xref: /openbmc/linux/block/bfq-iosched.h (revision e9adcfec)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Header file for the BFQ I/O scheduler: data structures and
4  * prototypes of interface functions among BFQ components.
5  */
6 #ifndef _BFQ_H
7 #define _BFQ_H
8 
9 #include <linux/blktrace_api.h>
10 #include <linux/hrtimer.h>
11 
12 #include "blk-cgroup-rwstat.h"
13 
14 #define BFQ_IOPRIO_CLASSES	3
15 #define BFQ_CL_IDLE_TIMEOUT	(HZ/5)
16 
17 #define BFQ_MIN_WEIGHT			1
18 #define BFQ_MAX_WEIGHT			1000
19 #define BFQ_WEIGHT_CONVERSION_COEFF	10
20 
21 #define BFQ_DEFAULT_QUEUE_IOPRIO	4
22 
23 #define BFQ_WEIGHT_LEGACY_DFL	100
24 #define BFQ_DEFAULT_GRP_IOPRIO	0
25 #define BFQ_DEFAULT_GRP_CLASS	IOPRIO_CLASS_BE
26 
27 #define MAX_BFQQ_NAME_LENGTH 16
28 
29 /*
30  * Soft real-time applications are extremely more latency sensitive
31  * than interactive ones. Over-raise the weight of the former to
32  * privilege them against the latter.
33  */
34 #define BFQ_SOFTRT_WEIGHT_FACTOR	100
35 
36 struct bfq_entity;
37 
38 /**
39  * struct bfq_service_tree - per ioprio_class service tree.
40  *
41  * Each service tree represents a B-WF2Q+ scheduler on its own.  Each
42  * ioprio_class has its own independent scheduler, and so its own
43  * bfq_service_tree.  All the fields are protected by the queue lock
44  * of the containing bfqd.
45  */
46 struct bfq_service_tree {
47 	/* tree for active entities (i.e., those backlogged) */
48 	struct rb_root active;
49 	/* tree for idle entities (i.e., not backlogged, with V < F_i)*/
50 	struct rb_root idle;
51 
52 	/* idle entity with minimum F_i */
53 	struct bfq_entity *first_idle;
54 	/* idle entity with maximum F_i */
55 	struct bfq_entity *last_idle;
56 
57 	/* scheduler virtual time */
58 	u64 vtime;
59 	/* scheduler weight sum; active and idle entities contribute to it */
60 	unsigned long wsum;
61 };
62 
63 /**
64  * struct bfq_sched_data - multi-class scheduler.
65  *
66  * bfq_sched_data is the basic scheduler queue.  It supports three
67  * ioprio_classes, and can be used either as a toplevel queue or as an
68  * intermediate queue in a hierarchical setup.
69  *
70  * The supported ioprio_classes are the same as in CFQ, in descending
71  * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
72  * Requests from higher priority queues are served before all the
73  * requests from lower priority queues; among requests of the same
74  * queue requests are served according to B-WF2Q+.
75  *
76  * The schedule is implemented by the service trees, plus the field
77  * @next_in_service, which points to the entity on the active trees
78  * that will be served next, if 1) no changes in the schedule occurs
79  * before the current in-service entity is expired, 2) the in-service
80  * queue becomes idle when it expires, and 3) if the entity pointed by
81  * in_service_entity is not a queue, then the in-service child entity
82  * of the entity pointed by in_service_entity becomes idle on
83  * expiration. This peculiar definition allows for the following
84  * optimization, not yet exploited: while a given entity is still in
85  * service, we already know which is the best candidate for next
86  * service among the other active entities in the same parent
87  * entity. We can then quickly compare the timestamps of the
88  * in-service entity with those of such best candidate.
89  *
90  * All fields are protected by the lock of the containing bfqd.
91  */
92 struct bfq_sched_data {
93 	/* entity in service */
94 	struct bfq_entity *in_service_entity;
95 	/* head-of-line entity (see comments above) */
96 	struct bfq_entity *next_in_service;
97 	/* array of service trees, one per ioprio_class */
98 	struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
99 	/* last time CLASS_IDLE was served */
100 	unsigned long bfq_class_idle_last_service;
101 
102 };
103 
104 /**
105  * struct bfq_weight_counter - counter of the number of all active queues
106  *                             with a given weight.
107  */
108 struct bfq_weight_counter {
109 	unsigned int weight; /* weight of the queues this counter refers to */
110 	unsigned int num_active; /* nr of active queues with this weight */
111 	/*
112 	 * Weights tree member (see bfq_data's @queue_weights_tree)
113 	 */
114 	struct rb_node weights_node;
115 };
116 
117 /**
118  * struct bfq_entity - schedulable entity.
119  *
120  * A bfq_entity is used to represent either a bfq_queue (leaf node in the
121  * cgroup hierarchy) or a bfq_group into the upper level scheduler.  Each
122  * entity belongs to the sched_data of the parent group in the cgroup
123  * hierarchy.  Non-leaf entities have also their own sched_data, stored
124  * in @my_sched_data.
125  *
126  * Each entity stores independently its priority values; this would
127  * allow different weights on different devices, but this
128  * functionality is not exported to userspace by now.  Priorities and
129  * weights are updated lazily, first storing the new values into the
130  * new_* fields, then setting the @prio_changed flag.  As soon as
131  * there is a transition in the entity state that allows the priority
132  * update to take place the effective and the requested priority
133  * values are synchronized.
134  *
135  * Unless cgroups are used, the weight value is calculated from the
136  * ioprio to export the same interface as CFQ.  When dealing with
137  * "well-behaved" queues (i.e., queues that do not spend too much
138  * time to consume their budget and have true sequential behavior, and
139  * when there are no external factors breaking anticipation) the
140  * relative weights at each level of the cgroups hierarchy should be
141  * guaranteed.  All the fields are protected by the queue lock of the
142  * containing bfqd.
143  */
144 struct bfq_entity {
145 	/* service_tree member */
146 	struct rb_node rb_node;
147 
148 	/*
149 	 * Flag, true if the entity is on a tree (either the active or
150 	 * the idle one of its service_tree) or is in service.
151 	 */
152 	bool on_st_or_in_serv;
153 
154 	/* B-WF2Q+ start and finish timestamps [sectors/weight] */
155 	u64 start, finish;
156 
157 	/* tree the entity is enqueued into; %NULL if not on a tree */
158 	struct rb_root *tree;
159 
160 	/*
161 	 * minimum start time of the (active) subtree rooted at this
162 	 * entity; used for O(log N) lookups into active trees
163 	 */
164 	u64 min_start;
165 
166 	/* amount of service received during the last service slot */
167 	int service;
168 
169 	/* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */
170 	int budget;
171 
172 	/* Number of requests allocated in the subtree of this entity */
173 	int allocated;
174 
175 	/* device weight, if non-zero, it overrides the default weight of
176 	 * bfq_group_data */
177 	int dev_weight;
178 	/* weight of the queue */
179 	int weight;
180 	/* next weight if a change is in progress */
181 	int new_weight;
182 
183 	/* original weight, used to implement weight boosting */
184 	int orig_weight;
185 
186 	/* parent entity, for hierarchical scheduling */
187 	struct bfq_entity *parent;
188 
189 	/*
190 	 * For non-leaf nodes in the hierarchy, the associated
191 	 * scheduler queue, %NULL on leaf nodes.
192 	 */
193 	struct bfq_sched_data *my_sched_data;
194 	/* the scheduler queue this entity belongs to */
195 	struct bfq_sched_data *sched_data;
196 
197 	/* flag, set to request a weight, ioprio or ioprio_class change  */
198 	int prio_changed;
199 
200 #ifdef CONFIG_BFQ_GROUP_IOSCHED
201 	/* flag, set if the entity is counted in groups_with_pending_reqs */
202 	bool in_groups_with_pending_reqs;
203 #endif
204 
205 	/* last child queue of entity created (for non-leaf entities) */
206 	struct bfq_queue *last_bfqq_created;
207 };
208 
209 struct bfq_group;
210 
211 /**
212  * struct bfq_ttime - per process thinktime stats.
213  */
214 struct bfq_ttime {
215 	/* completion time of the last request */
216 	u64 last_end_request;
217 
218 	/* total process thinktime */
219 	u64 ttime_total;
220 	/* number of thinktime samples */
221 	unsigned long ttime_samples;
222 	/* average process thinktime */
223 	u64 ttime_mean;
224 };
225 
226 /**
227  * struct bfq_queue - leaf schedulable entity.
228  *
229  * A bfq_queue is a leaf request queue; it can be associated with an
230  * io_context or more, if it  is  async or shared  between  cooperating
231  * processes. @cgroup holds a reference to the cgroup, to be sure that it
232  * does not disappear while a bfqq still references it (mostly to avoid
233  * races between request issuing and task migration followed by cgroup
234  * destruction).
235  * All the fields are protected by the queue lock of the containing bfqd.
236  */
237 struct bfq_queue {
238 	/* reference counter */
239 	int ref;
240 	/* counter of references from other queues for delayed stable merge */
241 	int stable_ref;
242 	/* parent bfq_data */
243 	struct bfq_data *bfqd;
244 
245 	/* current ioprio and ioprio class */
246 	unsigned short ioprio, ioprio_class;
247 	/* next ioprio and ioprio class if a change is in progress */
248 	unsigned short new_ioprio, new_ioprio_class;
249 
250 	/* last total-service-time sample, see bfq_update_inject_limit() */
251 	u64 last_serv_time_ns;
252 	/* limit for request injection */
253 	unsigned int inject_limit;
254 	/* last time the inject limit has been decreased, in jiffies */
255 	unsigned long decrease_time_jif;
256 
257 	/*
258 	 * Shared bfq_queue if queue is cooperating with one or more
259 	 * other queues.
260 	 */
261 	struct bfq_queue *new_bfqq;
262 	/* request-position tree member (see bfq_group's @rq_pos_tree) */
263 	struct rb_node pos_node;
264 	/* request-position tree root (see bfq_group's @rq_pos_tree) */
265 	struct rb_root *pos_root;
266 
267 	/* sorted list of pending requests */
268 	struct rb_root sort_list;
269 	/* if fifo isn't expired, next request to serve */
270 	struct request *next_rq;
271 	/* number of sync and async requests queued */
272 	int queued[2];
273 	/* number of pending metadata requests */
274 	int meta_pending;
275 	/* fifo list of requests in sort_list */
276 	struct list_head fifo;
277 
278 	/* entity representing this queue in the scheduler */
279 	struct bfq_entity entity;
280 
281 	/* pointer to the weight counter associated with this entity */
282 	struct bfq_weight_counter *weight_counter;
283 
284 	/* maximum budget allowed from the feedback mechanism */
285 	int max_budget;
286 	/* budget expiration (in jiffies) */
287 	unsigned long budget_timeout;
288 
289 	/* number of requests on the dispatch list or inside driver */
290 	int dispatched;
291 
292 	/* status flags */
293 	unsigned long flags;
294 
295 	/* node for active/idle bfqq list inside parent bfqd */
296 	struct list_head bfqq_list;
297 
298 	/* associated @bfq_ttime struct */
299 	struct bfq_ttime ttime;
300 
301 	/* when bfqq started to do I/O within the last observation window */
302 	u64 io_start_time;
303 	/* how long bfqq has remained empty during the last observ. window */
304 	u64 tot_idle_time;
305 
306 	/* bit vector: a 1 for each seeky requests in history */
307 	u32 seek_history;
308 
309 	/* node for the device's burst list */
310 	struct hlist_node burst_list_node;
311 
312 	/* position of the last request enqueued */
313 	sector_t last_request_pos;
314 
315 	/* Number of consecutive pairs of request completion and
316 	 * arrival, such that the queue becomes idle after the
317 	 * completion, but the next request arrives within an idle
318 	 * time slice; used only if the queue's IO_bound flag has been
319 	 * cleared.
320 	 */
321 	unsigned int requests_within_timer;
322 
323 	/* pid of the process owning the queue, used for logging purposes */
324 	pid_t pid;
325 
326 	/*
327 	 * Pointer to the bfq_io_cq owning the bfq_queue, set to %NULL
328 	 * if the queue is shared.
329 	 */
330 	struct bfq_io_cq *bic;
331 
332 	/* current maximum weight-raising time for this queue */
333 	unsigned long wr_cur_max_time;
334 	/*
335 	 * Minimum time instant such that, only if a new request is
336 	 * enqueued after this time instant in an idle @bfq_queue with
337 	 * no outstanding requests, then the task associated with the
338 	 * queue it is deemed as soft real-time (see the comments on
339 	 * the function bfq_bfqq_softrt_next_start())
340 	 */
341 	unsigned long soft_rt_next_start;
342 	/*
343 	 * Start time of the current weight-raising period if
344 	 * the @bfq-queue is being weight-raised, otherwise
345 	 * finish time of the last weight-raising period.
346 	 */
347 	unsigned long last_wr_start_finish;
348 	/* factor by which the weight of this queue is multiplied */
349 	unsigned int wr_coeff;
350 	/*
351 	 * Time of the last transition of the @bfq_queue from idle to
352 	 * backlogged.
353 	 */
354 	unsigned long last_idle_bklogged;
355 	/*
356 	 * Cumulative service received from the @bfq_queue since the
357 	 * last transition from idle to backlogged.
358 	 */
359 	unsigned long service_from_backlogged;
360 	/*
361 	 * Cumulative service received from the @bfq_queue since its
362 	 * last transition to weight-raised state.
363 	 */
364 	unsigned long service_from_wr;
365 
366 	/*
367 	 * Value of wr start time when switching to soft rt
368 	 */
369 	unsigned long wr_start_at_switch_to_srt;
370 
371 	unsigned long split_time; /* time of last split */
372 
373 	unsigned long first_IO_time; /* time of first I/O for this queue */
374 	unsigned long creation_time; /* when this queue is created */
375 
376 	/*
377 	 * Pointer to the waker queue for this queue, i.e., to the
378 	 * queue Q such that this queue happens to get new I/O right
379 	 * after some I/O request of Q is completed. For details, see
380 	 * the comments on the choice of the queue for injection in
381 	 * bfq_select_queue().
382 	 */
383 	struct bfq_queue *waker_bfqq;
384 	/* pointer to the curr. tentative waker queue, see bfq_check_waker() */
385 	struct bfq_queue *tentative_waker_bfqq;
386 	/* number of times the same tentative waker has been detected */
387 	unsigned int num_waker_detections;
388 	/* time when we started considering this waker */
389 	u64 waker_detection_started;
390 
391 	/* node for woken_list, see below */
392 	struct hlist_node woken_list_node;
393 	/*
394 	 * Head of the list of the woken queues for this queue, i.e.,
395 	 * of the list of the queues for which this queue is a waker
396 	 * queue. This list is used to reset the waker_bfqq pointer in
397 	 * the woken queues when this queue exits.
398 	 */
399 	struct hlist_head woken_list;
400 };
401 
402 /**
403  * struct bfq_io_cq - per (request_queue, io_context) structure.
404  */
405 struct bfq_io_cq {
406 	/* associated io_cq structure */
407 	struct io_cq icq; /* must be the first member */
408 	/* array of two process queues, the sync and the async */
409 	struct bfq_queue *bfqq[2];
410 	/* per (request_queue, blkcg) ioprio */
411 	int ioprio;
412 #ifdef CONFIG_BFQ_GROUP_IOSCHED
413 	uint64_t blkcg_serial_nr; /* the current blkcg serial */
414 #endif
415 	/*
416 	 * Snapshot of the has_short_time flag before merging; taken
417 	 * to remember its value while the queue is merged, so as to
418 	 * be able to restore it in case of split.
419 	 */
420 	bool saved_has_short_ttime;
421 	/*
422 	 * Same purpose as the previous two fields for the I/O bound
423 	 * classification of a queue.
424 	 */
425 	bool saved_IO_bound;
426 
427 	u64 saved_io_start_time;
428 	u64 saved_tot_idle_time;
429 
430 	/*
431 	 * Same purpose as the previous fields for the value of the
432 	 * field keeping the queue's belonging to a large burst
433 	 */
434 	bool saved_in_large_burst;
435 	/*
436 	 * True if the queue belonged to a burst list before its merge
437 	 * with another cooperating queue.
438 	 */
439 	bool was_in_burst_list;
440 
441 	/*
442 	 * Save the weight when a merge occurs, to be able
443 	 * to restore it in case of split. If the weight is not
444 	 * correctly resumed when the queue is recycled,
445 	 * then the weight of the recycled queue could differ
446 	 * from the weight of the original queue.
447 	 */
448 	unsigned int saved_weight;
449 
450 	/*
451 	 * Similar to previous fields: save wr information.
452 	 */
453 	unsigned long saved_wr_coeff;
454 	unsigned long saved_last_wr_start_finish;
455 	unsigned long saved_service_from_wr;
456 	unsigned long saved_wr_start_at_switch_to_srt;
457 	unsigned int saved_wr_cur_max_time;
458 	struct bfq_ttime saved_ttime;
459 
460 	/* Save also injection state */
461 	u64 saved_last_serv_time_ns;
462 	unsigned int saved_inject_limit;
463 	unsigned long saved_decrease_time_jif;
464 
465 	/* candidate queue for a stable merge (due to close creation time) */
466 	struct bfq_queue *stable_merge_bfqq;
467 
468 	bool stably_merged;	/* non splittable if true */
469 	unsigned int requests;	/* Number of requests this process has in flight */
470 };
471 
472 /**
473  * struct bfq_data - per-device data structure.
474  *
475  * All the fields are protected by @lock.
476  */
477 struct bfq_data {
478 	/* device request queue */
479 	struct request_queue *queue;
480 	/* dispatch queue */
481 	struct list_head dispatch;
482 
483 	/* root bfq_group for the device */
484 	struct bfq_group *root_group;
485 
486 	/*
487 	 * rbtree of weight counters of @bfq_queues, sorted by
488 	 * weight. Used to keep track of whether all @bfq_queues have
489 	 * the same weight. The tree contains one counter for each
490 	 * distinct weight associated to some active and not
491 	 * weight-raised @bfq_queue (see the comments to the functions
492 	 * bfq_weights_tree_[add|remove] for further details).
493 	 */
494 	struct rb_root_cached queue_weights_tree;
495 
496 #ifdef CONFIG_BFQ_GROUP_IOSCHED
497 	/*
498 	 * Number of groups with at least one process that
499 	 * has at least one request waiting for completion. Note that
500 	 * this accounts for also requests already dispatched, but not
501 	 * yet completed. Therefore this number of groups may differ
502 	 * (be larger) than the number of active groups, as a group is
503 	 * considered active only if its corresponding entity has
504 	 * queues with at least one request queued. This
505 	 * number is used to decide whether a scenario is symmetric.
506 	 * For a detailed explanation see comments on the computation
507 	 * of the variable asymmetric_scenario in the function
508 	 * bfq_better_to_idle().
509 	 *
510 	 * However, it is hard to compute this number exactly, for
511 	 * groups with multiple processes. Consider a group
512 	 * that is inactive, i.e., that has no process with
513 	 * pending I/O inside BFQ queues. Then suppose that
514 	 * num_groups_with_pending_reqs is still accounting for this
515 	 * group, because the group has processes with some
516 	 * I/O request still in flight. num_groups_with_pending_reqs
517 	 * should be decremented when the in-flight request of the
518 	 * last process is finally completed (assuming that
519 	 * nothing else has changed for the group in the meantime, in
520 	 * terms of composition of the group and active/inactive state of child
521 	 * groups and processes). To accomplish this, an additional
522 	 * pending-request counter must be added to entities, and must
523 	 * be updated correctly. To avoid this additional field and operations,
524 	 * we resort to the following tradeoff between simplicity and
525 	 * accuracy: for an inactive group that is still counted in
526 	 * num_groups_with_pending_reqs, we decrement
527 	 * num_groups_with_pending_reqs when the first
528 	 * process of the group remains with no request waiting for
529 	 * completion.
530 	 *
531 	 * Even this simpler decrement strategy requires a little
532 	 * carefulness: to avoid multiple decrements, we flag a group,
533 	 * more precisely an entity representing a group, as still
534 	 * counted in num_groups_with_pending_reqs when it becomes
535 	 * inactive. Then, when the first queue of the
536 	 * entity remains with no request waiting for completion,
537 	 * num_groups_with_pending_reqs is decremented, and this flag
538 	 * is reset. After this flag is reset for the entity,
539 	 * num_groups_with_pending_reqs won't be decremented any
540 	 * longer in case a new queue of the entity remains
541 	 * with no request waiting for completion.
542 	 */
543 	unsigned int num_groups_with_pending_reqs;
544 #endif
545 
546 	/*
547 	 * Per-class (RT, BE, IDLE) number of bfq_queues containing
548 	 * requests (including the queue in service, even if it is
549 	 * idling).
550 	 */
551 	unsigned int busy_queues[3];
552 	/* number of weight-raised busy @bfq_queues */
553 	int wr_busy_queues;
554 	/* number of queued requests */
555 	int queued;
556 	/* number of requests dispatched and waiting for completion */
557 	int rq_in_driver;
558 
559 	/* true if the device is non rotational and performs queueing */
560 	bool nonrot_with_queueing;
561 
562 	/*
563 	 * Maximum number of requests in driver in the last
564 	 * @hw_tag_samples completed requests.
565 	 */
566 	int max_rq_in_driver;
567 	/* number of samples used to calculate hw_tag */
568 	int hw_tag_samples;
569 	/* flag set to one if the driver is showing a queueing behavior */
570 	int hw_tag;
571 
572 	/* number of budgets assigned */
573 	int budgets_assigned;
574 
575 	/*
576 	 * Timer set when idling (waiting) for the next request from
577 	 * the queue in service.
578 	 */
579 	struct hrtimer idle_slice_timer;
580 
581 	/* bfq_queue in service */
582 	struct bfq_queue *in_service_queue;
583 
584 	/* on-disk position of the last served request */
585 	sector_t last_position;
586 
587 	/* position of the last served request for the in-service queue */
588 	sector_t in_serv_last_pos;
589 
590 	/* time of last request completion (ns) */
591 	u64 last_completion;
592 
593 	/* bfqq owning the last completed rq */
594 	struct bfq_queue *last_completed_rq_bfqq;
595 
596 	/* last bfqq created, among those in the root group */
597 	struct bfq_queue *last_bfqq_created;
598 
599 	/* time of last transition from empty to non-empty (ns) */
600 	u64 last_empty_occupied_ns;
601 
602 	/*
603 	 * Flag set to activate the sampling of the total service time
604 	 * of a just-arrived first I/O request (see
605 	 * bfq_update_inject_limit()). This will cause the setting of
606 	 * waited_rq when the request is finally dispatched.
607 	 */
608 	bool wait_dispatch;
609 	/*
610 	 *  If set, then bfq_update_inject_limit() is invoked when
611 	 *  waited_rq is eventually completed.
612 	 */
613 	struct request *waited_rq;
614 	/*
615 	 * True if some request has been injected during the last service hole.
616 	 */
617 	bool rqs_injected;
618 
619 	/* time of first rq dispatch in current observation interval (ns) */
620 	u64 first_dispatch;
621 	/* time of last rq dispatch in current observation interval (ns) */
622 	u64 last_dispatch;
623 
624 	/* beginning of the last budget */
625 	ktime_t last_budget_start;
626 	/* beginning of the last idle slice */
627 	ktime_t last_idling_start;
628 	unsigned long last_idling_start_jiffies;
629 
630 	/* number of samples in current observation interval */
631 	int peak_rate_samples;
632 	/* num of samples of seq dispatches in current observation interval */
633 	u32 sequential_samples;
634 	/* total num of sectors transferred in current observation interval */
635 	u64 tot_sectors_dispatched;
636 	/* max rq size seen during current observation interval (sectors) */
637 	u32 last_rq_max_size;
638 	/* time elapsed from first dispatch in current observ. interval (us) */
639 	u64 delta_from_first;
640 	/*
641 	 * Current estimate of the device peak rate, measured in
642 	 * [(sectors/usec) / 2^BFQ_RATE_SHIFT]. The left-shift by
643 	 * BFQ_RATE_SHIFT is performed to increase precision in
644 	 * fixed-point calculations.
645 	 */
646 	u32 peak_rate;
647 
648 	/* maximum budget allotted to a bfq_queue before rescheduling */
649 	int bfq_max_budget;
650 
651 	/* list of all the bfq_queues active on the device */
652 	struct list_head active_list;
653 	/* list of all the bfq_queues idle on the device */
654 	struct list_head idle_list;
655 
656 	/*
657 	 * Timeout for async/sync requests; when it fires, requests
658 	 * are served in fifo order.
659 	 */
660 	u64 bfq_fifo_expire[2];
661 	/* weight of backward seeks wrt forward ones */
662 	unsigned int bfq_back_penalty;
663 	/* maximum allowed backward seek */
664 	unsigned int bfq_back_max;
665 	/* maximum idling time */
666 	u32 bfq_slice_idle;
667 
668 	/* user-configured max budget value (0 for auto-tuning) */
669 	int bfq_user_max_budget;
670 	/*
671 	 * Timeout for bfq_queues to consume their budget; used to
672 	 * prevent seeky queues from imposing long latencies to
673 	 * sequential or quasi-sequential ones (this also implies that
674 	 * seeky queues cannot receive guarantees in the service
675 	 * domain; after a timeout they are charged for the time they
676 	 * have been in service, to preserve fairness among them, but
677 	 * without service-domain guarantees).
678 	 */
679 	unsigned int bfq_timeout;
680 
681 	/*
682 	 * Force device idling whenever needed to provide accurate
683 	 * service guarantees, without caring about throughput
684 	 * issues. CAVEAT: this may even increase latencies, in case
685 	 * of useless idling for processes that did stop doing I/O.
686 	 */
687 	bool strict_guarantees;
688 
689 	/*
690 	 * Last time at which a queue entered the current burst of
691 	 * queues being activated shortly after each other; for more
692 	 * details about this and the following parameters related to
693 	 * a burst of activations, see the comments on the function
694 	 * bfq_handle_burst.
695 	 */
696 	unsigned long last_ins_in_burst;
697 	/*
698 	 * Reference time interval used to decide whether a queue has
699 	 * been activated shortly after @last_ins_in_burst.
700 	 */
701 	unsigned long bfq_burst_interval;
702 	/* number of queues in the current burst of queue activations */
703 	int burst_size;
704 
705 	/* common parent entity for the queues in the burst */
706 	struct bfq_entity *burst_parent_entity;
707 	/* Maximum burst size above which the current queue-activation
708 	 * burst is deemed as 'large'.
709 	 */
710 	unsigned long bfq_large_burst_thresh;
711 	/* true if a large queue-activation burst is in progress */
712 	bool large_burst;
713 	/*
714 	 * Head of the burst list (as for the above fields, more
715 	 * details in the comments on the function bfq_handle_burst).
716 	 */
717 	struct hlist_head burst_list;
718 
719 	/* if set to true, low-latency heuristics are enabled */
720 	bool low_latency;
721 	/*
722 	 * Maximum factor by which the weight of a weight-raised queue
723 	 * is multiplied.
724 	 */
725 	unsigned int bfq_wr_coeff;
726 	/* maximum duration of a weight-raising period (jiffies) */
727 	unsigned int bfq_wr_max_time;
728 
729 	/* Maximum weight-raising duration for soft real-time processes */
730 	unsigned int bfq_wr_rt_max_time;
731 	/*
732 	 * Minimum idle period after which weight-raising may be
733 	 * reactivated for a queue (in jiffies).
734 	 */
735 	unsigned int bfq_wr_min_idle_time;
736 	/*
737 	 * Minimum period between request arrivals after which
738 	 * weight-raising may be reactivated for an already busy async
739 	 * queue (in jiffies).
740 	 */
741 	unsigned long bfq_wr_min_inter_arr_async;
742 
743 	/* Max service-rate for a soft real-time queue, in sectors/sec */
744 	unsigned int bfq_wr_max_softrt_rate;
745 	/*
746 	 * Cached value of the product ref_rate*ref_wr_duration, used
747 	 * for computing the maximum duration of weight raising
748 	 * automatically.
749 	 */
750 	u64 rate_dur_prod;
751 
752 	/* fallback dummy bfqq for extreme OOM conditions */
753 	struct bfq_queue oom_bfqq;
754 
755 	spinlock_t lock;
756 
757 	/*
758 	 * bic associated with the task issuing current bio for
759 	 * merging. This and the next field are used as a support to
760 	 * be able to perform the bic lookup, needed by bio-merge
761 	 * functions, before the scheduler lock is taken, and thus
762 	 * avoid taking the request-queue lock while the scheduler
763 	 * lock is being held.
764 	 */
765 	struct bfq_io_cq *bio_bic;
766 	/* bfqq associated with the task issuing current bio for merging */
767 	struct bfq_queue *bio_bfqq;
768 
769 	/*
770 	 * Depth limits used in bfq_limit_depth (see comments on the
771 	 * function)
772 	 */
773 	unsigned int word_depths[2][2];
774 	unsigned int full_depth_shift;
775 };
776 
777 enum bfqq_state_flags {
778 	BFQQF_just_created = 0,	/* queue just allocated */
779 	BFQQF_busy,		/* has requests or is in service */
780 	BFQQF_wait_request,	/* waiting for a request */
781 	BFQQF_non_blocking_wait_rq, /*
782 				     * waiting for a request
783 				     * without idling the device
784 				     */
785 	BFQQF_fifo_expire,	/* FIFO checked in this slice */
786 	BFQQF_has_short_ttime,	/* queue has a short think time */
787 	BFQQF_sync,		/* synchronous queue */
788 	BFQQF_IO_bound,		/*
789 				 * bfqq has timed-out at least once
790 				 * having consumed at most 2/10 of
791 				 * its budget
792 				 */
793 	BFQQF_in_large_burst,	/*
794 				 * bfqq activated in a large burst,
795 				 * see comments to bfq_handle_burst.
796 				 */
797 	BFQQF_softrt_update,	/*
798 				 * may need softrt-next-start
799 				 * update
800 				 */
801 	BFQQF_coop,		/* bfqq is shared */
802 	BFQQF_split_coop,	/* shared bfqq will be split */
803 };
804 
805 #define BFQ_BFQQ_FNS(name)						\
806 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq);			\
807 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq);			\
808 int bfq_bfqq_##name(const struct bfq_queue *bfqq);
809 
810 BFQ_BFQQ_FNS(just_created);
811 BFQ_BFQQ_FNS(busy);
812 BFQ_BFQQ_FNS(wait_request);
813 BFQ_BFQQ_FNS(non_blocking_wait_rq);
814 BFQ_BFQQ_FNS(fifo_expire);
815 BFQ_BFQQ_FNS(has_short_ttime);
816 BFQ_BFQQ_FNS(sync);
817 BFQ_BFQQ_FNS(IO_bound);
818 BFQ_BFQQ_FNS(in_large_burst);
819 BFQ_BFQQ_FNS(coop);
820 BFQ_BFQQ_FNS(split_coop);
821 BFQ_BFQQ_FNS(softrt_update);
822 #undef BFQ_BFQQ_FNS
823 
824 /* Expiration reasons. */
825 enum bfqq_expiration {
826 	BFQQE_TOO_IDLE = 0,		/*
827 					 * queue has been idling for
828 					 * too long
829 					 */
830 	BFQQE_BUDGET_TIMEOUT,	/* budget took too long to be used */
831 	BFQQE_BUDGET_EXHAUSTED,	/* budget consumed */
832 	BFQQE_NO_MORE_REQUESTS,	/* the queue has no more requests */
833 	BFQQE_PREEMPTED		/* preemption in progress */
834 };
835 
836 struct bfq_stat {
837 	struct percpu_counter		cpu_cnt;
838 	atomic64_t			aux_cnt;
839 };
840 
841 struct bfqg_stats {
842 	/* basic stats */
843 	struct blkg_rwstat		bytes;
844 	struct blkg_rwstat		ios;
845 #ifdef CONFIG_BFQ_CGROUP_DEBUG
846 	/* number of ios merged */
847 	struct blkg_rwstat		merged;
848 	/* total time spent on device in ns, may not be accurate w/ queueing */
849 	struct blkg_rwstat		service_time;
850 	/* total time spent waiting in scheduler queue in ns */
851 	struct blkg_rwstat		wait_time;
852 	/* number of IOs queued up */
853 	struct blkg_rwstat		queued;
854 	/* total disk time and nr sectors dispatched by this group */
855 	struct bfq_stat		time;
856 	/* sum of number of ios queued across all samples */
857 	struct bfq_stat		avg_queue_size_sum;
858 	/* count of samples taken for average */
859 	struct bfq_stat		avg_queue_size_samples;
860 	/* how many times this group has been removed from service tree */
861 	struct bfq_stat		dequeue;
862 	/* total time spent waiting for it to be assigned a timeslice. */
863 	struct bfq_stat		group_wait_time;
864 	/* time spent idling for this blkcg_gq */
865 	struct bfq_stat		idle_time;
866 	/* total time with empty current active q with other requests queued */
867 	struct bfq_stat		empty_time;
868 	/* fields after this shouldn't be cleared on stat reset */
869 	u64				start_group_wait_time;
870 	u64				start_idle_time;
871 	u64				start_empty_time;
872 	uint16_t			flags;
873 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
874 };
875 
876 #ifdef CONFIG_BFQ_GROUP_IOSCHED
877 
878 /*
879  * struct bfq_group_data - per-blkcg storage for the blkio subsystem.
880  *
881  * @ps: @blkcg_policy_storage that this structure inherits
882  * @weight: weight of the bfq_group
883  */
884 struct bfq_group_data {
885 	/* must be the first member */
886 	struct blkcg_policy_data pd;
887 
888 	unsigned int weight;
889 };
890 
891 /**
892  * struct bfq_group - per (device, cgroup) data structure.
893  * @entity: schedulable entity to insert into the parent group sched_data.
894  * @sched_data: own sched_data, to contain child entities (they may be
895  *              both bfq_queues and bfq_groups).
896  * @bfqd: the bfq_data for the device this group acts upon.
897  * @async_bfqq: array of async queues for all the tasks belonging to
898  *              the group, one queue per ioprio value per ioprio_class,
899  *              except for the idle class that has only one queue.
900  * @async_idle_bfqq: async queue for the idle class (ioprio is ignored).
901  * @my_entity: pointer to @entity, %NULL for the toplevel group; used
902  *             to avoid too many special cases during group creation/
903  *             migration.
904  * @stats: stats for this bfqg.
905  * @active_entities: number of active entities belonging to the group;
906  *                   unused for the root group. Used to know whether there
907  *                   are groups with more than one active @bfq_entity
908  *                   (see the comments to the function
909  *                   bfq_bfqq_may_idle()).
910  * @rq_pos_tree: rbtree sorted by next_request position, used when
911  *               determining if two or more queues have interleaving
912  *               requests (see bfq_find_close_cooperator()).
913  *
914  * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup
915  * there is a set of bfq_groups, each one collecting the lower-level
916  * entities belonging to the group that are acting on the same device.
917  *
918  * Locking works as follows:
919  *    o @bfqd is protected by the queue lock, RCU is used to access it
920  *      from the readers.
921  *    o All the other fields are protected by the @bfqd queue lock.
922  */
923 struct bfq_group {
924 	/* must be the first member */
925 	struct blkg_policy_data pd;
926 
927 	/* cached path for this blkg (see comments in bfq_bic_update_cgroup) */
928 	char blkg_path[128];
929 
930 	/* reference counter (see comments in bfq_bic_update_cgroup) */
931 	int ref;
932 	/* Is bfq_group still online? */
933 	bool online;
934 
935 	struct bfq_entity entity;
936 	struct bfq_sched_data sched_data;
937 
938 	struct bfq_data *bfqd;
939 
940 	struct bfq_queue *async_bfqq[2][IOPRIO_NR_LEVELS];
941 	struct bfq_queue *async_idle_bfqq;
942 
943 	struct bfq_entity *my_entity;
944 
945 	int active_entities;
946 	int num_queues_with_pending_reqs;
947 
948 	struct rb_root rq_pos_tree;
949 
950 	struct bfqg_stats stats;
951 };
952 
953 #else
954 struct bfq_group {
955 	struct bfq_entity entity;
956 	struct bfq_sched_data sched_data;
957 
958 	struct bfq_queue *async_bfqq[2][IOPRIO_NR_LEVELS];
959 	struct bfq_queue *async_idle_bfqq;
960 
961 	struct rb_root rq_pos_tree;
962 };
963 #endif
964 
965 /* --------------- main algorithm interface ----------------- */
966 
967 #define BFQ_SERVICE_TREE_INIT	((struct bfq_service_tree)		\
968 				{ RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
969 
970 extern const int bfq_timeout;
971 
972 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync);
973 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync);
974 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic);
975 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq);
976 void bfq_weights_tree_add(struct bfq_queue *bfqq);
977 void bfq_weights_tree_remove(struct bfq_queue *bfqq);
978 void bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
979 		     bool compensate, enum bfqq_expiration reason);
980 void bfq_put_queue(struct bfq_queue *bfqq);
981 void bfq_put_cooperator(struct bfq_queue *bfqq);
982 void bfq_end_wr_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
983 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq);
984 void bfq_schedule_dispatch(struct bfq_data *bfqd);
985 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
986 
987 /* ------------ end of main algorithm interface -------------- */
988 
989 /* ---------------- cgroups-support interface ---------------- */
990 
991 void bfqg_stats_update_legacy_io(struct request_queue *q, struct request *rq);
992 void bfqg_stats_update_io_remove(struct bfq_group *bfqg, blk_opf_t opf);
993 void bfqg_stats_update_io_merged(struct bfq_group *bfqg, blk_opf_t opf);
994 void bfqg_stats_update_completion(struct bfq_group *bfqg, u64 start_time_ns,
995 				  u64 io_start_time_ns, blk_opf_t opf);
996 void bfqg_stats_update_dequeue(struct bfq_group *bfqg);
997 void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg);
998 void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
999 		   struct bfq_group *bfqg);
1000 
1001 #ifdef CONFIG_BFQ_CGROUP_DEBUG
1002 void bfqg_stats_update_io_add(struct bfq_group *bfqg, struct bfq_queue *bfqq,
1003 			      blk_opf_t opf);
1004 void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg);
1005 void bfqg_stats_update_idle_time(struct bfq_group *bfqg);
1006 void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg);
1007 #endif
1008 
1009 void bfq_init_entity(struct bfq_entity *entity, struct bfq_group *bfqg);
1010 void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio);
1011 void bfq_end_wr_async(struct bfq_data *bfqd);
1012 struct bfq_group *bfq_bio_bfqg(struct bfq_data *bfqd, struct bio *bio);
1013 struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
1014 struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
1015 struct bfq_group *bfq_create_group_hierarchy(struct bfq_data *bfqd, int node);
1016 void bfqg_and_blkg_put(struct bfq_group *bfqg);
1017 
1018 #ifdef CONFIG_BFQ_GROUP_IOSCHED
1019 extern struct cftype bfq_blkcg_legacy_files[];
1020 extern struct cftype bfq_blkg_files[];
1021 extern struct blkcg_policy blkcg_policy_bfq;
1022 #endif
1023 
1024 /* ------------- end of cgroups-support interface ------------- */
1025 
1026 /* - interface of the internal hierarchical B-WF2Q+ scheduler - */
1027 
1028 #ifdef CONFIG_BFQ_GROUP_IOSCHED
1029 /* both next loops stop at one of the child entities of the root group */
1030 #define for_each_entity(entity)	\
1031 	for (; entity ; entity = entity->parent)
1032 
1033 /*
1034  * For each iteration, compute parent in advance, so as to be safe if
1035  * entity is deallocated during the iteration. Such a deallocation may
1036  * happen as a consequence of a bfq_put_queue that frees the bfq_queue
1037  * containing entity.
1038  */
1039 #define for_each_entity_safe(entity, parent) \
1040 	for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
1041 
1042 #else /* CONFIG_BFQ_GROUP_IOSCHED */
1043 /*
1044  * Next two macros are fake loops when cgroups support is not
1045  * enabled. I fact, in such a case, there is only one level to go up
1046  * (to reach the root group).
1047  */
1048 #define for_each_entity(entity)	\
1049 	for (; entity ; entity = NULL)
1050 
1051 #define for_each_entity_safe(entity, parent) \
1052 	for (parent = NULL; entity ; entity = parent)
1053 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
1054 
1055 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
1056 unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd);
1057 struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity);
1058 struct bfq_entity *bfq_entity_of(struct rb_node *node);
1059 unsigned short bfq_ioprio_to_weight(int ioprio);
1060 void bfq_put_idle_entity(struct bfq_service_tree *st,
1061 			 struct bfq_entity *entity);
1062 struct bfq_service_tree *
1063 __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
1064 				struct bfq_entity *entity,
1065 				bool update_class_too);
1066 void bfq_bfqq_served(struct bfq_queue *bfqq, int served);
1067 void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1068 			  unsigned long time_ms);
1069 bool __bfq_deactivate_entity(struct bfq_entity *entity,
1070 			     bool ins_into_idle_tree);
1071 bool next_queue_may_preempt(struct bfq_data *bfqd);
1072 struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd);
1073 bool __bfq_bfqd_reset_in_service(struct bfq_data *bfqd);
1074 void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1075 			 bool ins_into_idle_tree, bool expiration);
1076 void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
1077 void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1078 		      bool expiration);
1079 void bfq_del_bfqq_busy(struct bfq_queue *bfqq, bool expiration);
1080 void bfq_add_bfqq_busy(struct bfq_queue *bfqq);
1081 void bfq_add_bfqq_in_groups_with_pending_reqs(struct bfq_queue *bfqq);
1082 void bfq_del_bfqq_in_groups_with_pending_reqs(struct bfq_queue *bfqq);
1083 
1084 /* --------------- end of interface of B-WF2Q+ ---------------- */
1085 
1086 /* Logging facilities. */
1087 static inline void bfq_bfqq_name(struct bfq_queue *bfqq, char *str, int len)
1088 {
1089 	char type = bfq_bfqq_sync(bfqq) ? 'S' : 'A';
1090 
1091 	if (bfqq->pid != -1)
1092 		snprintf(str, len, "bfq%d%c", bfqq->pid, type);
1093 	else
1094 		snprintf(str, len, "bfqSHARED-%c", type);
1095 }
1096 
1097 #ifdef CONFIG_BFQ_GROUP_IOSCHED
1098 struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
1099 
1100 #define bfq_log_bfqq(bfqd, bfqq, fmt, args...)	do {			\
1101 	char pid_str[MAX_BFQQ_NAME_LENGTH];				\
1102 	if (likely(!blk_trace_note_message_enabled((bfqd)->queue)))	\
1103 		break;							\
1104 	bfq_bfqq_name((bfqq), pid_str, MAX_BFQQ_NAME_LENGTH);		\
1105 	blk_add_cgroup_trace_msg((bfqd)->queue,				\
1106 			&bfqg_to_blkg(bfqq_group(bfqq))->blkcg->css,	\
1107 			"%s " fmt, pid_str, ##args);			\
1108 } while (0)
1109 
1110 #define bfq_log_bfqg(bfqd, bfqg, fmt, args...)	do {			\
1111 	blk_add_cgroup_trace_msg((bfqd)->queue,				\
1112 		&bfqg_to_blkg(bfqg)->blkcg->css, fmt, ##args);		\
1113 } while (0)
1114 
1115 #else /* CONFIG_BFQ_GROUP_IOSCHED */
1116 
1117 #define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do {	\
1118 	char pid_str[MAX_BFQQ_NAME_LENGTH];				\
1119 	if (likely(!blk_trace_note_message_enabled((bfqd)->queue)))	\
1120 		break;							\
1121 	bfq_bfqq_name((bfqq), pid_str, MAX_BFQQ_NAME_LENGTH);		\
1122 	blk_add_trace_msg((bfqd)->queue, "%s " fmt, pid_str, ##args);	\
1123 } while (0)
1124 #define bfq_log_bfqg(bfqd, bfqg, fmt, args...)		do {} while (0)
1125 
1126 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
1127 
1128 #define bfq_log(bfqd, fmt, args...) \
1129 	blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args)
1130 
1131 #endif /* _BFQ_H */
1132