1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Header file for the BFQ I/O scheduler: data structures and 4 * prototypes of interface functions among BFQ components. 5 */ 6 #ifndef _BFQ_H 7 #define _BFQ_H 8 9 #include <linux/blktrace_api.h> 10 #include <linux/hrtimer.h> 11 #include <linux/blk-cgroup.h> 12 13 #define BFQ_IOPRIO_CLASSES 3 14 #define BFQ_CL_IDLE_TIMEOUT (HZ/5) 15 16 #define BFQ_MIN_WEIGHT 1 17 #define BFQ_MAX_WEIGHT 1000 18 #define BFQ_WEIGHT_CONVERSION_COEFF 10 19 20 #define BFQ_DEFAULT_QUEUE_IOPRIO 4 21 22 #define BFQ_WEIGHT_LEGACY_DFL 100 23 #define BFQ_DEFAULT_GRP_IOPRIO 0 24 #define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE 25 26 #define MAX_PID_STR_LENGTH 12 27 28 /* 29 * Soft real-time applications are extremely more latency sensitive 30 * than interactive ones. Over-raise the weight of the former to 31 * privilege them against the latter. 32 */ 33 #define BFQ_SOFTRT_WEIGHT_FACTOR 100 34 35 struct bfq_entity; 36 37 /** 38 * struct bfq_service_tree - per ioprio_class service tree. 39 * 40 * Each service tree represents a B-WF2Q+ scheduler on its own. Each 41 * ioprio_class has its own independent scheduler, and so its own 42 * bfq_service_tree. All the fields are protected by the queue lock 43 * of the containing bfqd. 44 */ 45 struct bfq_service_tree { 46 /* tree for active entities (i.e., those backlogged) */ 47 struct rb_root active; 48 /* tree for idle entities (i.e., not backlogged, with V < F_i)*/ 49 struct rb_root idle; 50 51 /* idle entity with minimum F_i */ 52 struct bfq_entity *first_idle; 53 /* idle entity with maximum F_i */ 54 struct bfq_entity *last_idle; 55 56 /* scheduler virtual time */ 57 u64 vtime; 58 /* scheduler weight sum; active and idle entities contribute to it */ 59 unsigned long wsum; 60 }; 61 62 /** 63 * struct bfq_sched_data - multi-class scheduler. 64 * 65 * bfq_sched_data is the basic scheduler queue. It supports three 66 * ioprio_classes, and can be used either as a toplevel queue or as an 67 * intermediate queue in a hierarchical setup. 68 * 69 * The supported ioprio_classes are the same as in CFQ, in descending 70 * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE. 71 * Requests from higher priority queues are served before all the 72 * requests from lower priority queues; among requests of the same 73 * queue requests are served according to B-WF2Q+. 74 * 75 * The schedule is implemented by the service trees, plus the field 76 * @next_in_service, which points to the entity on the active trees 77 * that will be served next, if 1) no changes in the schedule occurs 78 * before the current in-service entity is expired, 2) the in-service 79 * queue becomes idle when it expires, and 3) if the entity pointed by 80 * in_service_entity is not a queue, then the in-service child entity 81 * of the entity pointed by in_service_entity becomes idle on 82 * expiration. This peculiar definition allows for the following 83 * optimization, not yet exploited: while a given entity is still in 84 * service, we already know which is the best candidate for next 85 * service among the other active entities in the same parent 86 * entity. We can then quickly compare the timestamps of the 87 * in-service entity with those of such best candidate. 88 * 89 * All fields are protected by the lock of the containing bfqd. 90 */ 91 struct bfq_sched_data { 92 /* entity in service */ 93 struct bfq_entity *in_service_entity; 94 /* head-of-line entity (see comments above) */ 95 struct bfq_entity *next_in_service; 96 /* array of service trees, one per ioprio_class */ 97 struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES]; 98 /* last time CLASS_IDLE was served */ 99 unsigned long bfq_class_idle_last_service; 100 101 }; 102 103 /** 104 * struct bfq_weight_counter - counter of the number of all active queues 105 * with a given weight. 106 */ 107 struct bfq_weight_counter { 108 unsigned int weight; /* weight of the queues this counter refers to */ 109 unsigned int num_active; /* nr of active queues with this weight */ 110 /* 111 * Weights tree member (see bfq_data's @queue_weights_tree) 112 */ 113 struct rb_node weights_node; 114 }; 115 116 /** 117 * struct bfq_entity - schedulable entity. 118 * 119 * A bfq_entity is used to represent either a bfq_queue (leaf node in the 120 * cgroup hierarchy) or a bfq_group into the upper level scheduler. Each 121 * entity belongs to the sched_data of the parent group in the cgroup 122 * hierarchy. Non-leaf entities have also their own sched_data, stored 123 * in @my_sched_data. 124 * 125 * Each entity stores independently its priority values; this would 126 * allow different weights on different devices, but this 127 * functionality is not exported to userspace by now. Priorities and 128 * weights are updated lazily, first storing the new values into the 129 * new_* fields, then setting the @prio_changed flag. As soon as 130 * there is a transition in the entity state that allows the priority 131 * update to take place the effective and the requested priority 132 * values are synchronized. 133 * 134 * Unless cgroups are used, the weight value is calculated from the 135 * ioprio to export the same interface as CFQ. When dealing with 136 * "well-behaved" queues (i.e., queues that do not spend too much 137 * time to consume their budget and have true sequential behavior, and 138 * when there are no external factors breaking anticipation) the 139 * relative weights at each level of the cgroups hierarchy should be 140 * guaranteed. All the fields are protected by the queue lock of the 141 * containing bfqd. 142 */ 143 struct bfq_entity { 144 /* service_tree member */ 145 struct rb_node rb_node; 146 147 /* 148 * Flag, true if the entity is on a tree (either the active or 149 * the idle one of its service_tree) or is in service. 150 */ 151 bool on_st; 152 153 /* B-WF2Q+ start and finish timestamps [sectors/weight] */ 154 u64 start, finish; 155 156 /* tree the entity is enqueued into; %NULL if not on a tree */ 157 struct rb_root *tree; 158 159 /* 160 * minimum start time of the (active) subtree rooted at this 161 * entity; used for O(log N) lookups into active trees 162 */ 163 u64 min_start; 164 165 /* amount of service received during the last service slot */ 166 int service; 167 168 /* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */ 169 int budget; 170 171 /* weight of the queue */ 172 int weight; 173 /* next weight if a change is in progress */ 174 int new_weight; 175 176 /* original weight, used to implement weight boosting */ 177 int orig_weight; 178 179 /* parent entity, for hierarchical scheduling */ 180 struct bfq_entity *parent; 181 182 /* 183 * For non-leaf nodes in the hierarchy, the associated 184 * scheduler queue, %NULL on leaf nodes. 185 */ 186 struct bfq_sched_data *my_sched_data; 187 /* the scheduler queue this entity belongs to */ 188 struct bfq_sched_data *sched_data; 189 190 /* flag, set to request a weight, ioprio or ioprio_class change */ 191 int prio_changed; 192 193 /* flag, set if the entity is counted in groups_with_pending_reqs */ 194 bool in_groups_with_pending_reqs; 195 }; 196 197 struct bfq_group; 198 199 /** 200 * struct bfq_ttime - per process thinktime stats. 201 */ 202 struct bfq_ttime { 203 /* completion time of the last request */ 204 u64 last_end_request; 205 206 /* total process thinktime */ 207 u64 ttime_total; 208 /* number of thinktime samples */ 209 unsigned long ttime_samples; 210 /* average process thinktime */ 211 u64 ttime_mean; 212 }; 213 214 /** 215 * struct bfq_queue - leaf schedulable entity. 216 * 217 * A bfq_queue is a leaf request queue; it can be associated with an 218 * io_context or more, if it is async or shared between cooperating 219 * processes. @cgroup holds a reference to the cgroup, to be sure that it 220 * does not disappear while a bfqq still references it (mostly to avoid 221 * races between request issuing and task migration followed by cgroup 222 * destruction). 223 * All the fields are protected by the queue lock of the containing bfqd. 224 */ 225 struct bfq_queue { 226 /* reference counter */ 227 int ref; 228 /* parent bfq_data */ 229 struct bfq_data *bfqd; 230 231 /* current ioprio and ioprio class */ 232 unsigned short ioprio, ioprio_class; 233 /* next ioprio and ioprio class if a change is in progress */ 234 unsigned short new_ioprio, new_ioprio_class; 235 236 /* last total-service-time sample, see bfq_update_inject_limit() */ 237 u64 last_serv_time_ns; 238 /* limit for request injection */ 239 unsigned int inject_limit; 240 /* last time the inject limit has been decreased, in jiffies */ 241 unsigned long decrease_time_jif; 242 243 /* 244 * Shared bfq_queue if queue is cooperating with one or more 245 * other queues. 246 */ 247 struct bfq_queue *new_bfqq; 248 /* request-position tree member (see bfq_group's @rq_pos_tree) */ 249 struct rb_node pos_node; 250 /* request-position tree root (see bfq_group's @rq_pos_tree) */ 251 struct rb_root *pos_root; 252 253 /* sorted list of pending requests */ 254 struct rb_root sort_list; 255 /* if fifo isn't expired, next request to serve */ 256 struct request *next_rq; 257 /* number of sync and async requests queued */ 258 int queued[2]; 259 /* number of requests currently allocated */ 260 int allocated; 261 /* number of pending metadata requests */ 262 int meta_pending; 263 /* fifo list of requests in sort_list */ 264 struct list_head fifo; 265 266 /* entity representing this queue in the scheduler */ 267 struct bfq_entity entity; 268 269 /* pointer to the weight counter associated with this entity */ 270 struct bfq_weight_counter *weight_counter; 271 272 /* maximum budget allowed from the feedback mechanism */ 273 int max_budget; 274 /* budget expiration (in jiffies) */ 275 unsigned long budget_timeout; 276 277 /* number of requests on the dispatch list or inside driver */ 278 int dispatched; 279 280 /* status flags */ 281 unsigned long flags; 282 283 /* node for active/idle bfqq list inside parent bfqd */ 284 struct list_head bfqq_list; 285 286 /* associated @bfq_ttime struct */ 287 struct bfq_ttime ttime; 288 289 /* bit vector: a 1 for each seeky requests in history */ 290 u32 seek_history; 291 292 /* node for the device's burst list */ 293 struct hlist_node burst_list_node; 294 295 /* position of the last request enqueued */ 296 sector_t last_request_pos; 297 298 /* Number of consecutive pairs of request completion and 299 * arrival, such that the queue becomes idle after the 300 * completion, but the next request arrives within an idle 301 * time slice; used only if the queue's IO_bound flag has been 302 * cleared. 303 */ 304 unsigned int requests_within_timer; 305 306 /* pid of the process owning the queue, used for logging purposes */ 307 pid_t pid; 308 309 /* 310 * Pointer to the bfq_io_cq owning the bfq_queue, set to %NULL 311 * if the queue is shared. 312 */ 313 struct bfq_io_cq *bic; 314 315 /* current maximum weight-raising time for this queue */ 316 unsigned long wr_cur_max_time; 317 /* 318 * Minimum time instant such that, only if a new request is 319 * enqueued after this time instant in an idle @bfq_queue with 320 * no outstanding requests, then the task associated with the 321 * queue it is deemed as soft real-time (see the comments on 322 * the function bfq_bfqq_softrt_next_start()) 323 */ 324 unsigned long soft_rt_next_start; 325 /* 326 * Start time of the current weight-raising period if 327 * the @bfq-queue is being weight-raised, otherwise 328 * finish time of the last weight-raising period. 329 */ 330 unsigned long last_wr_start_finish; 331 /* factor by which the weight of this queue is multiplied */ 332 unsigned int wr_coeff; 333 /* 334 * Time of the last transition of the @bfq_queue from idle to 335 * backlogged. 336 */ 337 unsigned long last_idle_bklogged; 338 /* 339 * Cumulative service received from the @bfq_queue since the 340 * last transition from idle to backlogged. 341 */ 342 unsigned long service_from_backlogged; 343 /* 344 * Cumulative service received from the @bfq_queue since its 345 * last transition to weight-raised state. 346 */ 347 unsigned long service_from_wr; 348 349 /* 350 * Value of wr start time when switching to soft rt 351 */ 352 unsigned long wr_start_at_switch_to_srt; 353 354 unsigned long split_time; /* time of last split */ 355 356 unsigned long first_IO_time; /* time of first I/O for this queue */ 357 358 /* max service rate measured so far */ 359 u32 max_service_rate; 360 361 /* 362 * Pointer to the waker queue for this queue, i.e., to the 363 * queue Q such that this queue happens to get new I/O right 364 * after some I/O request of Q is completed. For details, see 365 * the comments on the choice of the queue for injection in 366 * bfq_select_queue(). 367 */ 368 struct bfq_queue *waker_bfqq; 369 /* node for woken_list, see below */ 370 struct hlist_node woken_list_node; 371 /* 372 * Head of the list of the woken queues for this queue, i.e., 373 * of the list of the queues for which this queue is a waker 374 * queue. This list is used to reset the waker_bfqq pointer in 375 * the woken queues when this queue exits. 376 */ 377 struct hlist_head woken_list; 378 }; 379 380 /** 381 * struct bfq_io_cq - per (request_queue, io_context) structure. 382 */ 383 struct bfq_io_cq { 384 /* associated io_cq structure */ 385 struct io_cq icq; /* must be the first member */ 386 /* array of two process queues, the sync and the async */ 387 struct bfq_queue *bfqq[2]; 388 /* per (request_queue, blkcg) ioprio */ 389 int ioprio; 390 #ifdef CONFIG_BFQ_GROUP_IOSCHED 391 uint64_t blkcg_serial_nr; /* the current blkcg serial */ 392 #endif 393 /* 394 * Snapshot of the has_short_time flag before merging; taken 395 * to remember its value while the queue is merged, so as to 396 * be able to restore it in case of split. 397 */ 398 bool saved_has_short_ttime; 399 /* 400 * Same purpose as the previous two fields for the I/O bound 401 * classification of a queue. 402 */ 403 bool saved_IO_bound; 404 405 /* 406 * Same purpose as the previous fields for the value of the 407 * field keeping the queue's belonging to a large burst 408 */ 409 bool saved_in_large_burst; 410 /* 411 * True if the queue belonged to a burst list before its merge 412 * with another cooperating queue. 413 */ 414 bool was_in_burst_list; 415 416 /* 417 * Save the weight when a merge occurs, to be able 418 * to restore it in case of split. If the weight is not 419 * correctly resumed when the queue is recycled, 420 * then the weight of the recycled queue could differ 421 * from the weight of the original queue. 422 */ 423 unsigned int saved_weight; 424 425 /* 426 * Similar to previous fields: save wr information. 427 */ 428 unsigned long saved_wr_coeff; 429 unsigned long saved_last_wr_start_finish; 430 unsigned long saved_wr_start_at_switch_to_srt; 431 unsigned int saved_wr_cur_max_time; 432 struct bfq_ttime saved_ttime; 433 }; 434 435 /** 436 * struct bfq_data - per-device data structure. 437 * 438 * All the fields are protected by @lock. 439 */ 440 struct bfq_data { 441 /* device request queue */ 442 struct request_queue *queue; 443 /* dispatch queue */ 444 struct list_head dispatch; 445 446 /* root bfq_group for the device */ 447 struct bfq_group *root_group; 448 449 /* 450 * rbtree of weight counters of @bfq_queues, sorted by 451 * weight. Used to keep track of whether all @bfq_queues have 452 * the same weight. The tree contains one counter for each 453 * distinct weight associated to some active and not 454 * weight-raised @bfq_queue (see the comments to the functions 455 * bfq_weights_tree_[add|remove] for further details). 456 */ 457 struct rb_root_cached queue_weights_tree; 458 459 /* 460 * Number of groups with at least one descendant process that 461 * has at least one request waiting for completion. Note that 462 * this accounts for also requests already dispatched, but not 463 * yet completed. Therefore this number of groups may differ 464 * (be larger) than the number of active groups, as a group is 465 * considered active only if its corresponding entity has 466 * descendant queues with at least one request queued. This 467 * number is used to decide whether a scenario is symmetric. 468 * For a detailed explanation see comments on the computation 469 * of the variable asymmetric_scenario in the function 470 * bfq_better_to_idle(). 471 * 472 * However, it is hard to compute this number exactly, for 473 * groups with multiple descendant processes. Consider a group 474 * that is inactive, i.e., that has no descendant process with 475 * pending I/O inside BFQ queues. Then suppose that 476 * num_groups_with_pending_reqs is still accounting for this 477 * group, because the group has descendant processes with some 478 * I/O request still in flight. num_groups_with_pending_reqs 479 * should be decremented when the in-flight request of the 480 * last descendant process is finally completed (assuming that 481 * nothing else has changed for the group in the meantime, in 482 * terms of composition of the group and active/inactive state of child 483 * groups and processes). To accomplish this, an additional 484 * pending-request counter must be added to entities, and must 485 * be updated correctly. To avoid this additional field and operations, 486 * we resort to the following tradeoff between simplicity and 487 * accuracy: for an inactive group that is still counted in 488 * num_groups_with_pending_reqs, we decrement 489 * num_groups_with_pending_reqs when the first descendant 490 * process of the group remains with no request waiting for 491 * completion. 492 * 493 * Even this simpler decrement strategy requires a little 494 * carefulness: to avoid multiple decrements, we flag a group, 495 * more precisely an entity representing a group, as still 496 * counted in num_groups_with_pending_reqs when it becomes 497 * inactive. Then, when the first descendant queue of the 498 * entity remains with no request waiting for completion, 499 * num_groups_with_pending_reqs is decremented, and this flag 500 * is reset. After this flag is reset for the entity, 501 * num_groups_with_pending_reqs won't be decremented any 502 * longer in case a new descendant queue of the entity remains 503 * with no request waiting for completion. 504 */ 505 unsigned int num_groups_with_pending_reqs; 506 507 /* 508 * Per-class (RT, BE, IDLE) number of bfq_queues containing 509 * requests (including the queue in service, even if it is 510 * idling). 511 */ 512 unsigned int busy_queues[3]; 513 /* number of weight-raised busy @bfq_queues */ 514 int wr_busy_queues; 515 /* number of queued requests */ 516 int queued; 517 /* number of requests dispatched and waiting for completion */ 518 int rq_in_driver; 519 520 /* true if the device is non rotational and performs queueing */ 521 bool nonrot_with_queueing; 522 523 /* 524 * Maximum number of requests in driver in the last 525 * @hw_tag_samples completed requests. 526 */ 527 int max_rq_in_driver; 528 /* number of samples used to calculate hw_tag */ 529 int hw_tag_samples; 530 /* flag set to one if the driver is showing a queueing behavior */ 531 int hw_tag; 532 533 /* number of budgets assigned */ 534 int budgets_assigned; 535 536 /* 537 * Timer set when idling (waiting) for the next request from 538 * the queue in service. 539 */ 540 struct hrtimer idle_slice_timer; 541 542 /* bfq_queue in service */ 543 struct bfq_queue *in_service_queue; 544 545 /* on-disk position of the last served request */ 546 sector_t last_position; 547 548 /* position of the last served request for the in-service queue */ 549 sector_t in_serv_last_pos; 550 551 /* time of last request completion (ns) */ 552 u64 last_completion; 553 554 /* bfqq owning the last completed rq */ 555 struct bfq_queue *last_completed_rq_bfqq; 556 557 /* time of last transition from empty to non-empty (ns) */ 558 u64 last_empty_occupied_ns; 559 560 /* 561 * Flag set to activate the sampling of the total service time 562 * of a just-arrived first I/O request (see 563 * bfq_update_inject_limit()). This will cause the setting of 564 * waited_rq when the request is finally dispatched. 565 */ 566 bool wait_dispatch; 567 /* 568 * If set, then bfq_update_inject_limit() is invoked when 569 * waited_rq is eventually completed. 570 */ 571 struct request *waited_rq; 572 /* 573 * True if some request has been injected during the last service hole. 574 */ 575 bool rqs_injected; 576 577 /* time of first rq dispatch in current observation interval (ns) */ 578 u64 first_dispatch; 579 /* time of last rq dispatch in current observation interval (ns) */ 580 u64 last_dispatch; 581 582 /* beginning of the last budget */ 583 ktime_t last_budget_start; 584 /* beginning of the last idle slice */ 585 ktime_t last_idling_start; 586 unsigned long last_idling_start_jiffies; 587 588 /* number of samples in current observation interval */ 589 int peak_rate_samples; 590 /* num of samples of seq dispatches in current observation interval */ 591 u32 sequential_samples; 592 /* total num of sectors transferred in current observation interval */ 593 u64 tot_sectors_dispatched; 594 /* max rq size seen during current observation interval (sectors) */ 595 u32 last_rq_max_size; 596 /* time elapsed from first dispatch in current observ. interval (us) */ 597 u64 delta_from_first; 598 /* 599 * Current estimate of the device peak rate, measured in 600 * [(sectors/usec) / 2^BFQ_RATE_SHIFT]. The left-shift by 601 * BFQ_RATE_SHIFT is performed to increase precision in 602 * fixed-point calculations. 603 */ 604 u32 peak_rate; 605 606 /* maximum budget allotted to a bfq_queue before rescheduling */ 607 int bfq_max_budget; 608 609 /* list of all the bfq_queues active on the device */ 610 struct list_head active_list; 611 /* list of all the bfq_queues idle on the device */ 612 struct list_head idle_list; 613 614 /* 615 * Timeout for async/sync requests; when it fires, requests 616 * are served in fifo order. 617 */ 618 u64 bfq_fifo_expire[2]; 619 /* weight of backward seeks wrt forward ones */ 620 unsigned int bfq_back_penalty; 621 /* maximum allowed backward seek */ 622 unsigned int bfq_back_max; 623 /* maximum idling time */ 624 u32 bfq_slice_idle; 625 626 /* user-configured max budget value (0 for auto-tuning) */ 627 int bfq_user_max_budget; 628 /* 629 * Timeout for bfq_queues to consume their budget; used to 630 * prevent seeky queues from imposing long latencies to 631 * sequential or quasi-sequential ones (this also implies that 632 * seeky queues cannot receive guarantees in the service 633 * domain; after a timeout they are charged for the time they 634 * have been in service, to preserve fairness among them, but 635 * without service-domain guarantees). 636 */ 637 unsigned int bfq_timeout; 638 639 /* 640 * Number of consecutive requests that must be issued within 641 * the idle time slice to set again idling to a queue which 642 * was marked as non-I/O-bound (see the definition of the 643 * IO_bound flag for further details). 644 */ 645 unsigned int bfq_requests_within_timer; 646 647 /* 648 * Force device idling whenever needed to provide accurate 649 * service guarantees, without caring about throughput 650 * issues. CAVEAT: this may even increase latencies, in case 651 * of useless idling for processes that did stop doing I/O. 652 */ 653 bool strict_guarantees; 654 655 /* 656 * Last time at which a queue entered the current burst of 657 * queues being activated shortly after each other; for more 658 * details about this and the following parameters related to 659 * a burst of activations, see the comments on the function 660 * bfq_handle_burst. 661 */ 662 unsigned long last_ins_in_burst; 663 /* 664 * Reference time interval used to decide whether a queue has 665 * been activated shortly after @last_ins_in_burst. 666 */ 667 unsigned long bfq_burst_interval; 668 /* number of queues in the current burst of queue activations */ 669 int burst_size; 670 671 /* common parent entity for the queues in the burst */ 672 struct bfq_entity *burst_parent_entity; 673 /* Maximum burst size above which the current queue-activation 674 * burst is deemed as 'large'. 675 */ 676 unsigned long bfq_large_burst_thresh; 677 /* true if a large queue-activation burst is in progress */ 678 bool large_burst; 679 /* 680 * Head of the burst list (as for the above fields, more 681 * details in the comments on the function bfq_handle_burst). 682 */ 683 struct hlist_head burst_list; 684 685 /* if set to true, low-latency heuristics are enabled */ 686 bool low_latency; 687 /* 688 * Maximum factor by which the weight of a weight-raised queue 689 * is multiplied. 690 */ 691 unsigned int bfq_wr_coeff; 692 /* maximum duration of a weight-raising period (jiffies) */ 693 unsigned int bfq_wr_max_time; 694 695 /* Maximum weight-raising duration for soft real-time processes */ 696 unsigned int bfq_wr_rt_max_time; 697 /* 698 * Minimum idle period after which weight-raising may be 699 * reactivated for a queue (in jiffies). 700 */ 701 unsigned int bfq_wr_min_idle_time; 702 /* 703 * Minimum period between request arrivals after which 704 * weight-raising may be reactivated for an already busy async 705 * queue (in jiffies). 706 */ 707 unsigned long bfq_wr_min_inter_arr_async; 708 709 /* Max service-rate for a soft real-time queue, in sectors/sec */ 710 unsigned int bfq_wr_max_softrt_rate; 711 /* 712 * Cached value of the product ref_rate*ref_wr_duration, used 713 * for computing the maximum duration of weight raising 714 * automatically. 715 */ 716 u64 rate_dur_prod; 717 718 /* fallback dummy bfqq for extreme OOM conditions */ 719 struct bfq_queue oom_bfqq; 720 721 spinlock_t lock; 722 723 /* 724 * bic associated with the task issuing current bio for 725 * merging. This and the next field are used as a support to 726 * be able to perform the bic lookup, needed by bio-merge 727 * functions, before the scheduler lock is taken, and thus 728 * avoid taking the request-queue lock while the scheduler 729 * lock is being held. 730 */ 731 struct bfq_io_cq *bio_bic; 732 /* bfqq associated with the task issuing current bio for merging */ 733 struct bfq_queue *bio_bfqq; 734 735 /* 736 * Depth limits used in bfq_limit_depth (see comments on the 737 * function) 738 */ 739 unsigned int word_depths[2][2]; 740 }; 741 742 enum bfqq_state_flags { 743 BFQQF_just_created = 0, /* queue just allocated */ 744 BFQQF_busy, /* has requests or is in service */ 745 BFQQF_wait_request, /* waiting for a request */ 746 BFQQF_non_blocking_wait_rq, /* 747 * waiting for a request 748 * without idling the device 749 */ 750 BFQQF_fifo_expire, /* FIFO checked in this slice */ 751 BFQQF_has_short_ttime, /* queue has a short think time */ 752 BFQQF_sync, /* synchronous queue */ 753 BFQQF_IO_bound, /* 754 * bfqq has timed-out at least once 755 * having consumed at most 2/10 of 756 * its budget 757 */ 758 BFQQF_in_large_burst, /* 759 * bfqq activated in a large burst, 760 * see comments to bfq_handle_burst. 761 */ 762 BFQQF_softrt_update, /* 763 * may need softrt-next-start 764 * update 765 */ 766 BFQQF_coop, /* bfqq is shared */ 767 BFQQF_split_coop, /* shared bfqq will be split */ 768 BFQQF_has_waker /* bfqq has a waker queue */ 769 }; 770 771 #define BFQ_BFQQ_FNS(name) \ 772 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq); \ 773 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq); \ 774 int bfq_bfqq_##name(const struct bfq_queue *bfqq); 775 776 BFQ_BFQQ_FNS(just_created); 777 BFQ_BFQQ_FNS(busy); 778 BFQ_BFQQ_FNS(wait_request); 779 BFQ_BFQQ_FNS(non_blocking_wait_rq); 780 BFQ_BFQQ_FNS(fifo_expire); 781 BFQ_BFQQ_FNS(has_short_ttime); 782 BFQ_BFQQ_FNS(sync); 783 BFQ_BFQQ_FNS(IO_bound); 784 BFQ_BFQQ_FNS(in_large_burst); 785 BFQ_BFQQ_FNS(coop); 786 BFQ_BFQQ_FNS(split_coop); 787 BFQ_BFQQ_FNS(softrt_update); 788 BFQ_BFQQ_FNS(has_waker); 789 #undef BFQ_BFQQ_FNS 790 791 /* Expiration reasons. */ 792 enum bfqq_expiration { 793 BFQQE_TOO_IDLE = 0, /* 794 * queue has been idling for 795 * too long 796 */ 797 BFQQE_BUDGET_TIMEOUT, /* budget took too long to be used */ 798 BFQQE_BUDGET_EXHAUSTED, /* budget consumed */ 799 BFQQE_NO_MORE_REQUESTS, /* the queue has no more requests */ 800 BFQQE_PREEMPTED /* preemption in progress */ 801 }; 802 803 struct bfq_stat { 804 struct percpu_counter cpu_cnt; 805 atomic64_t aux_cnt; 806 }; 807 808 struct bfqg_stats { 809 #ifdef CONFIG_BFQ_CGROUP_DEBUG 810 /* number of ios merged */ 811 struct blkg_rwstat merged; 812 /* total time spent on device in ns, may not be accurate w/ queueing */ 813 struct blkg_rwstat service_time; 814 /* total time spent waiting in scheduler queue in ns */ 815 struct blkg_rwstat wait_time; 816 /* number of IOs queued up */ 817 struct blkg_rwstat queued; 818 /* total disk time and nr sectors dispatched by this group */ 819 struct bfq_stat time; 820 /* sum of number of ios queued across all samples */ 821 struct bfq_stat avg_queue_size_sum; 822 /* count of samples taken for average */ 823 struct bfq_stat avg_queue_size_samples; 824 /* how many times this group has been removed from service tree */ 825 struct bfq_stat dequeue; 826 /* total time spent waiting for it to be assigned a timeslice. */ 827 struct bfq_stat group_wait_time; 828 /* time spent idling for this blkcg_gq */ 829 struct bfq_stat idle_time; 830 /* total time with empty current active q with other requests queued */ 831 struct bfq_stat empty_time; 832 /* fields after this shouldn't be cleared on stat reset */ 833 u64 start_group_wait_time; 834 u64 start_idle_time; 835 u64 start_empty_time; 836 uint16_t flags; 837 #endif /* CONFIG_BFQ_CGROUP_DEBUG */ 838 }; 839 840 #ifdef CONFIG_BFQ_GROUP_IOSCHED 841 842 /* 843 * struct bfq_group_data - per-blkcg storage for the blkio subsystem. 844 * 845 * @ps: @blkcg_policy_storage that this structure inherits 846 * @weight: weight of the bfq_group 847 */ 848 struct bfq_group_data { 849 /* must be the first member */ 850 struct blkcg_policy_data pd; 851 852 unsigned int weight; 853 }; 854 855 /** 856 * struct bfq_group - per (device, cgroup) data structure. 857 * @entity: schedulable entity to insert into the parent group sched_data. 858 * @sched_data: own sched_data, to contain child entities (they may be 859 * both bfq_queues and bfq_groups). 860 * @bfqd: the bfq_data for the device this group acts upon. 861 * @async_bfqq: array of async queues for all the tasks belonging to 862 * the group, one queue per ioprio value per ioprio_class, 863 * except for the idle class that has only one queue. 864 * @async_idle_bfqq: async queue for the idle class (ioprio is ignored). 865 * @my_entity: pointer to @entity, %NULL for the toplevel group; used 866 * to avoid too many special cases during group creation/ 867 * migration. 868 * @stats: stats for this bfqg. 869 * @active_entities: number of active entities belonging to the group; 870 * unused for the root group. Used to know whether there 871 * are groups with more than one active @bfq_entity 872 * (see the comments to the function 873 * bfq_bfqq_may_idle()). 874 * @rq_pos_tree: rbtree sorted by next_request position, used when 875 * determining if two or more queues have interleaving 876 * requests (see bfq_find_close_cooperator()). 877 * 878 * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup 879 * there is a set of bfq_groups, each one collecting the lower-level 880 * entities belonging to the group that are acting on the same device. 881 * 882 * Locking works as follows: 883 * o @bfqd is protected by the queue lock, RCU is used to access it 884 * from the readers. 885 * o All the other fields are protected by the @bfqd queue lock. 886 */ 887 struct bfq_group { 888 /* must be the first member */ 889 struct blkg_policy_data pd; 890 891 /* cached path for this blkg (see comments in bfq_bic_update_cgroup) */ 892 char blkg_path[128]; 893 894 /* reference counter (see comments in bfq_bic_update_cgroup) */ 895 int ref; 896 897 struct bfq_entity entity; 898 struct bfq_sched_data sched_data; 899 900 void *bfqd; 901 902 struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR]; 903 struct bfq_queue *async_idle_bfqq; 904 905 struct bfq_entity *my_entity; 906 907 int active_entities; 908 909 struct rb_root rq_pos_tree; 910 911 struct bfqg_stats stats; 912 }; 913 914 #else 915 struct bfq_group { 916 struct bfq_sched_data sched_data; 917 918 struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR]; 919 struct bfq_queue *async_idle_bfqq; 920 921 struct rb_root rq_pos_tree; 922 }; 923 #endif 924 925 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity); 926 927 /* --------------- main algorithm interface ----------------- */ 928 929 #define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \ 930 { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 }) 931 932 extern const int bfq_timeout; 933 934 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync); 935 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync); 936 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic); 937 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq); 938 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq, 939 struct rb_root_cached *root); 940 void __bfq_weights_tree_remove(struct bfq_data *bfqd, 941 struct bfq_queue *bfqq, 942 struct rb_root_cached *root); 943 void bfq_weights_tree_remove(struct bfq_data *bfqd, 944 struct bfq_queue *bfqq); 945 void bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq, 946 bool compensate, enum bfqq_expiration reason); 947 void bfq_put_queue(struct bfq_queue *bfqq); 948 void bfq_end_wr_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg); 949 void bfq_schedule_dispatch(struct bfq_data *bfqd); 950 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg); 951 952 /* ------------ end of main algorithm interface -------------- */ 953 954 /* ---------------- cgroups-support interface ---------------- */ 955 956 void bfqg_stats_update_io_add(struct bfq_group *bfqg, struct bfq_queue *bfqq, 957 unsigned int op); 958 void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op); 959 void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op); 960 void bfqg_stats_update_completion(struct bfq_group *bfqg, u64 start_time_ns, 961 u64 io_start_time_ns, unsigned int op); 962 void bfqg_stats_update_dequeue(struct bfq_group *bfqg); 963 void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg); 964 void bfqg_stats_update_idle_time(struct bfq_group *bfqg); 965 void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg); 966 void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg); 967 void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq, 968 struct bfq_group *bfqg); 969 970 void bfq_init_entity(struct bfq_entity *entity, struct bfq_group *bfqg); 971 void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio); 972 void bfq_end_wr_async(struct bfq_data *bfqd); 973 struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd, 974 struct blkcg *blkcg); 975 struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg); 976 struct bfq_group *bfqq_group(struct bfq_queue *bfqq); 977 struct bfq_group *bfq_create_group_hierarchy(struct bfq_data *bfqd, int node); 978 void bfqg_and_blkg_put(struct bfq_group *bfqg); 979 980 #ifdef CONFIG_BFQ_GROUP_IOSCHED 981 extern struct cftype bfq_blkcg_legacy_files[]; 982 extern struct cftype bfq_blkg_files[]; 983 extern struct blkcg_policy blkcg_policy_bfq; 984 #endif 985 986 /* ------------- end of cgroups-support interface ------------- */ 987 988 /* - interface of the internal hierarchical B-WF2Q+ scheduler - */ 989 990 #ifdef CONFIG_BFQ_GROUP_IOSCHED 991 /* both next loops stop at one of the child entities of the root group */ 992 #define for_each_entity(entity) \ 993 for (; entity ; entity = entity->parent) 994 995 /* 996 * For each iteration, compute parent in advance, so as to be safe if 997 * entity is deallocated during the iteration. Such a deallocation may 998 * happen as a consequence of a bfq_put_queue that frees the bfq_queue 999 * containing entity. 1000 */ 1001 #define for_each_entity_safe(entity, parent) \ 1002 for (; entity && ({ parent = entity->parent; 1; }); entity = parent) 1003 1004 #else /* CONFIG_BFQ_GROUP_IOSCHED */ 1005 /* 1006 * Next two macros are fake loops when cgroups support is not 1007 * enabled. I fact, in such a case, there is only one level to go up 1008 * (to reach the root group). 1009 */ 1010 #define for_each_entity(entity) \ 1011 for (; entity ; entity = NULL) 1012 1013 #define for_each_entity_safe(entity, parent) \ 1014 for (parent = NULL; entity ; entity = parent) 1015 #endif /* CONFIG_BFQ_GROUP_IOSCHED */ 1016 1017 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq); 1018 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity); 1019 unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd); 1020 struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity); 1021 struct bfq_entity *bfq_entity_of(struct rb_node *node); 1022 unsigned short bfq_ioprio_to_weight(int ioprio); 1023 void bfq_put_idle_entity(struct bfq_service_tree *st, 1024 struct bfq_entity *entity); 1025 struct bfq_service_tree * 1026 __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st, 1027 struct bfq_entity *entity, 1028 bool update_class_too); 1029 void bfq_bfqq_served(struct bfq_queue *bfqq, int served); 1030 void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1031 unsigned long time_ms); 1032 bool __bfq_deactivate_entity(struct bfq_entity *entity, 1033 bool ins_into_idle_tree); 1034 bool next_queue_may_preempt(struct bfq_data *bfqd); 1035 struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd); 1036 bool __bfq_bfqd_reset_in_service(struct bfq_data *bfqd); 1037 void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1038 bool ins_into_idle_tree, bool expiration); 1039 void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq); 1040 void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1041 bool expiration); 1042 void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1043 bool expiration); 1044 void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq); 1045 1046 /* --------------- end of interface of B-WF2Q+ ---------------- */ 1047 1048 /* Logging facilities. */ 1049 static inline void bfq_pid_to_str(int pid, char *str, int len) 1050 { 1051 if (pid != -1) 1052 snprintf(str, len, "%d", pid); 1053 else 1054 snprintf(str, len, "SHARED-"); 1055 } 1056 1057 #ifdef CONFIG_BFQ_GROUP_IOSCHED 1058 struct bfq_group *bfqq_group(struct bfq_queue *bfqq); 1059 1060 #define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \ 1061 char pid_str[MAX_PID_STR_LENGTH]; \ 1062 bfq_pid_to_str((bfqq)->pid, pid_str, MAX_PID_STR_LENGTH); \ 1063 blk_add_cgroup_trace_msg((bfqd)->queue, \ 1064 bfqg_to_blkg(bfqq_group(bfqq))->blkcg, \ 1065 "bfq%s%c " fmt, pid_str, \ 1066 bfq_bfqq_sync((bfqq)) ? 'S' : 'A', ##args); \ 1067 } while (0) 1068 1069 #define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \ 1070 blk_add_cgroup_trace_msg((bfqd)->queue, \ 1071 bfqg_to_blkg(bfqg)->blkcg, fmt, ##args); \ 1072 } while (0) 1073 1074 #else /* CONFIG_BFQ_GROUP_IOSCHED */ 1075 1076 #define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \ 1077 char pid_str[MAX_PID_STR_LENGTH]; \ 1078 bfq_pid_to_str((bfqq)->pid, pid_str, MAX_PID_STR_LENGTH); \ 1079 blk_add_trace_msg((bfqd)->queue, "bfq%s%c " fmt, pid_str, \ 1080 bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \ 1081 ##args); \ 1082 } while (0) 1083 #define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0) 1084 1085 #endif /* CONFIG_BFQ_GROUP_IOSCHED */ 1086 1087 #define bfq_log(bfqd, fmt, args...) \ 1088 blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args) 1089 1090 #endif /* _BFQ_H */ 1091