1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Header file for the BFQ I/O scheduler: data structures and 4 * prototypes of interface functions among BFQ components. 5 */ 6 #ifndef _BFQ_H 7 #define _BFQ_H 8 9 #include <linux/blktrace_api.h> 10 #include <linux/hrtimer.h> 11 #include <linux/blk-cgroup.h> 12 13 #include "blk-cgroup-rwstat.h" 14 15 #define BFQ_IOPRIO_CLASSES 3 16 #define BFQ_CL_IDLE_TIMEOUT (HZ/5) 17 18 #define BFQ_MIN_WEIGHT 1 19 #define BFQ_MAX_WEIGHT 1000 20 #define BFQ_WEIGHT_CONVERSION_COEFF 10 21 22 #define BFQ_DEFAULT_QUEUE_IOPRIO 4 23 24 #define BFQ_WEIGHT_LEGACY_DFL 100 25 #define BFQ_DEFAULT_GRP_IOPRIO 0 26 #define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE 27 28 #define MAX_PID_STR_LENGTH 12 29 30 /* 31 * Soft real-time applications are extremely more latency sensitive 32 * than interactive ones. Over-raise the weight of the former to 33 * privilege them against the latter. 34 */ 35 #define BFQ_SOFTRT_WEIGHT_FACTOR 100 36 37 struct bfq_entity; 38 39 /** 40 * struct bfq_service_tree - per ioprio_class service tree. 41 * 42 * Each service tree represents a B-WF2Q+ scheduler on its own. Each 43 * ioprio_class has its own independent scheduler, and so its own 44 * bfq_service_tree. All the fields are protected by the queue lock 45 * of the containing bfqd. 46 */ 47 struct bfq_service_tree { 48 /* tree for active entities (i.e., those backlogged) */ 49 struct rb_root active; 50 /* tree for idle entities (i.e., not backlogged, with V < F_i)*/ 51 struct rb_root idle; 52 53 /* idle entity with minimum F_i */ 54 struct bfq_entity *first_idle; 55 /* idle entity with maximum F_i */ 56 struct bfq_entity *last_idle; 57 58 /* scheduler virtual time */ 59 u64 vtime; 60 /* scheduler weight sum; active and idle entities contribute to it */ 61 unsigned long wsum; 62 }; 63 64 /** 65 * struct bfq_sched_data - multi-class scheduler. 66 * 67 * bfq_sched_data is the basic scheduler queue. It supports three 68 * ioprio_classes, and can be used either as a toplevel queue or as an 69 * intermediate queue in a hierarchical setup. 70 * 71 * The supported ioprio_classes are the same as in CFQ, in descending 72 * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE. 73 * Requests from higher priority queues are served before all the 74 * requests from lower priority queues; among requests of the same 75 * queue requests are served according to B-WF2Q+. 76 * 77 * The schedule is implemented by the service trees, plus the field 78 * @next_in_service, which points to the entity on the active trees 79 * that will be served next, if 1) no changes in the schedule occurs 80 * before the current in-service entity is expired, 2) the in-service 81 * queue becomes idle when it expires, and 3) if the entity pointed by 82 * in_service_entity is not a queue, then the in-service child entity 83 * of the entity pointed by in_service_entity becomes idle on 84 * expiration. This peculiar definition allows for the following 85 * optimization, not yet exploited: while a given entity is still in 86 * service, we already know which is the best candidate for next 87 * service among the other active entities in the same parent 88 * entity. We can then quickly compare the timestamps of the 89 * in-service entity with those of such best candidate. 90 * 91 * All fields are protected by the lock of the containing bfqd. 92 */ 93 struct bfq_sched_data { 94 /* entity in service */ 95 struct bfq_entity *in_service_entity; 96 /* head-of-line entity (see comments above) */ 97 struct bfq_entity *next_in_service; 98 /* array of service trees, one per ioprio_class */ 99 struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES]; 100 /* last time CLASS_IDLE was served */ 101 unsigned long bfq_class_idle_last_service; 102 103 }; 104 105 /** 106 * struct bfq_weight_counter - counter of the number of all active queues 107 * with a given weight. 108 */ 109 struct bfq_weight_counter { 110 unsigned int weight; /* weight of the queues this counter refers to */ 111 unsigned int num_active; /* nr of active queues with this weight */ 112 /* 113 * Weights tree member (see bfq_data's @queue_weights_tree) 114 */ 115 struct rb_node weights_node; 116 }; 117 118 /** 119 * struct bfq_entity - schedulable entity. 120 * 121 * A bfq_entity is used to represent either a bfq_queue (leaf node in the 122 * cgroup hierarchy) or a bfq_group into the upper level scheduler. Each 123 * entity belongs to the sched_data of the parent group in the cgroup 124 * hierarchy. Non-leaf entities have also their own sched_data, stored 125 * in @my_sched_data. 126 * 127 * Each entity stores independently its priority values; this would 128 * allow different weights on different devices, but this 129 * functionality is not exported to userspace by now. Priorities and 130 * weights are updated lazily, first storing the new values into the 131 * new_* fields, then setting the @prio_changed flag. As soon as 132 * there is a transition in the entity state that allows the priority 133 * update to take place the effective and the requested priority 134 * values are synchronized. 135 * 136 * Unless cgroups are used, the weight value is calculated from the 137 * ioprio to export the same interface as CFQ. When dealing with 138 * "well-behaved" queues (i.e., queues that do not spend too much 139 * time to consume their budget and have true sequential behavior, and 140 * when there are no external factors breaking anticipation) the 141 * relative weights at each level of the cgroups hierarchy should be 142 * guaranteed. All the fields are protected by the queue lock of the 143 * containing bfqd. 144 */ 145 struct bfq_entity { 146 /* service_tree member */ 147 struct rb_node rb_node; 148 149 /* 150 * Flag, true if the entity is on a tree (either the active or 151 * the idle one of its service_tree) or is in service. 152 */ 153 bool on_st_or_in_serv; 154 155 /* B-WF2Q+ start and finish timestamps [sectors/weight] */ 156 u64 start, finish; 157 158 /* tree the entity is enqueued into; %NULL if not on a tree */ 159 struct rb_root *tree; 160 161 /* 162 * minimum start time of the (active) subtree rooted at this 163 * entity; used for O(log N) lookups into active trees 164 */ 165 u64 min_start; 166 167 /* amount of service received during the last service slot */ 168 int service; 169 170 /* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */ 171 int budget; 172 173 /* device weight, if non-zero, it overrides the default weight of 174 * bfq_group_data */ 175 int dev_weight; 176 /* weight of the queue */ 177 int weight; 178 /* next weight if a change is in progress */ 179 int new_weight; 180 181 /* original weight, used to implement weight boosting */ 182 int orig_weight; 183 184 /* parent entity, for hierarchical scheduling */ 185 struct bfq_entity *parent; 186 187 /* 188 * For non-leaf nodes in the hierarchy, the associated 189 * scheduler queue, %NULL on leaf nodes. 190 */ 191 struct bfq_sched_data *my_sched_data; 192 /* the scheduler queue this entity belongs to */ 193 struct bfq_sched_data *sched_data; 194 195 /* flag, set to request a weight, ioprio or ioprio_class change */ 196 int prio_changed; 197 198 /* flag, set if the entity is counted in groups_with_pending_reqs */ 199 bool in_groups_with_pending_reqs; 200 }; 201 202 struct bfq_group; 203 204 /** 205 * struct bfq_ttime - per process thinktime stats. 206 */ 207 struct bfq_ttime { 208 /* completion time of the last request */ 209 u64 last_end_request; 210 211 /* total process thinktime */ 212 u64 ttime_total; 213 /* number of thinktime samples */ 214 unsigned long ttime_samples; 215 /* average process thinktime */ 216 u64 ttime_mean; 217 }; 218 219 /** 220 * struct bfq_queue - leaf schedulable entity. 221 * 222 * A bfq_queue is a leaf request queue; it can be associated with an 223 * io_context or more, if it is async or shared between cooperating 224 * processes. @cgroup holds a reference to the cgroup, to be sure that it 225 * does not disappear while a bfqq still references it (mostly to avoid 226 * races between request issuing and task migration followed by cgroup 227 * destruction). 228 * All the fields are protected by the queue lock of the containing bfqd. 229 */ 230 struct bfq_queue { 231 /* reference counter */ 232 int ref; 233 /* parent bfq_data */ 234 struct bfq_data *bfqd; 235 236 /* current ioprio and ioprio class */ 237 unsigned short ioprio, ioprio_class; 238 /* next ioprio and ioprio class if a change is in progress */ 239 unsigned short new_ioprio, new_ioprio_class; 240 241 /* last total-service-time sample, see bfq_update_inject_limit() */ 242 u64 last_serv_time_ns; 243 /* limit for request injection */ 244 unsigned int inject_limit; 245 /* last time the inject limit has been decreased, in jiffies */ 246 unsigned long decrease_time_jif; 247 248 /* 249 * Shared bfq_queue if queue is cooperating with one or more 250 * other queues. 251 */ 252 struct bfq_queue *new_bfqq; 253 /* request-position tree member (see bfq_group's @rq_pos_tree) */ 254 struct rb_node pos_node; 255 /* request-position tree root (see bfq_group's @rq_pos_tree) */ 256 struct rb_root *pos_root; 257 258 /* sorted list of pending requests */ 259 struct rb_root sort_list; 260 /* if fifo isn't expired, next request to serve */ 261 struct request *next_rq; 262 /* number of sync and async requests queued */ 263 int queued[2]; 264 /* number of requests currently allocated */ 265 int allocated; 266 /* number of pending metadata requests */ 267 int meta_pending; 268 /* fifo list of requests in sort_list */ 269 struct list_head fifo; 270 271 /* entity representing this queue in the scheduler */ 272 struct bfq_entity entity; 273 274 /* pointer to the weight counter associated with this entity */ 275 struct bfq_weight_counter *weight_counter; 276 277 /* maximum budget allowed from the feedback mechanism */ 278 int max_budget; 279 /* budget expiration (in jiffies) */ 280 unsigned long budget_timeout; 281 282 /* number of requests on the dispatch list or inside driver */ 283 int dispatched; 284 285 /* status flags */ 286 unsigned long flags; 287 288 /* node for active/idle bfqq list inside parent bfqd */ 289 struct list_head bfqq_list; 290 291 /* associated @bfq_ttime struct */ 292 struct bfq_ttime ttime; 293 294 /* when bfqq started to do I/O within the last observation window */ 295 u64 io_start_time; 296 /* how long bfqq has remained empty during the last observ. window */ 297 u64 tot_idle_time; 298 299 /* bit vector: a 1 for each seeky requests in history */ 300 u32 seek_history; 301 302 /* node for the device's burst list */ 303 struct hlist_node burst_list_node; 304 305 /* position of the last request enqueued */ 306 sector_t last_request_pos; 307 308 /* Number of consecutive pairs of request completion and 309 * arrival, such that the queue becomes idle after the 310 * completion, but the next request arrives within an idle 311 * time slice; used only if the queue's IO_bound flag has been 312 * cleared. 313 */ 314 unsigned int requests_within_timer; 315 316 /* pid of the process owning the queue, used for logging purposes */ 317 pid_t pid; 318 319 /* 320 * Pointer to the bfq_io_cq owning the bfq_queue, set to %NULL 321 * if the queue is shared. 322 */ 323 struct bfq_io_cq *bic; 324 325 /* current maximum weight-raising time for this queue */ 326 unsigned long wr_cur_max_time; 327 /* 328 * Minimum time instant such that, only if a new request is 329 * enqueued after this time instant in an idle @bfq_queue with 330 * no outstanding requests, then the task associated with the 331 * queue it is deemed as soft real-time (see the comments on 332 * the function bfq_bfqq_softrt_next_start()) 333 */ 334 unsigned long soft_rt_next_start; 335 /* 336 * Start time of the current weight-raising period if 337 * the @bfq-queue is being weight-raised, otherwise 338 * finish time of the last weight-raising period. 339 */ 340 unsigned long last_wr_start_finish; 341 /* factor by which the weight of this queue is multiplied */ 342 unsigned int wr_coeff; 343 /* 344 * Time of the last transition of the @bfq_queue from idle to 345 * backlogged. 346 */ 347 unsigned long last_idle_bklogged; 348 /* 349 * Cumulative service received from the @bfq_queue since the 350 * last transition from idle to backlogged. 351 */ 352 unsigned long service_from_backlogged; 353 /* 354 * Cumulative service received from the @bfq_queue since its 355 * last transition to weight-raised state. 356 */ 357 unsigned long service_from_wr; 358 359 /* 360 * Value of wr start time when switching to soft rt 361 */ 362 unsigned long wr_start_at_switch_to_srt; 363 364 unsigned long split_time; /* time of last split */ 365 366 unsigned long first_IO_time; /* time of first I/O for this queue */ 367 368 /* max service rate measured so far */ 369 u32 max_service_rate; 370 371 /* 372 * Pointer to the waker queue for this queue, i.e., to the 373 * queue Q such that this queue happens to get new I/O right 374 * after some I/O request of Q is completed. For details, see 375 * the comments on the choice of the queue for injection in 376 * bfq_select_queue(). 377 */ 378 struct bfq_queue *waker_bfqq; 379 /* pointer to the curr. tentative waker queue, see bfq_check_waker() */ 380 struct bfq_queue *tentative_waker_bfqq; 381 /* number of times the same tentative waker has been detected */ 382 unsigned int num_waker_detections; 383 384 /* node for woken_list, see below */ 385 struct hlist_node woken_list_node; 386 /* 387 * Head of the list of the woken queues for this queue, i.e., 388 * of the list of the queues for which this queue is a waker 389 * queue. This list is used to reset the waker_bfqq pointer in 390 * the woken queues when this queue exits. 391 */ 392 struct hlist_head woken_list; 393 }; 394 395 /** 396 * struct bfq_io_cq - per (request_queue, io_context) structure. 397 */ 398 struct bfq_io_cq { 399 /* associated io_cq structure */ 400 struct io_cq icq; /* must be the first member */ 401 /* array of two process queues, the sync and the async */ 402 struct bfq_queue *bfqq[2]; 403 /* per (request_queue, blkcg) ioprio */ 404 int ioprio; 405 #ifdef CONFIG_BFQ_GROUP_IOSCHED 406 uint64_t blkcg_serial_nr; /* the current blkcg serial */ 407 #endif 408 /* 409 * Snapshot of the has_short_time flag before merging; taken 410 * to remember its value while the queue is merged, so as to 411 * be able to restore it in case of split. 412 */ 413 bool saved_has_short_ttime; 414 /* 415 * Same purpose as the previous two fields for the I/O bound 416 * classification of a queue. 417 */ 418 bool saved_IO_bound; 419 420 u64 saved_io_start_time; 421 u64 saved_tot_idle_time; 422 423 /* 424 * Same purpose as the previous fields for the value of the 425 * field keeping the queue's belonging to a large burst 426 */ 427 bool saved_in_large_burst; 428 /* 429 * True if the queue belonged to a burst list before its merge 430 * with another cooperating queue. 431 */ 432 bool was_in_burst_list; 433 434 /* 435 * Save the weight when a merge occurs, to be able 436 * to restore it in case of split. If the weight is not 437 * correctly resumed when the queue is recycled, 438 * then the weight of the recycled queue could differ 439 * from the weight of the original queue. 440 */ 441 unsigned int saved_weight; 442 443 /* 444 * Similar to previous fields: save wr information. 445 */ 446 unsigned long saved_wr_coeff; 447 unsigned long saved_last_wr_start_finish; 448 unsigned long saved_service_from_wr; 449 unsigned long saved_wr_start_at_switch_to_srt; 450 unsigned int saved_wr_cur_max_time; 451 struct bfq_ttime saved_ttime; 452 453 /* Save also injection state */ 454 u64 saved_last_serv_time_ns; 455 unsigned int saved_inject_limit; 456 unsigned long saved_decrease_time_jif; 457 }; 458 459 /** 460 * struct bfq_data - per-device data structure. 461 * 462 * All the fields are protected by @lock. 463 */ 464 struct bfq_data { 465 /* device request queue */ 466 struct request_queue *queue; 467 /* dispatch queue */ 468 struct list_head dispatch; 469 470 /* root bfq_group for the device */ 471 struct bfq_group *root_group; 472 473 /* 474 * rbtree of weight counters of @bfq_queues, sorted by 475 * weight. Used to keep track of whether all @bfq_queues have 476 * the same weight. The tree contains one counter for each 477 * distinct weight associated to some active and not 478 * weight-raised @bfq_queue (see the comments to the functions 479 * bfq_weights_tree_[add|remove] for further details). 480 */ 481 struct rb_root_cached queue_weights_tree; 482 483 /* 484 * Number of groups with at least one descendant process that 485 * has at least one request waiting for completion. Note that 486 * this accounts for also requests already dispatched, but not 487 * yet completed. Therefore this number of groups may differ 488 * (be larger) than the number of active groups, as a group is 489 * considered active only if its corresponding entity has 490 * descendant queues with at least one request queued. This 491 * number is used to decide whether a scenario is symmetric. 492 * For a detailed explanation see comments on the computation 493 * of the variable asymmetric_scenario in the function 494 * bfq_better_to_idle(). 495 * 496 * However, it is hard to compute this number exactly, for 497 * groups with multiple descendant processes. Consider a group 498 * that is inactive, i.e., that has no descendant process with 499 * pending I/O inside BFQ queues. Then suppose that 500 * num_groups_with_pending_reqs is still accounting for this 501 * group, because the group has descendant processes with some 502 * I/O request still in flight. num_groups_with_pending_reqs 503 * should be decremented when the in-flight request of the 504 * last descendant process is finally completed (assuming that 505 * nothing else has changed for the group in the meantime, in 506 * terms of composition of the group and active/inactive state of child 507 * groups and processes). To accomplish this, an additional 508 * pending-request counter must be added to entities, and must 509 * be updated correctly. To avoid this additional field and operations, 510 * we resort to the following tradeoff between simplicity and 511 * accuracy: for an inactive group that is still counted in 512 * num_groups_with_pending_reqs, we decrement 513 * num_groups_with_pending_reqs when the first descendant 514 * process of the group remains with no request waiting for 515 * completion. 516 * 517 * Even this simpler decrement strategy requires a little 518 * carefulness: to avoid multiple decrements, we flag a group, 519 * more precisely an entity representing a group, as still 520 * counted in num_groups_with_pending_reqs when it becomes 521 * inactive. Then, when the first descendant queue of the 522 * entity remains with no request waiting for completion, 523 * num_groups_with_pending_reqs is decremented, and this flag 524 * is reset. After this flag is reset for the entity, 525 * num_groups_with_pending_reqs won't be decremented any 526 * longer in case a new descendant queue of the entity remains 527 * with no request waiting for completion. 528 */ 529 unsigned int num_groups_with_pending_reqs; 530 531 /* 532 * Per-class (RT, BE, IDLE) number of bfq_queues containing 533 * requests (including the queue in service, even if it is 534 * idling). 535 */ 536 unsigned int busy_queues[3]; 537 /* number of weight-raised busy @bfq_queues */ 538 int wr_busy_queues; 539 /* number of queued requests */ 540 int queued; 541 /* number of requests dispatched and waiting for completion */ 542 int rq_in_driver; 543 544 /* true if the device is non rotational and performs queueing */ 545 bool nonrot_with_queueing; 546 547 /* 548 * Maximum number of requests in driver in the last 549 * @hw_tag_samples completed requests. 550 */ 551 int max_rq_in_driver; 552 /* number of samples used to calculate hw_tag */ 553 int hw_tag_samples; 554 /* flag set to one if the driver is showing a queueing behavior */ 555 int hw_tag; 556 557 /* number of budgets assigned */ 558 int budgets_assigned; 559 560 /* 561 * Timer set when idling (waiting) for the next request from 562 * the queue in service. 563 */ 564 struct hrtimer idle_slice_timer; 565 566 /* bfq_queue in service */ 567 struct bfq_queue *in_service_queue; 568 569 /* on-disk position of the last served request */ 570 sector_t last_position; 571 572 /* position of the last served request for the in-service queue */ 573 sector_t in_serv_last_pos; 574 575 /* time of last request completion (ns) */ 576 u64 last_completion; 577 578 /* bfqq owning the last completed rq */ 579 struct bfq_queue *last_completed_rq_bfqq; 580 581 /* time of last transition from empty to non-empty (ns) */ 582 u64 last_empty_occupied_ns; 583 584 /* 585 * Flag set to activate the sampling of the total service time 586 * of a just-arrived first I/O request (see 587 * bfq_update_inject_limit()). This will cause the setting of 588 * waited_rq when the request is finally dispatched. 589 */ 590 bool wait_dispatch; 591 /* 592 * If set, then bfq_update_inject_limit() is invoked when 593 * waited_rq is eventually completed. 594 */ 595 struct request *waited_rq; 596 /* 597 * True if some request has been injected during the last service hole. 598 */ 599 bool rqs_injected; 600 601 /* time of first rq dispatch in current observation interval (ns) */ 602 u64 first_dispatch; 603 /* time of last rq dispatch in current observation interval (ns) */ 604 u64 last_dispatch; 605 606 /* beginning of the last budget */ 607 ktime_t last_budget_start; 608 /* beginning of the last idle slice */ 609 ktime_t last_idling_start; 610 unsigned long last_idling_start_jiffies; 611 612 /* number of samples in current observation interval */ 613 int peak_rate_samples; 614 /* num of samples of seq dispatches in current observation interval */ 615 u32 sequential_samples; 616 /* total num of sectors transferred in current observation interval */ 617 u64 tot_sectors_dispatched; 618 /* max rq size seen during current observation interval (sectors) */ 619 u32 last_rq_max_size; 620 /* time elapsed from first dispatch in current observ. interval (us) */ 621 u64 delta_from_first; 622 /* 623 * Current estimate of the device peak rate, measured in 624 * [(sectors/usec) / 2^BFQ_RATE_SHIFT]. The left-shift by 625 * BFQ_RATE_SHIFT is performed to increase precision in 626 * fixed-point calculations. 627 */ 628 u32 peak_rate; 629 630 /* maximum budget allotted to a bfq_queue before rescheduling */ 631 int bfq_max_budget; 632 633 /* list of all the bfq_queues active on the device */ 634 struct list_head active_list; 635 /* list of all the bfq_queues idle on the device */ 636 struct list_head idle_list; 637 638 /* 639 * Timeout for async/sync requests; when it fires, requests 640 * are served in fifo order. 641 */ 642 u64 bfq_fifo_expire[2]; 643 /* weight of backward seeks wrt forward ones */ 644 unsigned int bfq_back_penalty; 645 /* maximum allowed backward seek */ 646 unsigned int bfq_back_max; 647 /* maximum idling time */ 648 u32 bfq_slice_idle; 649 650 /* user-configured max budget value (0 for auto-tuning) */ 651 int bfq_user_max_budget; 652 /* 653 * Timeout for bfq_queues to consume their budget; used to 654 * prevent seeky queues from imposing long latencies to 655 * sequential or quasi-sequential ones (this also implies that 656 * seeky queues cannot receive guarantees in the service 657 * domain; after a timeout they are charged for the time they 658 * have been in service, to preserve fairness among them, but 659 * without service-domain guarantees). 660 */ 661 unsigned int bfq_timeout; 662 663 /* 664 * Force device idling whenever needed to provide accurate 665 * service guarantees, without caring about throughput 666 * issues. CAVEAT: this may even increase latencies, in case 667 * of useless idling for processes that did stop doing I/O. 668 */ 669 bool strict_guarantees; 670 671 /* 672 * Last time at which a queue entered the current burst of 673 * queues being activated shortly after each other; for more 674 * details about this and the following parameters related to 675 * a burst of activations, see the comments on the function 676 * bfq_handle_burst. 677 */ 678 unsigned long last_ins_in_burst; 679 /* 680 * Reference time interval used to decide whether a queue has 681 * been activated shortly after @last_ins_in_burst. 682 */ 683 unsigned long bfq_burst_interval; 684 /* number of queues in the current burst of queue activations */ 685 int burst_size; 686 687 /* common parent entity for the queues in the burst */ 688 struct bfq_entity *burst_parent_entity; 689 /* Maximum burst size above which the current queue-activation 690 * burst is deemed as 'large'. 691 */ 692 unsigned long bfq_large_burst_thresh; 693 /* true if a large queue-activation burst is in progress */ 694 bool large_burst; 695 /* 696 * Head of the burst list (as for the above fields, more 697 * details in the comments on the function bfq_handle_burst). 698 */ 699 struct hlist_head burst_list; 700 701 /* if set to true, low-latency heuristics are enabled */ 702 bool low_latency; 703 /* 704 * Maximum factor by which the weight of a weight-raised queue 705 * is multiplied. 706 */ 707 unsigned int bfq_wr_coeff; 708 /* maximum duration of a weight-raising period (jiffies) */ 709 unsigned int bfq_wr_max_time; 710 711 /* Maximum weight-raising duration for soft real-time processes */ 712 unsigned int bfq_wr_rt_max_time; 713 /* 714 * Minimum idle period after which weight-raising may be 715 * reactivated for a queue (in jiffies). 716 */ 717 unsigned int bfq_wr_min_idle_time; 718 /* 719 * Minimum period between request arrivals after which 720 * weight-raising may be reactivated for an already busy async 721 * queue (in jiffies). 722 */ 723 unsigned long bfq_wr_min_inter_arr_async; 724 725 /* Max service-rate for a soft real-time queue, in sectors/sec */ 726 unsigned int bfq_wr_max_softrt_rate; 727 /* 728 * Cached value of the product ref_rate*ref_wr_duration, used 729 * for computing the maximum duration of weight raising 730 * automatically. 731 */ 732 u64 rate_dur_prod; 733 734 /* fallback dummy bfqq for extreme OOM conditions */ 735 struct bfq_queue oom_bfqq; 736 737 spinlock_t lock; 738 739 /* 740 * bic associated with the task issuing current bio for 741 * merging. This and the next field are used as a support to 742 * be able to perform the bic lookup, needed by bio-merge 743 * functions, before the scheduler lock is taken, and thus 744 * avoid taking the request-queue lock while the scheduler 745 * lock is being held. 746 */ 747 struct bfq_io_cq *bio_bic; 748 /* bfqq associated with the task issuing current bio for merging */ 749 struct bfq_queue *bio_bfqq; 750 751 /* 752 * Depth limits used in bfq_limit_depth (see comments on the 753 * function) 754 */ 755 unsigned int word_depths[2][2]; 756 }; 757 758 enum bfqq_state_flags { 759 BFQQF_just_created = 0, /* queue just allocated */ 760 BFQQF_busy, /* has requests or is in service */ 761 BFQQF_wait_request, /* waiting for a request */ 762 BFQQF_non_blocking_wait_rq, /* 763 * waiting for a request 764 * without idling the device 765 */ 766 BFQQF_fifo_expire, /* FIFO checked in this slice */ 767 BFQQF_has_short_ttime, /* queue has a short think time */ 768 BFQQF_sync, /* synchronous queue */ 769 BFQQF_IO_bound, /* 770 * bfqq has timed-out at least once 771 * having consumed at most 2/10 of 772 * its budget 773 */ 774 BFQQF_in_large_burst, /* 775 * bfqq activated in a large burst, 776 * see comments to bfq_handle_burst. 777 */ 778 BFQQF_softrt_update, /* 779 * may need softrt-next-start 780 * update 781 */ 782 BFQQF_coop, /* bfqq is shared */ 783 BFQQF_split_coop, /* shared bfqq will be split */ 784 }; 785 786 #define BFQ_BFQQ_FNS(name) \ 787 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq); \ 788 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq); \ 789 int bfq_bfqq_##name(const struct bfq_queue *bfqq); 790 791 BFQ_BFQQ_FNS(just_created); 792 BFQ_BFQQ_FNS(busy); 793 BFQ_BFQQ_FNS(wait_request); 794 BFQ_BFQQ_FNS(non_blocking_wait_rq); 795 BFQ_BFQQ_FNS(fifo_expire); 796 BFQ_BFQQ_FNS(has_short_ttime); 797 BFQ_BFQQ_FNS(sync); 798 BFQ_BFQQ_FNS(IO_bound); 799 BFQ_BFQQ_FNS(in_large_burst); 800 BFQ_BFQQ_FNS(coop); 801 BFQ_BFQQ_FNS(split_coop); 802 BFQ_BFQQ_FNS(softrt_update); 803 #undef BFQ_BFQQ_FNS 804 805 /* Expiration reasons. */ 806 enum bfqq_expiration { 807 BFQQE_TOO_IDLE = 0, /* 808 * queue has been idling for 809 * too long 810 */ 811 BFQQE_BUDGET_TIMEOUT, /* budget took too long to be used */ 812 BFQQE_BUDGET_EXHAUSTED, /* budget consumed */ 813 BFQQE_NO_MORE_REQUESTS, /* the queue has no more requests */ 814 BFQQE_PREEMPTED /* preemption in progress */ 815 }; 816 817 struct bfq_stat { 818 struct percpu_counter cpu_cnt; 819 atomic64_t aux_cnt; 820 }; 821 822 struct bfqg_stats { 823 /* basic stats */ 824 struct blkg_rwstat bytes; 825 struct blkg_rwstat ios; 826 #ifdef CONFIG_BFQ_CGROUP_DEBUG 827 /* number of ios merged */ 828 struct blkg_rwstat merged; 829 /* total time spent on device in ns, may not be accurate w/ queueing */ 830 struct blkg_rwstat service_time; 831 /* total time spent waiting in scheduler queue in ns */ 832 struct blkg_rwstat wait_time; 833 /* number of IOs queued up */ 834 struct blkg_rwstat queued; 835 /* total disk time and nr sectors dispatched by this group */ 836 struct bfq_stat time; 837 /* sum of number of ios queued across all samples */ 838 struct bfq_stat avg_queue_size_sum; 839 /* count of samples taken for average */ 840 struct bfq_stat avg_queue_size_samples; 841 /* how many times this group has been removed from service tree */ 842 struct bfq_stat dequeue; 843 /* total time spent waiting for it to be assigned a timeslice. */ 844 struct bfq_stat group_wait_time; 845 /* time spent idling for this blkcg_gq */ 846 struct bfq_stat idle_time; 847 /* total time with empty current active q with other requests queued */ 848 struct bfq_stat empty_time; 849 /* fields after this shouldn't be cleared on stat reset */ 850 u64 start_group_wait_time; 851 u64 start_idle_time; 852 u64 start_empty_time; 853 uint16_t flags; 854 #endif /* CONFIG_BFQ_CGROUP_DEBUG */ 855 }; 856 857 #ifdef CONFIG_BFQ_GROUP_IOSCHED 858 859 /* 860 * struct bfq_group_data - per-blkcg storage for the blkio subsystem. 861 * 862 * @ps: @blkcg_policy_storage that this structure inherits 863 * @weight: weight of the bfq_group 864 */ 865 struct bfq_group_data { 866 /* must be the first member */ 867 struct blkcg_policy_data pd; 868 869 unsigned int weight; 870 }; 871 872 /** 873 * struct bfq_group - per (device, cgroup) data structure. 874 * @entity: schedulable entity to insert into the parent group sched_data. 875 * @sched_data: own sched_data, to contain child entities (they may be 876 * both bfq_queues and bfq_groups). 877 * @bfqd: the bfq_data for the device this group acts upon. 878 * @async_bfqq: array of async queues for all the tasks belonging to 879 * the group, one queue per ioprio value per ioprio_class, 880 * except for the idle class that has only one queue. 881 * @async_idle_bfqq: async queue for the idle class (ioprio is ignored). 882 * @my_entity: pointer to @entity, %NULL for the toplevel group; used 883 * to avoid too many special cases during group creation/ 884 * migration. 885 * @stats: stats for this bfqg. 886 * @active_entities: number of active entities belonging to the group; 887 * unused for the root group. Used to know whether there 888 * are groups with more than one active @bfq_entity 889 * (see the comments to the function 890 * bfq_bfqq_may_idle()). 891 * @rq_pos_tree: rbtree sorted by next_request position, used when 892 * determining if two or more queues have interleaving 893 * requests (see bfq_find_close_cooperator()). 894 * 895 * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup 896 * there is a set of bfq_groups, each one collecting the lower-level 897 * entities belonging to the group that are acting on the same device. 898 * 899 * Locking works as follows: 900 * o @bfqd is protected by the queue lock, RCU is used to access it 901 * from the readers. 902 * o All the other fields are protected by the @bfqd queue lock. 903 */ 904 struct bfq_group { 905 /* must be the first member */ 906 struct blkg_policy_data pd; 907 908 /* cached path for this blkg (see comments in bfq_bic_update_cgroup) */ 909 char blkg_path[128]; 910 911 /* reference counter (see comments in bfq_bic_update_cgroup) */ 912 int ref; 913 914 struct bfq_entity entity; 915 struct bfq_sched_data sched_data; 916 917 void *bfqd; 918 919 struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR]; 920 struct bfq_queue *async_idle_bfqq; 921 922 struct bfq_entity *my_entity; 923 924 int active_entities; 925 926 struct rb_root rq_pos_tree; 927 928 struct bfqg_stats stats; 929 }; 930 931 #else 932 struct bfq_group { 933 struct bfq_entity entity; 934 struct bfq_sched_data sched_data; 935 936 struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR]; 937 struct bfq_queue *async_idle_bfqq; 938 939 struct rb_root rq_pos_tree; 940 }; 941 #endif 942 943 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity); 944 945 /* --------------- main algorithm interface ----------------- */ 946 947 #define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \ 948 { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 }) 949 950 extern const int bfq_timeout; 951 952 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync); 953 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync); 954 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic); 955 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq); 956 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq, 957 struct rb_root_cached *root); 958 void __bfq_weights_tree_remove(struct bfq_data *bfqd, 959 struct bfq_queue *bfqq, 960 struct rb_root_cached *root); 961 void bfq_weights_tree_remove(struct bfq_data *bfqd, 962 struct bfq_queue *bfqq); 963 void bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq, 964 bool compensate, enum bfqq_expiration reason); 965 void bfq_put_queue(struct bfq_queue *bfqq); 966 void bfq_end_wr_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg); 967 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq); 968 void bfq_schedule_dispatch(struct bfq_data *bfqd); 969 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg); 970 971 /* ------------ end of main algorithm interface -------------- */ 972 973 /* ---------------- cgroups-support interface ---------------- */ 974 975 void bfqg_stats_update_legacy_io(struct request_queue *q, struct request *rq); 976 void bfqg_stats_update_io_add(struct bfq_group *bfqg, struct bfq_queue *bfqq, 977 unsigned int op); 978 void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op); 979 void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op); 980 void bfqg_stats_update_completion(struct bfq_group *bfqg, u64 start_time_ns, 981 u64 io_start_time_ns, unsigned int op); 982 void bfqg_stats_update_dequeue(struct bfq_group *bfqg); 983 void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg); 984 void bfqg_stats_update_idle_time(struct bfq_group *bfqg); 985 void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg); 986 void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg); 987 void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq, 988 struct bfq_group *bfqg); 989 990 void bfq_init_entity(struct bfq_entity *entity, struct bfq_group *bfqg); 991 void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio); 992 void bfq_end_wr_async(struct bfq_data *bfqd); 993 struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd, 994 struct blkcg *blkcg); 995 struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg); 996 struct bfq_group *bfqq_group(struct bfq_queue *bfqq); 997 struct bfq_group *bfq_create_group_hierarchy(struct bfq_data *bfqd, int node); 998 void bfqg_and_blkg_put(struct bfq_group *bfqg); 999 1000 #ifdef CONFIG_BFQ_GROUP_IOSCHED 1001 extern struct cftype bfq_blkcg_legacy_files[]; 1002 extern struct cftype bfq_blkg_files[]; 1003 extern struct blkcg_policy blkcg_policy_bfq; 1004 #endif 1005 1006 /* ------------- end of cgroups-support interface ------------- */ 1007 1008 /* - interface of the internal hierarchical B-WF2Q+ scheduler - */ 1009 1010 #ifdef CONFIG_BFQ_GROUP_IOSCHED 1011 /* both next loops stop at one of the child entities of the root group */ 1012 #define for_each_entity(entity) \ 1013 for (; entity ; entity = entity->parent) 1014 1015 /* 1016 * For each iteration, compute parent in advance, so as to be safe if 1017 * entity is deallocated during the iteration. Such a deallocation may 1018 * happen as a consequence of a bfq_put_queue that frees the bfq_queue 1019 * containing entity. 1020 */ 1021 #define for_each_entity_safe(entity, parent) \ 1022 for (; entity && ({ parent = entity->parent; 1; }); entity = parent) 1023 1024 #else /* CONFIG_BFQ_GROUP_IOSCHED */ 1025 /* 1026 * Next two macros are fake loops when cgroups support is not 1027 * enabled. I fact, in such a case, there is only one level to go up 1028 * (to reach the root group). 1029 */ 1030 #define for_each_entity(entity) \ 1031 for (; entity ; entity = NULL) 1032 1033 #define for_each_entity_safe(entity, parent) \ 1034 for (parent = NULL; entity ; entity = parent) 1035 #endif /* CONFIG_BFQ_GROUP_IOSCHED */ 1036 1037 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq); 1038 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity); 1039 unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd); 1040 struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity); 1041 struct bfq_entity *bfq_entity_of(struct rb_node *node); 1042 unsigned short bfq_ioprio_to_weight(int ioprio); 1043 void bfq_put_idle_entity(struct bfq_service_tree *st, 1044 struct bfq_entity *entity); 1045 struct bfq_service_tree * 1046 __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st, 1047 struct bfq_entity *entity, 1048 bool update_class_too); 1049 void bfq_bfqq_served(struct bfq_queue *bfqq, int served); 1050 void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1051 unsigned long time_ms); 1052 bool __bfq_deactivate_entity(struct bfq_entity *entity, 1053 bool ins_into_idle_tree); 1054 bool next_queue_may_preempt(struct bfq_data *bfqd); 1055 struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd); 1056 bool __bfq_bfqd_reset_in_service(struct bfq_data *bfqd); 1057 void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1058 bool ins_into_idle_tree, bool expiration); 1059 void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq); 1060 void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1061 bool expiration); 1062 void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1063 bool expiration); 1064 void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq); 1065 1066 /* --------------- end of interface of B-WF2Q+ ---------------- */ 1067 1068 /* Logging facilities. */ 1069 static inline void bfq_pid_to_str(int pid, char *str, int len) 1070 { 1071 if (pid != -1) 1072 snprintf(str, len, "%d", pid); 1073 else 1074 snprintf(str, len, "SHARED-"); 1075 } 1076 1077 #ifdef CONFIG_BFQ_GROUP_IOSCHED 1078 struct bfq_group *bfqq_group(struct bfq_queue *bfqq); 1079 1080 #define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \ 1081 char pid_str[MAX_PID_STR_LENGTH]; \ 1082 if (likely(!blk_trace_note_message_enabled((bfqd)->queue))) \ 1083 break; \ 1084 bfq_pid_to_str((bfqq)->pid, pid_str, MAX_PID_STR_LENGTH); \ 1085 blk_add_cgroup_trace_msg((bfqd)->queue, \ 1086 bfqg_to_blkg(bfqq_group(bfqq))->blkcg, \ 1087 "bfq%s%c " fmt, pid_str, \ 1088 bfq_bfqq_sync((bfqq)) ? 'S' : 'A', ##args); \ 1089 } while (0) 1090 1091 #define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \ 1092 blk_add_cgroup_trace_msg((bfqd)->queue, \ 1093 bfqg_to_blkg(bfqg)->blkcg, fmt, ##args); \ 1094 } while (0) 1095 1096 #else /* CONFIG_BFQ_GROUP_IOSCHED */ 1097 1098 #define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \ 1099 char pid_str[MAX_PID_STR_LENGTH]; \ 1100 if (likely(!blk_trace_note_message_enabled((bfqd)->queue))) \ 1101 break; \ 1102 bfq_pid_to_str((bfqq)->pid, pid_str, MAX_PID_STR_LENGTH); \ 1103 blk_add_trace_msg((bfqd)->queue, "bfq%s%c " fmt, pid_str, \ 1104 bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \ 1105 ##args); \ 1106 } while (0) 1107 #define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0) 1108 1109 #endif /* CONFIG_BFQ_GROUP_IOSCHED */ 1110 1111 #define bfq_log(bfqd, fmt, args...) \ 1112 blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args) 1113 1114 #endif /* _BFQ_H */ 1115