xref: /openbmc/linux/crypto/jitterentropy.c (revision b830f94f)
1 /*
2  * Non-physical true random number generator based on timing jitter --
3  * Jitter RNG standalone code.
4  *
5  * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2019
6  *
7  * Design
8  * ======
9  *
10  * See http://www.chronox.de/jent.html
11  *
12  * License
13  * =======
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, and the entire permission notice in its entirety,
20  *    including the disclaimer of warranties.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. The name of the author may not be used to endorse or promote
25  *    products derived from this software without specific prior
26  *    written permission.
27  *
28  * ALTERNATIVELY, this product may be distributed under the terms of
29  * the GNU General Public License, in which case the provisions of the GPL2 are
30  * required INSTEAD OF the above restrictions.  (This clause is
31  * necessary due to a potential bad interaction between the GPL and
32  * the restrictions contained in a BSD-style copyright.)
33  *
34  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
35  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
36  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
37  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
38  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
39  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
40  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
41  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
42  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
44  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
45  * DAMAGE.
46  */
47 
48 /*
49  * This Jitterentropy RNG is based on the jitterentropy library
50  * version 2.1.2 provided at http://www.chronox.de/jent.html
51  */
52 
53 #ifdef __OPTIMIZE__
54  #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
55 #endif
56 
57 typedef	unsigned long long	__u64;
58 typedef	long long		__s64;
59 typedef	unsigned int		__u32;
60 #define NULL    ((void *) 0)
61 
62 /* The entropy pool */
63 struct rand_data {
64 	/* all data values that are vital to maintain the security
65 	 * of the RNG are marked as SENSITIVE. A user must not
66 	 * access that information while the RNG executes its loops to
67 	 * calculate the next random value. */
68 	__u64 data;		/* SENSITIVE Actual random number */
69 	__u64 old_data;		/* SENSITIVE Previous random number */
70 	__u64 prev_time;	/* SENSITIVE Previous time stamp */
71 #define DATA_SIZE_BITS ((sizeof(__u64)) * 8)
72 	__u64 last_delta;	/* SENSITIVE stuck test */
73 	__s64 last_delta2;	/* SENSITIVE stuck test */
74 	unsigned int osr;	/* Oversample rate */
75 #define JENT_MEMORY_BLOCKS 64
76 #define JENT_MEMORY_BLOCKSIZE 32
77 #define JENT_MEMORY_ACCESSLOOPS 128
78 #define JENT_MEMORY_SIZE (JENT_MEMORY_BLOCKS*JENT_MEMORY_BLOCKSIZE)
79 	unsigned char *mem;	/* Memory access location with size of
80 				 * memblocks * memblocksize */
81 	unsigned int memlocation; /* Pointer to byte in *mem */
82 	unsigned int memblocks;	/* Number of memory blocks in *mem */
83 	unsigned int memblocksize; /* Size of one memory block in bytes */
84 	unsigned int memaccessloops; /* Number of memory accesses per random
85 				      * bit generation */
86 };
87 
88 /* Flags that can be used to initialize the RNG */
89 #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
90 					   * entropy, saves MEMORY_SIZE RAM for
91 					   * entropy collector */
92 
93 /* -- error codes for init function -- */
94 #define JENT_ENOTIME		1 /* Timer service not available */
95 #define JENT_ECOARSETIME	2 /* Timer too coarse for RNG */
96 #define JENT_ENOMONOTONIC	3 /* Timer is not monotonic increasing */
97 #define JENT_EVARVAR		5 /* Timer does not produce variations of
98 				   * variations (2nd derivation of time is
99 				   * zero). */
100 #define JENT_ESTUCK		8 /* Too many stuck results during init. */
101 
102 /***************************************************************************
103  * Helper functions
104  ***************************************************************************/
105 
106 void jent_get_nstime(__u64 *out);
107 void *jent_zalloc(unsigned int len);
108 void jent_zfree(void *ptr);
109 int jent_fips_enabled(void);
110 void jent_panic(char *s);
111 void jent_memcpy(void *dest, const void *src, unsigned int n);
112 
113 /**
114  * Update of the loop count used for the next round of
115  * an entropy collection.
116  *
117  * Input:
118  * @ec entropy collector struct -- may be NULL
119  * @bits is the number of low bits of the timer to consider
120  * @min is the number of bits we shift the timer value to the right at
121  *	the end to make sure we have a guaranteed minimum value
122  *
123  * @return Newly calculated loop counter
124  */
125 static __u64 jent_loop_shuffle(struct rand_data *ec,
126 			       unsigned int bits, unsigned int min)
127 {
128 	__u64 time = 0;
129 	__u64 shuffle = 0;
130 	unsigned int i = 0;
131 	unsigned int mask = (1<<bits) - 1;
132 
133 	jent_get_nstime(&time);
134 	/*
135 	 * Mix the current state of the random number into the shuffle
136 	 * calculation to balance that shuffle a bit more.
137 	 */
138 	if (ec)
139 		time ^= ec->data;
140 	/*
141 	 * We fold the time value as much as possible to ensure that as many
142 	 * bits of the time stamp are included as possible.
143 	 */
144 	for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) {
145 		shuffle ^= time & mask;
146 		time = time >> bits;
147 	}
148 
149 	/*
150 	 * We add a lower boundary value to ensure we have a minimum
151 	 * RNG loop count.
152 	 */
153 	return (shuffle + (1<<min));
154 }
155 
156 /***************************************************************************
157  * Noise sources
158  ***************************************************************************/
159 
160 /**
161  * CPU Jitter noise source -- this is the noise source based on the CPU
162  *			      execution time jitter
163  *
164  * This function injects the individual bits of the time value into the
165  * entropy pool using an LFSR.
166  *
167  * The code is deliberately inefficient with respect to the bit shifting
168  * and shall stay that way. This function is the root cause why the code
169  * shall be compiled without optimization. This function not only acts as
170  * folding operation, but this function's execution is used to measure
171  * the CPU execution time jitter. Any change to the loop in this function
172  * implies that careful retesting must be done.
173  *
174  * Input:
175  * @ec entropy collector struct -- may be NULL
176  * @time time stamp to be injected
177  * @loop_cnt if a value not equal to 0 is set, use the given value as number of
178  *	     loops to perform the folding
179  *
180  * Output:
181  * updated ec->data
182  *
183  * @return Number of loops the folding operation is performed
184  */
185 static __u64 jent_lfsr_time(struct rand_data *ec, __u64 time, __u64 loop_cnt)
186 {
187 	unsigned int i;
188 	__u64 j = 0;
189 	__u64 new = 0;
190 #define MAX_FOLD_LOOP_BIT 4
191 #define MIN_FOLD_LOOP_BIT 0
192 	__u64 fold_loop_cnt =
193 		jent_loop_shuffle(ec, MAX_FOLD_LOOP_BIT, MIN_FOLD_LOOP_BIT);
194 
195 	/*
196 	 * testing purposes -- allow test app to set the counter, not
197 	 * needed during runtime
198 	 */
199 	if (loop_cnt)
200 		fold_loop_cnt = loop_cnt;
201 	for (j = 0; j < fold_loop_cnt; j++) {
202 		new = ec->data;
203 		for (i = 1; (DATA_SIZE_BITS) >= i; i++) {
204 			__u64 tmp = time << (DATA_SIZE_BITS - i);
205 
206 			tmp = tmp >> (DATA_SIZE_BITS - 1);
207 
208 			/*
209 			* Fibonacci LSFR with polynomial of
210 			*  x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is
211 			*  primitive according to
212 			*   http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf
213 			* (the shift values are the polynomial values minus one
214 			* due to counting bits from 0 to 63). As the current
215 			* position is always the LSB, the polynomial only needs
216 			* to shift data in from the left without wrap.
217 			*/
218 			tmp ^= ((new >> 63) & 1);
219 			tmp ^= ((new >> 60) & 1);
220 			tmp ^= ((new >> 55) & 1);
221 			tmp ^= ((new >> 30) & 1);
222 			tmp ^= ((new >> 27) & 1);
223 			tmp ^= ((new >> 22) & 1);
224 			new <<= 1;
225 			new ^= tmp;
226 		}
227 	}
228 	ec->data = new;
229 
230 	return fold_loop_cnt;
231 }
232 
233 /**
234  * Memory Access noise source -- this is a noise source based on variations in
235  *				 memory access times
236  *
237  * This function performs memory accesses which will add to the timing
238  * variations due to an unknown amount of CPU wait states that need to be
239  * added when accessing memory. The memory size should be larger than the L1
240  * caches as outlined in the documentation and the associated testing.
241  *
242  * The L1 cache has a very high bandwidth, albeit its access rate is  usually
243  * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
244  * variations as the CPU has hardly to wait. Starting with L2, significant
245  * variations are added because L2 typically does not belong to the CPU any more
246  * and therefore a wider range of CPU wait states is necessary for accesses.
247  * L3 and real memory accesses have even a wider range of wait states. However,
248  * to reliably access either L3 or memory, the ec->mem memory must be quite
249  * large which is usually not desirable.
250  *
251  * Input:
252  * @ec Reference to the entropy collector with the memory access data -- if
253  *     the reference to the memory block to be accessed is NULL, this noise
254  *     source is disabled
255  * @loop_cnt if a value not equal to 0 is set, use the given value as number of
256  *	     loops to perform the folding
257  *
258  * @return Number of memory access operations
259  */
260 static unsigned int jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
261 {
262 	unsigned int wrap = 0;
263 	__u64 i = 0;
264 #define MAX_ACC_LOOP_BIT 7
265 #define MIN_ACC_LOOP_BIT 0
266 	__u64 acc_loop_cnt =
267 		jent_loop_shuffle(ec, MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
268 
269 	if (NULL == ec || NULL == ec->mem)
270 		return 0;
271 	wrap = ec->memblocksize * ec->memblocks;
272 
273 	/*
274 	 * testing purposes -- allow test app to set the counter, not
275 	 * needed during runtime
276 	 */
277 	if (loop_cnt)
278 		acc_loop_cnt = loop_cnt;
279 
280 	for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
281 		unsigned char *tmpval = ec->mem + ec->memlocation;
282 		/*
283 		 * memory access: just add 1 to one byte,
284 		 * wrap at 255 -- memory access implies read
285 		 * from and write to memory location
286 		 */
287 		*tmpval = (*tmpval + 1) & 0xff;
288 		/*
289 		 * Addition of memblocksize - 1 to pointer
290 		 * with wrap around logic to ensure that every
291 		 * memory location is hit evenly
292 		 */
293 		ec->memlocation = ec->memlocation + ec->memblocksize - 1;
294 		ec->memlocation = ec->memlocation % wrap;
295 	}
296 	return i;
297 }
298 
299 /***************************************************************************
300  * Start of entropy processing logic
301  ***************************************************************************/
302 
303 /**
304  * Stuck test by checking the:
305  *	1st derivation of the jitter measurement (time delta)
306  *	2nd derivation of the jitter measurement (delta of time deltas)
307  *	3rd derivation of the jitter measurement (delta of delta of time deltas)
308  *
309  * All values must always be non-zero.
310  *
311  * Input:
312  * @ec Reference to entropy collector
313  * @current_delta Jitter time delta
314  *
315  * @return
316  *	0 jitter measurement not stuck (good bit)
317  *	1 jitter measurement stuck (reject bit)
318  */
319 static int jent_stuck(struct rand_data *ec, __u64 current_delta)
320 {
321 	__s64 delta2 = ec->last_delta - current_delta;
322 	__s64 delta3 = delta2 - ec->last_delta2;
323 
324 	ec->last_delta = current_delta;
325 	ec->last_delta2 = delta2;
326 
327 	if (!current_delta || !delta2 || !delta3)
328 		return 1;
329 
330 	return 0;
331 }
332 
333 /**
334  * This is the heart of the entropy generation: calculate time deltas and
335  * use the CPU jitter in the time deltas. The jitter is injected into the
336  * entropy pool.
337  *
338  * WARNING: ensure that ->prev_time is primed before using the output
339  *	    of this function! This can be done by calling this function
340  *	    and not using its result.
341  *
342  * Input:
343  * @entropy_collector Reference to entropy collector
344  *
345  * @return result of stuck test
346  */
347 static int jent_measure_jitter(struct rand_data *ec)
348 {
349 	__u64 time = 0;
350 	__u64 current_delta = 0;
351 
352 	/* Invoke one noise source before time measurement to add variations */
353 	jent_memaccess(ec, 0);
354 
355 	/*
356 	 * Get time stamp and calculate time delta to previous
357 	 * invocation to measure the timing variations
358 	 */
359 	jent_get_nstime(&time);
360 	current_delta = time - ec->prev_time;
361 	ec->prev_time = time;
362 
363 	/* Now call the next noise sources which also injects the data */
364 	jent_lfsr_time(ec, current_delta, 0);
365 
366 	/* Check whether we have a stuck measurement. */
367 	return jent_stuck(ec, current_delta);
368 }
369 
370 /**
371  * Generator of one 64 bit random number
372  * Function fills rand_data->data
373  *
374  * Input:
375  * @ec Reference to entropy collector
376  */
377 static void jent_gen_entropy(struct rand_data *ec)
378 {
379 	unsigned int k = 0;
380 
381 	/* priming of the ->prev_time value */
382 	jent_measure_jitter(ec);
383 
384 	while (1) {
385 		/* If a stuck measurement is received, repeat measurement */
386 		if (jent_measure_jitter(ec))
387 			continue;
388 
389 		/*
390 		 * We multiply the loop value with ->osr to obtain the
391 		 * oversampling rate requested by the caller
392 		 */
393 		if (++k >= (DATA_SIZE_BITS * ec->osr))
394 			break;
395 	}
396 }
397 
398 /**
399  * The continuous test required by FIPS 140-2 -- the function automatically
400  * primes the test if needed.
401  *
402  * Return:
403  * 0 if FIPS test passed
404  * < 0 if FIPS test failed
405  */
406 static void jent_fips_test(struct rand_data *ec)
407 {
408 	if (!jent_fips_enabled())
409 		return;
410 
411 	/* prime the FIPS test */
412 	if (!ec->old_data) {
413 		ec->old_data = ec->data;
414 		jent_gen_entropy(ec);
415 	}
416 
417 	if (ec->data == ec->old_data)
418 		jent_panic("jitterentropy: Duplicate output detected\n");
419 
420 	ec->old_data = ec->data;
421 }
422 
423 /**
424  * Entry function: Obtain entropy for the caller.
425  *
426  * This function invokes the entropy gathering logic as often to generate
427  * as many bytes as requested by the caller. The entropy gathering logic
428  * creates 64 bit per invocation.
429  *
430  * This function truncates the last 64 bit entropy value output to the exact
431  * size specified by the caller.
432  *
433  * Input:
434  * @ec Reference to entropy collector
435  * @data pointer to buffer for storing random data -- buffer must already
436  *	 exist
437  * @len size of the buffer, specifying also the requested number of random
438  *	in bytes
439  *
440  * @return 0 when request is fulfilled or an error
441  *
442  * The following error codes can occur:
443  *	-1	entropy_collector is NULL
444  */
445 int jent_read_entropy(struct rand_data *ec, unsigned char *data,
446 		      unsigned int len)
447 {
448 	unsigned char *p = data;
449 
450 	if (!ec)
451 		return -1;
452 
453 	while (0 < len) {
454 		unsigned int tocopy;
455 
456 		jent_gen_entropy(ec);
457 		jent_fips_test(ec);
458 		if ((DATA_SIZE_BITS / 8) < len)
459 			tocopy = (DATA_SIZE_BITS / 8);
460 		else
461 			tocopy = len;
462 		jent_memcpy(p, &ec->data, tocopy);
463 
464 		len -= tocopy;
465 		p += tocopy;
466 	}
467 
468 	return 0;
469 }
470 
471 /***************************************************************************
472  * Initialization logic
473  ***************************************************************************/
474 
475 struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
476 					       unsigned int flags)
477 {
478 	struct rand_data *entropy_collector;
479 
480 	entropy_collector = jent_zalloc(sizeof(struct rand_data));
481 	if (!entropy_collector)
482 		return NULL;
483 
484 	if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
485 		/* Allocate memory for adding variations based on memory
486 		 * access
487 		 */
488 		entropy_collector->mem = jent_zalloc(JENT_MEMORY_SIZE);
489 		if (!entropy_collector->mem) {
490 			jent_zfree(entropy_collector);
491 			return NULL;
492 		}
493 		entropy_collector->memblocksize = JENT_MEMORY_BLOCKSIZE;
494 		entropy_collector->memblocks = JENT_MEMORY_BLOCKS;
495 		entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
496 	}
497 
498 	/* verify and set the oversampling rate */
499 	if (0 == osr)
500 		osr = 1; /* minimum sampling rate is 1 */
501 	entropy_collector->osr = osr;
502 
503 	/* fill the data pad with non-zero values */
504 	jent_gen_entropy(entropy_collector);
505 
506 	return entropy_collector;
507 }
508 
509 void jent_entropy_collector_free(struct rand_data *entropy_collector)
510 {
511 	jent_zfree(entropy_collector->mem);
512 	entropy_collector->mem = NULL;
513 	jent_zfree(entropy_collector);
514 }
515 
516 int jent_entropy_init(void)
517 {
518 	int i;
519 	__u64 delta_sum = 0;
520 	__u64 old_delta = 0;
521 	int time_backwards = 0;
522 	int count_mod = 0;
523 	int count_stuck = 0;
524 	struct rand_data ec = { 0 };
525 
526 	/* We could perform statistical tests here, but the problem is
527 	 * that we only have a few loop counts to do testing. These
528 	 * loop counts may show some slight skew and we produce
529 	 * false positives.
530 	 *
531 	 * Moreover, only old systems show potentially problematic
532 	 * jitter entropy that could potentially be caught here. But
533 	 * the RNG is intended for hardware that is available or widely
534 	 * used, but not old systems that are long out of favor. Thus,
535 	 * no statistical tests.
536 	 */
537 
538 	/*
539 	 * We could add a check for system capabilities such as clock_getres or
540 	 * check for CONFIG_X86_TSC, but it does not make much sense as the
541 	 * following sanity checks verify that we have a high-resolution
542 	 * timer.
543 	 */
544 	/*
545 	 * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
546 	 * definitely too little.
547 	 */
548 #define TESTLOOPCOUNT 300
549 #define CLEARCACHE 100
550 	for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
551 		__u64 time = 0;
552 		__u64 time2 = 0;
553 		__u64 delta = 0;
554 		unsigned int lowdelta = 0;
555 		int stuck;
556 
557 		/* Invoke core entropy collection logic */
558 		jent_get_nstime(&time);
559 		ec.prev_time = time;
560 		jent_lfsr_time(&ec, time, 0);
561 		jent_get_nstime(&time2);
562 
563 		/* test whether timer works */
564 		if (!time || !time2)
565 			return JENT_ENOTIME;
566 		delta = time2 - time;
567 		/*
568 		 * test whether timer is fine grained enough to provide
569 		 * delta even when called shortly after each other -- this
570 		 * implies that we also have a high resolution timer
571 		 */
572 		if (!delta)
573 			return JENT_ECOARSETIME;
574 
575 		stuck = jent_stuck(&ec, delta);
576 
577 		/*
578 		 * up to here we did not modify any variable that will be
579 		 * evaluated later, but we already performed some work. Thus we
580 		 * already have had an impact on the caches, branch prediction,
581 		 * etc. with the goal to clear it to get the worst case
582 		 * measurements.
583 		 */
584 		if (CLEARCACHE > i)
585 			continue;
586 
587 		if (stuck)
588 			count_stuck++;
589 
590 		/* test whether we have an increasing timer */
591 		if (!(time2 > time))
592 			time_backwards++;
593 
594 		/* use 32 bit value to ensure compilation on 32 bit arches */
595 		lowdelta = time2 - time;
596 		if (!(lowdelta % 100))
597 			count_mod++;
598 
599 		/*
600 		 * ensure that we have a varying delta timer which is necessary
601 		 * for the calculation of entropy -- perform this check
602 		 * only after the first loop is executed as we need to prime
603 		 * the old_data value
604 		 */
605 		if (delta > old_delta)
606 			delta_sum += (delta - old_delta);
607 		else
608 			delta_sum += (old_delta - delta);
609 		old_delta = delta;
610 	}
611 
612 	/*
613 	 * we allow up to three times the time running backwards.
614 	 * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
615 	 * if such an operation just happens to interfere with our test, it
616 	 * should not fail. The value of 3 should cover the NTP case being
617 	 * performed during our test run.
618 	 */
619 	if (3 < time_backwards)
620 		return JENT_ENOMONOTONIC;
621 
622 	/*
623 	 * Variations of deltas of time must on average be larger
624 	 * than 1 to ensure the entropy estimation
625 	 * implied with 1 is preserved
626 	 */
627 	if ((delta_sum) <= 1)
628 		return JENT_EVARVAR;
629 
630 	/*
631 	 * Ensure that we have variations in the time stamp below 10 for at
632 	 * least 10% of all checks -- on some platforms, the counter increments
633 	 * in multiples of 100, but not always
634 	 */
635 	if ((TESTLOOPCOUNT/10 * 9) < count_mod)
636 		return JENT_ECOARSETIME;
637 
638 	/*
639 	 * If we have more than 90% stuck results, then this Jitter RNG is
640 	 * likely to not work well.
641 	 */
642 	if ((TESTLOOPCOUNT/10 * 9) < count_stuck)
643 		return JENT_ESTUCK;
644 
645 	return 0;
646 }
647