1 /* 2 * Non-physical true random number generator based on timing jitter -- 3 * Jitter RNG standalone code. 4 * 5 * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2020 6 * 7 * Design 8 * ====== 9 * 10 * See https://www.chronox.de/jent.html 11 * 12 * License 13 * ======= 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, and the entire permission notice in its entirety, 20 * including the disclaimer of warranties. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. The name of the author may not be used to endorse or promote 25 * products derived from this software without specific prior 26 * written permission. 27 * 28 * ALTERNATIVELY, this product may be distributed under the terms of 29 * the GNU General Public License, in which case the provisions of the GPL2 are 30 * required INSTEAD OF the above restrictions. (This clause is 31 * necessary due to a potential bad interaction between the GPL and 32 * the restrictions contained in a BSD-style copyright.) 33 * 34 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 35 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 36 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 37 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 38 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 39 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 40 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 41 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 42 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 44 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 45 * DAMAGE. 46 */ 47 48 /* 49 * This Jitterentropy RNG is based on the jitterentropy library 50 * version 2.2.0 provided at https://www.chronox.de/jent.html 51 */ 52 53 #ifdef __OPTIMIZE__ 54 #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c." 55 #endif 56 57 typedef unsigned long long __u64; 58 typedef long long __s64; 59 typedef unsigned int __u32; 60 #define NULL ((void *) 0) 61 62 /* The entropy pool */ 63 struct rand_data { 64 /* all data values that are vital to maintain the security 65 * of the RNG are marked as SENSITIVE. A user must not 66 * access that information while the RNG executes its loops to 67 * calculate the next random value. */ 68 __u64 data; /* SENSITIVE Actual random number */ 69 __u64 old_data; /* SENSITIVE Previous random number */ 70 __u64 prev_time; /* SENSITIVE Previous time stamp */ 71 #define DATA_SIZE_BITS ((sizeof(__u64)) * 8) 72 __u64 last_delta; /* SENSITIVE stuck test */ 73 __s64 last_delta2; /* SENSITIVE stuck test */ 74 unsigned int osr; /* Oversample rate */ 75 #define JENT_MEMORY_BLOCKS 64 76 #define JENT_MEMORY_BLOCKSIZE 32 77 #define JENT_MEMORY_ACCESSLOOPS 128 78 #define JENT_MEMORY_SIZE (JENT_MEMORY_BLOCKS*JENT_MEMORY_BLOCKSIZE) 79 unsigned char *mem; /* Memory access location with size of 80 * memblocks * memblocksize */ 81 unsigned int memlocation; /* Pointer to byte in *mem */ 82 unsigned int memblocks; /* Number of memory blocks in *mem */ 83 unsigned int memblocksize; /* Size of one memory block in bytes */ 84 unsigned int memaccessloops; /* Number of memory accesses per random 85 * bit generation */ 86 87 /* Repetition Count Test */ 88 int rct_count; /* Number of stuck values */ 89 90 /* Adaptive Proportion Test for a significance level of 2^-30 */ 91 #define JENT_APT_CUTOFF 325 /* Taken from SP800-90B sec 4.4.2 */ 92 #define JENT_APT_WINDOW_SIZE 512 /* Data window size */ 93 /* LSB of time stamp to process */ 94 #define JENT_APT_LSB 16 95 #define JENT_APT_WORD_MASK (JENT_APT_LSB - 1) 96 unsigned int apt_observations; /* Number of collected observations */ 97 unsigned int apt_count; /* APT counter */ 98 unsigned int apt_base; /* APT base reference */ 99 unsigned int apt_base_set:1; /* APT base reference set? */ 100 101 unsigned int health_failure:1; /* Permanent health failure */ 102 }; 103 104 /* Flags that can be used to initialize the RNG */ 105 #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more 106 * entropy, saves MEMORY_SIZE RAM for 107 * entropy collector */ 108 109 /* -- error codes for init function -- */ 110 #define JENT_ENOTIME 1 /* Timer service not available */ 111 #define JENT_ECOARSETIME 2 /* Timer too coarse for RNG */ 112 #define JENT_ENOMONOTONIC 3 /* Timer is not monotonic increasing */ 113 #define JENT_EVARVAR 5 /* Timer does not produce variations of 114 * variations (2nd derivation of time is 115 * zero). */ 116 #define JENT_ESTUCK 8 /* Too many stuck results during init. */ 117 #define JENT_EHEALTH 9 /* Health test failed during initialization */ 118 #define JENT_ERCT 10 /* RCT failed during initialization */ 119 120 #include "jitterentropy.h" 121 122 /*************************************************************************** 123 * Adaptive Proportion Test 124 * 125 * This test complies with SP800-90B section 4.4.2. 126 ***************************************************************************/ 127 128 /** 129 * Reset the APT counter 130 * 131 * @ec [in] Reference to entropy collector 132 */ 133 static void jent_apt_reset(struct rand_data *ec, unsigned int delta_masked) 134 { 135 /* Reset APT counter */ 136 ec->apt_count = 0; 137 ec->apt_base = delta_masked; 138 ec->apt_observations = 0; 139 } 140 141 /** 142 * Insert a new entropy event into APT 143 * 144 * @ec [in] Reference to entropy collector 145 * @delta_masked [in] Masked time delta to process 146 */ 147 static void jent_apt_insert(struct rand_data *ec, unsigned int delta_masked) 148 { 149 /* Initialize the base reference */ 150 if (!ec->apt_base_set) { 151 ec->apt_base = delta_masked; 152 ec->apt_base_set = 1; 153 return; 154 } 155 156 if (delta_masked == ec->apt_base) { 157 ec->apt_count++; 158 159 if (ec->apt_count >= JENT_APT_CUTOFF) 160 ec->health_failure = 1; 161 } 162 163 ec->apt_observations++; 164 165 if (ec->apt_observations >= JENT_APT_WINDOW_SIZE) 166 jent_apt_reset(ec, delta_masked); 167 } 168 169 /*************************************************************************** 170 * Stuck Test and its use as Repetition Count Test 171 * 172 * The Jitter RNG uses an enhanced version of the Repetition Count Test 173 * (RCT) specified in SP800-90B section 4.4.1. Instead of counting identical 174 * back-to-back values, the input to the RCT is the counting of the stuck 175 * values during the generation of one Jitter RNG output block. 176 * 177 * The RCT is applied with an alpha of 2^{-30} compliant to FIPS 140-2 IG 9.8. 178 * 179 * During the counting operation, the Jitter RNG always calculates the RCT 180 * cut-off value of C. If that value exceeds the allowed cut-off value, 181 * the Jitter RNG output block will be calculated completely but discarded at 182 * the end. The caller of the Jitter RNG is informed with an error code. 183 ***************************************************************************/ 184 185 /** 186 * Repetition Count Test as defined in SP800-90B section 4.4.1 187 * 188 * @ec [in] Reference to entropy collector 189 * @stuck [in] Indicator whether the value is stuck 190 */ 191 static void jent_rct_insert(struct rand_data *ec, int stuck) 192 { 193 /* 194 * If we have a count less than zero, a previous RCT round identified 195 * a failure. We will not overwrite it. 196 */ 197 if (ec->rct_count < 0) 198 return; 199 200 if (stuck) { 201 ec->rct_count++; 202 203 /* 204 * The cutoff value is based on the following consideration: 205 * alpha = 2^-30 as recommended in FIPS 140-2 IG 9.8. 206 * In addition, we require an entropy value H of 1/OSR as this 207 * is the minimum entropy required to provide full entropy. 208 * Note, we collect 64 * OSR deltas for inserting them into 209 * the entropy pool which should then have (close to) 64 bits 210 * of entropy. 211 * 212 * Note, ec->rct_count (which equals to value B in the pseudo 213 * code of SP800-90B section 4.4.1) starts with zero. Hence 214 * we need to subtract one from the cutoff value as calculated 215 * following SP800-90B. 216 */ 217 if ((unsigned int)ec->rct_count >= (31 * ec->osr)) { 218 ec->rct_count = -1; 219 ec->health_failure = 1; 220 } 221 } else { 222 ec->rct_count = 0; 223 } 224 } 225 226 /** 227 * Is there an RCT health test failure? 228 * 229 * @ec [in] Reference to entropy collector 230 * 231 * @return 232 * 0 No health test failure 233 * 1 Permanent health test failure 234 */ 235 static int jent_rct_failure(struct rand_data *ec) 236 { 237 if (ec->rct_count < 0) 238 return 1; 239 return 0; 240 } 241 242 static inline __u64 jent_delta(__u64 prev, __u64 next) 243 { 244 #define JENT_UINT64_MAX (__u64)(~((__u64) 0)) 245 return (prev < next) ? (next - prev) : 246 (JENT_UINT64_MAX - prev + 1 + next); 247 } 248 249 /** 250 * Stuck test by checking the: 251 * 1st derivative of the jitter measurement (time delta) 252 * 2nd derivative of the jitter measurement (delta of time deltas) 253 * 3rd derivative of the jitter measurement (delta of delta of time deltas) 254 * 255 * All values must always be non-zero. 256 * 257 * @ec [in] Reference to entropy collector 258 * @current_delta [in] Jitter time delta 259 * 260 * @return 261 * 0 jitter measurement not stuck (good bit) 262 * 1 jitter measurement stuck (reject bit) 263 */ 264 static int jent_stuck(struct rand_data *ec, __u64 current_delta) 265 { 266 __u64 delta2 = jent_delta(ec->last_delta, current_delta); 267 __u64 delta3 = jent_delta(ec->last_delta2, delta2); 268 unsigned int delta_masked = current_delta & JENT_APT_WORD_MASK; 269 270 ec->last_delta = current_delta; 271 ec->last_delta2 = delta2; 272 273 /* 274 * Insert the result of the comparison of two back-to-back time 275 * deltas. 276 */ 277 jent_apt_insert(ec, delta_masked); 278 279 if (!current_delta || !delta2 || !delta3) { 280 /* RCT with a stuck bit */ 281 jent_rct_insert(ec, 1); 282 return 1; 283 } 284 285 /* RCT with a non-stuck bit */ 286 jent_rct_insert(ec, 0); 287 288 return 0; 289 } 290 291 /** 292 * Report any health test failures 293 * 294 * @ec [in] Reference to entropy collector 295 * 296 * @return 297 * 0 No health test failure 298 * 1 Permanent health test failure 299 */ 300 static int jent_health_failure(struct rand_data *ec) 301 { 302 /* Test is only enabled in FIPS mode */ 303 if (!jent_fips_enabled()) 304 return 0; 305 306 return ec->health_failure; 307 } 308 309 /*************************************************************************** 310 * Noise sources 311 ***************************************************************************/ 312 313 /** 314 * Update of the loop count used for the next round of 315 * an entropy collection. 316 * 317 * Input: 318 * @ec entropy collector struct -- may be NULL 319 * @bits is the number of low bits of the timer to consider 320 * @min is the number of bits we shift the timer value to the right at 321 * the end to make sure we have a guaranteed minimum value 322 * 323 * @return Newly calculated loop counter 324 */ 325 static __u64 jent_loop_shuffle(struct rand_data *ec, 326 unsigned int bits, unsigned int min) 327 { 328 __u64 time = 0; 329 __u64 shuffle = 0; 330 unsigned int i = 0; 331 unsigned int mask = (1<<bits) - 1; 332 333 jent_get_nstime(&time); 334 /* 335 * Mix the current state of the random number into the shuffle 336 * calculation to balance that shuffle a bit more. 337 */ 338 if (ec) 339 time ^= ec->data; 340 /* 341 * We fold the time value as much as possible to ensure that as many 342 * bits of the time stamp are included as possible. 343 */ 344 for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) { 345 shuffle ^= time & mask; 346 time = time >> bits; 347 } 348 349 /* 350 * We add a lower boundary value to ensure we have a minimum 351 * RNG loop count. 352 */ 353 return (shuffle + (1<<min)); 354 } 355 356 /** 357 * CPU Jitter noise source -- this is the noise source based on the CPU 358 * execution time jitter 359 * 360 * This function injects the individual bits of the time value into the 361 * entropy pool using an LFSR. 362 * 363 * The code is deliberately inefficient with respect to the bit shifting 364 * and shall stay that way. This function is the root cause why the code 365 * shall be compiled without optimization. This function not only acts as 366 * folding operation, but this function's execution is used to measure 367 * the CPU execution time jitter. Any change to the loop in this function 368 * implies that careful retesting must be done. 369 * 370 * @ec [in] entropy collector struct 371 * @time [in] time stamp to be injected 372 * @loop_cnt [in] if a value not equal to 0 is set, use the given value as 373 * number of loops to perform the folding 374 * @stuck [in] Is the time stamp identified as stuck? 375 * 376 * Output: 377 * updated ec->data 378 * 379 * @return Number of loops the folding operation is performed 380 */ 381 static void jent_lfsr_time(struct rand_data *ec, __u64 time, __u64 loop_cnt, 382 int stuck) 383 { 384 unsigned int i; 385 __u64 j = 0; 386 __u64 new = 0; 387 #define MAX_FOLD_LOOP_BIT 4 388 #define MIN_FOLD_LOOP_BIT 0 389 __u64 fold_loop_cnt = 390 jent_loop_shuffle(ec, MAX_FOLD_LOOP_BIT, MIN_FOLD_LOOP_BIT); 391 392 /* 393 * testing purposes -- allow test app to set the counter, not 394 * needed during runtime 395 */ 396 if (loop_cnt) 397 fold_loop_cnt = loop_cnt; 398 for (j = 0; j < fold_loop_cnt; j++) { 399 new = ec->data; 400 for (i = 1; (DATA_SIZE_BITS) >= i; i++) { 401 __u64 tmp = time << (DATA_SIZE_BITS - i); 402 403 tmp = tmp >> (DATA_SIZE_BITS - 1); 404 405 /* 406 * Fibonacci LSFR with polynomial of 407 * x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is 408 * primitive according to 409 * http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf 410 * (the shift values are the polynomial values minus one 411 * due to counting bits from 0 to 63). As the current 412 * position is always the LSB, the polynomial only needs 413 * to shift data in from the left without wrap. 414 */ 415 tmp ^= ((new >> 63) & 1); 416 tmp ^= ((new >> 60) & 1); 417 tmp ^= ((new >> 55) & 1); 418 tmp ^= ((new >> 30) & 1); 419 tmp ^= ((new >> 27) & 1); 420 tmp ^= ((new >> 22) & 1); 421 new <<= 1; 422 new ^= tmp; 423 } 424 } 425 426 /* 427 * If the time stamp is stuck, do not finally insert the value into 428 * the entropy pool. Although this operation should not do any harm 429 * even when the time stamp has no entropy, SP800-90B requires that 430 * any conditioning operation (SP800-90B considers the LFSR to be a 431 * conditioning operation) to have an identical amount of input 432 * data according to section 3.1.5. 433 */ 434 if (!stuck) 435 ec->data = new; 436 } 437 438 /** 439 * Memory Access noise source -- this is a noise source based on variations in 440 * memory access times 441 * 442 * This function performs memory accesses which will add to the timing 443 * variations due to an unknown amount of CPU wait states that need to be 444 * added when accessing memory. The memory size should be larger than the L1 445 * caches as outlined in the documentation and the associated testing. 446 * 447 * The L1 cache has a very high bandwidth, albeit its access rate is usually 448 * slower than accessing CPU registers. Therefore, L1 accesses only add minimal 449 * variations as the CPU has hardly to wait. Starting with L2, significant 450 * variations are added because L2 typically does not belong to the CPU any more 451 * and therefore a wider range of CPU wait states is necessary for accesses. 452 * L3 and real memory accesses have even a wider range of wait states. However, 453 * to reliably access either L3 or memory, the ec->mem memory must be quite 454 * large which is usually not desirable. 455 * 456 * @ec [in] Reference to the entropy collector with the memory access data -- if 457 * the reference to the memory block to be accessed is NULL, this noise 458 * source is disabled 459 * @loop_cnt [in] if a value not equal to 0 is set, use the given value 460 * number of loops to perform the LFSR 461 */ 462 static void jent_memaccess(struct rand_data *ec, __u64 loop_cnt) 463 { 464 unsigned int wrap = 0; 465 __u64 i = 0; 466 #define MAX_ACC_LOOP_BIT 7 467 #define MIN_ACC_LOOP_BIT 0 468 __u64 acc_loop_cnt = 469 jent_loop_shuffle(ec, MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT); 470 471 if (NULL == ec || NULL == ec->mem) 472 return; 473 wrap = ec->memblocksize * ec->memblocks; 474 475 /* 476 * testing purposes -- allow test app to set the counter, not 477 * needed during runtime 478 */ 479 if (loop_cnt) 480 acc_loop_cnt = loop_cnt; 481 482 for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) { 483 unsigned char *tmpval = ec->mem + ec->memlocation; 484 /* 485 * memory access: just add 1 to one byte, 486 * wrap at 255 -- memory access implies read 487 * from and write to memory location 488 */ 489 *tmpval = (*tmpval + 1) & 0xff; 490 /* 491 * Addition of memblocksize - 1 to pointer 492 * with wrap around logic to ensure that every 493 * memory location is hit evenly 494 */ 495 ec->memlocation = ec->memlocation + ec->memblocksize - 1; 496 ec->memlocation = ec->memlocation % wrap; 497 } 498 } 499 500 /*************************************************************************** 501 * Start of entropy processing logic 502 ***************************************************************************/ 503 /** 504 * This is the heart of the entropy generation: calculate time deltas and 505 * use the CPU jitter in the time deltas. The jitter is injected into the 506 * entropy pool. 507 * 508 * WARNING: ensure that ->prev_time is primed before using the output 509 * of this function! This can be done by calling this function 510 * and not using its result. 511 * 512 * @ec [in] Reference to entropy collector 513 * 514 * @return result of stuck test 515 */ 516 static int jent_measure_jitter(struct rand_data *ec) 517 { 518 __u64 time = 0; 519 __u64 current_delta = 0; 520 int stuck; 521 522 /* Invoke one noise source before time measurement to add variations */ 523 jent_memaccess(ec, 0); 524 525 /* 526 * Get time stamp and calculate time delta to previous 527 * invocation to measure the timing variations 528 */ 529 jent_get_nstime(&time); 530 current_delta = jent_delta(ec->prev_time, time); 531 ec->prev_time = time; 532 533 /* Check whether we have a stuck measurement. */ 534 stuck = jent_stuck(ec, current_delta); 535 536 /* Now call the next noise sources which also injects the data */ 537 jent_lfsr_time(ec, current_delta, 0, stuck); 538 539 return stuck; 540 } 541 542 /** 543 * Generator of one 64 bit random number 544 * Function fills rand_data->data 545 * 546 * @ec [in] Reference to entropy collector 547 */ 548 static void jent_gen_entropy(struct rand_data *ec) 549 { 550 unsigned int k = 0; 551 552 /* priming of the ->prev_time value */ 553 jent_measure_jitter(ec); 554 555 while (1) { 556 /* If a stuck measurement is received, repeat measurement */ 557 if (jent_measure_jitter(ec)) 558 continue; 559 560 /* 561 * We multiply the loop value with ->osr to obtain the 562 * oversampling rate requested by the caller 563 */ 564 if (++k >= (DATA_SIZE_BITS * ec->osr)) 565 break; 566 } 567 } 568 569 /** 570 * Entry function: Obtain entropy for the caller. 571 * 572 * This function invokes the entropy gathering logic as often to generate 573 * as many bytes as requested by the caller. The entropy gathering logic 574 * creates 64 bit per invocation. 575 * 576 * This function truncates the last 64 bit entropy value output to the exact 577 * size specified by the caller. 578 * 579 * @ec [in] Reference to entropy collector 580 * @data [in] pointer to buffer for storing random data -- buffer must already 581 * exist 582 * @len [in] size of the buffer, specifying also the requested number of random 583 * in bytes 584 * 585 * @return 0 when request is fulfilled or an error 586 * 587 * The following error codes can occur: 588 * -1 entropy_collector is NULL 589 * -2 RCT failed 590 * -3 APT test failed 591 */ 592 int jent_read_entropy(struct rand_data *ec, unsigned char *data, 593 unsigned int len) 594 { 595 unsigned char *p = data; 596 597 if (!ec) 598 return -1; 599 600 while (0 < len) { 601 unsigned int tocopy; 602 603 jent_gen_entropy(ec); 604 605 if (jent_health_failure(ec)) { 606 int ret; 607 608 if (jent_rct_failure(ec)) 609 ret = -2; 610 else 611 ret = -3; 612 613 /* 614 * Re-initialize the noise source 615 * 616 * If the health test fails, the Jitter RNG remains 617 * in failure state and will return a health failure 618 * during next invocation. 619 */ 620 if (jent_entropy_init()) 621 return ret; 622 623 /* Set APT to initial state */ 624 jent_apt_reset(ec, 0); 625 ec->apt_base_set = 0; 626 627 /* Set RCT to initial state */ 628 ec->rct_count = 0; 629 630 /* Re-enable Jitter RNG */ 631 ec->health_failure = 0; 632 633 /* 634 * Return the health test failure status to the 635 * caller as the generated value is not appropriate. 636 */ 637 return ret; 638 } 639 640 if ((DATA_SIZE_BITS / 8) < len) 641 tocopy = (DATA_SIZE_BITS / 8); 642 else 643 tocopy = len; 644 jent_memcpy(p, &ec->data, tocopy); 645 646 len -= tocopy; 647 p += tocopy; 648 } 649 650 return 0; 651 } 652 653 /*************************************************************************** 654 * Initialization logic 655 ***************************************************************************/ 656 657 struct rand_data *jent_entropy_collector_alloc(unsigned int osr, 658 unsigned int flags) 659 { 660 struct rand_data *entropy_collector; 661 662 entropy_collector = jent_zalloc(sizeof(struct rand_data)); 663 if (!entropy_collector) 664 return NULL; 665 666 if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) { 667 /* Allocate memory for adding variations based on memory 668 * access 669 */ 670 entropy_collector->mem = jent_zalloc(JENT_MEMORY_SIZE); 671 if (!entropy_collector->mem) { 672 jent_zfree(entropy_collector); 673 return NULL; 674 } 675 entropy_collector->memblocksize = JENT_MEMORY_BLOCKSIZE; 676 entropy_collector->memblocks = JENT_MEMORY_BLOCKS; 677 entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS; 678 } 679 680 /* verify and set the oversampling rate */ 681 if (0 == osr) 682 osr = 1; /* minimum sampling rate is 1 */ 683 entropy_collector->osr = osr; 684 685 /* fill the data pad with non-zero values */ 686 jent_gen_entropy(entropy_collector); 687 688 return entropy_collector; 689 } 690 691 void jent_entropy_collector_free(struct rand_data *entropy_collector) 692 { 693 jent_zfree(entropy_collector->mem); 694 entropy_collector->mem = NULL; 695 jent_zfree(entropy_collector); 696 } 697 698 int jent_entropy_init(void) 699 { 700 int i; 701 __u64 delta_sum = 0; 702 __u64 old_delta = 0; 703 unsigned int nonstuck = 0; 704 int time_backwards = 0; 705 int count_mod = 0; 706 int count_stuck = 0; 707 struct rand_data ec = { 0 }; 708 709 /* Required for RCT */ 710 ec.osr = 1; 711 712 /* We could perform statistical tests here, but the problem is 713 * that we only have a few loop counts to do testing. These 714 * loop counts may show some slight skew and we produce 715 * false positives. 716 * 717 * Moreover, only old systems show potentially problematic 718 * jitter entropy that could potentially be caught here. But 719 * the RNG is intended for hardware that is available or widely 720 * used, but not old systems that are long out of favor. Thus, 721 * no statistical tests. 722 */ 723 724 /* 725 * We could add a check for system capabilities such as clock_getres or 726 * check for CONFIG_X86_TSC, but it does not make much sense as the 727 * following sanity checks verify that we have a high-resolution 728 * timer. 729 */ 730 /* 731 * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is 732 * definitely too little. 733 * 734 * SP800-90B requires at least 1024 initial test cycles. 735 */ 736 #define TESTLOOPCOUNT 1024 737 #define CLEARCACHE 100 738 for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) { 739 __u64 time = 0; 740 __u64 time2 = 0; 741 __u64 delta = 0; 742 unsigned int lowdelta = 0; 743 int stuck; 744 745 /* Invoke core entropy collection logic */ 746 jent_get_nstime(&time); 747 ec.prev_time = time; 748 jent_lfsr_time(&ec, time, 0, 0); 749 jent_get_nstime(&time2); 750 751 /* test whether timer works */ 752 if (!time || !time2) 753 return JENT_ENOTIME; 754 delta = jent_delta(time, time2); 755 /* 756 * test whether timer is fine grained enough to provide 757 * delta even when called shortly after each other -- this 758 * implies that we also have a high resolution timer 759 */ 760 if (!delta) 761 return JENT_ECOARSETIME; 762 763 stuck = jent_stuck(&ec, delta); 764 765 /* 766 * up to here we did not modify any variable that will be 767 * evaluated later, but we already performed some work. Thus we 768 * already have had an impact on the caches, branch prediction, 769 * etc. with the goal to clear it to get the worst case 770 * measurements. 771 */ 772 if (CLEARCACHE > i) 773 continue; 774 775 if (stuck) 776 count_stuck++; 777 else { 778 nonstuck++; 779 780 /* 781 * Ensure that the APT succeeded. 782 * 783 * With the check below that count_stuck must be less 784 * than 10% of the overall generated raw entropy values 785 * it is guaranteed that the APT is invoked at 786 * floor((TESTLOOPCOUNT * 0.9) / 64) == 14 times. 787 */ 788 if ((nonstuck % JENT_APT_WINDOW_SIZE) == 0) { 789 jent_apt_reset(&ec, 790 delta & JENT_APT_WORD_MASK); 791 if (jent_health_failure(&ec)) 792 return JENT_EHEALTH; 793 } 794 } 795 796 /* Validate RCT */ 797 if (jent_rct_failure(&ec)) 798 return JENT_ERCT; 799 800 /* test whether we have an increasing timer */ 801 if (!(time2 > time)) 802 time_backwards++; 803 804 /* use 32 bit value to ensure compilation on 32 bit arches */ 805 lowdelta = time2 - time; 806 if (!(lowdelta % 100)) 807 count_mod++; 808 809 /* 810 * ensure that we have a varying delta timer which is necessary 811 * for the calculation of entropy -- perform this check 812 * only after the first loop is executed as we need to prime 813 * the old_data value 814 */ 815 if (delta > old_delta) 816 delta_sum += (delta - old_delta); 817 else 818 delta_sum += (old_delta - delta); 819 old_delta = delta; 820 } 821 822 /* 823 * we allow up to three times the time running backwards. 824 * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus, 825 * if such an operation just happens to interfere with our test, it 826 * should not fail. The value of 3 should cover the NTP case being 827 * performed during our test run. 828 */ 829 if (3 < time_backwards) 830 return JENT_ENOMONOTONIC; 831 832 /* 833 * Variations of deltas of time must on average be larger 834 * than 1 to ensure the entropy estimation 835 * implied with 1 is preserved 836 */ 837 if ((delta_sum) <= 1) 838 return JENT_EVARVAR; 839 840 /* 841 * Ensure that we have variations in the time stamp below 10 for at 842 * least 10% of all checks -- on some platforms, the counter increments 843 * in multiples of 100, but not always 844 */ 845 if ((TESTLOOPCOUNT/10 * 9) < count_mod) 846 return JENT_ECOARSETIME; 847 848 /* 849 * If we have more than 90% stuck results, then this Jitter RNG is 850 * likely to not work well. 851 */ 852 if ((TESTLOOPCOUNT/10 * 9) < count_stuck) 853 return JENT_ESTUCK; 854 855 return 0; 856 } 857