369 struct pci_dev *pci)
370 {
371 if (buf->start != NULL) {
372 dma_free_coherent(&pci->dev, lanai_buf_size(buf),
373 buf->start, buf->dmaaddr);
374 buf->start = buf->end = buf->ptr = NULL;
375 }
376 }
377
378 /* size of buffer as "card order" (0=1k .. 7=128k) */
lanai_buf_size_cardorder(const struct lanai_buffer * buf)379 static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
380 {
381 int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
382
383 /* This can only happen if PAGE_SIZE is gigantic, but just in case */
384 if (order > 7)
385 order = 7;
386 return order;
387 }
388
389 /* -------------------- PORT I/O UTILITIES: */
390
391 /* Registers (and their bit-fields) */
392 enum lanai_register {
393 Reset_Reg = 0x00, /* Reset; read for chip type; bits: */
394 #define RESET_GET_BOARD_REV(x) (((x)>> 0)&0x03) /* Board revision */
395 #define RESET_GET_BOARD_ID(x) (((x)>> 2)&0x03) /* Board ID */
396 #define BOARD_ID_LANAI256 (0) /* 25.6M adapter card */
397 Endian_Reg = 0x04, /* Endian setting */
398 IntStatus_Reg = 0x08, /* Interrupt status */
399 IntStatusMasked_Reg = 0x0C, /* Interrupt status (masked) */
400 IntAck_Reg = 0x10, /* Interrupt acknowledge */
401 IntAckMasked_Reg = 0x14, /* Interrupt acknowledge (masked) */
402 IntStatusSet_Reg = 0x18, /* Get status + enable/disable */
403 IntStatusSetMasked_Reg = 0x1C, /* Get status + en/di (masked) */
404 IntControlEna_Reg = 0x20, /* Interrupt control enable */
405 IntControlDis_Reg = 0x24, /* Interrupt control disable */
406 Status_Reg = 0x28, /* Status */
407 #define STATUS_PROMDATA (0x00000001) /* PROM_DATA pin */
408 #define STATUS_WAITING (0x00000002) /* Interrupt being delayed */
409 #define STATUS_SOOL (0x00000004) /* SOOL alarm */
410 #define STATUS_LOCD (0x00000008) /* LOCD alarm */
411 #define STATUS_LED (0x00000010) /* LED (HAPPI) output */
412 #define STATUS_GPIN (0x00000020) /* GPIN pin */
413 #define STATUS_BUTTBUSY (0x00000040) /* Butt register is pending */
414 Config1_Reg = 0x2C, /* Config word 1; bits: */
415 #define CONFIG1_PROMDATA (0x00000001) /* PROM_DATA pin */
416 #define CONFIG1_PROMCLK (0x00000002) /* PROM_CLK pin */
417 #define CONFIG1_SET_READMODE(x) ((x)*0x004) /* PCI BM reads; values: */
418 #define READMODE_PLAIN (0) /* Plain memory read */
419 #define READMODE_LINE (2) /* Memory read line */
420 #define READMODE_MULTIPLE (3) /* Memory read multiple */
421 #define CONFIG1_DMA_ENABLE (0x00000010) /* Turn on DMA */
422 #define CONFIG1_POWERDOWN (0x00000020) /* Turn off clocks */
423 #define CONFIG1_SET_LOOPMODE(x) ((x)*0x080) /* Clock&loop mode; values: */
424 #define LOOPMODE_NORMAL (0) /* Normal - no loop */
425 #define LOOPMODE_TIME (1)
426 #define LOOPMODE_DIAG (2)
427 #define LOOPMODE_LINE (3)
428 #define CONFIG1_MASK_LOOPMODE (0x00000180)
429 #define CONFIG1_SET_LEDMODE(x) ((x)*0x0200) /* Mode of LED; values: */
430 #define LEDMODE_NOT_SOOL (0) /* !SOOL */
431 #define LEDMODE_OFF (1) /* 0 */
432 #define LEDMODE_ON (2) /* 1 */
433 #define LEDMODE_NOT_LOCD (3) /* !LOCD */
434 #define LEDMORE_GPIN (4) /* GPIN */
435 #define LEDMODE_NOT_GPIN (7) /* !GPIN */
436 #define CONFIG1_MASK_LEDMODE (0x00000E00)
437 #define CONFIG1_GPOUT1 (0x00001000) /* Toggle for reset */
438 #define CONFIG1_GPOUT2 (0x00002000) /* Loopback PHY */
439 #define CONFIG1_GPOUT3 (0x00004000) /* Loopback lanai */
440 Config2_Reg = 0x30, /* Config word 2; bits: */
441 #define CONFIG2_HOWMANY (0x00000001) /* >512 VCIs? */
442 #define CONFIG2_PTI7_MODE (0x00000002) /* Make PTI=7 RM, not OAM */
443 #define CONFIG2_VPI_CHK_DIS (0x00000004) /* Ignore RX VPI value */
444 #define CONFIG2_HEC_DROP (0x00000008) /* Drop cells w/ HEC errors */
445 #define CONFIG2_VCI0_NORMAL (0x00000010) /* Treat VCI=0 normally */
446 #define CONFIG2_CBR_ENABLE (0x00000020) /* Deal with CBR traffic */
447 #define CONFIG2_TRASH_ALL (0x00000040) /* Trashing incoming cells */
448 #define CONFIG2_TX_DISABLE (0x00000080) /* Trashing outgoing cells */
449 #define CONFIG2_SET_TRASH (0x00000100) /* Turn trashing on */
450 Statistics_Reg = 0x34, /* Statistics; bits: */
451 #define STATS_GET_FIFO_OVFL(x) (((x)>> 0)&0xFF) /* FIFO overflowed */
452 #define STATS_GET_HEC_ERR(x) (((x)>> 8)&0xFF) /* HEC was bad */
453 #define STATS_GET_BAD_VCI(x) (((x)>>16)&0xFF) /* VCI not open */
454 #define STATS_GET_BUF_OVFL(x) (((x)>>24)&0xFF) /* VCC buffer full */
455 ServiceStuff_Reg = 0x38, /* Service stuff; bits: */
456 #define SSTUFF_SET_SIZE(x) ((x)*0x20000000) /* size of service buffer */
457 #define SSTUFF_SET_ADDR(x) ((x)>>8) /* set address of buffer */
458 ServWrite_Reg = 0x3C, /* ServWrite Pointer */
459 ServRead_Reg = 0x40, /* ServRead Pointer */
460 TxDepth_Reg = 0x44, /* FIFO Transmit Depth */
461 Butt_Reg = 0x48, /* Butt register */
462 CBR_ICG_Reg = 0x50,
463 CBR_PTR_Reg = 0x54,
464 PingCount_Reg = 0x58, /* Ping count */
465 DMA_Addr_Reg = 0x5C /* DMA address */
466 };
467
reg_addr(const struct lanai_dev * lanai,enum lanai_register reg)468 static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
469 enum lanai_register reg)
470 {
471 return lanai->base + reg;
472 }
473
reg_read(const struct lanai_dev * lanai,enum lanai_register reg)474 static inline u32 reg_read(const struct lanai_dev *lanai,
475 enum lanai_register reg)
476 {
477 u32 t;
478 t = readl(reg_addr(lanai, reg));
479 RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
480 (int) reg, t);
481 return t;
482 }
483
reg_write(const struct lanai_dev * lanai,u32 val,enum lanai_register reg)484 static inline void reg_write(const struct lanai_dev *lanai, u32 val,
485 enum lanai_register reg)
486 {
487 RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
488 (int) reg, val);
489 writel(val, reg_addr(lanai, reg));
490 }
491
conf1_write(const struct lanai_dev * lanai)492 static inline void conf1_write(const struct lanai_dev *lanai)
493 {
494 reg_write(lanai, lanai->conf1, Config1_Reg);
495 }
496
conf2_write(const struct lanai_dev * lanai)497 static inline void conf2_write(const struct lanai_dev *lanai)
498 {
499 reg_write(lanai, lanai->conf2, Config2_Reg);
500 }
501
502 /* Same as conf2_write(), but defers I/O if we're powered down */
conf2_write_if_powerup(const struct lanai_dev * lanai)503 static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
504 {
505 #ifdef USE_POWERDOWN
506 if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
507 return;
508 #endif /* USE_POWERDOWN */
509 conf2_write(lanai);
510 }
511
reset_board(const struct lanai_dev * lanai)512 static inline void reset_board(const struct lanai_dev *lanai)
513 {
514 DPRINTK("about to reset board\n");
515 reg_write(lanai, 0, Reset_Reg);
516 /*
517 * If we don't delay a little while here then we can end up
518 * leaving the card in a VERY weird state and lock up the
519 * PCI bus. This isn't documented anywhere but I've convinced
520 * myself after a lot of painful experimentation
521 */
522 udelay(5);
523 }
524
525 /* -------------------- CARD SRAM UTILITIES: */
526
527 /* The SRAM is mapped into normal PCI memory space - the only catch is
528 * that it is only 16-bits wide but must be accessed as 32-bit. The
529 * 16 high bits will be zero. We don't hide this, since they get
530 * programmed mostly like discrete registers anyway
531 */
532 #define SRAM_START (0x20000)
533 #define SRAM_BYTES (0x20000) /* Again, half don't really exist */
534
sram_addr(const struct lanai_dev * lanai,int offset)535 static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
536 {
537 return lanai->base + SRAM_START + offset;
538 }
539
sram_read(const struct lanai_dev * lanai,int offset)540 static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
541 {
542 return readl(sram_addr(lanai, offset));
543 }
544
sram_write(const struct lanai_dev * lanai,u32 val,int offset)545 static inline void sram_write(const struct lanai_dev *lanai,
546 u32 val, int offset)
547 {
548 writel(val, sram_addr(lanai, offset));
549 }
550
sram_test_word(const struct lanai_dev * lanai,int offset,u32 pattern)551 static int sram_test_word(const struct lanai_dev *lanai, int offset,
552 u32 pattern)
553 {
554 u32 readback;
555 sram_write(lanai, pattern, offset);
556 readback = sram_read(lanai, offset);
557 if (likely(readback == pattern))
558 return 0;
559 printk(KERN_ERR DEV_LABEL
560 "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
561 lanai->number, offset,
562 (unsigned int) pattern, (unsigned int) readback);
563 return -EIO;
564 }
565
sram_test_pass(const struct lanai_dev * lanai,u32 pattern)566 static int sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
567 {
568 int offset, result = 0;
569 for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
570 result = sram_test_word(lanai, offset, pattern);
571 return result;
572 }
573
sram_test_and_clear(const struct lanai_dev * lanai)574 static int sram_test_and_clear(const struct lanai_dev *lanai)
575 {
576 #ifdef FULL_MEMORY_TEST
577 int result;
578 DPRINTK("testing SRAM\n");
579 if ((result = sram_test_pass(lanai, 0x5555)) != 0)
580 return result;
581 if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
582 return result;
583 #endif
584 DPRINTK("clearing SRAM\n");
585 return sram_test_pass(lanai, 0x0000);
586 }
587
588 /* -------------------- CARD-BASED VCC TABLE UTILITIES: */
589
590 /* vcc table */
591 enum lanai_vcc_offset {
592 vcc_rxaddr1 = 0x00, /* Location1, plus bits: */
593 #define RXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of RX buffer */
594 #define RXADDR1_SET_RMMODE(x) ((x)*0x00800) /* RM cell action; values: */
595 #define RMMODE_TRASH (0) /* discard */
596 #define RMMODE_PRESERVE (1) /* input as AAL0 */
597 #define RMMODE_PIPE (2) /* pipe to coscheduler */
598 #define RMMODE_PIPEALL (3) /* pipe non-RM too */
599 #define RXADDR1_OAM_PRESERVE (0x00002000) /* Input OAM cells as AAL0 */
600 #define RXADDR1_SET_MODE(x) ((x)*0x0004000) /* Reassembly mode */
601 #define RXMODE_TRASH (0) /* discard */
602 #define RXMODE_AAL0 (1) /* non-AAL5 mode */
603 #define RXMODE_AAL5 (2) /* AAL5, intr. each PDU */
604 #define RXMODE_AAL5_STREAM (3) /* AAL5 w/o per-PDU intr */
605 vcc_rxaddr2 = 0x04, /* Location2 */
606 vcc_rxcrc1 = 0x08, /* RX CRC claculation space */
607 vcc_rxcrc2 = 0x0C,
608 vcc_rxwriteptr = 0x10, /* RX writeptr, plus bits: */
609 #define RXWRITEPTR_LASTEFCI (0x00002000) /* Last PDU had EFCI bit */
610 #define RXWRITEPTR_DROPPING (0x00004000) /* Had error, dropping */
611 #define RXWRITEPTR_TRASHING (0x00008000) /* Trashing */
612 vcc_rxbufstart = 0x14, /* RX bufstart, plus bits: */
613 #define RXBUFSTART_CLP (0x00004000)
614 #define RXBUFSTART_CI (0x00008000)
615 vcc_rxreadptr = 0x18, /* RX readptr */
616 vcc_txicg = 0x1C, /* TX ICG */
617 vcc_txaddr1 = 0x20, /* Location1, plus bits: */
618 #define TXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of TX buffer */
619 #define TXADDR1_ABR (0x00008000) /* use ABR (doesn't work) */
620 vcc_txaddr2 = 0x24, /* Location2 */
621 vcc_txcrc1 = 0x28, /* TX CRC claculation space */
622 vcc_txcrc2 = 0x2C,
623 vcc_txreadptr = 0x30, /* TX Readptr, plus bits: */
624 #define TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
625 #define TXREADPTR_MASK_DELTA (0x0000E000) /* ? */
626 vcc_txendptr = 0x34, /* TX Endptr, plus bits: */
627 #define TXENDPTR_CLP (0x00002000)
628 #define TXENDPTR_MASK_PDUMODE (0x0000C000) /* PDU mode; values: */
629 #define PDUMODE_AAL0 (0*0x04000)
630 #define PDUMODE_AAL5 (2*0x04000)
631 #define PDUMODE_AAL5STREAM (3*0x04000)
632 vcc_txwriteptr = 0x38, /* TX Writeptr */
633 #define TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
634 vcc_txcbr_next = 0x3C /* # of next CBR VCI in ring */
635 #define TXCBR_NEXT_BOZO (0x00008000) /* "bozo bit" */
636 };
637
638 #define CARDVCC_SIZE (0x40)
639
cardvcc_addr(const struct lanai_dev * lanai,vci_t vci)640 static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
641 vci_t vci)
642 {
643 return sram_addr(lanai, vci * CARDVCC_SIZE);
644 }
645
cardvcc_read(const struct lanai_vcc * lvcc,enum lanai_vcc_offset offset)646 static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
647 enum lanai_vcc_offset offset)
648 {
649 u32 val;
650 APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
651 val= readl(lvcc->vbase + offset);
652 RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
653 lvcc->vci, (int) offset, val);
654 return val;
655 }
656
cardvcc_write(const struct lanai_vcc * lvcc,u32 val,enum lanai_vcc_offset offset)657 static inline void cardvcc_write(const struct lanai_vcc *lvcc,
658 u32 val, enum lanai_vcc_offset offset)
659 {
660 APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
661 APRINTK((val & ~0xFFFF) == 0,
662 "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
663 (unsigned int) val, lvcc->vci, (unsigned int) offset);
664 RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
665 lvcc->vci, (unsigned int) offset, (unsigned int) val);
666 writel(val, lvcc->vbase + offset);
667 }
668
669 /* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
670
671 /* How many bytes will an AAL5 PDU take to transmit - remember that:
672 * o we need to add 8 bytes for length, CPI, UU, and CRC
673 * o we need to round up to 48 bytes for cells
674 */
aal5_size(int size)675 static inline int aal5_size(int size)
676 {
677 int cells = (size + 8 + 47) / 48;
678 return cells * 48;
679 }
680
681 /* -------------------- FREE AN ATM SKB: */
682
lanai_free_skb(struct atm_vcc * atmvcc,struct sk_buff * skb)683 static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
684 {
685 if (atmvcc->pop != NULL)
686 atmvcc->pop(atmvcc, skb);
687 else
688 dev_kfree_skb_any(skb);
689 }
690
691 /* -------------------- TURN VCCS ON AND OFF: */
692
host_vcc_start_rx(const struct lanai_vcc * lvcc)693 static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
694 {
695 u32 addr1;
696 if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
697 dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
698 cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
699 cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
700 cardvcc_write(lvcc, 0, vcc_rxwriteptr);
701 cardvcc_write(lvcc, 0, vcc_rxbufstart);
702 cardvcc_write(lvcc, 0, vcc_rxreadptr);
703 cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
704 addr1 = ((dmaaddr >> 8) & 0xFF) |
705 RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
706 RXADDR1_SET_RMMODE(RMMODE_TRASH) | /* ??? */
707 /* RXADDR1_OAM_PRESERVE | --- no OAM support yet */
708 RXADDR1_SET_MODE(RXMODE_AAL5);
709 } else
710 addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
711 RXADDR1_OAM_PRESERVE | /* ??? */
712 RXADDR1_SET_MODE(RXMODE_AAL0);
713 /* This one must be last! */
714 cardvcc_write(lvcc, addr1, vcc_rxaddr1);
715 }
716
host_vcc_start_tx(const struct lanai_vcc * lvcc)717 static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
718 {
719 dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
720 cardvcc_write(lvcc, 0, vcc_txicg);
721 cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
722 cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
723 cardvcc_write(lvcc, 0, vcc_txreadptr);
724 cardvcc_write(lvcc, 0, vcc_txendptr);
725 cardvcc_write(lvcc, 0, vcc_txwriteptr);
726 cardvcc_write(lvcc,
727 (lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
728 TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
729 cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
730 cardvcc_write(lvcc,
731 ((dmaaddr >> 8) & 0xFF) |
732 TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
733 vcc_txaddr1);
734 }
735
736 /* Shutdown receiving on card */
lanai_shutdown_rx_vci(const struct lanai_vcc * lvcc)737 static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
738 {
739 if (lvcc->vbase == NULL) /* We were never bound to a VCI */
740 return;
741 /* 15.1.1 - set to trashing, wait one cell time (15us) */
742 cardvcc_write(lvcc,
743 RXADDR1_SET_RMMODE(RMMODE_TRASH) |
744 RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
745 udelay(15);
746 /* 15.1.2 - clear rest of entries */
747 cardvcc_write(lvcc, 0, vcc_rxaddr2);
748 cardvcc_write(lvcc, 0, vcc_rxcrc1);
749 cardvcc_write(lvcc, 0, vcc_rxcrc2);
750 cardvcc_write(lvcc, 0, vcc_rxwriteptr);
751 cardvcc_write(lvcc, 0, vcc_rxbufstart);
752 cardvcc_write(lvcc, 0, vcc_rxreadptr);
753 }
754
755 /* Shutdown transmitting on card.
756 * Unfortunately the lanai needs us to wait until all the data
757 * drains out of the buffer before we can dealloc it, so this
758 * can take awhile -- up to 370ms for a full 128KB buffer
759 * assuming everone else is quiet. In theory the time is
760 * boundless if there's a CBR VCC holding things up.
761 */
lanai_shutdown_tx_vci(struct lanai_dev * lanai,struct lanai_vcc * lvcc)762 static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
763 struct lanai_vcc *lvcc)
764 {
765 struct sk_buff *skb;
766 unsigned long flags, timeout;
767 int read, write, lastread = -1;
768
769 if (lvcc->vbase == NULL) /* We were never bound to a VCI */
770 return;
771 /* 15.2.1 - wait for queue to drain */
772 while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
773 lanai_free_skb(lvcc->tx.atmvcc, skb);
774 read_lock_irqsave(&vcc_sklist_lock, flags);
775 __clear_bit(lvcc->vci, lanai->backlog_vccs);
776 read_unlock_irqrestore(&vcc_sklist_lock, flags);
777 /*
778 * We need to wait for the VCC to drain but don't wait forever. We
779 * give each 1K of buffer size 1/128th of a second to clear out.
780 * TODO: maybe disable CBR if we're about to timeout?
781 */
782 timeout = jiffies +
783 (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
784 write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
785 for (;;) {
786 read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
787 if (read == write && /* Is TX buffer empty? */
788 (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
789 (cardvcc_read(lvcc, vcc_txcbr_next) &
790 TXCBR_NEXT_BOZO) == 0))
791 break;
792 if (read != lastread) { /* Has there been any progress? */
793 lastread = read;
794 timeout += HZ / 10;
795 }
796 if (unlikely(time_after(jiffies, timeout))) {
797 printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
798 "backlog closing vci %d\n",
799 lvcc->tx.atmvcc->dev->number, lvcc->vci);
800 DPRINTK("read, write = %d, %d\n", read, write);
801 break;
802 }
803 msleep(40);
804 }
805 /* 15.2.2 - clear out all tx registers */
806 cardvcc_write(lvcc, 0, vcc_txreadptr);
807 cardvcc_write(lvcc, 0, vcc_txwriteptr);
808 cardvcc_write(lvcc, 0, vcc_txendptr);
809 cardvcc_write(lvcc, 0, vcc_txcrc1);
810 cardvcc_write(lvcc, 0, vcc_txcrc2);
811 cardvcc_write(lvcc, 0, vcc_txaddr2);
812 cardvcc_write(lvcc, 0, vcc_txaddr1);
813 }
814
815 /* -------------------- MANAGING AAL0 RX BUFFER: */
816
aal0_buffer_allocate(struct lanai_dev * lanai)817 static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
818 {
819 DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
820 lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
821 lanai->pci);
822 return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
823 }
824
aal0_buffer_free(struct lanai_dev * lanai)825 static inline void aal0_buffer_free(struct lanai_dev *lanai)
826 {
827 DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
828 lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
829 }
830
831 /* -------------------- EEPROM UTILITIES: */
832
833 /* Offsets of data in the EEPROM */
834 #define EEPROM_COPYRIGHT (0)
835 #define EEPROM_COPYRIGHT_LEN (44)
836 #define EEPROM_CHECKSUM (62)
837 #define EEPROM_CHECKSUM_REV (63)
838 #define EEPROM_MAC (64)
839 #define EEPROM_MAC_REV (70)
840 #define EEPROM_SERIAL (112)
841 #define EEPROM_SERIAL_REV (116)
842 #define EEPROM_MAGIC (120)
843 #define EEPROM_MAGIC_REV (124)
844
845 #define EEPROM_MAGIC_VALUE (0x5AB478D2)
846
847 #ifndef READ_EEPROM
848
849 /* Stub functions to use if EEPROM reading is disabled */
eeprom_read(struct lanai_dev * lanai)850 static int eeprom_read(struct lanai_dev *lanai)
851 {
852 printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
853 lanai->number);
854 memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
855 return 0;
856 }
857
eeprom_validate(struct lanai_dev * lanai)858 static int eeprom_validate(struct lanai_dev *lanai)
859 {
860 lanai->serialno = 0;
861 lanai->magicno = EEPROM_MAGIC_VALUE;
862 return 0;
863 }
864
865 #else /* READ_EEPROM */
866
eeprom_read(struct lanai_dev * lanai)867 static int eeprom_read(struct lanai_dev *lanai)
868 {
869 int i, address;
870 u8 data;
871 u32 tmp;
872 #define set_config1(x) do { lanai->conf1 = x; conf1_write(lanai); \
873 } while (0)
874 #define clock_h() set_config1(lanai->conf1 | CONFIG1_PROMCLK)
875 #define clock_l() set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
876 #define data_h() set_config1(lanai->conf1 | CONFIG1_PROMDATA)
877 #define data_l() set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
878 #define pre_read() do { data_h(); clock_h(); udelay(5); } while (0)
879 #define read_pin() (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
880 #define send_stop() do { data_l(); udelay(5); clock_h(); udelay(5); \
881 data_h(); udelay(5); } while (0)
882 /* start with both clock and data high */
883 data_h(); clock_h(); udelay(5);
884 for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
885 data = (address << 1) | 1; /* Command=read + address */
886 /* send start bit */
887 data_l(); udelay(5);
888 clock_l(); udelay(5);
889 for (i = 128; i != 0; i >>= 1) { /* write command out */
890 tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
891 ((data & i) ? CONFIG1_PROMDATA : 0);
892 if (lanai->conf1 != tmp) {
893 set_config1(tmp);
894 udelay(5); /* Let new data settle */
895 }
896 clock_h(); udelay(5); clock_l(); udelay(5);
897 }
898 /* look for ack */
899 data_h(); clock_h(); udelay(5);
900 if (read_pin() != 0)
901 goto error; /* No ack seen */
902 clock_l(); udelay(5);
903 /* read back result */
904 for (data = 0, i = 7; i >= 0; i--) {
905 data_h(); clock_h(); udelay(5);
906 data = (data << 1) | !!read_pin();
907 clock_l(); udelay(5);
908 }
909 /* look again for ack */
910 data_h(); clock_h(); udelay(5);
911 if (read_pin() == 0)
912 goto error; /* Spurious ack */
913 clock_l(); udelay(5);
914 send_stop();
915 lanai->eeprom[address] = data;
916 DPRINTK("EEPROM 0x%04X %02X\n",
917 (unsigned int) address, (unsigned int) data);
918 }
919 return 0;
920 error:
921 clock_l(); udelay(5); /* finish read */
922 send_stop();
923 printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
924 lanai->number, address);
925 return -EIO;
926 #undef set_config1
927 #undef clock_h
928 #undef clock_l
929 #undef data_h
930 #undef data_l
931 #undef pre_read
932 #undef read_pin
933 #undef send_stop
934 }
935
936 /* read a big-endian 4-byte value out of eeprom */
eeprom_be4(const struct lanai_dev * lanai,int address)937 static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
938 {
939 return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
940 }
941
942 /* Checksum/validate EEPROM contents */
eeprom_validate(struct lanai_dev * lanai)943 static int eeprom_validate(struct lanai_dev *lanai)
944 {
945 int i, s;
946 u32 v;
947 const u8 *e = lanai->eeprom;
948 #ifdef DEBUG
949 /* First, see if we can get an ASCIIZ string out of the copyright */
950 for (i = EEPROM_COPYRIGHT;
951 i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
952 if (e[i] < 0x20 || e[i] > 0x7E)
953 break;
954 if ( i != EEPROM_COPYRIGHT &&
955 i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
956 DPRINTK("eeprom: copyright = \"%s\"\n",
957 (char *) &e[EEPROM_COPYRIGHT]);
958 else
959 DPRINTK("eeprom: copyright not found\n");
960 #endif
961 /* Validate checksum */
962 for (i = s = 0; i < EEPROM_CHECKSUM; i++)
963 s += e[i];
964 s &= 0xFF;
965 if (s != e[EEPROM_CHECKSUM]) {
966 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
967 "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
968 (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
969 return -EIO;
970 }
971 s ^= 0xFF;
972 if (s != e[EEPROM_CHECKSUM_REV]) {
973 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
974 "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
975 (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
976 return -EIO;
977 }
978 /* Verify MAC address */
979 for (i = 0; i < 6; i++)
980 if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
981 printk(KERN_ERR DEV_LABEL
982 "(itf %d) : EEPROM MAC addresses don't match "
983 "(0x%02X, inverse 0x%02X)\n", lanai->number,
984 (unsigned int) e[EEPROM_MAC + i],
985 (unsigned int) e[EEPROM_MAC_REV + i]);
986 return -EIO;
987 }
988 DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]);
989 /* Verify serial number */
990 lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
991 v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
992 if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
993 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
994 "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
995 (unsigned int) lanai->serialno, (unsigned int) v);
996 return -EIO;
997 }
998 DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
999 /* Verify magic number */
1000 lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
1001 v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
1002 if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
1003 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
1004 "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1005 lanai->magicno, v);
1006 return -EIO;
1007 }
1008 DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
1009 if (lanai->magicno != EEPROM_MAGIC_VALUE)
1010 printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
1011 "magic not what expected (got 0x%08X, not 0x%08X)\n",
1012 lanai->number, (unsigned int) lanai->magicno,
1013 (unsigned int) EEPROM_MAGIC_VALUE);
1014 return 0;
1015 }
1016
1017 #endif /* READ_EEPROM */
1018
eeprom_mac(const struct lanai_dev * lanai)1019 static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
1020 {
1021 return &lanai->eeprom[EEPROM_MAC];
1022 }
1023
1024 /* -------------------- INTERRUPT HANDLING UTILITIES: */
1025
1026 /* Interrupt types */
1027 #define INT_STATS (0x00000002) /* Statistics counter overflow */
1028 #define INT_SOOL (0x00000004) /* SOOL changed state */
1029 #define INT_LOCD (0x00000008) /* LOCD changed state */
1030 #define INT_LED (0x00000010) /* LED (HAPPI) changed state */
1031 #define INT_GPIN (0x00000020) /* GPIN changed state */
1032 #define INT_PING (0x00000040) /* PING_COUNT fulfilled */
1033 #define INT_WAKE (0x00000080) /* Lanai wants bus */
1034 #define INT_CBR0 (0x00000100) /* CBR sched hit VCI 0 */
1035 #define INT_LOCK (0x00000200) /* Service list overflow */
1036 #define INT_MISMATCH (0x00000400) /* TX magic list mismatch */
1037 #define INT_AAL0_STR (0x00000800) /* Non-AAL5 buffer half filled */
1038 #define INT_AAL0 (0x00001000) /* Non-AAL5 data available */
1039 #define INT_SERVICE (0x00002000) /* Service list entries available */
1040 #define INT_TABORTSENT (0x00004000) /* Target abort sent by lanai */
1041 #define INT_TABORTBM (0x00008000) /* Abort rcv'd as bus master */
1042 #define INT_TIMEOUTBM (0x00010000) /* No response to bus master */
1043 #define INT_PCIPARITY (0x00020000) /* Parity error on PCI */
1044
1045 /* Sets of the above */
1046 #define INT_ALL (0x0003FFFE) /* All interrupts */
1047 #define INT_STATUS (0x0000003C) /* Some status pin changed */
1048 #define INT_DMASHUT (0x00038000) /* DMA engine got shut down */
1049 #define INT_SEGSHUT (0x00000700) /* Segmentation got shut down */
1050
intr_pending(const struct lanai_dev * lanai)1051 static inline u32 intr_pending(const struct lanai_dev *lanai)
1052 {
1053 return reg_read(lanai, IntStatusMasked_Reg);
1054 }
1055
intr_enable(const struct lanai_dev * lanai,u32 i)1056 static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
1057 {
1058 reg_write(lanai, i, IntControlEna_Reg);
1059 }
1060
intr_disable(const struct lanai_dev * lanai,u32 i)1061 static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
1062 {
1063 reg_write(lanai, i, IntControlDis_Reg);
1064 }
1065
1066 /* -------------------- CARD/PCI STATUS: */
1067
status_message(int itf,const char * name,int status)1068 static void status_message(int itf, const char *name, int status)
1069 {
1070 static const char *onoff[2] = { "off to on", "on to off" };
1071 printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
1072 itf, name, onoff[!status]);
1073 }
1074
lanai_check_status(struct lanai_dev * lanai)1075 static void lanai_check_status(struct lanai_dev *lanai)
1076 {
1077 u32 new = reg_read(lanai, Status_Reg);
1078 u32 changes = new ^ lanai->status;
1079 lanai->status = new;
1080 #define e(flag, name) \
1081 if (changes & flag) \
1082 status_message(lanai->number, name, new & flag)
1083 e(STATUS_SOOL, "SOOL");
1084 e(STATUS_LOCD, "LOCD");
1085 e(STATUS_LED, "LED");
1086 e(STATUS_GPIN, "GPIN");
1087 #undef e
1088 }
1089
pcistatus_got(int itf,const char * name)1090 static void pcistatus_got(int itf, const char *name)
1091 {
1092 printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
1093 }
1094
pcistatus_check(struct lanai_dev * lanai,int clearonly)1095 static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
1096 {
1097 u16 s;
1098 int result;
1099 result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
1100 if (result != PCIBIOS_SUCCESSFUL) {
1101 printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
1102 "%d\n", lanai->number, result);
1103 return;
1104 }
1105 s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1106 PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
1107 PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
1108 if (s == 0)
1109 return;
1110 result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
1111 if (result != PCIBIOS_SUCCESSFUL)
1112 printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
1113 "%d\n", lanai->number, result);
1114 if (clearonly)
1115 return;
1116 #define e(flag, name, stat) \
1117 if (s & flag) { \
1118 pcistatus_got(lanai->number, name); \
1119 ++lanai->stats.pcierr_##stat; \
1120 }
1121 e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
1122 e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
1123 e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
1124 e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
1125 e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
1126 e(PCI_STATUS_PARITY, "master parity", master_parity);
1127 #undef e
1128 }
1129
1130 /* -------------------- VCC TX BUFFER UTILITIES: */
1131
1132 /* space left in tx buffer in bytes */
vcc_tx_space(const struct lanai_vcc * lvcc,int endptr)1133 static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
1134 {
1135 int r;
1136 r = endptr * 16;
1137 r -= ((unsigned long) lvcc->tx.buf.ptr) -
1138 ((unsigned long) lvcc->tx.buf.start);
1139 r -= 16; /* Leave "bubble" - if start==end it looks empty */
1140 if (r < 0)
1141 r += lanai_buf_size(&lvcc->tx.buf);
1142 return r;
1143 }
1144
1145 /* test if VCC is currently backlogged */
vcc_is_backlogged(const struct lanai_vcc * lvcc)1146 static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
1147 {
1148 return !skb_queue_empty(&lvcc->tx.backlog);
1149 }
1150
1151 /* Bit fields in the segmentation buffer descriptor */
1152 #define DESCRIPTOR_MAGIC (0xD0000000)
1153 #define DESCRIPTOR_AAL5 (0x00008000)
1154 #define DESCRIPTOR_AAL5_STREAM (0x00004000)
1155 #define DESCRIPTOR_CLP (0x00002000)
1156
1157 /* Add 32-bit descriptor with its padding */
vcc_tx_add_aal5_descriptor(struct lanai_vcc * lvcc,u32 flags,int len)1158 static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
1159 u32 flags, int len)
1160 {
1161 int pos;
1162 APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
1163 "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
1164 lvcc->tx.buf.ptr += 4; /* Hope the values REALLY don't matter */
1165 pos = ((unsigned char *) lvcc->tx.buf.ptr) -
1166 (unsigned char *) lvcc->tx.buf.start;
1167 APRINTK((pos & ~0x0001FFF0) == 0,
1168 "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
1169 "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1170 lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1171 pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
1172 APRINTK((pos & ~0x0001FFF0) == 0,
1173 "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
1174 "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1175 lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1176 lvcc->tx.buf.ptr[-1] =
1177 cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
1178 ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
1179 DESCRIPTOR_CLP : 0) | flags | pos >> 4);
1180 if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1181 lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1182 }
1183
1184 /* Add 32-bit AAL5 trailer and leave room for its CRC */
vcc_tx_add_aal5_trailer(struct lanai_vcc * lvcc,int len,int cpi,int uu)1185 static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
1186 int len, int cpi, int uu)
1187 {
1188 APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
1189 "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
1190 lvcc->tx.buf.ptr += 2;
1191 lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
1192 if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1193 lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1194 }
1195
vcc_tx_memcpy(struct lanai_vcc * lvcc,const unsigned char * src,int n)1196 static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
1197 const unsigned char *src, int n)
1198 {
1199 unsigned char *e;
1200 int m;
1201 e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1202 m = e - (unsigned char *) lvcc->tx.buf.end;
1203 if (m < 0)
1204 m = 0;
1205 memcpy(lvcc->tx.buf.ptr, src, n - m);
1206 if (m != 0) {
1207 memcpy(lvcc->tx.buf.start, src + n - m, m);
1208 e = ((unsigned char *) lvcc->tx.buf.start) + m;
1209 }
1210 lvcc->tx.buf.ptr = (u32 *) e;
1211 }
1212
vcc_tx_memzero(struct lanai_vcc * lvcc,int n)1213 static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
1214 {
1215 unsigned char *e;
1216 int m;
1217 if (n == 0)
1218 return;
1219 e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1220 m = e - (unsigned char *) lvcc->tx.buf.end;
1221 if (m < 0)
1222 m = 0;
1223 memset(lvcc->tx.buf.ptr, 0, n - m);
1224 if (m != 0) {
1225 memset(lvcc->tx.buf.start, 0, m);
1226 e = ((unsigned char *) lvcc->tx.buf.start) + m;
1227 }
1228 lvcc->tx.buf.ptr = (u32 *) e;
1229 }
1230
1231 /* Update "butt" register to specify new WritePtr */
lanai_endtx(struct lanai_dev * lanai,const struct lanai_vcc * lvcc)1232 static inline void lanai_endtx(struct lanai_dev *lanai,
1233 const struct lanai_vcc *lvcc)
1234 {
1235 int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
1236 (unsigned char *) lvcc->tx.buf.start;
1237 APRINTK((ptr & ~0x0001FFF0) == 0,
1238 "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
1239 ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
1240 lvcc->tx.buf.end);
1241
1242 /*
1243 * Since the "butt register" is a shared resounce on the card we
1244 * serialize all accesses to it through this spinlock. This is
1245 * mostly just paranoia since the register is rarely "busy" anyway
1246 * but is needed for correctness.
1247 */
1248 spin_lock(&lanai->endtxlock);
1249 /*
1250 * We need to check if the "butt busy" bit is set before
1251 * updating the butt register. In theory this should
1252 * never happen because the ATM card is plenty fast at
1253 * updating the register. Still, we should make sure
1254 */
1255 for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
1256 if (unlikely(i > 50)) {
1257 printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
1258 "always busy!\n", lanai->number);
1259 break;
1260 }
1261 udelay(5);
1262 }
1263 /*
1264 * Before we tall the card to start work we need to be sure 100% of
1265 * the info in the service buffer has been written before we tell
1266 * the card about it
1267 */
1268 wmb();
1269 reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
1270 spin_unlock(&lanai->endtxlock);
1271 }
1272
1273 /*
1274 * Add one AAL5 PDU to lvcc's transmit buffer. Caller garauntees there's
1275 * space available. "pdusize" is the number of bytes the PDU will take
1276 */
lanai_send_one_aal5(struct lanai_dev * lanai,struct lanai_vcc * lvcc,struct sk_buff * skb,int pdusize)1277 static void lanai_send_one_aal5(struct lanai_dev *lanai,
1278 struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
1279 {
1280 int pad;
1281 APRINTK(pdusize == aal5_size(skb->len),
1282 "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
1283 pdusize, aal5_size(skb->len));
1284 vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
1285 pad = pdusize - skb->len - 8;
1286 APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
1287 APRINTK(pad < 48, "pad is too big (%d)\n", pad);
1288 vcc_tx_memcpy(lvcc, skb->data, skb->len);
1289 vcc_tx_memzero(lvcc, pad);
1290 vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
1291 lanai_endtx(lanai, lvcc);
1292 lanai_free_skb(lvcc->tx.atmvcc, skb);
1293 atomic_inc(&lvcc->tx.atmvcc->stats->tx);
1294 }
1295
1296 /* Try to fill the buffer - don't call unless there is backlog */
vcc_tx_unqueue_aal5(struct lanai_dev * lanai,struct lanai_vcc * lvcc,int endptr)1297 static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
1298 struct lanai_vcc *lvcc, int endptr)
1299 {
1300 int n;
1301 struct sk_buff *skb;
1302 int space = vcc_tx_space(lvcc, endptr);
1303 APRINTK(vcc_is_backlogged(lvcc),
1304 "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
1305 lvcc->vci);
1306 while (space >= 64) {
1307 skb = skb_dequeue(&lvcc->tx.backlog);
1308 if (skb == NULL)
1309 goto no_backlog;
1310 n = aal5_size(skb->len);
1311 if (n + 16 > space) {
1312 /* No room for this packet - put it back on queue */
1313 skb_queue_head(&lvcc->tx.backlog, skb);
1314 return;
1315 }
1316 lanai_send_one_aal5(lanai, lvcc, skb, n);
1317 space -= n + 16;
1318 }
1319 if (!vcc_is_backlogged(lvcc)) {
1320 no_backlog:
1321 __clear_bit(lvcc->vci, lanai->backlog_vccs);
1322 }
1323 }
1324
1325 /* Given an skb that we want to transmit either send it now or queue */
vcc_tx_aal5(struct lanai_dev * lanai,struct lanai_vcc * lvcc,struct sk_buff * skb)1326 static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1327 struct sk_buff *skb)
1328 {
1329 int space, n;
1330 if (vcc_is_backlogged(lvcc)) /* Already backlogged */
1331 goto queue_it;
1332 space = vcc_tx_space(lvcc,
1333 TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
1334 n = aal5_size(skb->len);
1335 APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
1336 if (space < n + 16) { /* No space for this PDU */
1337 __set_bit(lvcc->vci, lanai->backlog_vccs);
1338 queue_it:
1339 skb_queue_tail(&lvcc->tx.backlog, skb);
1340 return;
1341 }
1342 lanai_send_one_aal5(lanai, lvcc, skb, n);
1343 }
1344
vcc_tx_unqueue_aal0(struct lanai_dev * lanai,struct lanai_vcc * lvcc,int endptr)1345 static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
1346 struct lanai_vcc *lvcc, int endptr)
1347 {
1348 printk(KERN_INFO DEV_LABEL
1349 ": vcc_tx_unqueue_aal0: not implemented\n");
1350 }
1351
vcc_tx_aal0(struct lanai_dev * lanai,struct lanai_vcc * lvcc,struct sk_buff * skb)1352 static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1353 struct sk_buff *skb)
1354 {
1355 printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
1356 /* Remember to increment lvcc->tx.atmvcc->stats->tx */
1357 lanai_free_skb(lvcc->tx.atmvcc, skb);
1358 }
1359
1360 /* -------------------- VCC RX BUFFER UTILITIES: */
1361
1362 /* unlike the _tx_ cousins, this doesn't update ptr */
vcc_rx_memcpy(unsigned char * dest,const struct lanai_vcc * lvcc,int n)1363 static inline void vcc_rx_memcpy(unsigned char *dest,
1364 const struct lanai_vcc *lvcc, int n)
1365 {
1366 int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
1367 ((const unsigned char *) (lvcc->rx.buf.end));
1368 if (m < 0)
1369 m = 0;
1370 memcpy(dest, lvcc->rx.buf.ptr, n - m);
1371 memcpy(dest + n - m, lvcc->rx.buf.start, m);
1372 /* Make sure that these copies don't get reordered */
1373 barrier();
1374 }
1375
1376 /* Receive AAL5 data on a VCC with a particular endptr */
vcc_rx_aal5(struct lanai_vcc * lvcc,int endptr)1377 static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
1378 {
1379 int size;
1380 struct sk_buff *skb;
1381 const u32 *x;
1382 u32 *end = &lvcc->rx.buf.start[endptr * 4];
1383 int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
1384 if (n < 0)
1385 n += lanai_buf_size(&lvcc->rx.buf);
1386 APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
1387 "vcc_rx_aal5: n out of range (%d/%zu)\n",
1388 n, lanai_buf_size(&lvcc->rx.buf));
1389 /* Recover the second-to-last word to get true pdu length */
1390 if ((x = &end[-2]) < lvcc->rx.buf.start)
1391 x = &lvcc->rx.buf.end[-2];
1392 /*
1393 * Before we actually read from the buffer, make sure the memory
1394 * changes have arrived
1395 */
1396 rmb();
1397 size = be32_to_cpup(x) & 0xffff;
1398 if (unlikely(n != aal5_size(size))) {
1399 /* Make sure size matches padding */
1400 printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
1401 "on vci=%d - size=%d n=%d\n",
1402 lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
1403 lvcc->stats.x.aal5.rx_badlen++;
1404 goto out;
1405 }
1406 skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
1407 if (unlikely(skb == NULL)) {
1408 lvcc->stats.rx_nomem++;
1409 goto out;
1410 }
1411 skb_put(skb, size);
1412 vcc_rx_memcpy(skb->data, lvcc, size);
1413 ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
1414 __net_timestamp(skb);
1415 lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
1416 atomic_inc(&lvcc->rx.atmvcc->stats->rx);
1417 out:
1418 lvcc->rx.buf.ptr = end;
1419 cardvcc_write(lvcc, endptr, vcc_rxreadptr);
1420 }
1421
vcc_rx_aal0(struct lanai_dev * lanai)1422 static void vcc_rx_aal0(struct lanai_dev *lanai)
1423 {
1424 printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
1425 /* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
1426 /* Remember to increment lvcc->rx.atmvcc->stats->rx */
1427 }
1428
1429 /* -------------------- MANAGING HOST-BASED VCC TABLE: */
1430
1431 /* Decide whether to use vmalloc or get_zeroed_page for VCC table */
1432 #if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
1433 #define VCCTABLE_GETFREEPAGE
1434 #else
1435 #include <linux/vmalloc.h>
1436 #endif
1437
vcc_table_allocate(struct lanai_dev * lanai)1438 static int vcc_table_allocate(struct lanai_dev *lanai)
1439 {
1440 #ifdef VCCTABLE_GETFREEPAGE
1441 APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
1442 "vcc table > PAGE_SIZE!");
1443 lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
1444 return (lanai->vccs == NULL) ? -ENOMEM : 0;
1445 #else
1446 int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
1447 lanai->vccs = vzalloc(bytes);
1448 if (unlikely(lanai->vccs == NULL))
1449 return -ENOMEM;
1450 return 0;
1451 #endif
1452 }
1453
vcc_table_deallocate(const struct lanai_dev * lanai)1454 static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
1455 {
1456 #ifdef VCCTABLE_GETFREEPAGE
1457 free_page((unsigned long) lanai->vccs);
1458 #else
1459 vfree(lanai->vccs);
1460 #endif
1461 }
1462
1463 /* Allocate a fresh lanai_vcc, with the appropriate things cleared */
new_lanai_vcc(void)1464 static inline struct lanai_vcc *new_lanai_vcc(void)
1465 {
1466 struct lanai_vcc *lvcc;
1467 lvcc = kzalloc(sizeof(*lvcc), GFP_KERNEL);
1468 if (likely(lvcc != NULL)) {
1469 skb_queue_head_init(&lvcc->tx.backlog);
1470 #ifdef DEBUG
1471 lvcc->vci = -1;
1472 #endif
1473 }
1474 return lvcc;
1475 }
1476
lanai_get_sized_buffer(struct lanai_dev * lanai,struct lanai_buffer * buf,int max_sdu,int multiplier,const char * name)1477 static int lanai_get_sized_buffer(struct lanai_dev *lanai,
1478 struct lanai_buffer *buf, int max_sdu, int multiplier,
1479 const char *name)
1480 {
1481 int size;
1482 if (unlikely(max_sdu < 1))
1483 max_sdu = 1;
1484 max_sdu = aal5_size(max_sdu);
1485 size = (max_sdu + 16) * multiplier + 16;
1486 lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
1487 if (unlikely(buf->start == NULL))
1488 return -ENOMEM;
1489 if (unlikely(lanai_buf_size(buf) < size))
1490 printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
1491 "for %s buffer, got only %zu\n", lanai->number, size,
1492 name, lanai_buf_size(buf));
1493 DPRINTK("Allocated %zu byte %s buffer\n", lanai_buf_size(buf), name);
1494 return 0;
1495 }
1496
1497 /* Setup a RX buffer for a currently unbound AAL5 vci */
lanai_setup_rx_vci_aal5(struct lanai_dev * lanai,struct lanai_vcc * lvcc,const struct atm_qos * qos)1498 static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
1499 struct lanai_vcc *lvcc, const struct atm_qos *qos)
1500 {
1501 return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
1502 qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
1503 }
1504
1505 /* Setup a TX buffer for a currently unbound AAL5 vci */
lanai_setup_tx_vci(struct lanai_dev * lanai,struct lanai_vcc * lvcc,const struct atm_qos * qos)1506 static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1507 const struct atm_qos *qos)
1508 {
1509 int max_sdu, multiplier;
1510 if (qos->aal == ATM_AAL0) {
1511 lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
1512 max_sdu = ATM_CELL_SIZE - 1;
1513 multiplier = AAL0_TX_MULTIPLIER;
1514 } else {
1515 lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
1516 max_sdu = qos->txtp.max_sdu;
1517 multiplier = AAL5_TX_MULTIPLIER;
1518 }
1519 return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
1520 multiplier, "TX");
1521 }
1522
host_vcc_bind(struct lanai_dev * lanai,struct lanai_vcc * lvcc,vci_t vci)1523 static inline void host_vcc_bind(struct lanai_dev *lanai,
1524 struct lanai_vcc *lvcc, vci_t vci)
1525 {
1526 if (lvcc->vbase != NULL)
1527 return; /* We already were bound in the other direction */
1528 DPRINTK("Binding vci %d\n", vci);
1529 #ifdef USE_POWERDOWN
1530 if (lanai->nbound++ == 0) {
1531 DPRINTK("Coming out of powerdown\n");
1532 lanai->conf1 &= ~CONFIG1_POWERDOWN;
1533 conf1_write(lanai);
1534 conf2_write(lanai);
1535 }
1536 #endif
1537 lvcc->vbase = cardvcc_addr(lanai, vci);
1538 lanai->vccs[lvcc->vci = vci] = lvcc;
1539 }
1540
host_vcc_unbind(struct lanai_dev * lanai,struct lanai_vcc * lvcc)1541 static inline void host_vcc_unbind(struct lanai_dev *lanai,
1542 struct lanai_vcc *lvcc)
1543 {
1544 if (lvcc->vbase == NULL)
1545 return; /* This vcc was never bound */
1546 DPRINTK("Unbinding vci %d\n", lvcc->vci);
1547 lvcc->vbase = NULL;
1548 lanai->vccs[lvcc->vci] = NULL;
1549 #ifdef USE_POWERDOWN
1550 if (--lanai->nbound == 0) {
1551 DPRINTK("Going into powerdown\n");
1552 lanai->conf1 |= CONFIG1_POWERDOWN;
1553 conf1_write(lanai);
1554 }
1555 #endif
1556 }
1557
1558 /* -------------------- RESET CARD: */
1559
lanai_reset(struct lanai_dev * lanai)1560 static void lanai_reset(struct lanai_dev *lanai)
1561 {
1562 printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* resetting - not "
1563 "implemented\n", lanai->number);
1564 /* TODO */
1565 /* The following is just a hack until we write the real
1566 * resetter - at least ack whatever interrupt sent us
1567 * here
1568 */
1569 reg_write(lanai, INT_ALL, IntAck_Reg);
1570 lanai->stats.card_reset++;
1571 }
1572
1573 /* -------------------- SERVICE LIST UTILITIES: */
1574
1575 /*
1576 * Allocate service buffer and tell card about it
1577 */
service_buffer_allocate(struct lanai_dev * lanai)1578 static int service_buffer_allocate(struct lanai_dev *lanai)
1579 {
1580 lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
1581 lanai->pci);
1582 if (unlikely(lanai->service.start == NULL))
1583 return -ENOMEM;
1584 DPRINTK("allocated service buffer at %p, size %zu(%d)\n",
1585 lanai->service.start,
1586 lanai_buf_size(&lanai->service),
1587 lanai_buf_size_cardorder(&lanai->service));
1588 /* Clear ServWrite register to be safe */
1589 reg_write(lanai, 0, ServWrite_Reg);
1590 /* ServiceStuff register contains size and address of buffer */
1591 reg_write(lanai,
1592 SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
1593 SSTUFF_SET_ADDR(lanai->service.dmaaddr),
1594 ServiceStuff_Reg);
1595 return 0;
1596 }
1597
service_buffer_deallocate(struct lanai_dev * lanai)1598 static inline void service_buffer_deallocate(struct lanai_dev *lanai)
1599 {
1600 lanai_buf_deallocate(&lanai->service, lanai->pci);
1601 }
1602
1603 /* Bitfields in service list */
1604 #define SERVICE_TX (0x80000000) /* Was from transmission */
1605 #define SERVICE_TRASH (0x40000000) /* RXed PDU was trashed */
1606 #define SERVICE_CRCERR (0x20000000) /* RXed PDU had CRC error */
1607 #define SERVICE_CI (0x10000000) /* RXed PDU had CI set */
1608 #define SERVICE_CLP (0x08000000) /* RXed PDU had CLP set */
1609 #define SERVICE_STREAM (0x04000000) /* RX Stream mode */
1610 #define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
1611 #define SERVICE_GET_END(x) ((x)&0x1FFF)
1612
1613 /* Handle one thing from the service list - returns true if it marked a
1614 * VCC ready for xmit
1615 */
handle_service(struct lanai_dev * lanai,u32 s)1616 static int handle_service(struct lanai_dev *lanai, u32 s)
1617 {
1618 vci_t vci = SERVICE_GET_VCI(s);
1619 struct lanai_vcc *lvcc;
1620 read_lock(&vcc_sklist_lock);
1621 lvcc = lanai->vccs[vci];
1622 if (unlikely(lvcc == NULL)) {
1623 read_unlock(&vcc_sklist_lock);
1624 DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
1625 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1626 if (s & SERVICE_TX)
1627 lanai->stats.service_notx++;
1628 else
1629 lanai->stats.service_norx++;
1630 return 0;
1631 }
1632 if (s & SERVICE_TX) { /* segmentation interrupt */
1633 if (unlikely(lvcc->tx.atmvcc == NULL)) {
1634 read_unlock(&vcc_sklist_lock);
1635 DPRINTK("(itf %d) got service entry 0x%X for non-TX "
1636 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1637 lanai->stats.service_notx++;
1638 return 0;
1639 }
1640 __set_bit(vci, lanai->transmit_ready);
1641 lvcc->tx.endptr = SERVICE_GET_END(s);
1642 read_unlock(&vcc_sklist_lock);
1643 return 1;
1644 }
1645 if (unlikely(lvcc->rx.atmvcc == NULL)) {
1646 read_unlock(&vcc_sklist_lock);
1647 DPRINTK("(itf %d) got service entry 0x%X for non-RX "
1648 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1649 lanai->stats.service_norx++;
1650 return 0;
1651 }
1652 if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
1653 read_unlock(&vcc_sklist_lock);
1654 DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
1655 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1656 lanai->stats.service_rxnotaal5++;
1657 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1658 return 0;
1659 }
1660 if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
1661 vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
1662 read_unlock(&vcc_sklist_lock);
1663 return 0;
1664 }
1665 if (s & SERVICE_TRASH) {
1666 int bytes;
1667 read_unlock(&vcc_sklist_lock);
1668 DPRINTK("got trashed rx pdu on vci %d\n", vci);
1669 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1670 lvcc->stats.x.aal5.service_trash++;
1671 bytes = (SERVICE_GET_END(s) * 16) -
1672 (((unsigned long) lvcc->rx.buf.ptr) -
1673 ((unsigned long) lvcc->rx.buf.start)) + 47;
1674 if (bytes < 0)
1675 bytes += lanai_buf_size(&lvcc->rx.buf);
1676 lanai->stats.ovfl_trash += (bytes / 48);
1677 return 0;
1678 }
1679 if (s & SERVICE_STREAM) {
1680 read_unlock(&vcc_sklist_lock);
1681 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1682 lvcc->stats.x.aal5.service_stream++;
1683 printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
1684 "PDU on VCI %d!\n", lanai->number, vci);
1685 lanai_reset(lanai);
1686 return 0;
1687 }
1688 DPRINTK("got rx crc error on vci %d\n", vci);
1689 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1690 lvcc->stats.x.aal5.service_rxcrc++;
1691 lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
1692 cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
1693 read_unlock(&vcc_sklist_lock);
1694 return 0;
1695 }
1696
1697 /* Try transmitting on all VCIs that we marked ready to serve */
iter_transmit(struct lanai_dev * lanai,vci_t vci)1698 static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
1699 {
1700 struct lanai_vcc *lvcc = lanai->vccs[vci];
1701 if (vcc_is_backlogged(lvcc))
1702 lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
1703 }
1704
1705 /* Run service queue -- called from interrupt context or with
1706 * interrupts otherwise disabled and with the lanai->servicelock
1707 * lock held
1708 */
run_service(struct lanai_dev * lanai)1709 static void run_service(struct lanai_dev *lanai)
1710 {
1711 int ntx = 0;
1712 u32 wreg = reg_read(lanai, ServWrite_Reg);
1713 const u32 *end = lanai->service.start + wreg;
1714 while (lanai->service.ptr != end) {
1715 ntx += handle_service(lanai,
1716 le32_to_cpup(lanai->service.ptr++));
1717 if (lanai->service.ptr >= lanai->service.end)
1718 lanai->service.ptr = lanai->service.start;
1719 }
1720 reg_write(lanai, wreg, ServRead_Reg);
1721 if (ntx != 0) {
1722 read_lock(&vcc_sklist_lock);
1723 vci_bitfield_iterate(lanai, lanai->transmit_ready,
1724 iter_transmit);
1725 bitmap_zero(lanai->transmit_ready, NUM_VCI);
1726 read_unlock(&vcc_sklist_lock);
1727 }
1728 }
1729
1730 /* -------------------- GATHER STATISTICS: */
1731
get_statistics(struct lanai_dev * lanai)1732 static void get_statistics(struct lanai_dev *lanai)
1733 {
1734 u32 statreg = reg_read(lanai, Statistics_Reg);
1735 lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
1736 lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
1737 lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
1738 lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
1739 }
1740
1741 /* -------------------- POLLING TIMER: */
1742
1743 #ifndef DEBUG_RW
1744 /* Try to undequeue 1 backlogged vcc */
iter_dequeue(struct lanai_dev * lanai,vci_t vci)1745 static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
1746 {
1747 struct lanai_vcc *lvcc = lanai->vccs[vci];
1748 int endptr;
1749 if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
1750 !vcc_is_backlogged(lvcc)) {
1751 __clear_bit(vci, lanai->backlog_vccs);
1752 return;
1753 }
1754 endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
1755 lvcc->tx.unqueue(lanai, lvcc, endptr);
1756 }
1757 #endif /* !DEBUG_RW */
1758
lanai_timed_poll(struct timer_list * t)1759 static void lanai_timed_poll(struct timer_list *t)
1760 {
1761 struct lanai_dev *lanai = from_timer(lanai, t, timer);
1762 #ifndef DEBUG_RW
1763 unsigned long flags;
1764 #ifdef USE_POWERDOWN
1765 if (lanai->conf1 & CONFIG1_POWERDOWN)
1766 return;
1767 #endif /* USE_POWERDOWN */
1768 local_irq_save(flags);
1769 /* If we can grab the spinlock, check if any services need to be run */
1770 if (spin_trylock(&lanai->servicelock)) {
1771 run_service(lanai);
1772 spin_unlock(&lanai->servicelock);
1773 }
1774 /* ...and see if any backlogged VCs can make progress */
1775 /* unfortunately linux has no read_trylock() currently */
1776 read_lock(&vcc_sklist_lock);
1777 vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
1778 read_unlock(&vcc_sklist_lock);
1779 local_irq_restore(flags);
1780
1781 get_statistics(lanai);
1782 #endif /* !DEBUG_RW */
1783 mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
1784 }
1785
lanai_timed_poll_start(struct lanai_dev * lanai)1786 static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
1787 {
1788 timer_setup(&lanai->timer, lanai_timed_poll, 0);
1789 lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
1790 add_timer(&lanai->timer);
1791 }
1792
lanai_timed_poll_stop(struct lanai_dev * lanai)1793 static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
1794 {
1795 del_timer_sync(&lanai->timer);
1796 }
1797
1798 /* -------------------- INTERRUPT SERVICE: */
1799
lanai_int_1(struct lanai_dev * lanai,u32 reason)1800 static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
1801 {
1802 u32 ack = 0;
1803 if (reason & INT_SERVICE) {
1804 ack = INT_SERVICE;
1805 spin_lock(&lanai->servicelock);
1806 run_service(lanai);
1807 spin_unlock(&lanai->servicelock);
1808 }
1809 if (reason & (INT_AAL0_STR | INT_AAL0)) {
1810 ack |= reason & (INT_AAL0_STR | INT_AAL0);
1811 vcc_rx_aal0(lanai);
1812 }
1813 /* The rest of the interrupts are pretty rare */
1814 if (ack == reason)
1815 goto done;
1816 if (reason & INT_STATS) {
1817 reason &= ~INT_STATS; /* No need to ack */
1818 get_statistics(lanai);
1819 }
1820 if (reason & INT_STATUS) {
1821 ack |= reason & INT_STATUS;
1822 lanai_check_status(lanai);
1823 }
1824 if (unlikely(reason & INT_DMASHUT)) {
1825 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
1826 "shutdown, reason=0x%08X, address=0x%08X\n",
1827 lanai->number, (unsigned int) (reason & INT_DMASHUT),
1828 (unsigned int) reg_read(lanai, DMA_Addr_Reg));
1829 if (reason & INT_TABORTBM) {
1830 lanai_reset(lanai);
1831 return;
1832 }
1833 ack |= (reason & INT_DMASHUT);
1834 printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
1835 lanai->number);
1836 conf1_write(lanai);
1837 lanai->stats.dma_reenable++;
1838 pcistatus_check(lanai, 0);
1839 }
1840 if (unlikely(reason & INT_TABORTSENT)) {
1841 ack |= (reason & INT_TABORTSENT);
1842 printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
1843 lanai->number);
1844 pcistatus_check(lanai, 0);
1845 }
1846 if (unlikely(reason & INT_SEGSHUT)) {
1847 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1848 "segmentation shutdown, reason=0x%08X\n", lanai->number,
1849 (unsigned int) (reason & INT_SEGSHUT));
1850 lanai_reset(lanai);
1851 return;
1852 }
1853 if (unlikely(reason & (INT_PING | INT_WAKE))) {
1854 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1855 "unexpected interrupt 0x%08X, resetting\n",
1856 lanai->number,
1857 (unsigned int) (reason & (INT_PING | INT_WAKE)));
1858 lanai_reset(lanai);
1859 return;
1860 }
1861 #ifdef DEBUG
1862 if (unlikely(ack != reason)) {
1863 DPRINTK("unacked ints: 0x%08X\n",
1864 (unsigned int) (reason & ~ack));
1865 ack = reason;
1866 }
1867 #endif
1868 done:
1869 if (ack != 0)
1870 reg_write(lanai, ack, IntAck_Reg);
1871 }
1872
lanai_int(int irq,void * devid)1873 static irqreturn_t lanai_int(int irq, void *devid)
1874 {
1875 struct lanai_dev *lanai = devid;
1876 u32 reason;
1877
1878 #ifdef USE_POWERDOWN
1879 /*
1880 * If we're powered down we shouldn't be generating any interrupts -
1881 * so assume that this is a shared interrupt line and it's for someone
1882 * else
1883 */
1884 if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
1885 return IRQ_NONE;
1886 #endif
1887
1888 reason = intr_pending(lanai);
1889 if (reason == 0)
1890 return IRQ_NONE; /* Must be for someone else */
1891
1892 do {
1893 if (unlikely(reason == 0xFFFFFFFF))
1894 break; /* Maybe we've been unplugged? */
1895 lanai_int_1(lanai, reason);
1896 reason = intr_pending(lanai);
1897 } while (reason != 0);
1898
1899 return IRQ_HANDLED;
1900 }
1901
1902 /* TODO - it would be nice if we could use the "delayed interrupt" system
1903 * to some advantage
1904 */
1905
1906 /* -------------------- CHECK BOARD ID/REV: */
1907
1908 /*
1909 * The board id and revision are stored both in the reset register and
1910 * in the PCI configuration space - the documentation says to check
1911 * each of them. If revp!=NULL we store the revision there
1912 */
check_board_id_and_rev(const char * name,u32 val,int * revp)1913 static int check_board_id_and_rev(const char *name, u32 val, int *revp)
1914 {
1915 DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
1916 (int) RESET_GET_BOARD_ID(val),
1917 (int) RESET_GET_BOARD_REV(val));
1918 if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
1919 printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
1920 "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
1921 return -ENODEV;
1922 }
1923 if (revp != NULL)
1924 *revp = RESET_GET_BOARD_REV(val);
1925 return 0;
1926 }
1927
1928 /* -------------------- PCI INITIALIZATION/SHUTDOWN: */
1929
lanai_pci_start(struct lanai_dev * lanai)1930 static int lanai_pci_start(struct lanai_dev *lanai)
1931 {
1932 struct pci_dev *pci = lanai->pci;
1933 int result;
1934
1935 if (pci_enable_device(pci) != 0) {
1936 printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
1937 "PCI device", lanai->number);
1938 return -ENXIO;
1939 }
1940 pci_set_master(pci);
1941 if (dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(32)) != 0) {
1942 printk(KERN_WARNING DEV_LABEL
1943 "(itf %d): No suitable DMA available.\n", lanai->number);
1944 return -EBUSY;
1945 }
1946 result = check_board_id_and_rev("PCI", pci->subsystem_device, NULL);
1947 if (result != 0)
1948 return result;
1949 /* Set latency timer to zero as per lanai docs */
1950 result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
1951 if (result != PCIBIOS_SUCCESSFUL) {
1952 printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
1953 "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
1954 return -EINVAL;
1955 }
1956 pcistatus_check(lanai, 1);
1957 pcistatus_check(lanai, 0);
1958 return 0;
1959 }
1960
1961 /* -------------------- VPI/VCI ALLOCATION: */
1962
1963 /*
1964 * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
1965 * get a CBRZERO interrupt), and we can use it only if no one is receiving
1966 * AAL0 traffic (since they will use the same queue) - according to the
1967 * docs we shouldn't even use it for AAL0 traffic
1968 */
vci0_is_ok(struct lanai_dev * lanai,const struct atm_qos * qos)1969 static inline int vci0_is_ok(struct lanai_dev *lanai,
1970 const struct atm_qos *qos)
1971 {
1972 if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
1973 return 0;
1974 if (qos->rxtp.traffic_class != ATM_NONE) {
1975 if (lanai->naal0 != 0)
1976 return 0;
1977 lanai->conf2 |= CONFIG2_VCI0_NORMAL;
1978 conf2_write_if_powerup(lanai);
1979 }
1980 return 1;
1981 }
1982
1983 /* return true if vci is currently unused, or if requested qos is
1984 * compatible
1985 */
vci_is_ok(struct lanai_dev * lanai,vci_t vci,const struct atm_vcc * atmvcc)1986 static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
1987 const struct atm_vcc *atmvcc)
1988 {
1989 const struct atm_qos *qos = &atmvcc->qos;
1990 const struct lanai_vcc *lvcc = lanai->vccs[vci];
1991 if (vci == 0 && !vci0_is_ok(lanai, qos))
1992 return 0;
1993 if (unlikely(lvcc != NULL)) {
1994 if (qos->rxtp.traffic_class != ATM_NONE &&
1995 lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
1996 return 0;
1997 if (qos->txtp.traffic_class != ATM_NONE &&
1998 lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
1999 return 0;
2000 if (qos->txtp.traffic_class == ATM_CBR &&
2001 lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
2002 return 0;
2003 }
2004 if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
2005 qos->rxtp.traffic_class != ATM_NONE) {
2006 const struct lanai_vcc *vci0 = lanai->vccs[0];
2007 if (vci0 != NULL && vci0->rx.atmvcc != NULL)
2008 return 0;
2009 lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
2010 conf2_write_if_powerup(lanai);
2011 }
2012 return 1;
2013 }
2014
lanai_normalize_ci(struct lanai_dev * lanai,const struct atm_vcc * atmvcc,short * vpip,vci_t * vcip)2015 static int lanai_normalize_ci(struct lanai_dev *lanai,
2016 const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
2017 {
2018 switch (*vpip) {
2019 case ATM_VPI_ANY:
2020 *vpip = 0;
2021 fallthrough;
2022 case 0:
2023 break;
2024 default:
2025 return -EADDRINUSE;
2026 }
2027 switch (*vcip) {
2028 case ATM_VCI_ANY:
2029 for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
2030 (*vcip)++)
2031 if (vci_is_ok(lanai, *vcip, atmvcc))
2032 return 0;
2033 return -EADDRINUSE;
2034 default:
2035 if (*vcip >= lanai->num_vci || *vcip < 0 ||
2036 !vci_is_ok(lanai, *vcip, atmvcc))
2037 return -EADDRINUSE;
2038 }
2039 return 0;
2040 }
2041
2042 /* -------------------- MANAGE CBR: */
2043
2044 /*
2045 * CBR ICG is stored as a fixed-point number with 4 fractional bits.
2046 * Note that storing a number greater than 2046.0 will result in
2047 * incorrect shaping
2048 */
2049 #define CBRICG_FRAC_BITS (4)
2050 #define CBRICG_MAX (2046 << CBRICG_FRAC_BITS)
2051
2052 /*
2053 * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
2054 * where MAXPCR is (according to the docs) 25600000/(54*8),
2055 * which is equal to (3125<<9)/27.
2056 *
2057 * Solving for ICG, we get:
2058 * ICG = MAXPCR/PCR - 1
2059 * ICG = (3125<<9)/(27*PCR) - 1
2060 * ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
2061 *
2062 * The end result is supposed to be a fixed-point number with FRAC_BITS
2063 * bits of a fractional part, so we keep everything in the numerator
2064 * shifted by that much as we compute
2065 *
2066 */
pcr_to_cbricg(const struct atm_qos * qos)2067 static int pcr_to_cbricg(const struct atm_qos *qos)
2068 {
2069 int rounddown = 0; /* 1 = Round PCR down, i.e. round ICG _up_ */
2070 int x, icg, pcr = atm_pcr_goal(&qos->txtp);
2071 if (pcr == 0) /* Use maximum bandwidth */
2072 return 0;
2073 if (pcr < 0) {
2074 rounddown = 1;
2075 pcr = -pcr;
2076 }
2077 x = pcr * 27;
2078 icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
2079 if (rounddown)
2080 icg += x - 1;
2081 icg /= x;
2082 if (icg > CBRICG_MAX)
2083 icg = CBRICG_MAX;
2084 DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
2085 pcr, rounddown ? 'Y' : 'N', icg);
2086 return icg;
2087 }
2088
lanai_cbr_setup(struct lanai_dev * lanai)2089 static inline void lanai_cbr_setup(struct lanai_dev *lanai)
2090 {
2091 reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
2092 reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
2093 lanai->conf2 |= CONFIG2_CBR_ENABLE;
2094 conf2_write(lanai);
2095 }
2096
lanai_cbr_shutdown(struct lanai_dev * lanai)2097 static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
2098 {
2099 lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
2100 conf2_write(lanai);
2101 }
2102
2103 /* -------------------- OPERATIONS: */
2104
2105 /* setup a newly detected device */
lanai_dev_open(struct atm_dev * atmdev)2106 static int lanai_dev_open(struct atm_dev *atmdev)
2107 {
2108 struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2109 unsigned long raw_base;
2110 int result;
2111
2112 DPRINTK("In lanai_dev_open()\n");
2113 /* Basic device fields */
2114 lanai->number = atmdev->number;
2115 lanai->num_vci = NUM_VCI;
2116 bitmap_zero(lanai->backlog_vccs, NUM_VCI);
2117 bitmap_zero(lanai->transmit_ready, NUM_VCI);
2118 lanai->naal0 = 0;
2119 #ifdef USE_POWERDOWN
2120 lanai->nbound = 0;
2121 #endif
2122 lanai->cbrvcc = NULL;
2123 memset(&lanai->stats, 0, sizeof lanai->stats);
2124 spin_lock_init(&lanai->endtxlock);
2125 spin_lock_init(&lanai->servicelock);
2126 atmdev->ci_range.vpi_bits = 0;
2127 atmdev->ci_range.vci_bits = 0;
2128 while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
2129 atmdev->ci_range.vci_bits++;
2130 atmdev->link_rate = ATM_25_PCR;
2131
2132 /* 3.2: PCI initialization */
2133 if ((result = lanai_pci_start(lanai)) != 0)
2134 goto error;
2135 raw_base = lanai->pci->resource[0].start;
2136 lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
2137 if (lanai->base == NULL) {
2138 printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
2139 result = -ENOMEM;
2140 goto error_pci;
2141 }
2142 /* 3.3: Reset lanai and PHY */
2143 reset_board(lanai);
2144 lanai->conf1 = reg_read(lanai, Config1_Reg);
2145 lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
2146 CONFIG1_MASK_LEDMODE);
2147 lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
2148 reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2149 udelay(1000);
2150 conf1_write(lanai);
2151
2152 /*
2153 * 3.4: Turn on endian mode for big-endian hardware
2154 * We don't actually want to do this - the actual bit fields
2155 * in the endian register are not documented anywhere.
2156 * Instead we do the bit-flipping ourselves on big-endian
2157 * hardware.
2158 *
2159 * 3.5: get the board ID/rev by reading the reset register
2160 */
2161 result = check_board_id_and_rev("register",
2162 reg_read(lanai, Reset_Reg), &lanai->board_rev);
2163 if (result != 0)
2164 goto error_unmap;
2165
2166 /* 3.6: read EEPROM */
2167 if ((result = eeprom_read(lanai)) != 0)
2168 goto error_unmap;
2169 if ((result = eeprom_validate(lanai)) != 0)
2170 goto error_unmap;
2171
2172 /* 3.7: re-reset PHY, do loopback tests, setup PHY */
2173 reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2174 udelay(1000);
2175 conf1_write(lanai);
2176 /* TODO - loopback tests */
2177 lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
2178 conf1_write(lanai);
2179
2180 /* 3.8/3.9: test and initialize card SRAM */
2181 if ((result = sram_test_and_clear(lanai)) != 0)
2182 goto error_unmap;
2183
2184 /* 3.10: initialize lanai registers */
2185 lanai->conf1 |= CONFIG1_DMA_ENABLE;
2186 conf1_write(lanai);
2187 if ((result = service_buffer_allocate(lanai)) != 0)
2188 goto error_unmap;
2189 if ((result = vcc_table_allocate(lanai)) != 0)
2190 goto error_service;
2191 lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
2192 CONFIG2_HEC_DROP | /* ??? */ CONFIG2_PTI7_MODE;
2193 conf2_write(lanai);
2194 reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
2195 reg_write(lanai, 0, CBR_ICG_Reg); /* CBR defaults to no limit */
2196 if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
2197 DEV_LABEL, lanai)) != 0) {
2198 printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
2199 goto error_vcctable;
2200 }
2201 mb(); /* Make sure that all that made it */
2202 intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
2203 /* 3.11: initialize loop mode (i.e. turn looping off) */
2204 lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
2205 CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
2206 CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
2207 conf1_write(lanai);
2208 lanai->status = reg_read(lanai, Status_Reg);
2209 /* We're now done initializing this card */
2210 #ifdef USE_POWERDOWN
2211 lanai->conf1 |= CONFIG1_POWERDOWN;
2212 conf1_write(lanai);
2213 #endif
2214 memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
2215 lanai_timed_poll_start(lanai);
2216 printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=%p, irq=%u "
2217 "(%pMF)\n", lanai->number, (int) lanai->pci->revision,
2218 lanai->base, lanai->pci->irq, atmdev->esi);
2219 printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
2220 "board_rev=%d\n", lanai->number,
2221 lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
2222 (unsigned int) lanai->serialno, lanai->board_rev);
2223 return 0;
2224
2225 error_vcctable:
2226 vcc_table_deallocate(lanai);
2227 error_service:
2228 service_buffer_deallocate(lanai);
2229 error_unmap:
2230 reset_board(lanai);
2231 #ifdef USE_POWERDOWN
2232 lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
2233 conf1_write(lanai);
2234 #endif
2235 iounmap(lanai->base);
2236 lanai->base = NULL;
2237 error_pci:
2238 pci_disable_device(lanai->pci);
2239 error:
2240 return result;
2241 }
2242
2243 /* called when device is being shutdown, and all vcc's are gone - higher
2244 * levels will deallocate the atm device for us
2245 */
lanai_dev_close(struct atm_dev * atmdev)2246 static void lanai_dev_close(struct atm_dev *atmdev)
2247 {
2248 struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2249 if (lanai->base==NULL)
2250 return;
2251 printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
2252 lanai->number);
2253 lanai_timed_poll_stop(lanai);
2254 #ifdef USE_POWERDOWN
2255 lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
2256 conf1_write(lanai);
2257 #endif
2258 intr_disable(lanai, INT_ALL);
2259 free_irq(lanai->pci->irq, lanai);
2260 reset_board(lanai);
2261 #ifdef USE_POWERDOWN
2262 lanai->conf1 |= CONFIG1_POWERDOWN;
2263 conf1_write(lanai);
2264 #endif
2265 pci_disable_device(lanai->pci);
2266 vcc_table_deallocate(lanai);
2267 service_buffer_deallocate(lanai);
2268 iounmap(lanai->base);
2269 kfree(lanai);
2270 }
2271
2272 /* close a vcc */
lanai_close(struct atm_vcc * atmvcc)2273 static void lanai_close(struct atm_vcc *atmvcc)
2274 {
2275 struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2276 struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2277 if (lvcc == NULL)
2278 return;
2279 clear_bit(ATM_VF_READY, &atmvcc->flags);
2280 clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
2281 if (lvcc->rx.atmvcc == atmvcc) {
2282 lanai_shutdown_rx_vci(lvcc);
2283 if (atmvcc->qos.aal == ATM_AAL0) {
2284 if (--lanai->naal0 <= 0)
2285 aal0_buffer_free(lanai);
2286 } else
2287 lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
2288 lvcc->rx.atmvcc = NULL;
2289 }
2290 if (lvcc->tx.atmvcc == atmvcc) {
2291 if (atmvcc == lanai->cbrvcc) {
2292 if (lvcc->vbase != NULL)
2293 lanai_cbr_shutdown(lanai);
2294 lanai->cbrvcc = NULL;
2295 }
2296 lanai_shutdown_tx_vci(lanai, lvcc);
2297 lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
2298 lvcc->tx.atmvcc = NULL;
2299 }
2300 if (--lvcc->nref == 0) {
2301 host_vcc_unbind(lanai, lvcc);
2302 kfree(lvcc);
2303 }
2304 atmvcc->dev_data = NULL;
2305 clear_bit(ATM_VF_ADDR, &atmvcc->flags);
2306 }
2307
2308 /* open a vcc on the card to vpi/vci */
lanai_open(struct atm_vcc * atmvcc)2309 static int lanai_open(struct atm_vcc *atmvcc)
2310 {
2311 struct lanai_dev *lanai;
2312 struct lanai_vcc *lvcc;
2313 int result = 0;
2314 int vci = atmvcc->vci;
2315 short vpi = atmvcc->vpi;
2316 /* we don't support partial open - it's not really useful anyway */
2317 if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
2318 (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
2319 return -EINVAL;
2320 lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2321 result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
2322 if (unlikely(result != 0))
2323 goto out;
2324 set_bit(ATM_VF_ADDR, &atmvcc->flags);
2325 if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
2326 return -EINVAL;
2327 DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
2328 (int) vpi, vci);
2329 lvcc = lanai->vccs[vci];
2330 if (lvcc == NULL) {
2331 lvcc = new_lanai_vcc();
2332 if (unlikely(lvcc == NULL))
2333 return -ENOMEM;
2334 atmvcc->dev_data = lvcc;
2335 }
2336 lvcc->nref++;
2337 if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
2338 APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
2339 vci);
2340 if (atmvcc->qos.aal == ATM_AAL0) {
2341 if (lanai->naal0 == 0)
2342 result = aal0_buffer_allocate(lanai);
2343 } else
2344 result = lanai_setup_rx_vci_aal5(
2345 lanai, lvcc, &atmvcc->qos);
2346 if (unlikely(result != 0))
2347 goto out_free;
2348 lvcc->rx.atmvcc = atmvcc;
2349 lvcc->stats.rx_nomem = 0;
2350 lvcc->stats.x.aal5.rx_badlen = 0;
2351 lvcc->stats.x.aal5.service_trash = 0;
2352 lvcc->stats.x.aal5.service_stream = 0;
2353 lvcc->stats.x.aal5.service_rxcrc = 0;
2354 if (atmvcc->qos.aal == ATM_AAL0)
2355 lanai->naal0++;
2356 }
2357 if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
2358 APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
2359 vci);
2360 result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
2361 if (unlikely(result != 0))
2362 goto out_free;
2363 lvcc->tx.atmvcc = atmvcc;
2364 if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
2365 APRINTK(lanai->cbrvcc == NULL,
2366 "cbrvcc!=NULL, vci=%d\n", vci);
2367 lanai->cbrvcc = atmvcc;
2368 }
2369 }
2370 host_vcc_bind(lanai, lvcc, vci);
2371 /*
2372 * Make sure everything made it to RAM before we tell the card about
2373 * the VCC
2374 */
2375 wmb();
2376 if (atmvcc == lvcc->rx.atmvcc)
2377 host_vcc_start_rx(lvcc);
2378 if (atmvcc == lvcc->tx.atmvcc) {
2379 host_vcc_start_tx(lvcc);
2380 if (lanai->cbrvcc == atmvcc)
2381 lanai_cbr_setup(lanai);
2382 }
2383 set_bit(ATM_VF_READY, &atmvcc->flags);
2384 return 0;
2385 out_free:
2386 lanai_close(atmvcc);
2387 out:
2388 return result;
2389 }
2390
lanai_send(struct atm_vcc * atmvcc,struct sk_buff * skb)2391 static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
2392 {
2393 struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2394 struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2395 unsigned long flags;
2396 if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
2397 lvcc->tx.atmvcc != atmvcc))
2398 goto einval;
2399 #ifdef DEBUG
2400 if (unlikely(skb == NULL)) {
2401 DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
2402 goto einval;
2403 }
2404 if (unlikely(lanai == NULL)) {
2405 DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
2406 goto einval;
2407 }
2408 #endif
2409 ATM_SKB(skb)->vcc = atmvcc;
2410 switch (atmvcc->qos.aal) {
2411 case ATM_AAL5:
2412 read_lock_irqsave(&vcc_sklist_lock, flags);
2413 vcc_tx_aal5(lanai, lvcc, skb);
2414 read_unlock_irqrestore(&vcc_sklist_lock, flags);
2415 return 0;
2416 case ATM_AAL0:
2417 if (unlikely(skb->len != ATM_CELL_SIZE-1))
2418 goto einval;
2419 /* NOTE - this next line is technically invalid - we haven't unshared skb */
2420 cpu_to_be32s((u32 *) skb->data);
2421 read_lock_irqsave(&vcc_sklist_lock, flags);
2422 vcc_tx_aal0(lanai, lvcc, skb);
2423 read_unlock_irqrestore(&vcc_sklist_lock, flags);
2424 return 0;
2425 }
2426 DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
2427 atmvcc->vci);
2428 einval:
2429 lanai_free_skb(atmvcc, skb);
2430 return -EINVAL;
2431 }
2432
lanai_change_qos(struct atm_vcc * atmvcc,struct atm_qos * qos,int flags)2433 static int lanai_change_qos(struct atm_vcc *atmvcc,
2434 /*const*/ struct atm_qos *qos, int flags)
2435 {
2436 return -EBUSY; /* TODO: need to write this */
2437 }
2438
2439 #ifndef CONFIG_PROC_FS
2440 #define lanai_proc_read NULL
2441 #else
lanai_proc_read(struct atm_dev * atmdev,loff_t * pos,char * page)2442 static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
2443 {
2444 struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2445 loff_t left = *pos;
2446 struct lanai_vcc *lvcc;
2447 if (left-- == 0)
2448 return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
2449 "serial=%u, magic=0x%08X, num_vci=%d\n",
2450 atmdev->number, lanai->type==lanai2 ? "2" : "HB",
2451 (unsigned int) lanai->serialno,
2452 (unsigned int) lanai->magicno, lanai->num_vci);
2453 if (left-- == 0)
2454 return sprintf(page, "revision: board=%d, pci_if=%d\n",
2455 lanai->board_rev, (int) lanai->pci->revision);
2456 if (left-- == 0)
2457 return sprintf(page, "EEPROM ESI: %pM\n",
2458 &lanai->eeprom[EEPROM_MAC]);
2459 if (left-- == 0)
2460 return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
2461 "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
2462 (lanai->status & STATUS_LOCD) ? 1 : 0,
2463 (lanai->status & STATUS_LED) ? 1 : 0,
2464 (lanai->status & STATUS_GPIN) ? 1 : 0);
2465 if (left-- == 0)
2466 return sprintf(page, "global buffer sizes: service=%zu, "
2467 "aal0_rx=%zu\n", lanai_buf_size(&lanai->service),
2468 lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
2469 if (left-- == 0) {
2470 get_statistics(lanai);
2471 return sprintf(page, "cells in error: overflow=%u, "
2472 "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
2473 lanai->stats.ovfl_trash, lanai->stats.vci_trash,
2474 lanai->stats.hec_err, lanai->stats.atm_ovfl);
2475 }
2476 if (left-- == 0)
2477 return sprintf(page, "PCI errors: parity_detect=%u, "
2478 "master_abort=%u, master_target_abort=%u,\n",
2479 lanai->stats.pcierr_parity_detect,
2480 lanai->stats.pcierr_serr_set,
2481 lanai->stats.pcierr_m_target_abort);
2482 if (left-- == 0)
2483 return sprintf(page, " slave_target_abort=%u, "
2484 "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
2485 lanai->stats.pcierr_master_parity);
2486 if (left-- == 0)
2487 return sprintf(page, " no_tx=%u, "
2488 "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
2489 lanai->stats.service_notx,
2490 lanai->stats.service_rxnotaal5);
2491 if (left-- == 0)
2492 return sprintf(page, "resets: dma=%u, card=%u\n",
2493 lanai->stats.dma_reenable, lanai->stats.card_reset);
2494 /* At this point, "left" should be the VCI we're looking for */
2495 read_lock(&vcc_sklist_lock);
2496 for (; ; left++) {
2497 if (left >= NUM_VCI) {
2498 left = 0;
2499 goto out;
2500 }
2501 if ((lvcc = lanai->vccs[left]) != NULL)
2502 break;
2503 (*pos)++;
2504 }
2505 /* Note that we re-use "left" here since we're done with it */
2506 left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u", (vci_t) left,
2507 lvcc->nref, lvcc->stats.rx_nomem);
2508 if (lvcc->rx.atmvcc != NULL) {
2509 left += sprintf(&page[left], ",\n rx_AAL=%d",
2510 lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
2511 if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
2512 left += sprintf(&page[left], ", rx_buf_size=%zu, "
2513 "rx_bad_len=%u,\n rx_service_trash=%u, "
2514 "rx_service_stream=%u, rx_bad_crc=%u",
2515 lanai_buf_size(&lvcc->rx.buf),
2516 lvcc->stats.x.aal5.rx_badlen,
2517 lvcc->stats.x.aal5.service_trash,
2518 lvcc->stats.x.aal5.service_stream,
2519 lvcc->stats.x.aal5.service_rxcrc);
2520 }
2521 if (lvcc->tx.atmvcc != NULL)
2522 left += sprintf(&page[left], ",\n tx_AAL=%d, "
2523 "tx_buf_size=%zu, tx_qos=%cBR, tx_backlogged=%c",
2524 lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
2525 lanai_buf_size(&lvcc->tx.buf),
2526 lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
2527 vcc_is_backlogged(lvcc) ? 'Y' : 'N');
2528 page[left++] = '\n';
2529 page[left] = '\0';
2530 out:
2531 read_unlock(&vcc_sklist_lock);
2532 return left;
2533 }
2534 #endif /* CONFIG_PROC_FS */
2535
2536 /* -------------------- HOOKS: */
2537
2538 static const struct atmdev_ops ops = {
2539 .dev_close = lanai_dev_close,
2540 .open = lanai_open,
2541 .close = lanai_close,
2542 .send = lanai_send,
2543 .phy_put = NULL,
2544 .phy_get = NULL,
2545 .change_qos = lanai_change_qos,
2546 .proc_read = lanai_proc_read,
2547 .owner = THIS_MODULE
2548 };
2549
2550 /* initialize one probed card */
lanai_init_one(struct pci_dev * pci,const struct pci_device_id * ident)2551 static int lanai_init_one(struct pci_dev *pci,
2552 const struct pci_device_id *ident)
2553 {
2554 struct lanai_dev *lanai;
2555 struct atm_dev *atmdev;
2556 int result;
2557
2558 lanai = kzalloc(sizeof(*lanai), GFP_KERNEL);
2559 if (lanai == NULL) {
2560 printk(KERN_ERR DEV_LABEL
2561 ": couldn't allocate dev_data structure!\n");
2562 return -ENOMEM;
2563 }
2564
2565 atmdev = atm_dev_register(DEV_LABEL, &pci->dev, &ops, -1, NULL);
2566 if (atmdev == NULL) {
2567 printk(KERN_ERR DEV_LABEL
2568 ": couldn't register atm device!\n");
2569 kfree(lanai);
2570 return -EBUSY;
2571 }
2572
2573 atmdev->dev_data = lanai;
2574 lanai->pci = pci;
2575 lanai->type = (enum lanai_type) ident->device;
2576
2577 result = lanai_dev_open(atmdev);
2578 if (result != 0) {
2579 DPRINTK("lanai_start() failed, err=%d\n", -result);
2580 atm_dev_deregister(atmdev);
2581 kfree(lanai);
2582 }
2583 return result;
2584 }
2585
2586 static const struct pci_device_id lanai_pci_tbl[] = {
2587 { PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) },
2588 { PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) },
2589 { 0, } /* terminal entry */
2590 };
2591 MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
2592
2593 static struct pci_driver lanai_driver = {
2594 .name = DEV_LABEL,
2595 .id_table = lanai_pci_tbl,
2596 .probe = lanai_init_one,
2597 };
2598
2599 module_pci_driver(lanai_driver);
2600
2601 MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
2602 MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
2603 MODULE_LICENSE("GPL");
2604