xref: /openbmc/linux/crypto/jitterentropy.c (revision 91cb1e14)
1 /*
2  * Non-physical true random number generator based on timing jitter --
3  * Jitter RNG standalone code.
4  *
5  * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2023
6  *
7  * Design
8  * ======
9  *
10  * See https://www.chronox.de/jent.html
11  *
12  * License
13  * =======
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, and the entire permission notice in its entirety,
20  *    including the disclaimer of warranties.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. The name of the author may not be used to endorse or promote
25  *    products derived from this software without specific prior
26  *    written permission.
27  *
28  * ALTERNATIVELY, this product may be distributed under the terms of
29  * the GNU General Public License, in which case the provisions of the GPL2 are
30  * required INSTEAD OF the above restrictions.  (This clause is
31  * necessary due to a potential bad interaction between the GPL and
32  * the restrictions contained in a BSD-style copyright.)
33  *
34  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
35  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
36  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
37  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
38  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
39  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
40  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
41  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
42  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
44  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
45  * DAMAGE.
46  */
47 
48 /*
49  * This Jitterentropy RNG is based on the jitterentropy library
50  * version 3.4.0 provided at https://www.chronox.de/jent.html
51  */
52 
53 #ifdef __OPTIMIZE__
54  #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
55 #endif
56 
57 typedef	unsigned long long	__u64;
58 typedef	long long		__s64;
59 typedef	unsigned int		__u32;
60 typedef unsigned char		u8;
61 #define NULL    ((void *) 0)
62 
63 /* The entropy pool */
64 struct rand_data {
65 	/* SHA3-256 is used as conditioner */
66 #define DATA_SIZE_BITS 256
67 	/* all data values that are vital to maintain the security
68 	 * of the RNG are marked as SENSITIVE. A user must not
69 	 * access that information while the RNG executes its loops to
70 	 * calculate the next random value. */
71 	void *hash_state;		/* SENSITIVE hash state entropy pool */
72 	__u64 prev_time;		/* SENSITIVE Previous time stamp */
73 	__u64 last_delta;		/* SENSITIVE stuck test */
74 	__s64 last_delta2;		/* SENSITIVE stuck test */
75 	unsigned int osr;		/* Oversample rate */
76 #define JENT_MEMORY_BLOCKS 64
77 #define JENT_MEMORY_BLOCKSIZE 32
78 #define JENT_MEMORY_ACCESSLOOPS 128
79 #define JENT_MEMORY_SIZE (JENT_MEMORY_BLOCKS*JENT_MEMORY_BLOCKSIZE)
80 	unsigned char *mem;	/* Memory access location with size of
81 				 * memblocks * memblocksize */
82 	unsigned int memlocation; /* Pointer to byte in *mem */
83 	unsigned int memblocks;	/* Number of memory blocks in *mem */
84 	unsigned int memblocksize; /* Size of one memory block in bytes */
85 	unsigned int memaccessloops; /* Number of memory accesses per random
86 				      * bit generation */
87 
88 	/* Repetition Count Test */
89 	unsigned int rct_count;			/* Number of stuck values */
90 
91 	/* Intermittent health test failure threshold of 2^-30 */
92 	/* From an SP800-90B perspective, this RCT cutoff value is equal to 31. */
93 	/* However, our RCT implementation starts at 1, so we subtract 1 here. */
94 #define JENT_RCT_CUTOFF		(31 - 1)	/* Taken from SP800-90B sec 4.4.1 */
95 #define JENT_APT_CUTOFF		325			/* Taken from SP800-90B sec 4.4.2 */
96 	/* Permanent health test failure threshold of 2^-60 */
97 	/* From an SP800-90B perspective, this RCT cutoff value is equal to 61. */
98 	/* However, our RCT implementation starts at 1, so we subtract 1 here. */
99 #define JENT_RCT_CUTOFF_PERMANENT	(61 - 1)
100 #define JENT_APT_CUTOFF_PERMANENT	355
101 #define JENT_APT_WINDOW_SIZE	512	/* Data window size */
102 	/* LSB of time stamp to process */
103 #define JENT_APT_LSB		16
104 #define JENT_APT_WORD_MASK	(JENT_APT_LSB - 1)
105 	unsigned int apt_observations;	/* Number of collected observations */
106 	unsigned int apt_count;		/* APT counter */
107 	unsigned int apt_base;		/* APT base reference */
108 	unsigned int apt_base_set:1;	/* APT base reference set? */
109 };
110 
111 /* Flags that can be used to initialize the RNG */
112 #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
113 					   * entropy, saves MEMORY_SIZE RAM for
114 					   * entropy collector */
115 
116 /* -- error codes for init function -- */
117 #define JENT_ENOTIME		1 /* Timer service not available */
118 #define JENT_ECOARSETIME	2 /* Timer too coarse for RNG */
119 #define JENT_ENOMONOTONIC	3 /* Timer is not monotonic increasing */
120 #define JENT_EVARVAR		5 /* Timer does not produce variations of
121 				   * variations (2nd derivation of time is
122 				   * zero). */
123 #define JENT_ESTUCK		8 /* Too many stuck results during init. */
124 #define JENT_EHEALTH		9 /* Health test failed during initialization */
125 
126 /*
127  * The output n bits can receive more than n bits of min entropy, of course,
128  * but the fixed output of the conditioning function can only asymptotically
129  * approach the output size bits of min entropy, not attain that bound. Random
130  * maps will tend to have output collisions, which reduces the creditable
131  * output entropy (that is what SP 800-90B Section 3.1.5.1.2 attempts to bound).
132  *
133  * The value "64" is justified in Appendix A.4 of the current 90C draft,
134  * and aligns with NIST's in "epsilon" definition in this document, which is
135  * that a string can be considered "full entropy" if you can bound the min
136  * entropy in each bit of output to at least 1-epsilon, where epsilon is
137  * required to be <= 2^(-32).
138  */
139 #define JENT_ENTROPY_SAFETY_FACTOR	64
140 
141 #include <linux/fips.h>
142 #include "jitterentropy.h"
143 
144 /***************************************************************************
145  * Adaptive Proportion Test
146  *
147  * This test complies with SP800-90B section 4.4.2.
148  ***************************************************************************/
149 
150 /*
151  * Reset the APT counter
152  *
153  * @ec [in] Reference to entropy collector
154  */
jent_apt_reset(struct rand_data * ec,unsigned int delta_masked)155 static void jent_apt_reset(struct rand_data *ec, unsigned int delta_masked)
156 {
157 	/* Reset APT counter */
158 	ec->apt_count = 0;
159 	ec->apt_base = delta_masked;
160 	ec->apt_observations = 0;
161 }
162 
163 /*
164  * Insert a new entropy event into APT
165  *
166  * @ec [in] Reference to entropy collector
167  * @delta_masked [in] Masked time delta to process
168  */
jent_apt_insert(struct rand_data * ec,unsigned int delta_masked)169 static void jent_apt_insert(struct rand_data *ec, unsigned int delta_masked)
170 {
171 	/* Initialize the base reference */
172 	if (!ec->apt_base_set) {
173 		ec->apt_base = delta_masked;
174 		ec->apt_base_set = 1;
175 		return;
176 	}
177 
178 	if (delta_masked == ec->apt_base)
179 		ec->apt_count++;
180 
181 	ec->apt_observations++;
182 
183 	if (ec->apt_observations >= JENT_APT_WINDOW_SIZE)
184 		jent_apt_reset(ec, delta_masked);
185 }
186 
187 /* APT health test failure detection */
jent_apt_permanent_failure(struct rand_data * ec)188 static int jent_apt_permanent_failure(struct rand_data *ec)
189 {
190 	return (ec->apt_count >= JENT_APT_CUTOFF_PERMANENT) ? 1 : 0;
191 }
192 
jent_apt_failure(struct rand_data * ec)193 static int jent_apt_failure(struct rand_data *ec)
194 {
195 	return (ec->apt_count >= JENT_APT_CUTOFF) ? 1 : 0;
196 }
197 
198 /***************************************************************************
199  * Stuck Test and its use as Repetition Count Test
200  *
201  * The Jitter RNG uses an enhanced version of the Repetition Count Test
202  * (RCT) specified in SP800-90B section 4.4.1. Instead of counting identical
203  * back-to-back values, the input to the RCT is the counting of the stuck
204  * values during the generation of one Jitter RNG output block.
205  *
206  * The RCT is applied with an alpha of 2^{-30} compliant to FIPS 140-2 IG 9.8.
207  *
208  * During the counting operation, the Jitter RNG always calculates the RCT
209  * cut-off value of C. If that value exceeds the allowed cut-off value,
210  * the Jitter RNG output block will be calculated completely but discarded at
211  * the end. The caller of the Jitter RNG is informed with an error code.
212  ***************************************************************************/
213 
214 /*
215  * Repetition Count Test as defined in SP800-90B section 4.4.1
216  *
217  * @ec [in] Reference to entropy collector
218  * @stuck [in] Indicator whether the value is stuck
219  */
jent_rct_insert(struct rand_data * ec,int stuck)220 static void jent_rct_insert(struct rand_data *ec, int stuck)
221 {
222 	if (stuck) {
223 		ec->rct_count++;
224 	} else {
225 		/* Reset RCT */
226 		ec->rct_count = 0;
227 	}
228 }
229 
jent_delta(__u64 prev,__u64 next)230 static inline __u64 jent_delta(__u64 prev, __u64 next)
231 {
232 #define JENT_UINT64_MAX		(__u64)(~((__u64) 0))
233 	return (prev < next) ? (next - prev) :
234 			       (JENT_UINT64_MAX - prev + 1 + next);
235 }
236 
237 /*
238  * Stuck test by checking the:
239  * 	1st derivative of the jitter measurement (time delta)
240  * 	2nd derivative of the jitter measurement (delta of time deltas)
241  * 	3rd derivative of the jitter measurement (delta of delta of time deltas)
242  *
243  * All values must always be non-zero.
244  *
245  * @ec [in] Reference to entropy collector
246  * @current_delta [in] Jitter time delta
247  *
248  * @return
249  * 	0 jitter measurement not stuck (good bit)
250  * 	1 jitter measurement stuck (reject bit)
251  */
jent_stuck(struct rand_data * ec,__u64 current_delta)252 static int jent_stuck(struct rand_data *ec, __u64 current_delta)
253 {
254 	__u64 delta2 = jent_delta(ec->last_delta, current_delta);
255 	__u64 delta3 = jent_delta(ec->last_delta2, delta2);
256 
257 	ec->last_delta = current_delta;
258 	ec->last_delta2 = delta2;
259 
260 	/*
261 	 * Insert the result of the comparison of two back-to-back time
262 	 * deltas.
263 	 */
264 	jent_apt_insert(ec, current_delta);
265 
266 	if (!current_delta || !delta2 || !delta3) {
267 		/* RCT with a stuck bit */
268 		jent_rct_insert(ec, 1);
269 		return 1;
270 	}
271 
272 	/* RCT with a non-stuck bit */
273 	jent_rct_insert(ec, 0);
274 
275 	return 0;
276 }
277 
278 /* RCT health test failure detection */
jent_rct_permanent_failure(struct rand_data * ec)279 static int jent_rct_permanent_failure(struct rand_data *ec)
280 {
281 	return (ec->rct_count >= JENT_RCT_CUTOFF_PERMANENT) ? 1 : 0;
282 }
283 
jent_rct_failure(struct rand_data * ec)284 static int jent_rct_failure(struct rand_data *ec)
285 {
286 	return (ec->rct_count >= JENT_RCT_CUTOFF) ? 1 : 0;
287 }
288 
289 /* Report of health test failures */
jent_health_failure(struct rand_data * ec)290 static int jent_health_failure(struct rand_data *ec)
291 {
292 	return jent_rct_failure(ec) | jent_apt_failure(ec);
293 }
294 
jent_permanent_health_failure(struct rand_data * ec)295 static int jent_permanent_health_failure(struct rand_data *ec)
296 {
297 	return jent_rct_permanent_failure(ec) | jent_apt_permanent_failure(ec);
298 }
299 
300 /***************************************************************************
301  * Noise sources
302  ***************************************************************************/
303 
304 /*
305  * Update of the loop count used for the next round of
306  * an entropy collection.
307  *
308  * Input:
309  * @bits is the number of low bits of the timer to consider
310  * @min is the number of bits we shift the timer value to the right at
311  *	the end to make sure we have a guaranteed minimum value
312  *
313  * @return Newly calculated loop counter
314  */
jent_loop_shuffle(unsigned int bits,unsigned int min)315 static __u64 jent_loop_shuffle(unsigned int bits, unsigned int min)
316 {
317 	__u64 time = 0;
318 	__u64 shuffle = 0;
319 	unsigned int i = 0;
320 	unsigned int mask = (1<<bits) - 1;
321 
322 	jent_get_nstime(&time);
323 
324 	/*
325 	 * We fold the time value as much as possible to ensure that as many
326 	 * bits of the time stamp are included as possible.
327 	 */
328 	for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) {
329 		shuffle ^= time & mask;
330 		time = time >> bits;
331 	}
332 
333 	/*
334 	 * We add a lower boundary value to ensure we have a minimum
335 	 * RNG loop count.
336 	 */
337 	return (shuffle + (1<<min));
338 }
339 
340 /*
341  * CPU Jitter noise source -- this is the noise source based on the CPU
342  *			      execution time jitter
343  *
344  * This function injects the individual bits of the time value into the
345  * entropy pool using a hash.
346  *
347  * ec [in] entropy collector
348  * time [in] time stamp to be injected
349  * stuck [in] Is the time stamp identified as stuck?
350  *
351  * Output:
352  * updated hash context in the entropy collector or error code
353  */
jent_condition_data(struct rand_data * ec,__u64 time,int stuck)354 static int jent_condition_data(struct rand_data *ec, __u64 time, int stuck)
355 {
356 #define SHA3_HASH_LOOP (1<<3)
357 	struct {
358 		int rct_count;
359 		unsigned int apt_observations;
360 		unsigned int apt_count;
361 		unsigned int apt_base;
362 	} addtl = {
363 		ec->rct_count,
364 		ec->apt_observations,
365 		ec->apt_count,
366 		ec->apt_base
367 	};
368 
369 	return jent_hash_time(ec->hash_state, time, (u8 *)&addtl, sizeof(addtl),
370 			      SHA3_HASH_LOOP, stuck);
371 }
372 
373 /*
374  * Memory Access noise source -- this is a noise source based on variations in
375  *				 memory access times
376  *
377  * This function performs memory accesses which will add to the timing
378  * variations due to an unknown amount of CPU wait states that need to be
379  * added when accessing memory. The memory size should be larger than the L1
380  * caches as outlined in the documentation and the associated testing.
381  *
382  * The L1 cache has a very high bandwidth, albeit its access rate is  usually
383  * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
384  * variations as the CPU has hardly to wait. Starting with L2, significant
385  * variations are added because L2 typically does not belong to the CPU any more
386  * and therefore a wider range of CPU wait states is necessary for accesses.
387  * L3 and real memory accesses have even a wider range of wait states. However,
388  * to reliably access either L3 or memory, the ec->mem memory must be quite
389  * large which is usually not desirable.
390  *
391  * @ec [in] Reference to the entropy collector with the memory access data -- if
392  *	    the reference to the memory block to be accessed is NULL, this noise
393  *	    source is disabled
394  * @loop_cnt [in] if a value not equal to 0 is set, use the given value
395  *		  number of loops to perform the LFSR
396  */
jent_memaccess(struct rand_data * ec,__u64 loop_cnt)397 static void jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
398 {
399 	unsigned int wrap = 0;
400 	__u64 i = 0;
401 #define MAX_ACC_LOOP_BIT 7
402 #define MIN_ACC_LOOP_BIT 0
403 	__u64 acc_loop_cnt =
404 		jent_loop_shuffle(MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
405 
406 	if (NULL == ec || NULL == ec->mem)
407 		return;
408 	wrap = ec->memblocksize * ec->memblocks;
409 
410 	/*
411 	 * testing purposes -- allow test app to set the counter, not
412 	 * needed during runtime
413 	 */
414 	if (loop_cnt)
415 		acc_loop_cnt = loop_cnt;
416 
417 	for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
418 		unsigned char *tmpval = ec->mem + ec->memlocation;
419 		/*
420 		 * memory access: just add 1 to one byte,
421 		 * wrap at 255 -- memory access implies read
422 		 * from and write to memory location
423 		 */
424 		*tmpval = (*tmpval + 1) & 0xff;
425 		/*
426 		 * Addition of memblocksize - 1 to pointer
427 		 * with wrap around logic to ensure that every
428 		 * memory location is hit evenly
429 		 */
430 		ec->memlocation = ec->memlocation + ec->memblocksize - 1;
431 		ec->memlocation = ec->memlocation % wrap;
432 	}
433 }
434 
435 /***************************************************************************
436  * Start of entropy processing logic
437  ***************************************************************************/
438 /*
439  * This is the heart of the entropy generation: calculate time deltas and
440  * use the CPU jitter in the time deltas. The jitter is injected into the
441  * entropy pool.
442  *
443  * WARNING: ensure that ->prev_time is primed before using the output
444  *	    of this function! This can be done by calling this function
445  *	    and not using its result.
446  *
447  * @ec [in] Reference to entropy collector
448  *
449  * @return result of stuck test
450  */
jent_measure_jitter(struct rand_data * ec)451 static int jent_measure_jitter(struct rand_data *ec)
452 {
453 	__u64 time = 0;
454 	__u64 current_delta = 0;
455 	int stuck;
456 
457 	/* Invoke one noise source before time measurement to add variations */
458 	jent_memaccess(ec, 0);
459 
460 	/*
461 	 * Get time stamp and calculate time delta to previous
462 	 * invocation to measure the timing variations
463 	 */
464 	jent_get_nstime(&time);
465 	current_delta = jent_delta(ec->prev_time, time);
466 	ec->prev_time = time;
467 
468 	/* Check whether we have a stuck measurement. */
469 	stuck = jent_stuck(ec, current_delta);
470 
471 	/* Now call the next noise sources which also injects the data */
472 	if (jent_condition_data(ec, current_delta, stuck))
473 		stuck = 1;
474 
475 	return stuck;
476 }
477 
478 /*
479  * Generator of one 64 bit random number
480  * Function fills rand_data->hash_state
481  *
482  * @ec [in] Reference to entropy collector
483  */
jent_gen_entropy(struct rand_data * ec)484 static void jent_gen_entropy(struct rand_data *ec)
485 {
486 	unsigned int k = 0, safety_factor = 0;
487 
488 	if (fips_enabled)
489 		safety_factor = JENT_ENTROPY_SAFETY_FACTOR;
490 
491 	/* priming of the ->prev_time value */
492 	jent_measure_jitter(ec);
493 
494 	while (!jent_health_failure(ec)) {
495 		/* If a stuck measurement is received, repeat measurement */
496 		if (jent_measure_jitter(ec))
497 			continue;
498 
499 		/*
500 		 * We multiply the loop value with ->osr to obtain the
501 		 * oversampling rate requested by the caller
502 		 */
503 		if (++k >= ((DATA_SIZE_BITS + safety_factor) * ec->osr))
504 			break;
505 	}
506 }
507 
508 /*
509  * Entry function: Obtain entropy for the caller.
510  *
511  * This function invokes the entropy gathering logic as often to generate
512  * as many bytes as requested by the caller. The entropy gathering logic
513  * creates 64 bit per invocation.
514  *
515  * This function truncates the last 64 bit entropy value output to the exact
516  * size specified by the caller.
517  *
518  * @ec [in] Reference to entropy collector
519  * @data [in] pointer to buffer for storing random data -- buffer must already
520  *	      exist
521  * @len [in] size of the buffer, specifying also the requested number of random
522  *	     in bytes
523  *
524  * @return 0 when request is fulfilled or an error
525  *
526  * The following error codes can occur:
527  *	-1	entropy_collector is NULL or the generation failed
528  *	-2	Intermittent health failure
529  *	-3	Permanent health failure
530  */
jent_read_entropy(struct rand_data * ec,unsigned char * data,unsigned int len)531 int jent_read_entropy(struct rand_data *ec, unsigned char *data,
532 		      unsigned int len)
533 {
534 	unsigned char *p = data;
535 
536 	if (!ec)
537 		return -1;
538 
539 	while (len > 0) {
540 		unsigned int tocopy;
541 
542 		jent_gen_entropy(ec);
543 
544 		if (jent_permanent_health_failure(ec)) {
545 			/*
546 			 * At this point, the Jitter RNG instance is considered
547 			 * as a failed instance. There is no rerun of the
548 			 * startup test any more, because the caller
549 			 * is assumed to not further use this instance.
550 			 */
551 			return -3;
552 		} else if (jent_health_failure(ec)) {
553 			/*
554 			 * Perform startup health tests and return permanent
555 			 * error if it fails.
556 			 */
557 			if (jent_entropy_init(ec->hash_state))
558 				return -3;
559 
560 			return -2;
561 		}
562 
563 		if ((DATA_SIZE_BITS / 8) < len)
564 			tocopy = (DATA_SIZE_BITS / 8);
565 		else
566 			tocopy = len;
567 		if (jent_read_random_block(ec->hash_state, p, tocopy))
568 			return -1;
569 
570 		len -= tocopy;
571 		p += tocopy;
572 	}
573 
574 	return 0;
575 }
576 
577 /***************************************************************************
578  * Initialization logic
579  ***************************************************************************/
580 
jent_entropy_collector_alloc(unsigned int osr,unsigned int flags,void * hash_state)581 struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
582 					       unsigned int flags,
583 					       void *hash_state)
584 {
585 	struct rand_data *entropy_collector;
586 
587 	entropy_collector = jent_zalloc(sizeof(struct rand_data));
588 	if (!entropy_collector)
589 		return NULL;
590 
591 	if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
592 		/* Allocate memory for adding variations based on memory
593 		 * access
594 		 */
595 		entropy_collector->mem = jent_zalloc(JENT_MEMORY_SIZE);
596 		if (!entropy_collector->mem) {
597 			jent_zfree(entropy_collector);
598 			return NULL;
599 		}
600 		entropy_collector->memblocksize = JENT_MEMORY_BLOCKSIZE;
601 		entropy_collector->memblocks = JENT_MEMORY_BLOCKS;
602 		entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
603 	}
604 
605 	/* verify and set the oversampling rate */
606 	if (osr == 0)
607 		osr = 1; /* minimum sampling rate is 1 */
608 	entropy_collector->osr = osr;
609 
610 	entropy_collector->hash_state = hash_state;
611 
612 	/* fill the data pad with non-zero values */
613 	jent_gen_entropy(entropy_collector);
614 
615 	return entropy_collector;
616 }
617 
jent_entropy_collector_free(struct rand_data * entropy_collector)618 void jent_entropy_collector_free(struct rand_data *entropy_collector)
619 {
620 	jent_zfree(entropy_collector->mem);
621 	entropy_collector->mem = NULL;
622 	jent_zfree(entropy_collector);
623 }
624 
jent_entropy_init(void * hash_state)625 int jent_entropy_init(void *hash_state)
626 {
627 	int i;
628 	__u64 delta_sum = 0;
629 	__u64 old_delta = 0;
630 	unsigned int nonstuck = 0;
631 	int time_backwards = 0;
632 	int count_mod = 0;
633 	int count_stuck = 0;
634 	struct rand_data ec = { 0 };
635 
636 	/* Required for RCT */
637 	ec.osr = 1;
638 	ec.hash_state = hash_state;
639 
640 	/* We could perform statistical tests here, but the problem is
641 	 * that we only have a few loop counts to do testing. These
642 	 * loop counts may show some slight skew and we produce
643 	 * false positives.
644 	 *
645 	 * Moreover, only old systems show potentially problematic
646 	 * jitter entropy that could potentially be caught here. But
647 	 * the RNG is intended for hardware that is available or widely
648 	 * used, but not old systems that are long out of favor. Thus,
649 	 * no statistical tests.
650 	 */
651 
652 	/*
653 	 * We could add a check for system capabilities such as clock_getres or
654 	 * check for CONFIG_X86_TSC, but it does not make much sense as the
655 	 * following sanity checks verify that we have a high-resolution
656 	 * timer.
657 	 */
658 	/*
659 	 * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
660 	 * definitely too little.
661 	 *
662 	 * SP800-90B requires at least 1024 initial test cycles.
663 	 */
664 #define TESTLOOPCOUNT 1024
665 #define CLEARCACHE 100
666 	for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
667 		__u64 time = 0;
668 		__u64 time2 = 0;
669 		__u64 delta = 0;
670 		unsigned int lowdelta = 0;
671 		int stuck;
672 
673 		/* Invoke core entropy collection logic */
674 		jent_get_nstime(&time);
675 		ec.prev_time = time;
676 		jent_condition_data(&ec, time, 0);
677 		jent_get_nstime(&time2);
678 
679 		/* test whether timer works */
680 		if (!time || !time2)
681 			return JENT_ENOTIME;
682 		delta = jent_delta(time, time2);
683 		/*
684 		 * test whether timer is fine grained enough to provide
685 		 * delta even when called shortly after each other -- this
686 		 * implies that we also have a high resolution timer
687 		 */
688 		if (!delta)
689 			return JENT_ECOARSETIME;
690 
691 		stuck = jent_stuck(&ec, delta);
692 
693 		/*
694 		 * up to here we did not modify any variable that will be
695 		 * evaluated later, but we already performed some work. Thus we
696 		 * already have had an impact on the caches, branch prediction,
697 		 * etc. with the goal to clear it to get the worst case
698 		 * measurements.
699 		 */
700 		if (i < CLEARCACHE)
701 			continue;
702 
703 		if (stuck)
704 			count_stuck++;
705 		else {
706 			nonstuck++;
707 
708 			/*
709 			 * Ensure that the APT succeeded.
710 			 *
711 			 * With the check below that count_stuck must be less
712 			 * than 10% of the overall generated raw entropy values
713 			 * it is guaranteed that the APT is invoked at
714 			 * floor((TESTLOOPCOUNT * 0.9) / 64) == 14 times.
715 			 */
716 			if ((nonstuck % JENT_APT_WINDOW_SIZE) == 0) {
717 				jent_apt_reset(&ec,
718 					       delta & JENT_APT_WORD_MASK);
719 			}
720 		}
721 
722 		/* Validate health test result */
723 		if (jent_health_failure(&ec))
724 			return JENT_EHEALTH;
725 
726 		/* test whether we have an increasing timer */
727 		if (!(time2 > time))
728 			time_backwards++;
729 
730 		/* use 32 bit value to ensure compilation on 32 bit arches */
731 		lowdelta = time2 - time;
732 		if (!(lowdelta % 100))
733 			count_mod++;
734 
735 		/*
736 		 * ensure that we have a varying delta timer which is necessary
737 		 * for the calculation of entropy -- perform this check
738 		 * only after the first loop is executed as we need to prime
739 		 * the old_data value
740 		 */
741 		if (delta > old_delta)
742 			delta_sum += (delta - old_delta);
743 		else
744 			delta_sum += (old_delta - delta);
745 		old_delta = delta;
746 	}
747 
748 	/*
749 	 * we allow up to three times the time running backwards.
750 	 * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
751 	 * if such an operation just happens to interfere with our test, it
752 	 * should not fail. The value of 3 should cover the NTP case being
753 	 * performed during our test run.
754 	 */
755 	if (time_backwards > 3)
756 		return JENT_ENOMONOTONIC;
757 
758 	/*
759 	 * Variations of deltas of time must on average be larger
760 	 * than 1 to ensure the entropy estimation
761 	 * implied with 1 is preserved
762 	 */
763 	if ((delta_sum) <= 1)
764 		return JENT_EVARVAR;
765 
766 	/*
767 	 * Ensure that we have variations in the time stamp below 10 for at
768 	 * least 10% of all checks -- on some platforms, the counter increments
769 	 * in multiples of 100, but not always
770 	 */
771 	if ((TESTLOOPCOUNT/10 * 9) < count_mod)
772 		return JENT_ECOARSETIME;
773 
774 	/*
775 	 * If we have more than 90% stuck results, then this Jitter RNG is
776 	 * likely to not work well.
777 	 */
778 	if ((TESTLOOPCOUNT/10 * 9) < count_stuck)
779 		return JENT_ESTUCK;
780 
781 	return 0;
782 }
783