1 /****************************************************************************** 2 iphase.c: Device driver for Interphase ATM PCI adapter cards 3 Author: Peter Wang <pwang@iphase.com> 4 Some fixes: Arnaldo Carvalho de Melo <acme@conectiva.com.br> 5 Interphase Corporation <www.iphase.com> 6 Version: 1.0 7 ******************************************************************************* 8 9 This software may be used and distributed according to the terms 10 of the GNU General Public License (GPL), incorporated herein by reference. 11 Drivers based on this skeleton fall under the GPL and must retain 12 the authorship (implicit copyright) notice. 13 14 This program is distributed in the hope that it will be useful, but 15 WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 General Public License for more details. 18 19 Modified from an incomplete driver for Interphase 5575 1KVC 1M card which 20 was originally written by Monalisa Agrawal at UNH. Now this driver 21 supports a variety of varients of Interphase ATM PCI (i)Chip adapter 22 card family (See www.iphase.com/products/ClassSheet.cfm?ClassID=ATM) 23 in terms of PHY type, the size of control memory and the size of 24 packet memory. The following are the change log and history: 25 26 Bugfix the Mona's UBR driver. 27 Modify the basic memory allocation and dma logic. 28 Port the driver to the latest kernel from 2.0.46. 29 Complete the ABR logic of the driver, and added the ABR work- 30 around for the hardware anormalies. 31 Add the CBR support. 32 Add the flow control logic to the driver to allow rate-limit VC. 33 Add 4K VC support to the board with 512K control memory. 34 Add the support of all the variants of the Interphase ATM PCI 35 (i)Chip adapter cards including x575 (155M OC3 and UTP155), x525 36 (25M UTP25) and x531 (DS3 and E3). 37 Add SMP support. 38 39 Support and updates available at: ftp://ftp.iphase.com/pub/atm 40 41 *******************************************************************************/ 42 43 #include <linux/module.h> 44 #include <linux/kernel.h> 45 #include <linux/mm.h> 46 #include <linux/pci.h> 47 #include <linux/errno.h> 48 #include <linux/atm.h> 49 #include <linux/atmdev.h> 50 #include <linux/sonet.h> 51 #include <linux/skbuff.h> 52 #include <linux/time.h> 53 #include <linux/delay.h> 54 #include <linux/uio.h> 55 #include <linux/init.h> 56 #include <linux/interrupt.h> 57 #include <linux/wait.h> 58 #include <linux/slab.h> 59 #include <asm/io.h> 60 #include <linux/atomic.h> 61 #include <linux/uaccess.h> 62 #include <asm/string.h> 63 #include <asm/byteorder.h> 64 #include <linux/vmalloc.h> 65 #include <linux/jiffies.h> 66 #include "iphase.h" 67 #include "suni.h" 68 #define swap_byte_order(x) (((x & 0xff) << 8) | ((x & 0xff00) >> 8)) 69 70 #define PRIV(dev) ((struct suni_priv *) dev->phy_data) 71 72 static unsigned char ia_phy_get(struct atm_dev *dev, unsigned long addr); 73 static void desc_dbg(IADEV *iadev); 74 75 static IADEV *ia_dev[8]; 76 static struct atm_dev *_ia_dev[8]; 77 static int iadev_count; 78 static void ia_led_timer(struct timer_list *unused); 79 static DEFINE_TIMER(ia_timer, ia_led_timer); 80 static int IA_TX_BUF = DFL_TX_BUFFERS, IA_TX_BUF_SZ = DFL_TX_BUF_SZ; 81 static int IA_RX_BUF = DFL_RX_BUFFERS, IA_RX_BUF_SZ = DFL_RX_BUF_SZ; 82 static uint IADebugFlag = /* IF_IADBG_ERR | IF_IADBG_CBR| IF_IADBG_INIT_ADAPTER 83 |IF_IADBG_ABR | IF_IADBG_EVENT*/ 0; 84 85 module_param(IA_TX_BUF, int, 0); 86 module_param(IA_TX_BUF_SZ, int, 0); 87 module_param(IA_RX_BUF, int, 0); 88 module_param(IA_RX_BUF_SZ, int, 0); 89 module_param(IADebugFlag, uint, 0644); 90 91 MODULE_LICENSE("GPL"); 92 93 /**************************** IA_LIB **********************************/ 94 95 static void ia_init_rtn_q (IARTN_Q *que) 96 { 97 que->next = NULL; 98 que->tail = NULL; 99 } 100 101 static void ia_enque_head_rtn_q (IARTN_Q *que, IARTN_Q * data) 102 { 103 data->next = NULL; 104 if (que->next == NULL) 105 que->next = que->tail = data; 106 else { 107 data->next = que->next; 108 que->next = data; 109 } 110 return; 111 } 112 113 static int ia_enque_rtn_q (IARTN_Q *que, struct desc_tbl_t data) { 114 IARTN_Q *entry = kmalloc(sizeof(*entry), GFP_ATOMIC); 115 if (!entry) 116 return -ENOMEM; 117 entry->data = data; 118 entry->next = NULL; 119 if (que->next == NULL) 120 que->next = que->tail = entry; 121 else { 122 que->tail->next = entry; 123 que->tail = que->tail->next; 124 } 125 return 1; 126 } 127 128 static IARTN_Q * ia_deque_rtn_q (IARTN_Q *que) { 129 IARTN_Q *tmpdata; 130 if (que->next == NULL) 131 return NULL; 132 tmpdata = que->next; 133 if ( que->next == que->tail) 134 que->next = que->tail = NULL; 135 else 136 que->next = que->next->next; 137 return tmpdata; 138 } 139 140 static void ia_hack_tcq(IADEV *dev) { 141 142 u_short desc1; 143 u_short tcq_wr; 144 struct ia_vcc *iavcc_r = NULL; 145 146 tcq_wr = readl(dev->seg_reg+TCQ_WR_PTR) & 0xffff; 147 while (dev->host_tcq_wr != tcq_wr) { 148 desc1 = *(u_short *)(dev->seg_ram + dev->host_tcq_wr); 149 if (!desc1) ; 150 else if (!dev->desc_tbl[desc1 -1].timestamp) { 151 IF_ABR(printk(" Desc %d is reset at %ld\n", desc1 -1, jiffies);) 152 *(u_short *) (dev->seg_ram + dev->host_tcq_wr) = 0; 153 } 154 else if (dev->desc_tbl[desc1 -1].timestamp) { 155 if (!(iavcc_r = dev->desc_tbl[desc1 -1].iavcc)) { 156 printk("IA: Fatal err in get_desc\n"); 157 continue; 158 } 159 iavcc_r->vc_desc_cnt--; 160 dev->desc_tbl[desc1 -1].timestamp = 0; 161 IF_EVENT(printk("ia_hack: return_q skb = 0x%p desc = %d\n", 162 dev->desc_tbl[desc1 -1].txskb, desc1);) 163 if (iavcc_r->pcr < dev->rate_limit) { 164 IA_SKB_STATE (dev->desc_tbl[desc1-1].txskb) |= IA_TX_DONE; 165 if (ia_enque_rtn_q(&dev->tx_return_q, dev->desc_tbl[desc1 -1]) < 0) 166 printk("ia_hack_tcq: No memory available\n"); 167 } 168 dev->desc_tbl[desc1 -1].iavcc = NULL; 169 dev->desc_tbl[desc1 -1].txskb = NULL; 170 } 171 dev->host_tcq_wr += 2; 172 if (dev->host_tcq_wr > dev->ffL.tcq_ed) 173 dev->host_tcq_wr = dev->ffL.tcq_st; 174 } 175 } /* ia_hack_tcq */ 176 177 static u16 get_desc (IADEV *dev, struct ia_vcc *iavcc) { 178 u_short desc_num, i; 179 struct sk_buff *skb; 180 struct ia_vcc *iavcc_r = NULL; 181 unsigned long delta; 182 static unsigned long timer = 0; 183 int ltimeout; 184 185 ia_hack_tcq (dev); 186 if((time_after(jiffies,timer+50)) || ((dev->ffL.tcq_rd==dev->host_tcq_wr))) { 187 timer = jiffies; 188 i=0; 189 while (i < dev->num_tx_desc) { 190 if (!dev->desc_tbl[i].timestamp) { 191 i++; 192 continue; 193 } 194 ltimeout = dev->desc_tbl[i].iavcc->ltimeout; 195 delta = jiffies - dev->desc_tbl[i].timestamp; 196 if (delta >= ltimeout) { 197 IF_ABR(printk("RECOVER run!! desc_tbl %d = %d delta = %ld, time = %ld\n", i,dev->desc_tbl[i].timestamp, delta, jiffies);) 198 if (dev->ffL.tcq_rd == dev->ffL.tcq_st) 199 dev->ffL.tcq_rd = dev->ffL.tcq_ed; 200 else 201 dev->ffL.tcq_rd -= 2; 202 *(u_short *)(dev->seg_ram + dev->ffL.tcq_rd) = i+1; 203 if (!(skb = dev->desc_tbl[i].txskb) || 204 !(iavcc_r = dev->desc_tbl[i].iavcc)) 205 printk("Fatal err, desc table vcc or skb is NULL\n"); 206 else 207 iavcc_r->vc_desc_cnt--; 208 dev->desc_tbl[i].timestamp = 0; 209 dev->desc_tbl[i].iavcc = NULL; 210 dev->desc_tbl[i].txskb = NULL; 211 } 212 i++; 213 } /* while */ 214 } 215 if (dev->ffL.tcq_rd == dev->host_tcq_wr) 216 return 0xFFFF; 217 218 /* Get the next available descriptor number from TCQ */ 219 desc_num = *(u_short *)(dev->seg_ram + dev->ffL.tcq_rd); 220 221 while (!desc_num || (dev->desc_tbl[desc_num -1]).timestamp) { 222 dev->ffL.tcq_rd += 2; 223 if (dev->ffL.tcq_rd > dev->ffL.tcq_ed) 224 dev->ffL.tcq_rd = dev->ffL.tcq_st; 225 if (dev->ffL.tcq_rd == dev->host_tcq_wr) 226 return 0xFFFF; 227 desc_num = *(u_short *)(dev->seg_ram + dev->ffL.tcq_rd); 228 } 229 230 /* get system time */ 231 dev->desc_tbl[desc_num -1].timestamp = jiffies; 232 return desc_num; 233 } 234 235 static void clear_lockup (struct atm_vcc *vcc, IADEV *dev) { 236 u_char foundLockUp; 237 vcstatus_t *vcstatus; 238 u_short *shd_tbl; 239 u_short tempCellSlot, tempFract; 240 struct main_vc *abr_vc = (struct main_vc *)dev->MAIN_VC_TABLE_ADDR; 241 struct ext_vc *eabr_vc = (struct ext_vc *)dev->EXT_VC_TABLE_ADDR; 242 u_int i; 243 244 if (vcc->qos.txtp.traffic_class == ATM_ABR) { 245 vcstatus = (vcstatus_t *) &(dev->testTable[vcc->vci]->vc_status); 246 vcstatus->cnt++; 247 foundLockUp = 0; 248 if( vcstatus->cnt == 0x05 ) { 249 abr_vc += vcc->vci; 250 eabr_vc += vcc->vci; 251 if( eabr_vc->last_desc ) { 252 if( (abr_vc->status & 0x07) == ABR_STATE /* 0x2 */ ) { 253 /* Wait for 10 Micro sec */ 254 udelay(10); 255 if ((eabr_vc->last_desc)&&((abr_vc->status & 0x07)==ABR_STATE)) 256 foundLockUp = 1; 257 } 258 else { 259 tempCellSlot = abr_vc->last_cell_slot; 260 tempFract = abr_vc->fraction; 261 if((tempCellSlot == dev->testTable[vcc->vci]->lastTime) 262 && (tempFract == dev->testTable[vcc->vci]->fract)) 263 foundLockUp = 1; 264 dev->testTable[vcc->vci]->lastTime = tempCellSlot; 265 dev->testTable[vcc->vci]->fract = tempFract; 266 } 267 } /* last descriptor */ 268 vcstatus->cnt = 0; 269 } /* vcstatus->cnt */ 270 271 if (foundLockUp) { 272 IF_ABR(printk("LOCK UP found\n");) 273 writew(0xFFFD, dev->seg_reg+MODE_REG_0); 274 /* Wait for 10 Micro sec */ 275 udelay(10); 276 abr_vc->status &= 0xFFF8; 277 abr_vc->status |= 0x0001; /* state is idle */ 278 shd_tbl = (u_short *)dev->ABR_SCHED_TABLE_ADDR; 279 for( i = 0; ((i < dev->num_vc) && (shd_tbl[i])); i++ ); 280 if (i < dev->num_vc) 281 shd_tbl[i] = vcc->vci; 282 else 283 IF_ERR(printk("ABR Seg. may not continue on VC %x\n",vcc->vci);) 284 writew(T_ONLINE, dev->seg_reg+MODE_REG_0); 285 writew(~(TRANSMIT_DONE|TCQ_NOT_EMPTY), dev->seg_reg+SEG_MASK_REG); 286 writew(TRANSMIT_DONE, dev->seg_reg+SEG_INTR_STATUS_REG); 287 vcstatus->cnt = 0; 288 } /* foundLockUp */ 289 290 } /* if an ABR VC */ 291 292 293 } 294 295 /* 296 ** Conversion of 24-bit cellrate (cells/sec) to 16-bit floating point format. 297 ** 298 ** +----+----+------------------+-------------------------------+ 299 ** | R | NZ | 5-bit exponent | 9-bit mantissa | 300 ** +----+----+------------------+-------------------------------+ 301 ** 302 ** R = reserved (written as 0) 303 ** NZ = 0 if 0 cells/sec; 1 otherwise 304 ** 305 ** if NZ = 1, rate = 1.mmmmmmmmm x 2^(eeeee) cells/sec 306 */ 307 static u16 308 cellrate_to_float(u32 cr) 309 { 310 311 #define NZ 0x4000 312 #define M_BITS 9 /* Number of bits in mantissa */ 313 #define E_BITS 5 /* Number of bits in exponent */ 314 #define M_MASK 0x1ff 315 #define E_MASK 0x1f 316 u16 flot; 317 u32 tmp = cr & 0x00ffffff; 318 int i = 0; 319 if (cr == 0) 320 return 0; 321 while (tmp != 1) { 322 tmp >>= 1; 323 i++; 324 } 325 if (i == M_BITS) 326 flot = NZ | (i << M_BITS) | (cr & M_MASK); 327 else if (i < M_BITS) 328 flot = NZ | (i << M_BITS) | ((cr << (M_BITS - i)) & M_MASK); 329 else 330 flot = NZ | (i << M_BITS) | ((cr >> (i - M_BITS)) & M_MASK); 331 return flot; 332 } 333 334 #if 0 335 /* 336 ** Conversion of 16-bit floating point format to 24-bit cellrate (cells/sec). 337 */ 338 static u32 339 float_to_cellrate(u16 rate) 340 { 341 u32 exp, mantissa, cps; 342 if ((rate & NZ) == 0) 343 return 0; 344 exp = (rate >> M_BITS) & E_MASK; 345 mantissa = rate & M_MASK; 346 if (exp == 0) 347 return 1; 348 cps = (1 << M_BITS) | mantissa; 349 if (exp == M_BITS) 350 cps = cps; 351 else if (exp > M_BITS) 352 cps <<= (exp - M_BITS); 353 else 354 cps >>= (M_BITS - exp); 355 return cps; 356 } 357 #endif 358 359 static void init_abr_vc (IADEV *dev, srv_cls_param_t *srv_p) { 360 srv_p->class_type = ATM_ABR; 361 srv_p->pcr = dev->LineRate; 362 srv_p->mcr = 0; 363 srv_p->icr = 0x055cb7; 364 srv_p->tbe = 0xffffff; 365 srv_p->frtt = 0x3a; 366 srv_p->rif = 0xf; 367 srv_p->rdf = 0xb; 368 srv_p->nrm = 0x4; 369 srv_p->trm = 0x7; 370 srv_p->cdf = 0x3; 371 srv_p->adtf = 50; 372 } 373 374 static int 375 ia_open_abr_vc(IADEV *dev, srv_cls_param_t *srv_p, 376 struct atm_vcc *vcc, u8 flag) 377 { 378 f_vc_abr_entry *f_abr_vc; 379 r_vc_abr_entry *r_abr_vc; 380 u32 icr; 381 u8 trm, nrm, crm; 382 u16 adtf, air, *ptr16; 383 f_abr_vc =(f_vc_abr_entry *)dev->MAIN_VC_TABLE_ADDR; 384 f_abr_vc += vcc->vci; 385 switch (flag) { 386 case 1: /* FFRED initialization */ 387 #if 0 /* sanity check */ 388 if (srv_p->pcr == 0) 389 return INVALID_PCR; 390 if (srv_p->pcr > dev->LineRate) 391 srv_p->pcr = dev->LineRate; 392 if ((srv_p->mcr + dev->sum_mcr) > dev->LineRate) 393 return MCR_UNAVAILABLE; 394 if (srv_p->mcr > srv_p->pcr) 395 return INVALID_MCR; 396 if (!(srv_p->icr)) 397 srv_p->icr = srv_p->pcr; 398 if ((srv_p->icr < srv_p->mcr) || (srv_p->icr > srv_p->pcr)) 399 return INVALID_ICR; 400 if ((srv_p->tbe < MIN_TBE) || (srv_p->tbe > MAX_TBE)) 401 return INVALID_TBE; 402 if ((srv_p->frtt < MIN_FRTT) || (srv_p->frtt > MAX_FRTT)) 403 return INVALID_FRTT; 404 if (srv_p->nrm > MAX_NRM) 405 return INVALID_NRM; 406 if (srv_p->trm > MAX_TRM) 407 return INVALID_TRM; 408 if (srv_p->adtf > MAX_ADTF) 409 return INVALID_ADTF; 410 else if (srv_p->adtf == 0) 411 srv_p->adtf = 1; 412 if (srv_p->cdf > MAX_CDF) 413 return INVALID_CDF; 414 if (srv_p->rif > MAX_RIF) 415 return INVALID_RIF; 416 if (srv_p->rdf > MAX_RDF) 417 return INVALID_RDF; 418 #endif 419 memset ((caddr_t)f_abr_vc, 0, sizeof(*f_abr_vc)); 420 f_abr_vc->f_vc_type = ABR; 421 nrm = 2 << srv_p->nrm; /* (2 ** (srv_p->nrm +1)) */ 422 /* i.e 2**n = 2 << (n-1) */ 423 f_abr_vc->f_nrm = nrm << 8 | nrm; 424 trm = 100000/(2 << (16 - srv_p->trm)); 425 if ( trm == 0) trm = 1; 426 f_abr_vc->f_nrmexp =(((srv_p->nrm +1) & 0x0f) << 12)|(MRM << 8) | trm; 427 crm = srv_p->tbe / nrm; 428 if (crm == 0) crm = 1; 429 f_abr_vc->f_crm = crm & 0xff; 430 f_abr_vc->f_pcr = cellrate_to_float(srv_p->pcr); 431 icr = min( srv_p->icr, (srv_p->tbe > srv_p->frtt) ? 432 ((srv_p->tbe/srv_p->frtt)*1000000) : 433 (1000000/(srv_p->frtt/srv_p->tbe))); 434 f_abr_vc->f_icr = cellrate_to_float(icr); 435 adtf = (10000 * srv_p->adtf)/8192; 436 if (adtf == 0) adtf = 1; 437 f_abr_vc->f_cdf = ((7 - srv_p->cdf) << 12 | adtf) & 0xfff; 438 f_abr_vc->f_mcr = cellrate_to_float(srv_p->mcr); 439 f_abr_vc->f_acr = f_abr_vc->f_icr; 440 f_abr_vc->f_status = 0x0042; 441 break; 442 case 0: /* RFRED initialization */ 443 ptr16 = (u_short *)(dev->reass_ram + REASS_TABLE*dev->memSize); 444 *(ptr16 + vcc->vci) = NO_AAL5_PKT | REASS_ABR; 445 r_abr_vc = (r_vc_abr_entry*)(dev->reass_ram+ABR_VC_TABLE*dev->memSize); 446 r_abr_vc += vcc->vci; 447 r_abr_vc->r_status_rdf = (15 - srv_p->rdf) & 0x000f; 448 air = srv_p->pcr << (15 - srv_p->rif); 449 if (air == 0) air = 1; 450 r_abr_vc->r_air = cellrate_to_float(air); 451 dev->testTable[vcc->vci]->vc_status = VC_ACTIVE | VC_ABR; 452 dev->sum_mcr += srv_p->mcr; 453 dev->n_abr++; 454 break; 455 default: 456 break; 457 } 458 return 0; 459 } 460 static int ia_cbr_setup (IADEV *dev, struct atm_vcc *vcc) { 461 u32 rateLow=0, rateHigh, rate; 462 int entries; 463 struct ia_vcc *ia_vcc; 464 465 int idealSlot =0, testSlot, toBeAssigned, inc; 466 u32 spacing; 467 u16 *SchedTbl, *TstSchedTbl; 468 u16 cbrVC, vcIndex; 469 u32 fracSlot = 0; 470 u32 sp_mod = 0; 471 u32 sp_mod2 = 0; 472 473 /* IpAdjustTrafficParams */ 474 if (vcc->qos.txtp.max_pcr <= 0) { 475 IF_ERR(printk("PCR for CBR not defined\n");) 476 return -1; 477 } 478 rate = vcc->qos.txtp.max_pcr; 479 entries = rate / dev->Granularity; 480 IF_CBR(printk("CBR: CBR entries=0x%x for rate=0x%x & Gran=0x%x\n", 481 entries, rate, dev->Granularity);) 482 if (entries < 1) 483 IF_CBR(printk("CBR: Bandwidth smaller than granularity of CBR table\n");) 484 rateLow = entries * dev->Granularity; 485 rateHigh = (entries + 1) * dev->Granularity; 486 if (3*(rate - rateLow) > (rateHigh - rate)) 487 entries++; 488 if (entries > dev->CbrRemEntries) { 489 IF_CBR(printk("CBR: Not enough bandwidth to support this PCR.\n");) 490 IF_CBR(printk("Entries = 0x%x, CbrRemEntries = 0x%x.\n", 491 entries, dev->CbrRemEntries);) 492 return -EBUSY; 493 } 494 495 ia_vcc = INPH_IA_VCC(vcc); 496 ia_vcc->NumCbrEntry = entries; 497 dev->sum_mcr += entries * dev->Granularity; 498 /* IaFFrednInsertCbrSched */ 499 // Starting at an arbitrary location, place the entries into the table 500 // as smoothly as possible 501 cbrVC = 0; 502 spacing = dev->CbrTotEntries / entries; 503 sp_mod = dev->CbrTotEntries % entries; // get modulo 504 toBeAssigned = entries; 505 fracSlot = 0; 506 vcIndex = vcc->vci; 507 IF_CBR(printk("Vci=0x%x,Spacing=0x%x,Sp_mod=0x%x\n",vcIndex,spacing,sp_mod);) 508 while (toBeAssigned) 509 { 510 // If this is the first time, start the table loading for this connection 511 // as close to entryPoint as possible. 512 if (toBeAssigned == entries) 513 { 514 idealSlot = dev->CbrEntryPt; 515 dev->CbrEntryPt += 2; // Adding 2 helps to prevent clumping 516 if (dev->CbrEntryPt >= dev->CbrTotEntries) 517 dev->CbrEntryPt -= dev->CbrTotEntries;// Wrap if necessary 518 } else { 519 idealSlot += (u32)(spacing + fracSlot); // Point to the next location 520 // in the table that would be smoothest 521 fracSlot = ((sp_mod + sp_mod2) / entries); // get new integer part 522 sp_mod2 = ((sp_mod + sp_mod2) % entries); // calc new fractional part 523 } 524 if (idealSlot >= (int)dev->CbrTotEntries) 525 idealSlot -= dev->CbrTotEntries; 526 // Continuously check around this ideal value until a null 527 // location is encountered. 528 SchedTbl = (u16*)(dev->seg_ram+CBR_SCHED_TABLE*dev->memSize); 529 inc = 0; 530 testSlot = idealSlot; 531 TstSchedTbl = (u16*)(SchedTbl+testSlot); //set index and read in value 532 IF_CBR(printk("CBR Testslot 0x%x AT Location 0x%p, NumToAssign=%d\n", 533 testSlot, TstSchedTbl,toBeAssigned);) 534 memcpy((caddr_t)&cbrVC,(caddr_t)TstSchedTbl,sizeof(cbrVC)); 535 while (cbrVC) // If another VC at this location, we have to keep looking 536 { 537 inc++; 538 testSlot = idealSlot - inc; 539 if (testSlot < 0) { // Wrap if necessary 540 testSlot += dev->CbrTotEntries; 541 IF_CBR(printk("Testslot Wrap. STable Start=0x%p,Testslot=%d\n", 542 SchedTbl,testSlot);) 543 } 544 TstSchedTbl = (u16 *)(SchedTbl + testSlot); // set table index 545 memcpy((caddr_t)&cbrVC,(caddr_t)TstSchedTbl,sizeof(cbrVC)); 546 if (!cbrVC) 547 break; 548 testSlot = idealSlot + inc; 549 if (testSlot >= (int)dev->CbrTotEntries) { // Wrap if necessary 550 testSlot -= dev->CbrTotEntries; 551 IF_CBR(printk("TotCbrEntries=%d",dev->CbrTotEntries);) 552 IF_CBR(printk(" Testslot=0x%x ToBeAssgned=%d\n", 553 testSlot, toBeAssigned);) 554 } 555 // set table index and read in value 556 TstSchedTbl = (u16*)(SchedTbl + testSlot); 557 IF_CBR(printk("Reading CBR Tbl from 0x%p, CbrVal=0x%x Iteration %d\n", 558 TstSchedTbl,cbrVC,inc);) 559 memcpy((caddr_t)&cbrVC,(caddr_t)TstSchedTbl,sizeof(cbrVC)); 560 } /* while */ 561 // Move this VCI number into this location of the CBR Sched table. 562 memcpy((caddr_t)TstSchedTbl, (caddr_t)&vcIndex, sizeof(*TstSchedTbl)); 563 dev->CbrRemEntries--; 564 toBeAssigned--; 565 } /* while */ 566 567 /* IaFFrednCbrEnable */ 568 dev->NumEnabledCBR++; 569 if (dev->NumEnabledCBR == 1) { 570 writew((CBR_EN | UBR_EN | ABR_EN | (0x23 << 2)), dev->seg_reg+STPARMS); 571 IF_CBR(printk("CBR is enabled\n");) 572 } 573 return 0; 574 } 575 static void ia_cbrVc_close (struct atm_vcc *vcc) { 576 IADEV *iadev; 577 u16 *SchedTbl, NullVci = 0; 578 u32 i, NumFound; 579 580 iadev = INPH_IA_DEV(vcc->dev); 581 iadev->NumEnabledCBR--; 582 SchedTbl = (u16*)(iadev->seg_ram+CBR_SCHED_TABLE*iadev->memSize); 583 if (iadev->NumEnabledCBR == 0) { 584 writew((UBR_EN | ABR_EN | (0x23 << 2)), iadev->seg_reg+STPARMS); 585 IF_CBR (printk("CBR support disabled\n");) 586 } 587 NumFound = 0; 588 for (i=0; i < iadev->CbrTotEntries; i++) 589 { 590 if (*SchedTbl == vcc->vci) { 591 iadev->CbrRemEntries++; 592 *SchedTbl = NullVci; 593 IF_CBR(NumFound++;) 594 } 595 SchedTbl++; 596 } 597 IF_CBR(printk("Exit ia_cbrVc_close, NumRemoved=%d\n",NumFound);) 598 } 599 600 static int ia_avail_descs(IADEV *iadev) { 601 int tmp = 0; 602 ia_hack_tcq(iadev); 603 if (iadev->host_tcq_wr >= iadev->ffL.tcq_rd) 604 tmp = (iadev->host_tcq_wr - iadev->ffL.tcq_rd) / 2; 605 else 606 tmp = (iadev->ffL.tcq_ed - iadev->ffL.tcq_rd + 2 + iadev->host_tcq_wr - 607 iadev->ffL.tcq_st) / 2; 608 return tmp; 609 } 610 611 static int ia_pkt_tx (struct atm_vcc *vcc, struct sk_buff *skb); 612 613 static int ia_que_tx (IADEV *iadev) { 614 struct sk_buff *skb; 615 int num_desc; 616 struct atm_vcc *vcc; 617 num_desc = ia_avail_descs(iadev); 618 619 while (num_desc && (skb = skb_dequeue(&iadev->tx_backlog))) { 620 if (!(vcc = ATM_SKB(skb)->vcc)) { 621 dev_kfree_skb_any(skb); 622 printk("ia_que_tx: Null vcc\n"); 623 break; 624 } 625 if (!test_bit(ATM_VF_READY,&vcc->flags)) { 626 dev_kfree_skb_any(skb); 627 printk("Free the SKB on closed vci %d \n", vcc->vci); 628 break; 629 } 630 if (ia_pkt_tx (vcc, skb)) { 631 skb_queue_head(&iadev->tx_backlog, skb); 632 } 633 num_desc--; 634 } 635 return 0; 636 } 637 638 static void ia_tx_poll (IADEV *iadev) { 639 struct atm_vcc *vcc = NULL; 640 struct sk_buff *skb = NULL, *skb1 = NULL; 641 struct ia_vcc *iavcc; 642 IARTN_Q * rtne; 643 644 ia_hack_tcq(iadev); 645 while ( (rtne = ia_deque_rtn_q(&iadev->tx_return_q))) { 646 skb = rtne->data.txskb; 647 if (!skb) { 648 printk("ia_tx_poll: skb is null\n"); 649 goto out; 650 } 651 vcc = ATM_SKB(skb)->vcc; 652 if (!vcc) { 653 printk("ia_tx_poll: vcc is null\n"); 654 dev_kfree_skb_any(skb); 655 goto out; 656 } 657 658 iavcc = INPH_IA_VCC(vcc); 659 if (!iavcc) { 660 printk("ia_tx_poll: iavcc is null\n"); 661 dev_kfree_skb_any(skb); 662 goto out; 663 } 664 665 skb1 = skb_dequeue(&iavcc->txing_skb); 666 while (skb1 && (skb1 != skb)) { 667 if (!(IA_SKB_STATE(skb1) & IA_TX_DONE)) { 668 printk("IA_tx_intr: Vci %d lost pkt!!!\n", vcc->vci); 669 } 670 IF_ERR(printk("Release the SKB not match\n");) 671 if ((vcc->pop) && (skb1->len != 0)) 672 { 673 vcc->pop(vcc, skb1); 674 IF_EVENT(printk("Transmit Done - skb 0x%lx return\n", 675 (long)skb1);) 676 } 677 else 678 dev_kfree_skb_any(skb1); 679 skb1 = skb_dequeue(&iavcc->txing_skb); 680 } 681 if (!skb1) { 682 IF_EVENT(printk("IA: Vci %d - skb not found requed\n",vcc->vci);) 683 ia_enque_head_rtn_q (&iadev->tx_return_q, rtne); 684 break; 685 } 686 if ((vcc->pop) && (skb->len != 0)) 687 { 688 vcc->pop(vcc, skb); 689 IF_EVENT(printk("Tx Done - skb 0x%lx return\n",(long)skb);) 690 } 691 else 692 dev_kfree_skb_any(skb); 693 kfree(rtne); 694 } 695 ia_que_tx(iadev); 696 out: 697 return; 698 } 699 #if 0 700 static void ia_eeprom_put (IADEV *iadev, u32 addr, u_short val) 701 { 702 u32 t; 703 int i; 704 /* 705 * Issue a command to enable writes to the NOVRAM 706 */ 707 NVRAM_CMD (EXTEND + EWEN); 708 NVRAM_CLR_CE; 709 /* 710 * issue the write command 711 */ 712 NVRAM_CMD(IAWRITE + addr); 713 /* 714 * Send the data, starting with D15, then D14, and so on for 16 bits 715 */ 716 for (i=15; i>=0; i--) { 717 NVRAM_CLKOUT (val & 0x8000); 718 val <<= 1; 719 } 720 NVRAM_CLR_CE; 721 CFG_OR(NVCE); 722 t = readl(iadev->reg+IPHASE5575_EEPROM_ACCESS); 723 while (!(t & NVDO)) 724 t = readl(iadev->reg+IPHASE5575_EEPROM_ACCESS); 725 726 NVRAM_CLR_CE; 727 /* 728 * disable writes again 729 */ 730 NVRAM_CMD(EXTEND + EWDS) 731 NVRAM_CLR_CE; 732 CFG_AND(~NVDI); 733 } 734 #endif 735 736 static u16 ia_eeprom_get (IADEV *iadev, u32 addr) 737 { 738 u_short val; 739 u32 t; 740 int i; 741 /* 742 * Read the first bit that was clocked with the falling edge of the 743 * the last command data clock 744 */ 745 NVRAM_CMD(IAREAD + addr); 746 /* 747 * Now read the rest of the bits, the next bit read is D14, then D13, 748 * and so on. 749 */ 750 val = 0; 751 for (i=15; i>=0; i--) { 752 NVRAM_CLKIN(t); 753 val |= (t << i); 754 } 755 NVRAM_CLR_CE; 756 CFG_AND(~NVDI); 757 return val; 758 } 759 760 static void ia_hw_type(IADEV *iadev) { 761 u_short memType = ia_eeprom_get(iadev, 25); 762 iadev->memType = memType; 763 if ((memType & MEM_SIZE_MASK) == MEM_SIZE_1M) { 764 iadev->num_tx_desc = IA_TX_BUF; 765 iadev->tx_buf_sz = IA_TX_BUF_SZ; 766 iadev->num_rx_desc = IA_RX_BUF; 767 iadev->rx_buf_sz = IA_RX_BUF_SZ; 768 } else if ((memType & MEM_SIZE_MASK) == MEM_SIZE_512K) { 769 if (IA_TX_BUF == DFL_TX_BUFFERS) 770 iadev->num_tx_desc = IA_TX_BUF / 2; 771 else 772 iadev->num_tx_desc = IA_TX_BUF; 773 iadev->tx_buf_sz = IA_TX_BUF_SZ; 774 if (IA_RX_BUF == DFL_RX_BUFFERS) 775 iadev->num_rx_desc = IA_RX_BUF / 2; 776 else 777 iadev->num_rx_desc = IA_RX_BUF; 778 iadev->rx_buf_sz = IA_RX_BUF_SZ; 779 } 780 else { 781 if (IA_TX_BUF == DFL_TX_BUFFERS) 782 iadev->num_tx_desc = IA_TX_BUF / 8; 783 else 784 iadev->num_tx_desc = IA_TX_BUF; 785 iadev->tx_buf_sz = IA_TX_BUF_SZ; 786 if (IA_RX_BUF == DFL_RX_BUFFERS) 787 iadev->num_rx_desc = IA_RX_BUF / 8; 788 else 789 iadev->num_rx_desc = IA_RX_BUF; 790 iadev->rx_buf_sz = IA_RX_BUF_SZ; 791 } 792 iadev->rx_pkt_ram = TX_PACKET_RAM + (iadev->num_tx_desc * iadev->tx_buf_sz); 793 IF_INIT(printk("BUF: tx=%d,sz=%d rx=%d sz= %d rx_pkt_ram=%d\n", 794 iadev->num_tx_desc, iadev->tx_buf_sz, iadev->num_rx_desc, 795 iadev->rx_buf_sz, iadev->rx_pkt_ram);) 796 797 #if 0 798 if ((memType & FE_MASK) == FE_SINGLE_MODE) { 799 iadev->phy_type = PHY_OC3C_S; 800 else if ((memType & FE_MASK) == FE_UTP_OPTION) 801 iadev->phy_type = PHY_UTP155; 802 else 803 iadev->phy_type = PHY_OC3C_M; 804 #endif 805 806 iadev->phy_type = memType & FE_MASK; 807 IF_INIT(printk("memType = 0x%x iadev->phy_type = 0x%x\n", 808 memType,iadev->phy_type);) 809 if (iadev->phy_type == FE_25MBIT_PHY) 810 iadev->LineRate = (u32)(((25600000/8)*26)/(27*53)); 811 else if (iadev->phy_type == FE_DS3_PHY) 812 iadev->LineRate = (u32)(((44736000/8)*26)/(27*53)); 813 else if (iadev->phy_type == FE_E3_PHY) 814 iadev->LineRate = (u32)(((34368000/8)*26)/(27*53)); 815 else 816 iadev->LineRate = (u32)(ATM_OC3_PCR); 817 IF_INIT(printk("iadev->LineRate = %d \n", iadev->LineRate);) 818 819 } 820 821 static u32 ia_phy_read32(struct iadev_priv *ia, unsigned int reg) 822 { 823 return readl(ia->phy + (reg >> 2)); 824 } 825 826 static void ia_phy_write32(struct iadev_priv *ia, unsigned int reg, u32 val) 827 { 828 writel(val, ia->phy + (reg >> 2)); 829 } 830 831 static void ia_frontend_intr(struct iadev_priv *iadev) 832 { 833 u32 status; 834 835 if (iadev->phy_type & FE_25MBIT_PHY) { 836 status = ia_phy_read32(iadev, MB25_INTR_STATUS); 837 iadev->carrier_detect = (status & MB25_IS_GSB) ? 1 : 0; 838 } else if (iadev->phy_type & FE_DS3_PHY) { 839 ia_phy_read32(iadev, SUNI_DS3_FRM_INTR_STAT); 840 status = ia_phy_read32(iadev, SUNI_DS3_FRM_STAT); 841 iadev->carrier_detect = (status & SUNI_DS3_LOSV) ? 0 : 1; 842 } else if (iadev->phy_type & FE_E3_PHY) { 843 ia_phy_read32(iadev, SUNI_E3_FRM_MAINT_INTR_IND); 844 status = ia_phy_read32(iadev, SUNI_E3_FRM_FRAM_INTR_IND_STAT); 845 iadev->carrier_detect = (status & SUNI_E3_LOS) ? 0 : 1; 846 } else { 847 status = ia_phy_read32(iadev, SUNI_RSOP_STATUS); 848 iadev->carrier_detect = (status & SUNI_LOSV) ? 0 : 1; 849 } 850 851 printk(KERN_INFO "IA: SUNI carrier %s\n", 852 iadev->carrier_detect ? "detected" : "lost signal"); 853 } 854 855 static void ia_mb25_init(struct iadev_priv *iadev) 856 { 857 #if 0 858 mb25->mb25_master_ctrl = MB25_MC_DRIC | MB25_MC_DREC | MB25_MC_ENABLED; 859 #endif 860 ia_phy_write32(iadev, MB25_MASTER_CTRL, MB25_MC_DRIC | MB25_MC_DREC); 861 ia_phy_write32(iadev, MB25_DIAG_CONTROL, 0); 862 863 iadev->carrier_detect = 864 (ia_phy_read32(iadev, MB25_INTR_STATUS) & MB25_IS_GSB) ? 1 : 0; 865 } 866 867 struct ia_reg { 868 u16 reg; 869 u16 val; 870 }; 871 872 static void ia_phy_write(struct iadev_priv *iadev, 873 const struct ia_reg *regs, int len) 874 { 875 while (len--) { 876 ia_phy_write32(iadev, regs->reg, regs->val); 877 regs++; 878 } 879 } 880 881 static void ia_suni_pm7345_init_ds3(struct iadev_priv *iadev) 882 { 883 static const struct ia_reg suni_ds3_init[] = { 884 { SUNI_DS3_FRM_INTR_ENBL, 0x17 }, 885 { SUNI_DS3_FRM_CFG, 0x01 }, 886 { SUNI_DS3_TRAN_CFG, 0x01 }, 887 { SUNI_CONFIG, 0 }, 888 { SUNI_SPLR_CFG, 0 }, 889 { SUNI_SPLT_CFG, 0 } 890 }; 891 u32 status; 892 893 status = ia_phy_read32(iadev, SUNI_DS3_FRM_STAT); 894 iadev->carrier_detect = (status & SUNI_DS3_LOSV) ? 0 : 1; 895 896 ia_phy_write(iadev, suni_ds3_init, ARRAY_SIZE(suni_ds3_init)); 897 } 898 899 static void ia_suni_pm7345_init_e3(struct iadev_priv *iadev) 900 { 901 static const struct ia_reg suni_e3_init[] = { 902 { SUNI_E3_FRM_FRAM_OPTIONS, 0x04 }, 903 { SUNI_E3_FRM_MAINT_OPTIONS, 0x20 }, 904 { SUNI_E3_FRM_FRAM_INTR_ENBL, 0x1d }, 905 { SUNI_E3_FRM_MAINT_INTR_ENBL, 0x30 }, 906 { SUNI_E3_TRAN_STAT_DIAG_OPTIONS, 0 }, 907 { SUNI_E3_TRAN_FRAM_OPTIONS, 0x01 }, 908 { SUNI_CONFIG, SUNI_PM7345_E3ENBL }, 909 { SUNI_SPLR_CFG, 0x41 }, 910 { SUNI_SPLT_CFG, 0x41 } 911 }; 912 u32 status; 913 914 status = ia_phy_read32(iadev, SUNI_E3_FRM_FRAM_INTR_IND_STAT); 915 iadev->carrier_detect = (status & SUNI_E3_LOS) ? 0 : 1; 916 ia_phy_write(iadev, suni_e3_init, ARRAY_SIZE(suni_e3_init)); 917 } 918 919 static void ia_suni_pm7345_init(struct iadev_priv *iadev) 920 { 921 static const struct ia_reg suni_init[] = { 922 /* Enable RSOP loss of signal interrupt. */ 923 { SUNI_INTR_ENBL, 0x28 }, 924 /* Clear error counters. */ 925 { SUNI_ID_RESET, 0 }, 926 /* Clear "PMCTST" in master test register. */ 927 { SUNI_MASTER_TEST, 0 }, 928 929 { SUNI_RXCP_CTRL, 0x2c }, 930 { SUNI_RXCP_FCTRL, 0x81 }, 931 932 { SUNI_RXCP_IDLE_PAT_H1, 0 }, 933 { SUNI_RXCP_IDLE_PAT_H2, 0 }, 934 { SUNI_RXCP_IDLE_PAT_H3, 0 }, 935 { SUNI_RXCP_IDLE_PAT_H4, 0x01 }, 936 937 { SUNI_RXCP_IDLE_MASK_H1, 0xff }, 938 { SUNI_RXCP_IDLE_MASK_H2, 0xff }, 939 { SUNI_RXCP_IDLE_MASK_H3, 0xff }, 940 { SUNI_RXCP_IDLE_MASK_H4, 0xfe }, 941 942 { SUNI_RXCP_CELL_PAT_H1, 0 }, 943 { SUNI_RXCP_CELL_PAT_H2, 0 }, 944 { SUNI_RXCP_CELL_PAT_H3, 0 }, 945 { SUNI_RXCP_CELL_PAT_H4, 0x01 }, 946 947 { SUNI_RXCP_CELL_MASK_H1, 0xff }, 948 { SUNI_RXCP_CELL_MASK_H2, 0xff }, 949 { SUNI_RXCP_CELL_MASK_H3, 0xff }, 950 { SUNI_RXCP_CELL_MASK_H4, 0xff }, 951 952 { SUNI_TXCP_CTRL, 0xa4 }, 953 { SUNI_TXCP_INTR_EN_STS, 0x10 }, 954 { SUNI_TXCP_IDLE_PAT_H5, 0x55 } 955 }; 956 957 if (iadev->phy_type & FE_DS3_PHY) 958 ia_suni_pm7345_init_ds3(iadev); 959 else 960 ia_suni_pm7345_init_e3(iadev); 961 962 ia_phy_write(iadev, suni_init, ARRAY_SIZE(suni_init)); 963 964 ia_phy_write32(iadev, SUNI_CONFIG, ia_phy_read32(iadev, SUNI_CONFIG) & 965 ~(SUNI_PM7345_LLB | SUNI_PM7345_CLB | 966 SUNI_PM7345_DLB | SUNI_PM7345_PLB)); 967 #ifdef __SNMP__ 968 suni_pm7345->suni_rxcp_intr_en_sts |= SUNI_OOCDE; 969 #endif /* __SNMP__ */ 970 return; 971 } 972 973 974 /***************************** IA_LIB END *****************************/ 975 976 #ifdef CONFIG_ATM_IA_DEBUG 977 static int tcnter = 0; 978 static void xdump( u_char* cp, int length, char* prefix ) 979 { 980 int col, count; 981 u_char prntBuf[120]; 982 u_char* pBuf = prntBuf; 983 count = 0; 984 while(count < length){ 985 pBuf += sprintf( pBuf, "%s", prefix ); 986 for(col = 0;count + col < length && col < 16; col++){ 987 if (col != 0 && (col % 4) == 0) 988 pBuf += sprintf( pBuf, " " ); 989 pBuf += sprintf( pBuf, "%02X ", cp[count + col] ); 990 } 991 while(col++ < 16){ /* pad end of buffer with blanks */ 992 if ((col % 4) == 0) 993 sprintf( pBuf, " " ); 994 pBuf += sprintf( pBuf, " " ); 995 } 996 pBuf += sprintf( pBuf, " " ); 997 for(col = 0;count + col < length && col < 16; col++){ 998 if (isprint((int)cp[count + col])) 999 pBuf += sprintf( pBuf, "%c", cp[count + col] ); 1000 else 1001 pBuf += sprintf( pBuf, "." ); 1002 } 1003 printk("%s\n", prntBuf); 1004 count += col; 1005 pBuf = prntBuf; 1006 } 1007 1008 } /* close xdump(... */ 1009 #endif /* CONFIG_ATM_IA_DEBUG */ 1010 1011 1012 static struct atm_dev *ia_boards = NULL; 1013 1014 #define ACTUAL_RAM_BASE \ 1015 RAM_BASE*((iadev->mem)/(128 * 1024)) 1016 #define ACTUAL_SEG_RAM_BASE \ 1017 IPHASE5575_FRAG_CONTROL_RAM_BASE*((iadev->mem)/(128 * 1024)) 1018 #define ACTUAL_REASS_RAM_BASE \ 1019 IPHASE5575_REASS_CONTROL_RAM_BASE*((iadev->mem)/(128 * 1024)) 1020 1021 1022 /*-- some utilities and memory allocation stuff will come here -------------*/ 1023 1024 static void desc_dbg(IADEV *iadev) { 1025 1026 u_short tcq_wr_ptr, tcq_st_ptr, tcq_ed_ptr; 1027 u32 i; 1028 void __iomem *tmp; 1029 // regval = readl((u32)ia_cmds->maddr); 1030 tcq_wr_ptr = readw(iadev->seg_reg+TCQ_WR_PTR); 1031 printk("B_tcq_wr = 0x%x desc = %d last desc = %d\n", 1032 tcq_wr_ptr, readw(iadev->seg_ram+tcq_wr_ptr), 1033 readw(iadev->seg_ram+tcq_wr_ptr-2)); 1034 printk(" host_tcq_wr = 0x%x host_tcq_rd = 0x%x \n", iadev->host_tcq_wr, 1035 iadev->ffL.tcq_rd); 1036 tcq_st_ptr = readw(iadev->seg_reg+TCQ_ST_ADR); 1037 tcq_ed_ptr = readw(iadev->seg_reg+TCQ_ED_ADR); 1038 printk("tcq_st_ptr = 0x%x tcq_ed_ptr = 0x%x \n", tcq_st_ptr, tcq_ed_ptr); 1039 i = 0; 1040 while (tcq_st_ptr != tcq_ed_ptr) { 1041 tmp = iadev->seg_ram+tcq_st_ptr; 1042 printk("TCQ slot %d desc = %d Addr = %p\n", i++, readw(tmp), tmp); 1043 tcq_st_ptr += 2; 1044 } 1045 for(i=0; i <iadev->num_tx_desc; i++) 1046 printk("Desc_tbl[%d] = %d \n", i, iadev->desc_tbl[i].timestamp); 1047 } 1048 1049 1050 /*----------------------------- Receiving side stuff --------------------------*/ 1051 1052 static void rx_excp_rcvd(struct atm_dev *dev) 1053 { 1054 #if 0 /* closing the receiving size will cause too many excp int */ 1055 IADEV *iadev; 1056 u_short state; 1057 u_short excpq_rd_ptr; 1058 //u_short *ptr; 1059 int vci, error = 1; 1060 iadev = INPH_IA_DEV(dev); 1061 state = readl(iadev->reass_reg + STATE_REG) & 0xffff; 1062 while((state & EXCPQ_EMPTY) != EXCPQ_EMPTY) 1063 { printk("state = %x \n", state); 1064 excpq_rd_ptr = readw(iadev->reass_reg + EXCP_Q_RD_PTR) & 0xffff; 1065 printk("state = %x excpq_rd_ptr = %x \n", state, excpq_rd_ptr); 1066 if (excpq_rd_ptr == *(u16*)(iadev->reass_reg + EXCP_Q_WR_PTR)) 1067 IF_ERR(printk("excpq_rd_ptr is wrong!!!\n");) 1068 // TODO: update exception stat 1069 vci = readw(iadev->reass_ram+excpq_rd_ptr); 1070 error = readw(iadev->reass_ram+excpq_rd_ptr+2) & 0x0007; 1071 // pwang_test 1072 excpq_rd_ptr += 4; 1073 if (excpq_rd_ptr > (readw(iadev->reass_reg + EXCP_Q_ED_ADR)& 0xffff)) 1074 excpq_rd_ptr = readw(iadev->reass_reg + EXCP_Q_ST_ADR)& 0xffff; 1075 writew( excpq_rd_ptr, iadev->reass_reg + EXCP_Q_RD_PTR); 1076 state = readl(iadev->reass_reg + STATE_REG) & 0xffff; 1077 } 1078 #endif 1079 } 1080 1081 static void free_desc(struct atm_dev *dev, int desc) 1082 { 1083 IADEV *iadev; 1084 iadev = INPH_IA_DEV(dev); 1085 writew(desc, iadev->reass_ram+iadev->rfL.fdq_wr); 1086 iadev->rfL.fdq_wr +=2; 1087 if (iadev->rfL.fdq_wr > iadev->rfL.fdq_ed) 1088 iadev->rfL.fdq_wr = iadev->rfL.fdq_st; 1089 writew(iadev->rfL.fdq_wr, iadev->reass_reg+FREEQ_WR_PTR); 1090 } 1091 1092 1093 static int rx_pkt(struct atm_dev *dev) 1094 { 1095 IADEV *iadev; 1096 struct atm_vcc *vcc; 1097 unsigned short status; 1098 struct rx_buf_desc __iomem *buf_desc_ptr; 1099 int desc; 1100 struct dle* wr_ptr; 1101 int len; 1102 struct sk_buff *skb; 1103 u_int buf_addr, dma_addr; 1104 1105 iadev = INPH_IA_DEV(dev); 1106 if (iadev->rfL.pcq_rd == (readw(iadev->reass_reg+PCQ_WR_PTR)&0xffff)) 1107 { 1108 printk(KERN_ERR DEV_LABEL "(itf %d) Receive queue empty\n", dev->number); 1109 return -EINVAL; 1110 } 1111 /* mask 1st 3 bits to get the actual descno. */ 1112 desc = readw(iadev->reass_ram+iadev->rfL.pcq_rd) & 0x1fff; 1113 IF_RX(printk("reass_ram = %p iadev->rfL.pcq_rd = 0x%x desc = %d\n", 1114 iadev->reass_ram, iadev->rfL.pcq_rd, desc); 1115 printk(" pcq_wr_ptr = 0x%x\n", 1116 readw(iadev->reass_reg+PCQ_WR_PTR)&0xffff);) 1117 /* update the read pointer - maybe we shud do this in the end*/ 1118 if ( iadev->rfL.pcq_rd== iadev->rfL.pcq_ed) 1119 iadev->rfL.pcq_rd = iadev->rfL.pcq_st; 1120 else 1121 iadev->rfL.pcq_rd += 2; 1122 writew(iadev->rfL.pcq_rd, iadev->reass_reg+PCQ_RD_PTR); 1123 1124 /* get the buffer desc entry. 1125 update stuff. - doesn't seem to be any update necessary 1126 */ 1127 buf_desc_ptr = iadev->RX_DESC_BASE_ADDR; 1128 /* make the ptr point to the corresponding buffer desc entry */ 1129 buf_desc_ptr += desc; 1130 if (!desc || (desc > iadev->num_rx_desc) || 1131 ((buf_desc_ptr->vc_index & 0xffff) >= iadev->num_vc)) { 1132 free_desc(dev, desc); 1133 IF_ERR(printk("IA: bad descriptor desc = %d \n", desc);) 1134 return -1; 1135 } 1136 vcc = iadev->rx_open[buf_desc_ptr->vc_index & 0xffff]; 1137 if (!vcc) 1138 { 1139 free_desc(dev, desc); 1140 printk("IA: null vcc, drop PDU\n"); 1141 return -1; 1142 } 1143 1144 1145 /* might want to check the status bits for errors */ 1146 status = (u_short) (buf_desc_ptr->desc_mode); 1147 if (status & (RX_CER | RX_PTE | RX_OFL)) 1148 { 1149 atomic_inc(&vcc->stats->rx_err); 1150 IF_ERR(printk("IA: bad packet, dropping it");) 1151 if (status & RX_CER) { 1152 IF_ERR(printk(" cause: packet CRC error\n");) 1153 } 1154 else if (status & RX_PTE) { 1155 IF_ERR(printk(" cause: packet time out\n");) 1156 } 1157 else { 1158 IF_ERR(printk(" cause: buffer overflow\n");) 1159 } 1160 goto out_free_desc; 1161 } 1162 1163 /* 1164 build DLE. 1165 */ 1166 1167 buf_addr = (buf_desc_ptr->buf_start_hi << 16) | buf_desc_ptr->buf_start_lo; 1168 dma_addr = (buf_desc_ptr->dma_start_hi << 16) | buf_desc_ptr->dma_start_lo; 1169 len = dma_addr - buf_addr; 1170 if (len > iadev->rx_buf_sz) { 1171 printk("Over %d bytes sdu received, dropped!!!\n", iadev->rx_buf_sz); 1172 atomic_inc(&vcc->stats->rx_err); 1173 goto out_free_desc; 1174 } 1175 1176 if (!(skb = atm_alloc_charge(vcc, len, GFP_ATOMIC))) { 1177 if (vcc->vci < 32) 1178 printk("Drop control packets\n"); 1179 goto out_free_desc; 1180 } 1181 skb_put(skb,len); 1182 // pwang_test 1183 ATM_SKB(skb)->vcc = vcc; 1184 ATM_DESC(skb) = desc; 1185 skb_queue_tail(&iadev->rx_dma_q, skb); 1186 1187 /* Build the DLE structure */ 1188 wr_ptr = iadev->rx_dle_q.write; 1189 wr_ptr->sys_pkt_addr = dma_map_single(&iadev->pci->dev, skb->data, 1190 len, DMA_FROM_DEVICE); 1191 wr_ptr->local_pkt_addr = buf_addr; 1192 wr_ptr->bytes = len; /* We don't know this do we ?? */ 1193 wr_ptr->mode = DMA_INT_ENABLE; 1194 1195 /* shud take care of wrap around here too. */ 1196 if(++wr_ptr == iadev->rx_dle_q.end) 1197 wr_ptr = iadev->rx_dle_q.start; 1198 iadev->rx_dle_q.write = wr_ptr; 1199 udelay(1); 1200 /* Increment transaction counter */ 1201 writel(1, iadev->dma+IPHASE5575_RX_COUNTER); 1202 out: return 0; 1203 out_free_desc: 1204 free_desc(dev, desc); 1205 goto out; 1206 } 1207 1208 static void rx_intr(struct atm_dev *dev) 1209 { 1210 IADEV *iadev; 1211 u_short status; 1212 u_short state, i; 1213 1214 iadev = INPH_IA_DEV(dev); 1215 status = readl(iadev->reass_reg+REASS_INTR_STATUS_REG) & 0xffff; 1216 IF_EVENT(printk("rx_intr: status = 0x%x\n", status);) 1217 if (status & RX_PKT_RCVD) 1218 { 1219 /* do something */ 1220 /* Basically recvd an interrupt for receiving a packet. 1221 A descriptor would have been written to the packet complete 1222 queue. Get all the descriptors and set up dma to move the 1223 packets till the packet complete queue is empty.. 1224 */ 1225 state = readl(iadev->reass_reg + STATE_REG) & 0xffff; 1226 IF_EVENT(printk("Rx intr status: RX_PKT_RCVD %08x\n", status);) 1227 while(!(state & PCQ_EMPTY)) 1228 { 1229 rx_pkt(dev); 1230 state = readl(iadev->reass_reg + STATE_REG) & 0xffff; 1231 } 1232 iadev->rxing = 1; 1233 } 1234 if (status & RX_FREEQ_EMPT) 1235 { 1236 if (iadev->rxing) { 1237 iadev->rx_tmp_cnt = iadev->rx_pkt_cnt; 1238 iadev->rx_tmp_jif = jiffies; 1239 iadev->rxing = 0; 1240 } 1241 else if ((time_after(jiffies, iadev->rx_tmp_jif + 50)) && 1242 ((iadev->rx_pkt_cnt - iadev->rx_tmp_cnt) == 0)) { 1243 for (i = 1; i <= iadev->num_rx_desc; i++) 1244 free_desc(dev, i); 1245 printk("Test logic RUN!!!!\n"); 1246 writew( ~(RX_FREEQ_EMPT|RX_EXCP_RCVD),iadev->reass_reg+REASS_MASK_REG); 1247 iadev->rxing = 1; 1248 } 1249 IF_EVENT(printk("Rx intr status: RX_FREEQ_EMPT %08x\n", status);) 1250 } 1251 1252 if (status & RX_EXCP_RCVD) 1253 { 1254 /* probably need to handle the exception queue also. */ 1255 IF_EVENT(printk("Rx intr status: RX_EXCP_RCVD %08x\n", status);) 1256 rx_excp_rcvd(dev); 1257 } 1258 1259 1260 if (status & RX_RAW_RCVD) 1261 { 1262 /* need to handle the raw incoming cells. This deepnds on 1263 whether we have programmed to receive the raw cells or not. 1264 Else ignore. */ 1265 IF_EVENT(printk("Rx intr status: RX_RAW_RCVD %08x\n", status);) 1266 } 1267 } 1268 1269 1270 static void rx_dle_intr(struct atm_dev *dev) 1271 { 1272 IADEV *iadev; 1273 struct atm_vcc *vcc; 1274 struct sk_buff *skb; 1275 int desc; 1276 u_short state; 1277 struct dle *dle, *cur_dle; 1278 u_int dle_lp; 1279 int len; 1280 iadev = INPH_IA_DEV(dev); 1281 1282 /* free all the dles done, that is just update our own dle read pointer 1283 - do we really need to do this. Think not. */ 1284 /* DMA is done, just get all the recevie buffers from the rx dma queue 1285 and push them up to the higher layer protocol. Also free the desc 1286 associated with the buffer. */ 1287 dle = iadev->rx_dle_q.read; 1288 dle_lp = readl(iadev->dma+IPHASE5575_RX_LIST_ADDR) & (sizeof(struct dle)*DLE_ENTRIES - 1); 1289 cur_dle = (struct dle*)(iadev->rx_dle_q.start + (dle_lp >> 4)); 1290 while(dle != cur_dle) 1291 { 1292 /* free the DMAed skb */ 1293 skb = skb_dequeue(&iadev->rx_dma_q); 1294 if (!skb) 1295 goto INCR_DLE; 1296 desc = ATM_DESC(skb); 1297 free_desc(dev, desc); 1298 1299 if (!(len = skb->len)) 1300 { 1301 printk("rx_dle_intr: skb len 0\n"); 1302 dev_kfree_skb_any(skb); 1303 } 1304 else 1305 { 1306 struct cpcs_trailer *trailer; 1307 u_short length; 1308 struct ia_vcc *ia_vcc; 1309 1310 dma_unmap_single(&iadev->pci->dev, iadev->rx_dle_q.write->sys_pkt_addr, 1311 len, DMA_FROM_DEVICE); 1312 /* no VCC related housekeeping done as yet. lets see */ 1313 vcc = ATM_SKB(skb)->vcc; 1314 if (!vcc) { 1315 printk("IA: null vcc\n"); 1316 dev_kfree_skb_any(skb); 1317 goto INCR_DLE; 1318 } 1319 ia_vcc = INPH_IA_VCC(vcc); 1320 if (ia_vcc == NULL) 1321 { 1322 atomic_inc(&vcc->stats->rx_err); 1323 atm_return(vcc, skb->truesize); 1324 dev_kfree_skb_any(skb); 1325 goto INCR_DLE; 1326 } 1327 // get real pkt length pwang_test 1328 trailer = (struct cpcs_trailer*)((u_char *)skb->data + 1329 skb->len - sizeof(*trailer)); 1330 length = swap_byte_order(trailer->length); 1331 if ((length > iadev->rx_buf_sz) || (length > 1332 (skb->len - sizeof(struct cpcs_trailer)))) 1333 { 1334 atomic_inc(&vcc->stats->rx_err); 1335 IF_ERR(printk("rx_dle_intr: Bad AAL5 trailer %d (skb len %d)", 1336 length, skb->len);) 1337 atm_return(vcc, skb->truesize); 1338 dev_kfree_skb_any(skb); 1339 goto INCR_DLE; 1340 } 1341 skb_trim(skb, length); 1342 1343 /* Display the packet */ 1344 IF_RXPKT(printk("\nDmad Recvd data: len = %d \n", skb->len); 1345 xdump(skb->data, skb->len, "RX: "); 1346 printk("\n");) 1347 1348 IF_RX(printk("rx_dle_intr: skb push");) 1349 vcc->push(vcc,skb); 1350 atomic_inc(&vcc->stats->rx); 1351 iadev->rx_pkt_cnt++; 1352 } 1353 INCR_DLE: 1354 if (++dle == iadev->rx_dle_q.end) 1355 dle = iadev->rx_dle_q.start; 1356 } 1357 iadev->rx_dle_q.read = dle; 1358 1359 /* if the interrupts are masked because there were no free desc available, 1360 unmask them now. */ 1361 if (!iadev->rxing) { 1362 state = readl(iadev->reass_reg + STATE_REG) & 0xffff; 1363 if (!(state & FREEQ_EMPTY)) { 1364 state = readl(iadev->reass_reg + REASS_MASK_REG) & 0xffff; 1365 writel(state & ~(RX_FREEQ_EMPT |/* RX_EXCP_RCVD |*/ RX_PKT_RCVD), 1366 iadev->reass_reg+REASS_MASK_REG); 1367 iadev->rxing++; 1368 } 1369 } 1370 } 1371 1372 1373 static int open_rx(struct atm_vcc *vcc) 1374 { 1375 IADEV *iadev; 1376 u_short __iomem *vc_table; 1377 u_short __iomem *reass_ptr; 1378 IF_EVENT(printk("iadev: open_rx %d.%d\n", vcc->vpi, vcc->vci);) 1379 1380 if (vcc->qos.rxtp.traffic_class == ATM_NONE) return 0; 1381 iadev = INPH_IA_DEV(vcc->dev); 1382 if (vcc->qos.rxtp.traffic_class == ATM_ABR) { 1383 if (iadev->phy_type & FE_25MBIT_PHY) { 1384 printk("IA: ABR not support\n"); 1385 return -EINVAL; 1386 } 1387 } 1388 /* Make only this VCI in the vc table valid and let all 1389 others be invalid entries */ 1390 vc_table = iadev->reass_ram+RX_VC_TABLE*iadev->memSize; 1391 vc_table += vcc->vci; 1392 /* mask the last 6 bits and OR it with 3 for 1K VCs */ 1393 1394 *vc_table = vcc->vci << 6; 1395 /* Also keep a list of open rx vcs so that we can attach them with 1396 incoming PDUs later. */ 1397 if ((vcc->qos.rxtp.traffic_class == ATM_ABR) || 1398 (vcc->qos.txtp.traffic_class == ATM_ABR)) 1399 { 1400 srv_cls_param_t srv_p; 1401 init_abr_vc(iadev, &srv_p); 1402 ia_open_abr_vc(iadev, &srv_p, vcc, 0); 1403 } 1404 else { /* for UBR later may need to add CBR logic */ 1405 reass_ptr = iadev->reass_ram+REASS_TABLE*iadev->memSize; 1406 reass_ptr += vcc->vci; 1407 *reass_ptr = NO_AAL5_PKT; 1408 } 1409 1410 if (iadev->rx_open[vcc->vci]) 1411 printk(KERN_CRIT DEV_LABEL "(itf %d): VCI %d already open\n", 1412 vcc->dev->number, vcc->vci); 1413 iadev->rx_open[vcc->vci] = vcc; 1414 return 0; 1415 } 1416 1417 static int rx_init(struct atm_dev *dev) 1418 { 1419 IADEV *iadev; 1420 struct rx_buf_desc __iomem *buf_desc_ptr; 1421 unsigned long rx_pkt_start = 0; 1422 void *dle_addr; 1423 struct abr_vc_table *abr_vc_table; 1424 u16 *vc_table; 1425 u16 *reass_table; 1426 int i,j, vcsize_sel; 1427 u_short freeq_st_adr; 1428 u_short *freeq_start; 1429 1430 iadev = INPH_IA_DEV(dev); 1431 // spin_lock_init(&iadev->rx_lock); 1432 1433 /* Allocate 4k bytes - more aligned than needed (4k boundary) */ 1434 dle_addr = dma_alloc_coherent(&iadev->pci->dev, DLE_TOTAL_SIZE, 1435 &iadev->rx_dle_dma, GFP_KERNEL); 1436 if (!dle_addr) { 1437 printk(KERN_ERR DEV_LABEL "can't allocate DLEs\n"); 1438 goto err_out; 1439 } 1440 iadev->rx_dle_q.start = (struct dle *)dle_addr; 1441 iadev->rx_dle_q.read = iadev->rx_dle_q.start; 1442 iadev->rx_dle_q.write = iadev->rx_dle_q.start; 1443 iadev->rx_dle_q.end = (struct dle*)((unsigned long)dle_addr+sizeof(struct dle)*DLE_ENTRIES); 1444 /* the end of the dle q points to the entry after the last 1445 DLE that can be used. */ 1446 1447 /* write the upper 20 bits of the start address to rx list address register */ 1448 /* We know this is 32bit bus addressed so the following is safe */ 1449 writel(iadev->rx_dle_dma & 0xfffff000, 1450 iadev->dma + IPHASE5575_RX_LIST_ADDR); 1451 IF_INIT(printk("Tx Dle list addr: 0x%p value: 0x%0x\n", 1452 iadev->dma+IPHASE5575_TX_LIST_ADDR, 1453 readl(iadev->dma + IPHASE5575_TX_LIST_ADDR)); 1454 printk("Rx Dle list addr: 0x%p value: 0x%0x\n", 1455 iadev->dma+IPHASE5575_RX_LIST_ADDR, 1456 readl(iadev->dma + IPHASE5575_RX_LIST_ADDR));) 1457 1458 writew(0xffff, iadev->reass_reg+REASS_MASK_REG); 1459 writew(0, iadev->reass_reg+MODE_REG); 1460 writew(RESET_REASS, iadev->reass_reg+REASS_COMMAND_REG); 1461 1462 /* Receive side control memory map 1463 ------------------------------- 1464 1465 Buffer descr 0x0000 (736 - 23K) 1466 VP Table 0x5c00 (256 - 512) 1467 Except q 0x5e00 (128 - 512) 1468 Free buffer q 0x6000 (1K - 2K) 1469 Packet comp q 0x6800 (1K - 2K) 1470 Reass Table 0x7000 (1K - 2K) 1471 VC Table 0x7800 (1K - 2K) 1472 ABR VC Table 0x8000 (1K - 32K) 1473 */ 1474 1475 /* Base address for Buffer Descriptor Table */ 1476 writew(RX_DESC_BASE >> 16, iadev->reass_reg+REASS_DESC_BASE); 1477 /* Set the buffer size register */ 1478 writew(iadev->rx_buf_sz, iadev->reass_reg+BUF_SIZE); 1479 1480 /* Initialize each entry in the Buffer Descriptor Table */ 1481 iadev->RX_DESC_BASE_ADDR = iadev->reass_ram+RX_DESC_BASE*iadev->memSize; 1482 buf_desc_ptr = iadev->RX_DESC_BASE_ADDR; 1483 memset_io(buf_desc_ptr, 0, sizeof(*buf_desc_ptr)); 1484 buf_desc_ptr++; 1485 rx_pkt_start = iadev->rx_pkt_ram; 1486 for(i=1; i<=iadev->num_rx_desc; i++) 1487 { 1488 memset_io(buf_desc_ptr, 0, sizeof(*buf_desc_ptr)); 1489 buf_desc_ptr->buf_start_hi = rx_pkt_start >> 16; 1490 buf_desc_ptr->buf_start_lo = rx_pkt_start & 0x0000ffff; 1491 buf_desc_ptr++; 1492 rx_pkt_start += iadev->rx_buf_sz; 1493 } 1494 IF_INIT(printk("Rx Buffer desc ptr: 0x%p\n", buf_desc_ptr);) 1495 i = FREE_BUF_DESC_Q*iadev->memSize; 1496 writew(i >> 16, iadev->reass_reg+REASS_QUEUE_BASE); 1497 writew(i, iadev->reass_reg+FREEQ_ST_ADR); 1498 writew(i+iadev->num_rx_desc*sizeof(u_short), 1499 iadev->reass_reg+FREEQ_ED_ADR); 1500 writew(i, iadev->reass_reg+FREEQ_RD_PTR); 1501 writew(i+iadev->num_rx_desc*sizeof(u_short), 1502 iadev->reass_reg+FREEQ_WR_PTR); 1503 /* Fill the FREEQ with all the free descriptors. */ 1504 freeq_st_adr = readw(iadev->reass_reg+FREEQ_ST_ADR); 1505 freeq_start = (u_short *)(iadev->reass_ram+freeq_st_adr); 1506 for(i=1; i<=iadev->num_rx_desc; i++) 1507 { 1508 *freeq_start = (u_short)i; 1509 freeq_start++; 1510 } 1511 IF_INIT(printk("freeq_start: 0x%p\n", freeq_start);) 1512 /* Packet Complete Queue */ 1513 i = (PKT_COMP_Q * iadev->memSize) & 0xffff; 1514 writew(i, iadev->reass_reg+PCQ_ST_ADR); 1515 writew(i+iadev->num_vc*sizeof(u_short), iadev->reass_reg+PCQ_ED_ADR); 1516 writew(i, iadev->reass_reg+PCQ_RD_PTR); 1517 writew(i, iadev->reass_reg+PCQ_WR_PTR); 1518 1519 /* Exception Queue */ 1520 i = (EXCEPTION_Q * iadev->memSize) & 0xffff; 1521 writew(i, iadev->reass_reg+EXCP_Q_ST_ADR); 1522 writew(i + NUM_RX_EXCP * sizeof(RX_ERROR_Q), 1523 iadev->reass_reg+EXCP_Q_ED_ADR); 1524 writew(i, iadev->reass_reg+EXCP_Q_RD_PTR); 1525 writew(i, iadev->reass_reg+EXCP_Q_WR_PTR); 1526 1527 /* Load local copy of FREEQ and PCQ ptrs */ 1528 iadev->rfL.fdq_st = readw(iadev->reass_reg+FREEQ_ST_ADR) & 0xffff; 1529 iadev->rfL.fdq_ed = readw(iadev->reass_reg+FREEQ_ED_ADR) & 0xffff ; 1530 iadev->rfL.fdq_rd = readw(iadev->reass_reg+FREEQ_RD_PTR) & 0xffff; 1531 iadev->rfL.fdq_wr = readw(iadev->reass_reg+FREEQ_WR_PTR) & 0xffff; 1532 iadev->rfL.pcq_st = readw(iadev->reass_reg+PCQ_ST_ADR) & 0xffff; 1533 iadev->rfL.pcq_ed = readw(iadev->reass_reg+PCQ_ED_ADR) & 0xffff; 1534 iadev->rfL.pcq_rd = readw(iadev->reass_reg+PCQ_RD_PTR) & 0xffff; 1535 iadev->rfL.pcq_wr = readw(iadev->reass_reg+PCQ_WR_PTR) & 0xffff; 1536 1537 IF_INIT(printk("INIT:pcq_st:0x%x pcq_ed:0x%x pcq_rd:0x%x pcq_wr:0x%x", 1538 iadev->rfL.pcq_st, iadev->rfL.pcq_ed, iadev->rfL.pcq_rd, 1539 iadev->rfL.pcq_wr);) 1540 /* just for check - no VP TBL */ 1541 /* VP Table */ 1542 /* writew(0x0b80, iadev->reass_reg+VP_LKUP_BASE); */ 1543 /* initialize VP Table for invalid VPIs 1544 - I guess we can write all 1s or 0x000f in the entire memory 1545 space or something similar. 1546 */ 1547 1548 /* This seems to work and looks right to me too !!! */ 1549 i = REASS_TABLE * iadev->memSize; 1550 writew((i >> 3), iadev->reass_reg+REASS_TABLE_BASE); 1551 /* initialize Reassembly table to I don't know what ???? */ 1552 reass_table = (u16 *)(iadev->reass_ram+i); 1553 j = REASS_TABLE_SZ * iadev->memSize; 1554 for(i=0; i < j; i++) 1555 *reass_table++ = NO_AAL5_PKT; 1556 i = 8*1024; 1557 vcsize_sel = 0; 1558 while (i != iadev->num_vc) { 1559 i /= 2; 1560 vcsize_sel++; 1561 } 1562 i = RX_VC_TABLE * iadev->memSize; 1563 writew(((i>>3) & 0xfff8) | vcsize_sel, iadev->reass_reg+VC_LKUP_BASE); 1564 vc_table = (u16 *)(iadev->reass_ram+RX_VC_TABLE*iadev->memSize); 1565 j = RX_VC_TABLE_SZ * iadev->memSize; 1566 for(i = 0; i < j; i++) 1567 { 1568 /* shift the reassembly pointer by 3 + lower 3 bits of 1569 vc_lkup_base register (=3 for 1K VCs) and the last byte 1570 is those low 3 bits. 1571 Shall program this later. 1572 */ 1573 *vc_table = (i << 6) | 15; /* for invalid VCI */ 1574 vc_table++; 1575 } 1576 /* ABR VC table */ 1577 i = ABR_VC_TABLE * iadev->memSize; 1578 writew(i >> 3, iadev->reass_reg+ABR_LKUP_BASE); 1579 1580 i = ABR_VC_TABLE * iadev->memSize; 1581 abr_vc_table = (struct abr_vc_table *)(iadev->reass_ram+i); 1582 j = REASS_TABLE_SZ * iadev->memSize; 1583 memset ((char*)abr_vc_table, 0, j * sizeof(*abr_vc_table)); 1584 for(i = 0; i < j; i++) { 1585 abr_vc_table->rdf = 0x0003; 1586 abr_vc_table->air = 0x5eb1; 1587 abr_vc_table++; 1588 } 1589 1590 /* Initialize other registers */ 1591 1592 /* VP Filter Register set for VC Reassembly only */ 1593 writew(0xff00, iadev->reass_reg+VP_FILTER); 1594 writew(0, iadev->reass_reg+XTRA_RM_OFFSET); 1595 writew(0x1, iadev->reass_reg+PROTOCOL_ID); 1596 1597 /* Packet Timeout Count related Registers : 1598 Set packet timeout to occur in about 3 seconds 1599 Set Packet Aging Interval count register to overflow in about 4 us 1600 */ 1601 writew(0xF6F8, iadev->reass_reg+PKT_TM_CNT ); 1602 1603 i = (j >> 6) & 0xFF; 1604 j += 2 * (j - 1); 1605 i |= ((j << 2) & 0xFF00); 1606 writew(i, iadev->reass_reg+TMOUT_RANGE); 1607 1608 /* initiate the desc_tble */ 1609 for(i=0; i<iadev->num_tx_desc;i++) 1610 iadev->desc_tbl[i].timestamp = 0; 1611 1612 /* to clear the interrupt status register - read it */ 1613 readw(iadev->reass_reg+REASS_INTR_STATUS_REG); 1614 1615 /* Mask Register - clear it */ 1616 writew(~(RX_FREEQ_EMPT|RX_PKT_RCVD), iadev->reass_reg+REASS_MASK_REG); 1617 1618 skb_queue_head_init(&iadev->rx_dma_q); 1619 iadev->rx_free_desc_qhead = NULL; 1620 1621 iadev->rx_open = kcalloc(iadev->num_vc, sizeof(void *), GFP_KERNEL); 1622 if (!iadev->rx_open) { 1623 printk(KERN_ERR DEV_LABEL "itf %d couldn't get free page\n", 1624 dev->number); 1625 goto err_free_dle; 1626 } 1627 1628 iadev->rxing = 1; 1629 iadev->rx_pkt_cnt = 0; 1630 /* Mode Register */ 1631 writew(R_ONLINE, iadev->reass_reg+MODE_REG); 1632 return 0; 1633 1634 err_free_dle: 1635 dma_free_coherent(&iadev->pci->dev, DLE_TOTAL_SIZE, iadev->rx_dle_q.start, 1636 iadev->rx_dle_dma); 1637 err_out: 1638 return -ENOMEM; 1639 } 1640 1641 1642 /* 1643 The memory map suggested in appendix A and the coding for it. 1644 Keeping it around just in case we change our mind later. 1645 1646 Buffer descr 0x0000 (128 - 4K) 1647 UBR sched 0x1000 (1K - 4K) 1648 UBR Wait q 0x2000 (1K - 4K) 1649 Commn queues 0x3000 Packet Ready, Trasmit comp(0x3100) 1650 (128 - 256) each 1651 extended VC 0x4000 (1K - 8K) 1652 ABR sched 0x6000 and ABR wait queue (1K - 2K) each 1653 CBR sched 0x7000 (as needed) 1654 VC table 0x8000 (1K - 32K) 1655 */ 1656 1657 static void tx_intr(struct atm_dev *dev) 1658 { 1659 IADEV *iadev; 1660 unsigned short status; 1661 unsigned long flags; 1662 1663 iadev = INPH_IA_DEV(dev); 1664 1665 status = readl(iadev->seg_reg+SEG_INTR_STATUS_REG); 1666 if (status & TRANSMIT_DONE){ 1667 1668 IF_EVENT(printk("Transmit Done Intr logic run\n");) 1669 spin_lock_irqsave(&iadev->tx_lock, flags); 1670 ia_tx_poll(iadev); 1671 spin_unlock_irqrestore(&iadev->tx_lock, flags); 1672 writew(TRANSMIT_DONE, iadev->seg_reg+SEG_INTR_STATUS_REG); 1673 if (iadev->close_pending) 1674 wake_up(&iadev->close_wait); 1675 } 1676 if (status & TCQ_NOT_EMPTY) 1677 { 1678 IF_EVENT(printk("TCQ_NOT_EMPTY int received\n");) 1679 } 1680 } 1681 1682 static void tx_dle_intr(struct atm_dev *dev) 1683 { 1684 IADEV *iadev; 1685 struct dle *dle, *cur_dle; 1686 struct sk_buff *skb; 1687 struct atm_vcc *vcc; 1688 struct ia_vcc *iavcc; 1689 u_int dle_lp; 1690 unsigned long flags; 1691 1692 iadev = INPH_IA_DEV(dev); 1693 spin_lock_irqsave(&iadev->tx_lock, flags); 1694 dle = iadev->tx_dle_q.read; 1695 dle_lp = readl(iadev->dma+IPHASE5575_TX_LIST_ADDR) & 1696 (sizeof(struct dle)*DLE_ENTRIES - 1); 1697 cur_dle = (struct dle*)(iadev->tx_dle_q.start + (dle_lp >> 4)); 1698 while (dle != cur_dle) 1699 { 1700 /* free the DMAed skb */ 1701 skb = skb_dequeue(&iadev->tx_dma_q); 1702 if (!skb) break; 1703 1704 /* Revenge of the 2 dle (skb + trailer) used in ia_pkt_tx() */ 1705 if (!((dle - iadev->tx_dle_q.start)%(2*sizeof(struct dle)))) { 1706 dma_unmap_single(&iadev->pci->dev, dle->sys_pkt_addr, skb->len, 1707 DMA_TO_DEVICE); 1708 } 1709 vcc = ATM_SKB(skb)->vcc; 1710 if (!vcc) { 1711 printk("tx_dle_intr: vcc is null\n"); 1712 spin_unlock_irqrestore(&iadev->tx_lock, flags); 1713 dev_kfree_skb_any(skb); 1714 1715 return; 1716 } 1717 iavcc = INPH_IA_VCC(vcc); 1718 if (!iavcc) { 1719 printk("tx_dle_intr: iavcc is null\n"); 1720 spin_unlock_irqrestore(&iadev->tx_lock, flags); 1721 dev_kfree_skb_any(skb); 1722 return; 1723 } 1724 if (vcc->qos.txtp.pcr >= iadev->rate_limit) { 1725 if ((vcc->pop) && (skb->len != 0)) 1726 { 1727 vcc->pop(vcc, skb); 1728 } 1729 else { 1730 dev_kfree_skb_any(skb); 1731 } 1732 } 1733 else { /* Hold the rate-limited skb for flow control */ 1734 IA_SKB_STATE(skb) |= IA_DLED; 1735 skb_queue_tail(&iavcc->txing_skb, skb); 1736 } 1737 IF_EVENT(printk("tx_dle_intr: enque skb = 0x%p \n", skb);) 1738 if (++dle == iadev->tx_dle_q.end) 1739 dle = iadev->tx_dle_q.start; 1740 } 1741 iadev->tx_dle_q.read = dle; 1742 spin_unlock_irqrestore(&iadev->tx_lock, flags); 1743 } 1744 1745 static int open_tx(struct atm_vcc *vcc) 1746 { 1747 struct ia_vcc *ia_vcc; 1748 IADEV *iadev; 1749 struct main_vc *vc; 1750 struct ext_vc *evc; 1751 int ret; 1752 IF_EVENT(printk("iadev: open_tx entered vcc->vci = %d\n", vcc->vci);) 1753 if (vcc->qos.txtp.traffic_class == ATM_NONE) return 0; 1754 iadev = INPH_IA_DEV(vcc->dev); 1755 1756 if (iadev->phy_type & FE_25MBIT_PHY) { 1757 if (vcc->qos.txtp.traffic_class == ATM_ABR) { 1758 printk("IA: ABR not support\n"); 1759 return -EINVAL; 1760 } 1761 if (vcc->qos.txtp.traffic_class == ATM_CBR) { 1762 printk("IA: CBR not support\n"); 1763 return -EINVAL; 1764 } 1765 } 1766 ia_vcc = INPH_IA_VCC(vcc); 1767 memset((caddr_t)ia_vcc, 0, sizeof(*ia_vcc)); 1768 if (vcc->qos.txtp.max_sdu > 1769 (iadev->tx_buf_sz - sizeof(struct cpcs_trailer))){ 1770 printk("IA: SDU size over (%d) the configured SDU size %d\n", 1771 vcc->qos.txtp.max_sdu,iadev->tx_buf_sz); 1772 vcc->dev_data = NULL; 1773 kfree(ia_vcc); 1774 return -EINVAL; 1775 } 1776 ia_vcc->vc_desc_cnt = 0; 1777 ia_vcc->txing = 1; 1778 1779 /* find pcr */ 1780 if (vcc->qos.txtp.max_pcr == ATM_MAX_PCR) 1781 vcc->qos.txtp.pcr = iadev->LineRate; 1782 else if ((vcc->qos.txtp.max_pcr == 0)&&( vcc->qos.txtp.pcr <= 0)) 1783 vcc->qos.txtp.pcr = iadev->LineRate; 1784 else if ((vcc->qos.txtp.max_pcr > vcc->qos.txtp.pcr) && (vcc->qos.txtp.max_pcr> 0)) 1785 vcc->qos.txtp.pcr = vcc->qos.txtp.max_pcr; 1786 if (vcc->qos.txtp.pcr > iadev->LineRate) 1787 vcc->qos.txtp.pcr = iadev->LineRate; 1788 ia_vcc->pcr = vcc->qos.txtp.pcr; 1789 1790 if (ia_vcc->pcr > (iadev->LineRate / 6) ) ia_vcc->ltimeout = HZ / 10; 1791 else if (ia_vcc->pcr > (iadev->LineRate / 130)) ia_vcc->ltimeout = HZ; 1792 else if (ia_vcc->pcr <= 170) ia_vcc->ltimeout = 16 * HZ; 1793 else ia_vcc->ltimeout = 2700 * HZ / ia_vcc->pcr; 1794 if (ia_vcc->pcr < iadev->rate_limit) 1795 skb_queue_head_init (&ia_vcc->txing_skb); 1796 if (ia_vcc->pcr < iadev->rate_limit) { 1797 struct sock *sk = sk_atm(vcc); 1798 1799 if (vcc->qos.txtp.max_sdu != 0) { 1800 if (ia_vcc->pcr > 60000) 1801 sk->sk_sndbuf = vcc->qos.txtp.max_sdu * 5; 1802 else if (ia_vcc->pcr > 2000) 1803 sk->sk_sndbuf = vcc->qos.txtp.max_sdu * 4; 1804 else 1805 sk->sk_sndbuf = vcc->qos.txtp.max_sdu * 3; 1806 } 1807 else 1808 sk->sk_sndbuf = 24576; 1809 } 1810 1811 vc = (struct main_vc *)iadev->MAIN_VC_TABLE_ADDR; 1812 evc = (struct ext_vc *)iadev->EXT_VC_TABLE_ADDR; 1813 vc += vcc->vci; 1814 evc += vcc->vci; 1815 memset((caddr_t)vc, 0, sizeof(*vc)); 1816 memset((caddr_t)evc, 0, sizeof(*evc)); 1817 1818 /* store the most significant 4 bits of vci as the last 4 bits 1819 of first part of atm header. 1820 store the last 12 bits of vci as first 12 bits of the second 1821 part of the atm header. 1822 */ 1823 evc->atm_hdr1 = (vcc->vci >> 12) & 0x000f; 1824 evc->atm_hdr2 = (vcc->vci & 0x0fff) << 4; 1825 1826 /* check the following for different traffic classes */ 1827 if (vcc->qos.txtp.traffic_class == ATM_UBR) 1828 { 1829 vc->type = UBR; 1830 vc->status = CRC_APPEND; 1831 vc->acr = cellrate_to_float(iadev->LineRate); 1832 if (vcc->qos.txtp.pcr > 0) 1833 vc->acr = cellrate_to_float(vcc->qos.txtp.pcr); 1834 IF_UBR(printk("UBR: txtp.pcr = 0x%x f_rate = 0x%x\n", 1835 vcc->qos.txtp.max_pcr,vc->acr);) 1836 } 1837 else if (vcc->qos.txtp.traffic_class == ATM_ABR) 1838 { srv_cls_param_t srv_p; 1839 IF_ABR(printk("Tx ABR VCC\n");) 1840 init_abr_vc(iadev, &srv_p); 1841 if (vcc->qos.txtp.pcr > 0) 1842 srv_p.pcr = vcc->qos.txtp.pcr; 1843 if (vcc->qos.txtp.min_pcr > 0) { 1844 int tmpsum = iadev->sum_mcr+iadev->sum_cbr+vcc->qos.txtp.min_pcr; 1845 if (tmpsum > iadev->LineRate) 1846 return -EBUSY; 1847 srv_p.mcr = vcc->qos.txtp.min_pcr; 1848 iadev->sum_mcr += vcc->qos.txtp.min_pcr; 1849 } 1850 else srv_p.mcr = 0; 1851 if (vcc->qos.txtp.icr) 1852 srv_p.icr = vcc->qos.txtp.icr; 1853 if (vcc->qos.txtp.tbe) 1854 srv_p.tbe = vcc->qos.txtp.tbe; 1855 if (vcc->qos.txtp.frtt) 1856 srv_p.frtt = vcc->qos.txtp.frtt; 1857 if (vcc->qos.txtp.rif) 1858 srv_p.rif = vcc->qos.txtp.rif; 1859 if (vcc->qos.txtp.rdf) 1860 srv_p.rdf = vcc->qos.txtp.rdf; 1861 if (vcc->qos.txtp.nrm_pres) 1862 srv_p.nrm = vcc->qos.txtp.nrm; 1863 if (vcc->qos.txtp.trm_pres) 1864 srv_p.trm = vcc->qos.txtp.trm; 1865 if (vcc->qos.txtp.adtf_pres) 1866 srv_p.adtf = vcc->qos.txtp.adtf; 1867 if (vcc->qos.txtp.cdf_pres) 1868 srv_p.cdf = vcc->qos.txtp.cdf; 1869 if (srv_p.icr > srv_p.pcr) 1870 srv_p.icr = srv_p.pcr; 1871 IF_ABR(printk("ABR:vcc->qos.txtp.max_pcr = %d mcr = %d\n", 1872 srv_p.pcr, srv_p.mcr);) 1873 ia_open_abr_vc(iadev, &srv_p, vcc, 1); 1874 } else if (vcc->qos.txtp.traffic_class == ATM_CBR) { 1875 if (iadev->phy_type & FE_25MBIT_PHY) { 1876 printk("IA: CBR not support\n"); 1877 return -EINVAL; 1878 } 1879 if (vcc->qos.txtp.max_pcr > iadev->LineRate) { 1880 IF_CBR(printk("PCR is not available\n");) 1881 return -1; 1882 } 1883 vc->type = CBR; 1884 vc->status = CRC_APPEND; 1885 if ((ret = ia_cbr_setup (iadev, vcc)) < 0) { 1886 return ret; 1887 } 1888 } else { 1889 printk("iadev: Non UBR, ABR and CBR traffic not supported\n"); 1890 } 1891 1892 iadev->testTable[vcc->vci]->vc_status |= VC_ACTIVE; 1893 IF_EVENT(printk("ia open_tx returning \n");) 1894 return 0; 1895 } 1896 1897 1898 static int tx_init(struct atm_dev *dev) 1899 { 1900 IADEV *iadev; 1901 struct tx_buf_desc *buf_desc_ptr; 1902 unsigned int tx_pkt_start; 1903 void *dle_addr; 1904 int i; 1905 u_short tcq_st_adr; 1906 u_short *tcq_start; 1907 u_short prq_st_adr; 1908 u_short *prq_start; 1909 struct main_vc *vc; 1910 struct ext_vc *evc; 1911 u_short tmp16; 1912 u32 vcsize_sel; 1913 1914 iadev = INPH_IA_DEV(dev); 1915 spin_lock_init(&iadev->tx_lock); 1916 1917 IF_INIT(printk("Tx MASK REG: 0x%0x\n", 1918 readw(iadev->seg_reg+SEG_MASK_REG));) 1919 1920 /* Allocate 4k (boundary aligned) bytes */ 1921 dle_addr = dma_alloc_coherent(&iadev->pci->dev, DLE_TOTAL_SIZE, 1922 &iadev->tx_dle_dma, GFP_KERNEL); 1923 if (!dle_addr) { 1924 printk(KERN_ERR DEV_LABEL "can't allocate DLEs\n"); 1925 goto err_out; 1926 } 1927 iadev->tx_dle_q.start = (struct dle*)dle_addr; 1928 iadev->tx_dle_q.read = iadev->tx_dle_q.start; 1929 iadev->tx_dle_q.write = iadev->tx_dle_q.start; 1930 iadev->tx_dle_q.end = (struct dle*)((unsigned long)dle_addr+sizeof(struct dle)*DLE_ENTRIES); 1931 1932 /* write the upper 20 bits of the start address to tx list address register */ 1933 writel(iadev->tx_dle_dma & 0xfffff000, 1934 iadev->dma + IPHASE5575_TX_LIST_ADDR); 1935 writew(0xffff, iadev->seg_reg+SEG_MASK_REG); 1936 writew(0, iadev->seg_reg+MODE_REG_0); 1937 writew(RESET_SEG, iadev->seg_reg+SEG_COMMAND_REG); 1938 iadev->MAIN_VC_TABLE_ADDR = iadev->seg_ram+MAIN_VC_TABLE*iadev->memSize; 1939 iadev->EXT_VC_TABLE_ADDR = iadev->seg_ram+EXT_VC_TABLE*iadev->memSize; 1940 iadev->ABR_SCHED_TABLE_ADDR=iadev->seg_ram+ABR_SCHED_TABLE*iadev->memSize; 1941 1942 /* 1943 Transmit side control memory map 1944 -------------------------------- 1945 Buffer descr 0x0000 (128 - 4K) 1946 Commn queues 0x1000 Transmit comp, Packet ready(0x1400) 1947 (512 - 1K) each 1948 TCQ - 4K, PRQ - 5K 1949 CBR Table 0x1800 (as needed) - 6K 1950 UBR Table 0x3000 (1K - 4K) - 12K 1951 UBR Wait queue 0x4000 (1K - 4K) - 16K 1952 ABR sched 0x5000 and ABR wait queue (1K - 2K) each 1953 ABR Tbl - 20K, ABR Wq - 22K 1954 extended VC 0x6000 (1K - 8K) - 24K 1955 VC Table 0x8000 (1K - 32K) - 32K 1956 1957 Between 0x2000 (8K) and 0x3000 (12K) there is 4K space left for VBR Tbl 1958 and Wait q, which can be allotted later. 1959 */ 1960 1961 /* Buffer Descriptor Table Base address */ 1962 writew(TX_DESC_BASE, iadev->seg_reg+SEG_DESC_BASE); 1963 1964 /* initialize each entry in the buffer descriptor table */ 1965 buf_desc_ptr =(struct tx_buf_desc *)(iadev->seg_ram+TX_DESC_BASE); 1966 memset((caddr_t)buf_desc_ptr, 0, sizeof(*buf_desc_ptr)); 1967 buf_desc_ptr++; 1968 tx_pkt_start = TX_PACKET_RAM; 1969 for(i=1; i<=iadev->num_tx_desc; i++) 1970 { 1971 memset((caddr_t)buf_desc_ptr, 0, sizeof(*buf_desc_ptr)); 1972 buf_desc_ptr->desc_mode = AAL5; 1973 buf_desc_ptr->buf_start_hi = tx_pkt_start >> 16; 1974 buf_desc_ptr->buf_start_lo = tx_pkt_start & 0x0000ffff; 1975 buf_desc_ptr++; 1976 tx_pkt_start += iadev->tx_buf_sz; 1977 } 1978 iadev->tx_buf = kmalloc_array(iadev->num_tx_desc, 1979 sizeof(*iadev->tx_buf), 1980 GFP_KERNEL); 1981 if (!iadev->tx_buf) { 1982 printk(KERN_ERR DEV_LABEL " couldn't get mem\n"); 1983 goto err_free_dle; 1984 } 1985 for (i= 0; i< iadev->num_tx_desc; i++) 1986 { 1987 struct cpcs_trailer *cpcs; 1988 1989 cpcs = kmalloc(sizeof(*cpcs), GFP_KERNEL|GFP_DMA); 1990 if(!cpcs) { 1991 printk(KERN_ERR DEV_LABEL " couldn't get freepage\n"); 1992 goto err_free_tx_bufs; 1993 } 1994 iadev->tx_buf[i].cpcs = cpcs; 1995 iadev->tx_buf[i].dma_addr = dma_map_single(&iadev->pci->dev, 1996 cpcs, 1997 sizeof(*cpcs), 1998 DMA_TO_DEVICE); 1999 } 2000 iadev->desc_tbl = kmalloc_array(iadev->num_tx_desc, 2001 sizeof(*iadev->desc_tbl), 2002 GFP_KERNEL); 2003 if (!iadev->desc_tbl) { 2004 printk(KERN_ERR DEV_LABEL " couldn't get mem\n"); 2005 goto err_free_all_tx_bufs; 2006 } 2007 2008 /* Communication Queues base address */ 2009 i = TX_COMP_Q * iadev->memSize; 2010 writew(i >> 16, iadev->seg_reg+SEG_QUEUE_BASE); 2011 2012 /* Transmit Complete Queue */ 2013 writew(i, iadev->seg_reg+TCQ_ST_ADR); 2014 writew(i, iadev->seg_reg+TCQ_RD_PTR); 2015 writew(i+iadev->num_tx_desc*sizeof(u_short),iadev->seg_reg+TCQ_WR_PTR); 2016 iadev->host_tcq_wr = i + iadev->num_tx_desc*sizeof(u_short); 2017 writew(i+2 * iadev->num_tx_desc * sizeof(u_short), 2018 iadev->seg_reg+TCQ_ED_ADR); 2019 /* Fill the TCQ with all the free descriptors. */ 2020 tcq_st_adr = readw(iadev->seg_reg+TCQ_ST_ADR); 2021 tcq_start = (u_short *)(iadev->seg_ram+tcq_st_adr); 2022 for(i=1; i<=iadev->num_tx_desc; i++) 2023 { 2024 *tcq_start = (u_short)i; 2025 tcq_start++; 2026 } 2027 2028 /* Packet Ready Queue */ 2029 i = PKT_RDY_Q * iadev->memSize; 2030 writew(i, iadev->seg_reg+PRQ_ST_ADR); 2031 writew(i+2 * iadev->num_tx_desc * sizeof(u_short), 2032 iadev->seg_reg+PRQ_ED_ADR); 2033 writew(i, iadev->seg_reg+PRQ_RD_PTR); 2034 writew(i, iadev->seg_reg+PRQ_WR_PTR); 2035 2036 /* Load local copy of PRQ and TCQ ptrs */ 2037 iadev->ffL.prq_st = readw(iadev->seg_reg+PRQ_ST_ADR) & 0xffff; 2038 iadev->ffL.prq_ed = readw(iadev->seg_reg+PRQ_ED_ADR) & 0xffff; 2039 iadev->ffL.prq_wr = readw(iadev->seg_reg+PRQ_WR_PTR) & 0xffff; 2040 2041 iadev->ffL.tcq_st = readw(iadev->seg_reg+TCQ_ST_ADR) & 0xffff; 2042 iadev->ffL.tcq_ed = readw(iadev->seg_reg+TCQ_ED_ADR) & 0xffff; 2043 iadev->ffL.tcq_rd = readw(iadev->seg_reg+TCQ_RD_PTR) & 0xffff; 2044 2045 /* Just for safety initializing the queue to have desc 1 always */ 2046 /* Fill the PRQ with all the free descriptors. */ 2047 prq_st_adr = readw(iadev->seg_reg+PRQ_ST_ADR); 2048 prq_start = (u_short *)(iadev->seg_ram+prq_st_adr); 2049 for(i=1; i<=iadev->num_tx_desc; i++) 2050 { 2051 *prq_start = (u_short)0; /* desc 1 in all entries */ 2052 prq_start++; 2053 } 2054 /* CBR Table */ 2055 IF_INIT(printk("Start CBR Init\n");) 2056 #if 1 /* for 1K VC board, CBR_PTR_BASE is 0 */ 2057 writew(0,iadev->seg_reg+CBR_PTR_BASE); 2058 #else /* Charlie's logic is wrong ? */ 2059 tmp16 = (iadev->seg_ram+CBR_SCHED_TABLE*iadev->memSize)>>17; 2060 IF_INIT(printk("cbr_ptr_base = 0x%x ", tmp16);) 2061 writew(tmp16,iadev->seg_reg+CBR_PTR_BASE); 2062 #endif 2063 2064 IF_INIT(printk("value in register = 0x%x\n", 2065 readw(iadev->seg_reg+CBR_PTR_BASE));) 2066 tmp16 = (CBR_SCHED_TABLE*iadev->memSize) >> 1; 2067 writew(tmp16, iadev->seg_reg+CBR_TAB_BEG); 2068 IF_INIT(printk("cbr_tab_beg = 0x%x in reg = 0x%x \n", tmp16, 2069 readw(iadev->seg_reg+CBR_TAB_BEG));) 2070 writew(tmp16, iadev->seg_reg+CBR_TAB_END+1); // CBR_PTR; 2071 tmp16 = (CBR_SCHED_TABLE*iadev->memSize + iadev->num_vc*6 - 2) >> 1; 2072 writew(tmp16, iadev->seg_reg+CBR_TAB_END); 2073 IF_INIT(printk("iadev->seg_reg = 0x%p CBR_PTR_BASE = 0x%x\n", 2074 iadev->seg_reg, readw(iadev->seg_reg+CBR_PTR_BASE));) 2075 IF_INIT(printk("CBR_TAB_BEG = 0x%x, CBR_TAB_END = 0x%x, CBR_PTR = 0x%x\n", 2076 readw(iadev->seg_reg+CBR_TAB_BEG), readw(iadev->seg_reg+CBR_TAB_END), 2077 readw(iadev->seg_reg+CBR_TAB_END+1));) 2078 2079 /* Initialize the CBR Schedualing Table */ 2080 memset_io(iadev->seg_ram+CBR_SCHED_TABLE*iadev->memSize, 2081 0, iadev->num_vc*6); 2082 iadev->CbrRemEntries = iadev->CbrTotEntries = iadev->num_vc*3; 2083 iadev->CbrEntryPt = 0; 2084 iadev->Granularity = MAX_ATM_155 / iadev->CbrTotEntries; 2085 iadev->NumEnabledCBR = 0; 2086 2087 /* UBR scheduling Table and wait queue */ 2088 /* initialize all bytes of UBR scheduler table and wait queue to 0 2089 - SCHEDSZ is 1K (# of entries). 2090 - UBR Table size is 4K 2091 - UBR wait queue is 4K 2092 since the table and wait queues are contiguous, all the bytes 2093 can be initialized by one memeset. 2094 */ 2095 2096 vcsize_sel = 0; 2097 i = 8*1024; 2098 while (i != iadev->num_vc) { 2099 i /= 2; 2100 vcsize_sel++; 2101 } 2102 2103 i = MAIN_VC_TABLE * iadev->memSize; 2104 writew(vcsize_sel | ((i >> 8) & 0xfff8),iadev->seg_reg+VCT_BASE); 2105 i = EXT_VC_TABLE * iadev->memSize; 2106 writew((i >> 8) & 0xfffe, iadev->seg_reg+VCTE_BASE); 2107 i = UBR_SCHED_TABLE * iadev->memSize; 2108 writew((i & 0xffff) >> 11, iadev->seg_reg+UBR_SBPTR_BASE); 2109 i = UBR_WAIT_Q * iadev->memSize; 2110 writew((i >> 7) & 0xffff, iadev->seg_reg+UBRWQ_BASE); 2111 memset((caddr_t)(iadev->seg_ram+UBR_SCHED_TABLE*iadev->memSize), 2112 0, iadev->num_vc*8); 2113 /* ABR scheduling Table(0x5000-0x57ff) and wait queue(0x5800-0x5fff)*/ 2114 /* initialize all bytes of ABR scheduler table and wait queue to 0 2115 - SCHEDSZ is 1K (# of entries). 2116 - ABR Table size is 2K 2117 - ABR wait queue is 2K 2118 since the table and wait queues are contiguous, all the bytes 2119 can be initialized by one memeset. 2120 */ 2121 i = ABR_SCHED_TABLE * iadev->memSize; 2122 writew((i >> 11) & 0xffff, iadev->seg_reg+ABR_SBPTR_BASE); 2123 i = ABR_WAIT_Q * iadev->memSize; 2124 writew((i >> 7) & 0xffff, iadev->seg_reg+ABRWQ_BASE); 2125 2126 i = ABR_SCHED_TABLE*iadev->memSize; 2127 memset((caddr_t)(iadev->seg_ram+i), 0, iadev->num_vc*4); 2128 vc = (struct main_vc *)iadev->MAIN_VC_TABLE_ADDR; 2129 evc = (struct ext_vc *)iadev->EXT_VC_TABLE_ADDR; 2130 iadev->testTable = kmalloc_array(iadev->num_vc, 2131 sizeof(*iadev->testTable), 2132 GFP_KERNEL); 2133 if (!iadev->testTable) { 2134 printk("Get freepage failed\n"); 2135 goto err_free_desc_tbl; 2136 } 2137 for(i=0; i<iadev->num_vc; i++) 2138 { 2139 memset((caddr_t)vc, 0, sizeof(*vc)); 2140 memset((caddr_t)evc, 0, sizeof(*evc)); 2141 iadev->testTable[i] = kmalloc(sizeof(struct testTable_t), 2142 GFP_KERNEL); 2143 if (!iadev->testTable[i]) 2144 goto err_free_test_tables; 2145 iadev->testTable[i]->lastTime = 0; 2146 iadev->testTable[i]->fract = 0; 2147 iadev->testTable[i]->vc_status = VC_UBR; 2148 vc++; 2149 evc++; 2150 } 2151 2152 /* Other Initialization */ 2153 2154 /* Max Rate Register */ 2155 if (iadev->phy_type & FE_25MBIT_PHY) { 2156 writew(RATE25, iadev->seg_reg+MAXRATE); 2157 writew((UBR_EN | (0x23 << 2)), iadev->seg_reg+STPARMS); 2158 } 2159 else { 2160 writew(cellrate_to_float(iadev->LineRate),iadev->seg_reg+MAXRATE); 2161 writew((UBR_EN | ABR_EN | (0x23 << 2)), iadev->seg_reg+STPARMS); 2162 } 2163 /* Set Idle Header Reigisters to be sure */ 2164 writew(0, iadev->seg_reg+IDLEHEADHI); 2165 writew(0, iadev->seg_reg+IDLEHEADLO); 2166 2167 /* Program ABR UBR Priority Register as PRI_ABR_UBR_EQUAL */ 2168 writew(0xaa00, iadev->seg_reg+ABRUBR_ARB); 2169 2170 iadev->close_pending = 0; 2171 init_waitqueue_head(&iadev->close_wait); 2172 init_waitqueue_head(&iadev->timeout_wait); 2173 skb_queue_head_init(&iadev->tx_dma_q); 2174 ia_init_rtn_q(&iadev->tx_return_q); 2175 2176 /* RM Cell Protocol ID and Message Type */ 2177 writew(RM_TYPE_4_0, iadev->seg_reg+RM_TYPE); 2178 skb_queue_head_init (&iadev->tx_backlog); 2179 2180 /* Mode Register 1 */ 2181 writew(MODE_REG_1_VAL, iadev->seg_reg+MODE_REG_1); 2182 2183 /* Mode Register 0 */ 2184 writew(T_ONLINE, iadev->seg_reg+MODE_REG_0); 2185 2186 /* Interrupt Status Register - read to clear */ 2187 readw(iadev->seg_reg+SEG_INTR_STATUS_REG); 2188 2189 /* Interrupt Mask Reg- don't mask TCQ_NOT_EMPTY interrupt generation */ 2190 writew(~(TRANSMIT_DONE | TCQ_NOT_EMPTY), iadev->seg_reg+SEG_MASK_REG); 2191 writew(TRANSMIT_DONE, iadev->seg_reg+SEG_INTR_STATUS_REG); 2192 iadev->tx_pkt_cnt = 0; 2193 iadev->rate_limit = iadev->LineRate / 3; 2194 2195 return 0; 2196 2197 err_free_test_tables: 2198 while (--i >= 0) 2199 kfree(iadev->testTable[i]); 2200 kfree(iadev->testTable); 2201 err_free_desc_tbl: 2202 kfree(iadev->desc_tbl); 2203 err_free_all_tx_bufs: 2204 i = iadev->num_tx_desc; 2205 err_free_tx_bufs: 2206 while (--i >= 0) { 2207 struct cpcs_trailer_desc *desc = iadev->tx_buf + i; 2208 2209 dma_unmap_single(&iadev->pci->dev, desc->dma_addr, 2210 sizeof(*desc->cpcs), DMA_TO_DEVICE); 2211 kfree(desc->cpcs); 2212 } 2213 kfree(iadev->tx_buf); 2214 err_free_dle: 2215 dma_free_coherent(&iadev->pci->dev, DLE_TOTAL_SIZE, iadev->tx_dle_q.start, 2216 iadev->tx_dle_dma); 2217 err_out: 2218 return -ENOMEM; 2219 } 2220 2221 static irqreturn_t ia_int(int irq, void *dev_id) 2222 { 2223 struct atm_dev *dev; 2224 IADEV *iadev; 2225 unsigned int status; 2226 int handled = 0; 2227 2228 dev = dev_id; 2229 iadev = INPH_IA_DEV(dev); 2230 while( (status = readl(iadev->reg+IPHASE5575_BUS_STATUS_REG) & 0x7f)) 2231 { 2232 handled = 1; 2233 IF_EVENT(printk("ia_int: status = 0x%x\n", status);) 2234 if (status & STAT_REASSINT) 2235 { 2236 /* do something */ 2237 IF_EVENT(printk("REASSINT Bus status reg: %08x\n", status);) 2238 rx_intr(dev); 2239 } 2240 if (status & STAT_DLERINT) 2241 { 2242 /* Clear this bit by writing a 1 to it. */ 2243 writel(STAT_DLERINT, iadev->reg + IPHASE5575_BUS_STATUS_REG); 2244 rx_dle_intr(dev); 2245 } 2246 if (status & STAT_SEGINT) 2247 { 2248 /* do something */ 2249 IF_EVENT(printk("IA: tx_intr \n");) 2250 tx_intr(dev); 2251 } 2252 if (status & STAT_DLETINT) 2253 { 2254 writel(STAT_DLETINT, iadev->reg + IPHASE5575_BUS_STATUS_REG); 2255 tx_dle_intr(dev); 2256 } 2257 if (status & (STAT_FEINT | STAT_ERRINT | STAT_MARKINT)) 2258 { 2259 if (status & STAT_FEINT) 2260 ia_frontend_intr(iadev); 2261 } 2262 } 2263 return IRQ_RETVAL(handled); 2264 } 2265 2266 2267 2268 /*----------------------------- entries --------------------------------*/ 2269 static int get_esi(struct atm_dev *dev) 2270 { 2271 IADEV *iadev; 2272 int i; 2273 u32 mac1; 2274 u16 mac2; 2275 2276 iadev = INPH_IA_DEV(dev); 2277 mac1 = cpu_to_be32(le32_to_cpu(readl( 2278 iadev->reg+IPHASE5575_MAC1))); 2279 mac2 = cpu_to_be16(le16_to_cpu(readl(iadev->reg+IPHASE5575_MAC2))); 2280 IF_INIT(printk("ESI: 0x%08x%04x\n", mac1, mac2);) 2281 for (i=0; i<MAC1_LEN; i++) 2282 dev->esi[i] = mac1 >>(8*(MAC1_LEN-1-i)); 2283 2284 for (i=0; i<MAC2_LEN; i++) 2285 dev->esi[i+MAC1_LEN] = mac2 >>(8*(MAC2_LEN - 1 -i)); 2286 return 0; 2287 } 2288 2289 static int reset_sar(struct atm_dev *dev) 2290 { 2291 IADEV *iadev; 2292 int i, error = 1; 2293 unsigned int pci[64]; 2294 2295 iadev = INPH_IA_DEV(dev); 2296 for(i=0; i<64; i++) 2297 if ((error = pci_read_config_dword(iadev->pci, 2298 i*4, &pci[i])) != PCIBIOS_SUCCESSFUL) 2299 return error; 2300 writel(0, iadev->reg+IPHASE5575_EXT_RESET); 2301 for(i=0; i<64; i++) 2302 if ((error = pci_write_config_dword(iadev->pci, 2303 i*4, pci[i])) != PCIBIOS_SUCCESSFUL) 2304 return error; 2305 udelay(5); 2306 return 0; 2307 } 2308 2309 2310 static int ia_init(struct atm_dev *dev) 2311 { 2312 IADEV *iadev; 2313 unsigned long real_base; 2314 void __iomem *base; 2315 unsigned short command; 2316 int error, i; 2317 2318 /* The device has been identified and registered. Now we read 2319 necessary configuration info like memory base address, 2320 interrupt number etc */ 2321 2322 IF_INIT(printk(">ia_init\n");) 2323 dev->ci_range.vpi_bits = 0; 2324 dev->ci_range.vci_bits = NR_VCI_LD; 2325 2326 iadev = INPH_IA_DEV(dev); 2327 real_base = pci_resource_start (iadev->pci, 0); 2328 iadev->irq = iadev->pci->irq; 2329 2330 error = pci_read_config_word(iadev->pci, PCI_COMMAND, &command); 2331 if (error) { 2332 printk(KERN_ERR DEV_LABEL "(itf %d): init error 0x%x\n", 2333 dev->number,error); 2334 return -EINVAL; 2335 } 2336 IF_INIT(printk(DEV_LABEL "(itf %d): rev.%d,realbase=0x%lx,irq=%d\n", 2337 dev->number, iadev->pci->revision, real_base, iadev->irq);) 2338 2339 /* find mapping size of board */ 2340 2341 iadev->pci_map_size = pci_resource_len(iadev->pci, 0); 2342 2343 if (iadev->pci_map_size == 0x100000){ 2344 iadev->num_vc = 4096; 2345 dev->ci_range.vci_bits = NR_VCI_4K_LD; 2346 iadev->memSize = 4; 2347 } 2348 else if (iadev->pci_map_size == 0x40000) { 2349 iadev->num_vc = 1024; 2350 iadev->memSize = 1; 2351 } 2352 else { 2353 printk("Unknown pci_map_size = 0x%x\n", iadev->pci_map_size); 2354 return -EINVAL; 2355 } 2356 IF_INIT(printk (DEV_LABEL "map size: %i\n", iadev->pci_map_size);) 2357 2358 /* enable bus mastering */ 2359 pci_set_master(iadev->pci); 2360 2361 /* 2362 * Delay at least 1us before doing any mem accesses (how 'bout 10?) 2363 */ 2364 udelay(10); 2365 2366 /* mapping the physical address to a virtual address in address space */ 2367 base = ioremap(real_base,iadev->pci_map_size); /* ioremap is not resolved ??? */ 2368 2369 if (!base) 2370 { 2371 printk(DEV_LABEL " (itf %d): can't set up page mapping\n", 2372 dev->number); 2373 return -ENOMEM; 2374 } 2375 IF_INIT(printk(DEV_LABEL " (itf %d): rev.%d,base=%p,irq=%d\n", 2376 dev->number, iadev->pci->revision, base, iadev->irq);) 2377 2378 /* filling the iphase dev structure */ 2379 iadev->mem = iadev->pci_map_size /2; 2380 iadev->real_base = real_base; 2381 iadev->base = base; 2382 2383 /* Bus Interface Control Registers */ 2384 iadev->reg = base + REG_BASE; 2385 /* Segmentation Control Registers */ 2386 iadev->seg_reg = base + SEG_BASE; 2387 /* Reassembly Control Registers */ 2388 iadev->reass_reg = base + REASS_BASE; 2389 /* Front end/ DMA control registers */ 2390 iadev->phy = base + PHY_BASE; 2391 iadev->dma = base + PHY_BASE; 2392 /* RAM - Segmentation RAm and Reassembly RAM */ 2393 iadev->ram = base + ACTUAL_RAM_BASE; 2394 iadev->seg_ram = base + ACTUAL_SEG_RAM_BASE; 2395 iadev->reass_ram = base + ACTUAL_REASS_RAM_BASE; 2396 2397 /* lets print out the above */ 2398 IF_INIT(printk("Base addrs: %p %p %p \n %p %p %p %p\n", 2399 iadev->reg,iadev->seg_reg,iadev->reass_reg, 2400 iadev->phy, iadev->ram, iadev->seg_ram, 2401 iadev->reass_ram);) 2402 2403 /* lets try reading the MAC address */ 2404 error = get_esi(dev); 2405 if (error) { 2406 iounmap(iadev->base); 2407 return error; 2408 } 2409 printk("IA: "); 2410 for (i=0; i < ESI_LEN; i++) 2411 printk("%s%02X",i ? "-" : "",dev->esi[i]); 2412 printk("\n"); 2413 2414 /* reset SAR */ 2415 if (reset_sar(dev)) { 2416 iounmap(iadev->base); 2417 printk("IA: reset SAR fail, please try again\n"); 2418 return 1; 2419 } 2420 return 0; 2421 } 2422 2423 static void ia_update_stats(IADEV *iadev) { 2424 if (!iadev->carrier_detect) 2425 return; 2426 iadev->rx_cell_cnt += readw(iadev->reass_reg+CELL_CTR0)&0xffff; 2427 iadev->rx_cell_cnt += (readw(iadev->reass_reg+CELL_CTR1) & 0xffff) << 16; 2428 iadev->drop_rxpkt += readw(iadev->reass_reg + DRP_PKT_CNTR ) & 0xffff; 2429 iadev->drop_rxcell += readw(iadev->reass_reg + ERR_CNTR) & 0xffff; 2430 iadev->tx_cell_cnt += readw(iadev->seg_reg + CELL_CTR_LO_AUTO)&0xffff; 2431 iadev->tx_cell_cnt += (readw(iadev->seg_reg+CELL_CTR_HIGH_AUTO)&0xffff)<<16; 2432 return; 2433 } 2434 2435 static void ia_led_timer(struct timer_list *unused) { 2436 unsigned long flags; 2437 static u_char blinking[8] = {0, 0, 0, 0, 0, 0, 0, 0}; 2438 u_char i; 2439 static u32 ctrl_reg; 2440 for (i = 0; i < iadev_count; i++) { 2441 if (ia_dev[i]) { 2442 ctrl_reg = readl(ia_dev[i]->reg+IPHASE5575_BUS_CONTROL_REG); 2443 if (blinking[i] == 0) { 2444 blinking[i]++; 2445 ctrl_reg &= (~CTRL_LED); 2446 writel(ctrl_reg, ia_dev[i]->reg+IPHASE5575_BUS_CONTROL_REG); 2447 ia_update_stats(ia_dev[i]); 2448 } 2449 else { 2450 blinking[i] = 0; 2451 ctrl_reg |= CTRL_LED; 2452 writel(ctrl_reg, ia_dev[i]->reg+IPHASE5575_BUS_CONTROL_REG); 2453 spin_lock_irqsave(&ia_dev[i]->tx_lock, flags); 2454 if (ia_dev[i]->close_pending) 2455 wake_up(&ia_dev[i]->close_wait); 2456 ia_tx_poll(ia_dev[i]); 2457 spin_unlock_irqrestore(&ia_dev[i]->tx_lock, flags); 2458 } 2459 } 2460 } 2461 mod_timer(&ia_timer, jiffies + HZ / 4); 2462 return; 2463 } 2464 2465 static void ia_phy_put(struct atm_dev *dev, unsigned char value, 2466 unsigned long addr) 2467 { 2468 writel(value, INPH_IA_DEV(dev)->phy+addr); 2469 } 2470 2471 static unsigned char ia_phy_get(struct atm_dev *dev, unsigned long addr) 2472 { 2473 return readl(INPH_IA_DEV(dev)->phy+addr); 2474 } 2475 2476 static void ia_free_tx(IADEV *iadev) 2477 { 2478 int i; 2479 2480 kfree(iadev->desc_tbl); 2481 for (i = 0; i < iadev->num_vc; i++) 2482 kfree(iadev->testTable[i]); 2483 kfree(iadev->testTable); 2484 for (i = 0; i < iadev->num_tx_desc; i++) { 2485 struct cpcs_trailer_desc *desc = iadev->tx_buf + i; 2486 2487 dma_unmap_single(&iadev->pci->dev, desc->dma_addr, 2488 sizeof(*desc->cpcs), DMA_TO_DEVICE); 2489 kfree(desc->cpcs); 2490 } 2491 kfree(iadev->tx_buf); 2492 dma_free_coherent(&iadev->pci->dev, DLE_TOTAL_SIZE, iadev->tx_dle_q.start, 2493 iadev->tx_dle_dma); 2494 } 2495 2496 static void ia_free_rx(IADEV *iadev) 2497 { 2498 kfree(iadev->rx_open); 2499 dma_free_coherent(&iadev->pci->dev, DLE_TOTAL_SIZE, iadev->rx_dle_q.start, 2500 iadev->rx_dle_dma); 2501 } 2502 2503 static int ia_start(struct atm_dev *dev) 2504 { 2505 IADEV *iadev; 2506 int error; 2507 unsigned char phy; 2508 u32 ctrl_reg; 2509 IF_EVENT(printk(">ia_start\n");) 2510 iadev = INPH_IA_DEV(dev); 2511 if (request_irq(iadev->irq, &ia_int, IRQF_SHARED, DEV_LABEL, dev)) { 2512 printk(KERN_ERR DEV_LABEL "(itf %d): IRQ%d is already in use\n", 2513 dev->number, iadev->irq); 2514 error = -EAGAIN; 2515 goto err_out; 2516 } 2517 /* @@@ should release IRQ on error */ 2518 /* enabling memory + master */ 2519 if ((error = pci_write_config_word(iadev->pci, 2520 PCI_COMMAND, 2521 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER ))) 2522 { 2523 printk(KERN_ERR DEV_LABEL "(itf %d): can't enable memory+" 2524 "master (0x%x)\n",dev->number, error); 2525 error = -EIO; 2526 goto err_free_irq; 2527 } 2528 udelay(10); 2529 2530 /* Maybe we should reset the front end, initialize Bus Interface Control 2531 Registers and see. */ 2532 2533 IF_INIT(printk("Bus ctrl reg: %08x\n", 2534 readl(iadev->reg+IPHASE5575_BUS_CONTROL_REG));) 2535 ctrl_reg = readl(iadev->reg+IPHASE5575_BUS_CONTROL_REG); 2536 ctrl_reg = (ctrl_reg & (CTRL_LED | CTRL_FE_RST)) 2537 | CTRL_B8 2538 | CTRL_B16 2539 | CTRL_B32 2540 | CTRL_B48 2541 | CTRL_B64 2542 | CTRL_B128 2543 | CTRL_ERRMASK 2544 | CTRL_DLETMASK /* shud be removed l8r */ 2545 | CTRL_DLERMASK 2546 | CTRL_SEGMASK 2547 | CTRL_REASSMASK 2548 | CTRL_FEMASK 2549 | CTRL_CSPREEMPT; 2550 2551 writel(ctrl_reg, iadev->reg+IPHASE5575_BUS_CONTROL_REG); 2552 2553 IF_INIT(printk("Bus ctrl reg after initializing: %08x\n", 2554 readl(iadev->reg+IPHASE5575_BUS_CONTROL_REG)); 2555 printk("Bus status reg after init: %08x\n", 2556 readl(iadev->reg+IPHASE5575_BUS_STATUS_REG));) 2557 2558 ia_hw_type(iadev); 2559 error = tx_init(dev); 2560 if (error) 2561 goto err_free_irq; 2562 error = rx_init(dev); 2563 if (error) 2564 goto err_free_tx; 2565 2566 ctrl_reg = readl(iadev->reg+IPHASE5575_BUS_CONTROL_REG); 2567 writel(ctrl_reg | CTRL_FE_RST, iadev->reg+IPHASE5575_BUS_CONTROL_REG); 2568 IF_INIT(printk("Bus ctrl reg after initializing: %08x\n", 2569 readl(iadev->reg+IPHASE5575_BUS_CONTROL_REG));) 2570 phy = 0; /* resolve compiler complaint */ 2571 IF_INIT ( 2572 if ((phy=ia_phy_get(dev,0)) == 0x30) 2573 printk("IA: pm5346,rev.%d\n",phy&0x0f); 2574 else 2575 printk("IA: utopia,rev.%0x\n",phy);) 2576 2577 if (iadev->phy_type & FE_25MBIT_PHY) 2578 ia_mb25_init(iadev); 2579 else if (iadev->phy_type & (FE_DS3_PHY | FE_E3_PHY)) 2580 ia_suni_pm7345_init(iadev); 2581 else { 2582 error = suni_init(dev); 2583 if (error) 2584 goto err_free_rx; 2585 if (dev->phy->start) { 2586 error = dev->phy->start(dev); 2587 if (error) 2588 goto err_free_rx; 2589 } 2590 /* Get iadev->carrier_detect status */ 2591 ia_frontend_intr(iadev); 2592 } 2593 return 0; 2594 2595 err_free_rx: 2596 ia_free_rx(iadev); 2597 err_free_tx: 2598 ia_free_tx(iadev); 2599 err_free_irq: 2600 free_irq(iadev->irq, dev); 2601 err_out: 2602 return error; 2603 } 2604 2605 static void ia_close(struct atm_vcc *vcc) 2606 { 2607 DEFINE_WAIT(wait); 2608 u16 *vc_table; 2609 IADEV *iadev; 2610 struct ia_vcc *ia_vcc; 2611 struct sk_buff *skb = NULL; 2612 struct sk_buff_head tmp_tx_backlog, tmp_vcc_backlog; 2613 unsigned long closetime, flags; 2614 2615 iadev = INPH_IA_DEV(vcc->dev); 2616 ia_vcc = INPH_IA_VCC(vcc); 2617 if (!ia_vcc) return; 2618 2619 IF_EVENT(printk("ia_close: ia_vcc->vc_desc_cnt = %d vci = %d\n", 2620 ia_vcc->vc_desc_cnt,vcc->vci);) 2621 clear_bit(ATM_VF_READY,&vcc->flags); 2622 skb_queue_head_init (&tmp_tx_backlog); 2623 skb_queue_head_init (&tmp_vcc_backlog); 2624 if (vcc->qos.txtp.traffic_class != ATM_NONE) { 2625 iadev->close_pending++; 2626 prepare_to_wait(&iadev->timeout_wait, &wait, TASK_UNINTERRUPTIBLE); 2627 schedule_timeout(msecs_to_jiffies(500)); 2628 finish_wait(&iadev->timeout_wait, &wait); 2629 spin_lock_irqsave(&iadev->tx_lock, flags); 2630 while((skb = skb_dequeue(&iadev->tx_backlog))) { 2631 if (ATM_SKB(skb)->vcc == vcc){ 2632 if (vcc->pop) vcc->pop(vcc, skb); 2633 else dev_kfree_skb_any(skb); 2634 } 2635 else 2636 skb_queue_tail(&tmp_tx_backlog, skb); 2637 } 2638 while((skb = skb_dequeue(&tmp_tx_backlog))) 2639 skb_queue_tail(&iadev->tx_backlog, skb); 2640 IF_EVENT(printk("IA TX Done decs_cnt = %d\n", ia_vcc->vc_desc_cnt);) 2641 closetime = 300000 / ia_vcc->pcr; 2642 if (closetime == 0) 2643 closetime = 1; 2644 spin_unlock_irqrestore(&iadev->tx_lock, flags); 2645 wait_event_timeout(iadev->close_wait, (ia_vcc->vc_desc_cnt <= 0), closetime); 2646 spin_lock_irqsave(&iadev->tx_lock, flags); 2647 iadev->close_pending--; 2648 iadev->testTable[vcc->vci]->lastTime = 0; 2649 iadev->testTable[vcc->vci]->fract = 0; 2650 iadev->testTable[vcc->vci]->vc_status = VC_UBR; 2651 if (vcc->qos.txtp.traffic_class == ATM_ABR) { 2652 if (vcc->qos.txtp.min_pcr > 0) 2653 iadev->sum_mcr -= vcc->qos.txtp.min_pcr; 2654 } 2655 if (vcc->qos.txtp.traffic_class == ATM_CBR) { 2656 ia_vcc = INPH_IA_VCC(vcc); 2657 iadev->sum_mcr -= ia_vcc->NumCbrEntry*iadev->Granularity; 2658 ia_cbrVc_close (vcc); 2659 } 2660 spin_unlock_irqrestore(&iadev->tx_lock, flags); 2661 } 2662 2663 if (vcc->qos.rxtp.traffic_class != ATM_NONE) { 2664 // reset reass table 2665 vc_table = (u16 *)(iadev->reass_ram+REASS_TABLE*iadev->memSize); 2666 vc_table += vcc->vci; 2667 *vc_table = NO_AAL5_PKT; 2668 // reset vc table 2669 vc_table = (u16 *)(iadev->reass_ram+RX_VC_TABLE*iadev->memSize); 2670 vc_table += vcc->vci; 2671 *vc_table = (vcc->vci << 6) | 15; 2672 if (vcc->qos.rxtp.traffic_class == ATM_ABR) { 2673 struct abr_vc_table __iomem *abr_vc_table = 2674 (iadev->reass_ram+ABR_VC_TABLE*iadev->memSize); 2675 abr_vc_table += vcc->vci; 2676 abr_vc_table->rdf = 0x0003; 2677 abr_vc_table->air = 0x5eb1; 2678 } 2679 // Drain the packets 2680 rx_dle_intr(vcc->dev); 2681 iadev->rx_open[vcc->vci] = NULL; 2682 } 2683 kfree(INPH_IA_VCC(vcc)); 2684 ia_vcc = NULL; 2685 vcc->dev_data = NULL; 2686 clear_bit(ATM_VF_ADDR,&vcc->flags); 2687 return; 2688 } 2689 2690 static int ia_open(struct atm_vcc *vcc) 2691 { 2692 struct ia_vcc *ia_vcc; 2693 int error; 2694 if (!test_bit(ATM_VF_PARTIAL,&vcc->flags)) 2695 { 2696 IF_EVENT(printk("ia: not partially allocated resources\n");) 2697 vcc->dev_data = NULL; 2698 } 2699 if (vcc->vci != ATM_VPI_UNSPEC && vcc->vpi != ATM_VCI_UNSPEC) 2700 { 2701 IF_EVENT(printk("iphase open: unspec part\n");) 2702 set_bit(ATM_VF_ADDR,&vcc->flags); 2703 } 2704 if (vcc->qos.aal != ATM_AAL5) 2705 return -EINVAL; 2706 IF_EVENT(printk(DEV_LABEL "(itf %d): open %d.%d\n", 2707 vcc->dev->number, vcc->vpi, vcc->vci);) 2708 2709 /* Device dependent initialization */ 2710 ia_vcc = kmalloc(sizeof(*ia_vcc), GFP_KERNEL); 2711 if (!ia_vcc) return -ENOMEM; 2712 vcc->dev_data = ia_vcc; 2713 2714 if ((error = open_rx(vcc))) 2715 { 2716 IF_EVENT(printk("iadev: error in open_rx, closing\n");) 2717 ia_close(vcc); 2718 return error; 2719 } 2720 2721 if ((error = open_tx(vcc))) 2722 { 2723 IF_EVENT(printk("iadev: error in open_tx, closing\n");) 2724 ia_close(vcc); 2725 return error; 2726 } 2727 2728 set_bit(ATM_VF_READY,&vcc->flags); 2729 2730 #if 0 2731 { 2732 static u8 first = 1; 2733 if (first) { 2734 ia_timer.expires = jiffies + 3*HZ; 2735 add_timer(&ia_timer); 2736 first = 0; 2737 } 2738 } 2739 #endif 2740 IF_EVENT(printk("ia open returning\n");) 2741 return 0; 2742 } 2743 2744 static int ia_change_qos(struct atm_vcc *vcc, struct atm_qos *qos, int flags) 2745 { 2746 IF_EVENT(printk(">ia_change_qos\n");) 2747 return 0; 2748 } 2749 2750 static int ia_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg) 2751 { 2752 IA_CMDBUF ia_cmds; 2753 IADEV *iadev; 2754 int i, board; 2755 u16 __user *tmps; 2756 IF_EVENT(printk(">ia_ioctl\n");) 2757 if (cmd != IA_CMD) { 2758 if (!dev->phy->ioctl) return -EINVAL; 2759 return dev->phy->ioctl(dev,cmd,arg); 2760 } 2761 if (copy_from_user(&ia_cmds, arg, sizeof ia_cmds)) return -EFAULT; 2762 board = ia_cmds.status; 2763 if ((board < 0) || (board > iadev_count)) 2764 board = 0; 2765 iadev = ia_dev[board]; 2766 switch (ia_cmds.cmd) { 2767 case MEMDUMP: 2768 { 2769 switch (ia_cmds.sub_cmd) { 2770 case MEMDUMP_SEGREG: 2771 if (!capable(CAP_NET_ADMIN)) return -EPERM; 2772 tmps = (u16 __user *)ia_cmds.buf; 2773 for(i=0; i<0x80; i+=2, tmps++) 2774 if(put_user((u16)(readl(iadev->seg_reg+i) & 0xffff), tmps)) return -EFAULT; 2775 ia_cmds.status = 0; 2776 ia_cmds.len = 0x80; 2777 break; 2778 case MEMDUMP_REASSREG: 2779 if (!capable(CAP_NET_ADMIN)) return -EPERM; 2780 tmps = (u16 __user *)ia_cmds.buf; 2781 for(i=0; i<0x80; i+=2, tmps++) 2782 if(put_user((u16)(readl(iadev->reass_reg+i) & 0xffff), tmps)) return -EFAULT; 2783 ia_cmds.status = 0; 2784 ia_cmds.len = 0x80; 2785 break; 2786 case MEMDUMP_FFL: 2787 { 2788 ia_regs_t *regs_local; 2789 ffredn_t *ffL; 2790 rfredn_t *rfL; 2791 2792 if (!capable(CAP_NET_ADMIN)) return -EPERM; 2793 regs_local = kmalloc(sizeof(*regs_local), GFP_KERNEL); 2794 if (!regs_local) return -ENOMEM; 2795 ffL = ®s_local->ffredn; 2796 rfL = ®s_local->rfredn; 2797 /* Copy real rfred registers into the local copy */ 2798 for (i=0; i<(sizeof (rfredn_t))/4; i++) 2799 ((u_int *)rfL)[i] = readl(iadev->reass_reg + i) & 0xffff; 2800 /* Copy real ffred registers into the local copy */ 2801 for (i=0; i<(sizeof (ffredn_t))/4; i++) 2802 ((u_int *)ffL)[i] = readl(iadev->seg_reg + i) & 0xffff; 2803 2804 if (copy_to_user(ia_cmds.buf, regs_local,sizeof(ia_regs_t))) { 2805 kfree(regs_local); 2806 return -EFAULT; 2807 } 2808 kfree(regs_local); 2809 printk("Board %d registers dumped\n", board); 2810 ia_cmds.status = 0; 2811 } 2812 break; 2813 case READ_REG: 2814 { 2815 if (!capable(CAP_NET_ADMIN)) return -EPERM; 2816 desc_dbg(iadev); 2817 ia_cmds.status = 0; 2818 } 2819 break; 2820 case 0x6: 2821 { 2822 ia_cmds.status = 0; 2823 printk("skb = 0x%p\n", skb_peek(&iadev->tx_backlog)); 2824 printk("rtn_q: 0x%p\n",ia_deque_rtn_q(&iadev->tx_return_q)); 2825 } 2826 break; 2827 case 0x8: 2828 { 2829 struct k_sonet_stats *stats; 2830 stats = &PRIV(_ia_dev[board])->sonet_stats; 2831 printk("section_bip: %d\n", atomic_read(&stats->section_bip)); 2832 printk("line_bip : %d\n", atomic_read(&stats->line_bip)); 2833 printk("path_bip : %d\n", atomic_read(&stats->path_bip)); 2834 printk("line_febe : %d\n", atomic_read(&stats->line_febe)); 2835 printk("path_febe : %d\n", atomic_read(&stats->path_febe)); 2836 printk("corr_hcs : %d\n", atomic_read(&stats->corr_hcs)); 2837 printk("uncorr_hcs : %d\n", atomic_read(&stats->uncorr_hcs)); 2838 printk("tx_cells : %d\n", atomic_read(&stats->tx_cells)); 2839 printk("rx_cells : %d\n", atomic_read(&stats->rx_cells)); 2840 } 2841 ia_cmds.status = 0; 2842 break; 2843 case 0x9: 2844 if (!capable(CAP_NET_ADMIN)) return -EPERM; 2845 for (i = 1; i <= iadev->num_rx_desc; i++) 2846 free_desc(_ia_dev[board], i); 2847 writew( ~(RX_FREEQ_EMPT | RX_EXCP_RCVD), 2848 iadev->reass_reg+REASS_MASK_REG); 2849 iadev->rxing = 1; 2850 2851 ia_cmds.status = 0; 2852 break; 2853 2854 case 0xb: 2855 if (!capable(CAP_NET_ADMIN)) return -EPERM; 2856 ia_frontend_intr(iadev); 2857 break; 2858 case 0xa: 2859 if (!capable(CAP_NET_ADMIN)) return -EPERM; 2860 { 2861 ia_cmds.status = 0; 2862 IADebugFlag = ia_cmds.maddr; 2863 printk("New debug option loaded\n"); 2864 } 2865 break; 2866 default: 2867 ia_cmds.status = 0; 2868 break; 2869 } 2870 } 2871 break; 2872 default: 2873 break; 2874 2875 } 2876 return 0; 2877 } 2878 2879 static int ia_getsockopt(struct atm_vcc *vcc, int level, int optname, 2880 void __user *optval, int optlen) 2881 { 2882 IF_EVENT(printk(">ia_getsockopt\n");) 2883 return -EINVAL; 2884 } 2885 2886 static int ia_setsockopt(struct atm_vcc *vcc, int level, int optname, 2887 void __user *optval, unsigned int optlen) 2888 { 2889 IF_EVENT(printk(">ia_setsockopt\n");) 2890 return -EINVAL; 2891 } 2892 2893 static int ia_pkt_tx (struct atm_vcc *vcc, struct sk_buff *skb) { 2894 IADEV *iadev; 2895 struct dle *wr_ptr; 2896 struct tx_buf_desc __iomem *buf_desc_ptr; 2897 int desc; 2898 int comp_code; 2899 int total_len; 2900 struct cpcs_trailer *trailer; 2901 struct ia_vcc *iavcc; 2902 2903 iadev = INPH_IA_DEV(vcc->dev); 2904 iavcc = INPH_IA_VCC(vcc); 2905 if (!iavcc->txing) { 2906 printk("discard packet on closed VC\n"); 2907 if (vcc->pop) 2908 vcc->pop(vcc, skb); 2909 else 2910 dev_kfree_skb_any(skb); 2911 return 0; 2912 } 2913 2914 if (skb->len > iadev->tx_buf_sz - 8) { 2915 printk("Transmit size over tx buffer size\n"); 2916 if (vcc->pop) 2917 vcc->pop(vcc, skb); 2918 else 2919 dev_kfree_skb_any(skb); 2920 return 0; 2921 } 2922 if ((unsigned long)skb->data & 3) { 2923 printk("Misaligned SKB\n"); 2924 if (vcc->pop) 2925 vcc->pop(vcc, skb); 2926 else 2927 dev_kfree_skb_any(skb); 2928 return 0; 2929 } 2930 /* Get a descriptor number from our free descriptor queue 2931 We get the descr number from the TCQ now, since I am using 2932 the TCQ as a free buffer queue. Initially TCQ will be 2933 initialized with all the descriptors and is hence, full. 2934 */ 2935 desc = get_desc (iadev, iavcc); 2936 if (desc == 0xffff) 2937 return 1; 2938 comp_code = desc >> 13; 2939 desc &= 0x1fff; 2940 2941 if ((desc == 0) || (desc > iadev->num_tx_desc)) 2942 { 2943 IF_ERR(printk(DEV_LABEL "invalid desc for send: %d\n", desc);) 2944 atomic_inc(&vcc->stats->tx); 2945 if (vcc->pop) 2946 vcc->pop(vcc, skb); 2947 else 2948 dev_kfree_skb_any(skb); 2949 return 0; /* return SUCCESS */ 2950 } 2951 2952 if (comp_code) 2953 { 2954 IF_ERR(printk(DEV_LABEL "send desc:%d completion code %d error\n", 2955 desc, comp_code);) 2956 } 2957 2958 /* remember the desc and vcc mapping */ 2959 iavcc->vc_desc_cnt++; 2960 iadev->desc_tbl[desc-1].iavcc = iavcc; 2961 iadev->desc_tbl[desc-1].txskb = skb; 2962 IA_SKB_STATE(skb) = 0; 2963 2964 iadev->ffL.tcq_rd += 2; 2965 if (iadev->ffL.tcq_rd > iadev->ffL.tcq_ed) 2966 iadev->ffL.tcq_rd = iadev->ffL.tcq_st; 2967 writew(iadev->ffL.tcq_rd, iadev->seg_reg+TCQ_RD_PTR); 2968 2969 /* Put the descriptor number in the packet ready queue 2970 and put the updated write pointer in the DLE field 2971 */ 2972 *(u16*)(iadev->seg_ram+iadev->ffL.prq_wr) = desc; 2973 2974 iadev->ffL.prq_wr += 2; 2975 if (iadev->ffL.prq_wr > iadev->ffL.prq_ed) 2976 iadev->ffL.prq_wr = iadev->ffL.prq_st; 2977 2978 /* Figure out the exact length of the packet and padding required to 2979 make it aligned on a 48 byte boundary. */ 2980 total_len = skb->len + sizeof(struct cpcs_trailer); 2981 total_len = ((total_len + 47) / 48) * 48; 2982 IF_TX(printk("ia packet len:%d padding:%d\n", total_len, total_len - skb->len);) 2983 2984 /* Put the packet in a tx buffer */ 2985 trailer = iadev->tx_buf[desc-1].cpcs; 2986 IF_TX(printk("Sent: skb = 0x%p skb->data: 0x%p len: %d, desc: %d\n", 2987 skb, skb->data, skb->len, desc);) 2988 trailer->control = 0; 2989 /*big endian*/ 2990 trailer->length = ((skb->len & 0xff) << 8) | ((skb->len & 0xff00) >> 8); 2991 trailer->crc32 = 0; /* not needed - dummy bytes */ 2992 2993 /* Display the packet */ 2994 IF_TXPKT(printk("Sent data: len = %d MsgNum = %d\n", 2995 skb->len, tcnter++); 2996 xdump(skb->data, skb->len, "TX: "); 2997 printk("\n");) 2998 2999 /* Build the buffer descriptor */ 3000 buf_desc_ptr = iadev->seg_ram+TX_DESC_BASE; 3001 buf_desc_ptr += desc; /* points to the corresponding entry */ 3002 buf_desc_ptr->desc_mode = AAL5 | EOM_EN | APP_CRC32 | CMPL_INT; 3003 /* Huh ? p.115 of users guide describes this as a read-only register */ 3004 writew(TRANSMIT_DONE, iadev->seg_reg+SEG_INTR_STATUS_REG); 3005 buf_desc_ptr->vc_index = vcc->vci; 3006 buf_desc_ptr->bytes = total_len; 3007 3008 if (vcc->qos.txtp.traffic_class == ATM_ABR) 3009 clear_lockup (vcc, iadev); 3010 3011 /* Build the DLE structure */ 3012 wr_ptr = iadev->tx_dle_q.write; 3013 memset((caddr_t)wr_ptr, 0, sizeof(*wr_ptr)); 3014 wr_ptr->sys_pkt_addr = dma_map_single(&iadev->pci->dev, skb->data, 3015 skb->len, DMA_TO_DEVICE); 3016 wr_ptr->local_pkt_addr = (buf_desc_ptr->buf_start_hi << 16) | 3017 buf_desc_ptr->buf_start_lo; 3018 /* wr_ptr->bytes = swap_byte_order(total_len); didn't seem to affect?? */ 3019 wr_ptr->bytes = skb->len; 3020 3021 /* hw bug - DLEs of 0x2d, 0x2e, 0x2f cause DMA lockup */ 3022 if ((wr_ptr->bytes >> 2) == 0xb) 3023 wr_ptr->bytes = 0x30; 3024 3025 wr_ptr->mode = TX_DLE_PSI; 3026 wr_ptr->prq_wr_ptr_data = 0; 3027 3028 /* end is not to be used for the DLE q */ 3029 if (++wr_ptr == iadev->tx_dle_q.end) 3030 wr_ptr = iadev->tx_dle_q.start; 3031 3032 /* Build trailer dle */ 3033 wr_ptr->sys_pkt_addr = iadev->tx_buf[desc-1].dma_addr; 3034 wr_ptr->local_pkt_addr = ((buf_desc_ptr->buf_start_hi << 16) | 3035 buf_desc_ptr->buf_start_lo) + total_len - sizeof(struct cpcs_trailer); 3036 3037 wr_ptr->bytes = sizeof(struct cpcs_trailer); 3038 wr_ptr->mode = DMA_INT_ENABLE; 3039 wr_ptr->prq_wr_ptr_data = iadev->ffL.prq_wr; 3040 3041 /* end is not to be used for the DLE q */ 3042 if (++wr_ptr == iadev->tx_dle_q.end) 3043 wr_ptr = iadev->tx_dle_q.start; 3044 3045 iadev->tx_dle_q.write = wr_ptr; 3046 ATM_DESC(skb) = vcc->vci; 3047 skb_queue_tail(&iadev->tx_dma_q, skb); 3048 3049 atomic_inc(&vcc->stats->tx); 3050 iadev->tx_pkt_cnt++; 3051 /* Increment transaction counter */ 3052 writel(2, iadev->dma+IPHASE5575_TX_COUNTER); 3053 3054 #if 0 3055 /* add flow control logic */ 3056 if (atomic_read(&vcc->stats->tx) % 20 == 0) { 3057 if (iavcc->vc_desc_cnt > 10) { 3058 vcc->tx_quota = vcc->tx_quota * 3 / 4; 3059 printk("Tx1: vcc->tx_quota = %d \n", (u32)vcc->tx_quota ); 3060 iavcc->flow_inc = -1; 3061 iavcc->saved_tx_quota = vcc->tx_quota; 3062 } else if ((iavcc->flow_inc < 0) && (iavcc->vc_desc_cnt < 3)) { 3063 // vcc->tx_quota = 3 * iavcc->saved_tx_quota / 4; 3064 printk("Tx2: vcc->tx_quota = %d \n", (u32)vcc->tx_quota ); 3065 iavcc->flow_inc = 0; 3066 } 3067 } 3068 #endif 3069 IF_TX(printk("ia send done\n");) 3070 return 0; 3071 } 3072 3073 static int ia_send(struct atm_vcc *vcc, struct sk_buff *skb) 3074 { 3075 IADEV *iadev; 3076 unsigned long flags; 3077 3078 iadev = INPH_IA_DEV(vcc->dev); 3079 if ((!skb)||(skb->len>(iadev->tx_buf_sz-sizeof(struct cpcs_trailer)))) 3080 { 3081 if (!skb) 3082 printk(KERN_CRIT "null skb in ia_send\n"); 3083 else dev_kfree_skb_any(skb); 3084 return -EINVAL; 3085 } 3086 spin_lock_irqsave(&iadev->tx_lock, flags); 3087 if (!test_bit(ATM_VF_READY,&vcc->flags)){ 3088 dev_kfree_skb_any(skb); 3089 spin_unlock_irqrestore(&iadev->tx_lock, flags); 3090 return -EINVAL; 3091 } 3092 ATM_SKB(skb)->vcc = vcc; 3093 3094 if (skb_peek(&iadev->tx_backlog)) { 3095 skb_queue_tail(&iadev->tx_backlog, skb); 3096 } 3097 else { 3098 if (ia_pkt_tx (vcc, skb)) { 3099 skb_queue_tail(&iadev->tx_backlog, skb); 3100 } 3101 } 3102 spin_unlock_irqrestore(&iadev->tx_lock, flags); 3103 return 0; 3104 3105 } 3106 3107 static int ia_proc_read(struct atm_dev *dev,loff_t *pos,char *page) 3108 { 3109 int left = *pos, n; 3110 char *tmpPtr; 3111 IADEV *iadev = INPH_IA_DEV(dev); 3112 if(!left--) { 3113 if (iadev->phy_type == FE_25MBIT_PHY) { 3114 n = sprintf(page, " Board Type : Iphase5525-1KVC-128K\n"); 3115 return n; 3116 } 3117 if (iadev->phy_type == FE_DS3_PHY) 3118 n = sprintf(page, " Board Type : Iphase-ATM-DS3"); 3119 else if (iadev->phy_type == FE_E3_PHY) 3120 n = sprintf(page, " Board Type : Iphase-ATM-E3"); 3121 else if (iadev->phy_type == FE_UTP_OPTION) 3122 n = sprintf(page, " Board Type : Iphase-ATM-UTP155"); 3123 else 3124 n = sprintf(page, " Board Type : Iphase-ATM-OC3"); 3125 tmpPtr = page + n; 3126 if (iadev->pci_map_size == 0x40000) 3127 n += sprintf(tmpPtr, "-1KVC-"); 3128 else 3129 n += sprintf(tmpPtr, "-4KVC-"); 3130 tmpPtr = page + n; 3131 if ((iadev->memType & MEM_SIZE_MASK) == MEM_SIZE_1M) 3132 n += sprintf(tmpPtr, "1M \n"); 3133 else if ((iadev->memType & MEM_SIZE_MASK) == MEM_SIZE_512K) 3134 n += sprintf(tmpPtr, "512K\n"); 3135 else 3136 n += sprintf(tmpPtr, "128K\n"); 3137 return n; 3138 } 3139 if (!left) { 3140 return sprintf(page, " Number of Tx Buffer: %u\n" 3141 " Size of Tx Buffer : %u\n" 3142 " Number of Rx Buffer: %u\n" 3143 " Size of Rx Buffer : %u\n" 3144 " Packets Received : %u\n" 3145 " Packets Transmitted: %u\n" 3146 " Cells Received : %u\n" 3147 " Cells Transmitted : %u\n" 3148 " Board Dropped Cells: %u\n" 3149 " Board Dropped Pkts : %u\n", 3150 iadev->num_tx_desc, iadev->tx_buf_sz, 3151 iadev->num_rx_desc, iadev->rx_buf_sz, 3152 iadev->rx_pkt_cnt, iadev->tx_pkt_cnt, 3153 iadev->rx_cell_cnt, iadev->tx_cell_cnt, 3154 iadev->drop_rxcell, iadev->drop_rxpkt); 3155 } 3156 return 0; 3157 } 3158 3159 static const struct atmdev_ops ops = { 3160 .open = ia_open, 3161 .close = ia_close, 3162 .ioctl = ia_ioctl, 3163 .getsockopt = ia_getsockopt, 3164 .setsockopt = ia_setsockopt, 3165 .send = ia_send, 3166 .phy_put = ia_phy_put, 3167 .phy_get = ia_phy_get, 3168 .change_qos = ia_change_qos, 3169 .proc_read = ia_proc_read, 3170 .owner = THIS_MODULE, 3171 }; 3172 3173 static int ia_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 3174 { 3175 struct atm_dev *dev; 3176 IADEV *iadev; 3177 int ret; 3178 3179 iadev = kzalloc(sizeof(*iadev), GFP_KERNEL); 3180 if (!iadev) { 3181 ret = -ENOMEM; 3182 goto err_out; 3183 } 3184 3185 iadev->pci = pdev; 3186 3187 IF_INIT(printk("ia detected at bus:%d dev: %d function:%d\n", 3188 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));) 3189 if (pci_enable_device(pdev)) { 3190 ret = -ENODEV; 3191 goto err_out_free_iadev; 3192 } 3193 dev = atm_dev_register(DEV_LABEL, &pdev->dev, &ops, -1, NULL); 3194 if (!dev) { 3195 ret = -ENOMEM; 3196 goto err_out_disable_dev; 3197 } 3198 dev->dev_data = iadev; 3199 IF_INIT(printk(DEV_LABEL "registered at (itf :%d)\n", dev->number);) 3200 IF_INIT(printk("dev_id = 0x%p iadev->LineRate = %d \n", dev, 3201 iadev->LineRate);) 3202 3203 pci_set_drvdata(pdev, dev); 3204 3205 ia_dev[iadev_count] = iadev; 3206 _ia_dev[iadev_count] = dev; 3207 iadev_count++; 3208 if (ia_init(dev) || ia_start(dev)) { 3209 IF_INIT(printk("IA register failed!\n");) 3210 iadev_count--; 3211 ia_dev[iadev_count] = NULL; 3212 _ia_dev[iadev_count] = NULL; 3213 ret = -EINVAL; 3214 goto err_out_deregister_dev; 3215 } 3216 IF_EVENT(printk("iadev_count = %d\n", iadev_count);) 3217 3218 iadev->next_board = ia_boards; 3219 ia_boards = dev; 3220 3221 return 0; 3222 3223 err_out_deregister_dev: 3224 atm_dev_deregister(dev); 3225 err_out_disable_dev: 3226 pci_disable_device(pdev); 3227 err_out_free_iadev: 3228 kfree(iadev); 3229 err_out: 3230 return ret; 3231 } 3232 3233 static void ia_remove_one(struct pci_dev *pdev) 3234 { 3235 struct atm_dev *dev = pci_get_drvdata(pdev); 3236 IADEV *iadev = INPH_IA_DEV(dev); 3237 3238 /* Disable phy interrupts */ 3239 ia_phy_put(dev, ia_phy_get(dev, SUNI_RSOP_CIE) & ~(SUNI_RSOP_CIE_LOSE), 3240 SUNI_RSOP_CIE); 3241 udelay(1); 3242 3243 if (dev->phy && dev->phy->stop) 3244 dev->phy->stop(dev); 3245 3246 /* De-register device */ 3247 free_irq(iadev->irq, dev); 3248 iadev_count--; 3249 ia_dev[iadev_count] = NULL; 3250 _ia_dev[iadev_count] = NULL; 3251 IF_EVENT(printk("deregistering iav at (itf:%d)\n", dev->number);) 3252 atm_dev_deregister(dev); 3253 3254 iounmap(iadev->base); 3255 pci_disable_device(pdev); 3256 3257 ia_free_rx(iadev); 3258 ia_free_tx(iadev); 3259 3260 kfree(iadev); 3261 } 3262 3263 static const struct pci_device_id ia_pci_tbl[] = { 3264 { PCI_VENDOR_ID_IPHASE, 0x0008, PCI_ANY_ID, PCI_ANY_ID, }, 3265 { PCI_VENDOR_ID_IPHASE, 0x0009, PCI_ANY_ID, PCI_ANY_ID, }, 3266 { 0,} 3267 }; 3268 MODULE_DEVICE_TABLE(pci, ia_pci_tbl); 3269 3270 static struct pci_driver ia_driver = { 3271 .name = DEV_LABEL, 3272 .id_table = ia_pci_tbl, 3273 .probe = ia_init_one, 3274 .remove = ia_remove_one, 3275 }; 3276 3277 static int __init ia_module_init(void) 3278 { 3279 int ret; 3280 3281 ret = pci_register_driver(&ia_driver); 3282 if (ret >= 0) { 3283 ia_timer.expires = jiffies + 3*HZ; 3284 add_timer(&ia_timer); 3285 } else 3286 printk(KERN_ERR DEV_LABEL ": no adapter found\n"); 3287 return ret; 3288 } 3289 3290 static void __exit ia_module_exit(void) 3291 { 3292 pci_unregister_driver(&ia_driver); 3293 3294 del_timer(&ia_timer); 3295 } 3296 3297 module_init(ia_module_init); 3298 module_exit(ia_module_exit); 3299