1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/init.h> 3 4 #include <linux/mm.h> 5 #include <linux/spinlock.h> 6 #include <linux/smp.h> 7 #include <linux/interrupt.h> 8 #include <linux/export.h> 9 #include <linux/cpu.h> 10 #include <linux/debugfs.h> 11 12 #include <asm/tlbflush.h> 13 #include <asm/mmu_context.h> 14 #include <asm/nospec-branch.h> 15 #include <asm/cache.h> 16 #include <asm/apic.h> 17 18 #include "mm_internal.h" 19 20 #ifdef CONFIG_PARAVIRT 21 # define STATIC_NOPV 22 #else 23 # define STATIC_NOPV static 24 # define __flush_tlb_local native_flush_tlb_local 25 # define __flush_tlb_global native_flush_tlb_global 26 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr) 27 # define __flush_tlb_others(msk, info) native_flush_tlb_others(msk, info) 28 #endif 29 30 /* 31 * TLB flushing, formerly SMP-only 32 * c/o Linus Torvalds. 33 * 34 * These mean you can really definitely utterly forget about 35 * writing to user space from interrupts. (Its not allowed anyway). 36 * 37 * Optimizations Manfred Spraul <manfred@colorfullife.com> 38 * 39 * More scalable flush, from Andi Kleen 40 * 41 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi 42 */ 43 44 /* 45 * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is 46 * stored in cpu_tlb_state.last_user_mm_ibpb. 47 */ 48 #define LAST_USER_MM_IBPB 0x1UL 49 50 /* 51 * The x86 feature is called PCID (Process Context IDentifier). It is similar 52 * to what is traditionally called ASID on the RISC processors. 53 * 54 * We don't use the traditional ASID implementation, where each process/mm gets 55 * its own ASID and flush/restart when we run out of ASID space. 56 * 57 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's 58 * that came by on this CPU, allowing cheaper switch_mm between processes on 59 * this CPU. 60 * 61 * We end up with different spaces for different things. To avoid confusion we 62 * use different names for each of them: 63 * 64 * ASID - [0, TLB_NR_DYN_ASIDS-1] 65 * the canonical identifier for an mm 66 * 67 * kPCID - [1, TLB_NR_DYN_ASIDS] 68 * the value we write into the PCID part of CR3; corresponds to the 69 * ASID+1, because PCID 0 is special. 70 * 71 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS] 72 * for KPTI each mm has two address spaces and thus needs two 73 * PCID values, but we can still do with a single ASID denomination 74 * for each mm. Corresponds to kPCID + 2048. 75 * 76 */ 77 78 /* There are 12 bits of space for ASIDS in CR3 */ 79 #define CR3_HW_ASID_BITS 12 80 81 /* 82 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for 83 * user/kernel switches 84 */ 85 #ifdef CONFIG_PAGE_TABLE_ISOLATION 86 # define PTI_CONSUMED_PCID_BITS 1 87 #else 88 # define PTI_CONSUMED_PCID_BITS 0 89 #endif 90 91 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) 92 93 /* 94 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account 95 * for them being zero-based. Another -1 is because PCID 0 is reserved for 96 * use by non-PCID-aware users. 97 */ 98 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) 99 100 /* 101 * Given @asid, compute kPCID 102 */ 103 static inline u16 kern_pcid(u16 asid) 104 { 105 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 106 107 #ifdef CONFIG_PAGE_TABLE_ISOLATION 108 /* 109 * Make sure that the dynamic ASID space does not conflict with the 110 * bit we are using to switch between user and kernel ASIDs. 111 */ 112 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); 113 114 /* 115 * The ASID being passed in here should have respected the 116 * MAX_ASID_AVAILABLE and thus never have the switch bit set. 117 */ 118 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); 119 #endif 120 /* 121 * The dynamically-assigned ASIDs that get passed in are small 122 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set, 123 * so do not bother to clear it. 124 * 125 * If PCID is on, ASID-aware code paths put the ASID+1 into the 126 * PCID bits. This serves two purposes. It prevents a nasty 127 * situation in which PCID-unaware code saves CR3, loads some other 128 * value (with PCID == 0), and then restores CR3, thus corrupting 129 * the TLB for ASID 0 if the saved ASID was nonzero. It also means 130 * that any bugs involving loading a PCID-enabled CR3 with 131 * CR4.PCIDE off will trigger deterministically. 132 */ 133 return asid + 1; 134 } 135 136 /* 137 * Given @asid, compute uPCID 138 */ 139 static inline u16 user_pcid(u16 asid) 140 { 141 u16 ret = kern_pcid(asid); 142 #ifdef CONFIG_PAGE_TABLE_ISOLATION 143 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT; 144 #endif 145 return ret; 146 } 147 148 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid) 149 { 150 if (static_cpu_has(X86_FEATURE_PCID)) { 151 return __sme_pa(pgd) | kern_pcid(asid); 152 } else { 153 VM_WARN_ON_ONCE(asid != 0); 154 return __sme_pa(pgd); 155 } 156 } 157 158 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid) 159 { 160 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 161 /* 162 * Use boot_cpu_has() instead of this_cpu_has() as this function 163 * might be called during early boot. This should work even after 164 * boot because all CPU's the have same capabilities: 165 */ 166 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID)); 167 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH; 168 } 169 170 /* 171 * We get here when we do something requiring a TLB invalidation 172 * but could not go invalidate all of the contexts. We do the 173 * necessary invalidation by clearing out the 'ctx_id' which 174 * forces a TLB flush when the context is loaded. 175 */ 176 static void clear_asid_other(void) 177 { 178 u16 asid; 179 180 /* 181 * This is only expected to be set if we have disabled 182 * kernel _PAGE_GLOBAL pages. 183 */ 184 if (!static_cpu_has(X86_FEATURE_PTI)) { 185 WARN_ON_ONCE(1); 186 return; 187 } 188 189 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 190 /* Do not need to flush the current asid */ 191 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) 192 continue; 193 /* 194 * Make sure the next time we go to switch to 195 * this asid, we do a flush: 196 */ 197 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); 198 } 199 this_cpu_write(cpu_tlbstate.invalidate_other, false); 200 } 201 202 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); 203 204 205 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen, 206 u16 *new_asid, bool *need_flush) 207 { 208 u16 asid; 209 210 if (!static_cpu_has(X86_FEATURE_PCID)) { 211 *new_asid = 0; 212 *need_flush = true; 213 return; 214 } 215 216 if (this_cpu_read(cpu_tlbstate.invalidate_other)) 217 clear_asid_other(); 218 219 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 220 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != 221 next->context.ctx_id) 222 continue; 223 224 *new_asid = asid; 225 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < 226 next_tlb_gen); 227 return; 228 } 229 230 /* 231 * We don't currently own an ASID slot on this CPU. 232 * Allocate a slot. 233 */ 234 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; 235 if (*new_asid >= TLB_NR_DYN_ASIDS) { 236 *new_asid = 0; 237 this_cpu_write(cpu_tlbstate.next_asid, 1); 238 } 239 *need_flush = true; 240 } 241 242 /* 243 * Given an ASID, flush the corresponding user ASID. We can delay this 244 * until the next time we switch to it. 245 * 246 * See SWITCH_TO_USER_CR3. 247 */ 248 static inline void invalidate_user_asid(u16 asid) 249 { 250 /* There is no user ASID if address space separation is off */ 251 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) 252 return; 253 254 /* 255 * We only have a single ASID if PCID is off and the CR3 256 * write will have flushed it. 257 */ 258 if (!cpu_feature_enabled(X86_FEATURE_PCID)) 259 return; 260 261 if (!static_cpu_has(X86_FEATURE_PTI)) 262 return; 263 264 __set_bit(kern_pcid(asid), 265 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask)); 266 } 267 268 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush) 269 { 270 unsigned long new_mm_cr3; 271 272 if (need_flush) { 273 invalidate_user_asid(new_asid); 274 new_mm_cr3 = build_cr3(pgdir, new_asid); 275 } else { 276 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid); 277 } 278 279 /* 280 * Caution: many callers of this function expect 281 * that load_cr3() is serializing and orders TLB 282 * fills with respect to the mm_cpumask writes. 283 */ 284 write_cr3(new_mm_cr3); 285 } 286 287 void leave_mm(int cpu) 288 { 289 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 290 291 /* 292 * It's plausible that we're in lazy TLB mode while our mm is init_mm. 293 * If so, our callers still expect us to flush the TLB, but there 294 * aren't any user TLB entries in init_mm to worry about. 295 * 296 * This needs to happen before any other sanity checks due to 297 * intel_idle's shenanigans. 298 */ 299 if (loaded_mm == &init_mm) 300 return; 301 302 /* Warn if we're not lazy. */ 303 WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy)); 304 305 switch_mm(NULL, &init_mm, NULL); 306 } 307 EXPORT_SYMBOL_GPL(leave_mm); 308 309 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 310 struct task_struct *tsk) 311 { 312 unsigned long flags; 313 314 local_irq_save(flags); 315 switch_mm_irqs_off(prev, next, tsk); 316 local_irq_restore(flags); 317 } 318 319 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next) 320 { 321 unsigned long next_tif = task_thread_info(next)->flags; 322 unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB; 323 324 return (unsigned long)next->mm | ibpb; 325 } 326 327 static void cond_ibpb(struct task_struct *next) 328 { 329 if (!next || !next->mm) 330 return; 331 332 /* 333 * Both, the conditional and the always IBPB mode use the mm 334 * pointer to avoid the IBPB when switching between tasks of the 335 * same process. Using the mm pointer instead of mm->context.ctx_id 336 * opens a hypothetical hole vs. mm_struct reuse, which is more or 337 * less impossible to control by an attacker. Aside of that it 338 * would only affect the first schedule so the theoretically 339 * exposed data is not really interesting. 340 */ 341 if (static_branch_likely(&switch_mm_cond_ibpb)) { 342 unsigned long prev_mm, next_mm; 343 344 /* 345 * This is a bit more complex than the always mode because 346 * it has to handle two cases: 347 * 348 * 1) Switch from a user space task (potential attacker) 349 * which has TIF_SPEC_IB set to a user space task 350 * (potential victim) which has TIF_SPEC_IB not set. 351 * 352 * 2) Switch from a user space task (potential attacker) 353 * which has TIF_SPEC_IB not set to a user space task 354 * (potential victim) which has TIF_SPEC_IB set. 355 * 356 * This could be done by unconditionally issuing IBPB when 357 * a task which has TIF_SPEC_IB set is either scheduled in 358 * or out. Though that results in two flushes when: 359 * 360 * - the same user space task is scheduled out and later 361 * scheduled in again and only a kernel thread ran in 362 * between. 363 * 364 * - a user space task belonging to the same process is 365 * scheduled in after a kernel thread ran in between 366 * 367 * - a user space task belonging to the same process is 368 * scheduled in immediately. 369 * 370 * Optimize this with reasonably small overhead for the 371 * above cases. Mangle the TIF_SPEC_IB bit into the mm 372 * pointer of the incoming task which is stored in 373 * cpu_tlbstate.last_user_mm_ibpb for comparison. 374 */ 375 next_mm = mm_mangle_tif_spec_ib(next); 376 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb); 377 378 /* 379 * Issue IBPB only if the mm's are different and one or 380 * both have the IBPB bit set. 381 */ 382 if (next_mm != prev_mm && 383 (next_mm | prev_mm) & LAST_USER_MM_IBPB) 384 indirect_branch_prediction_barrier(); 385 386 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm); 387 } 388 389 if (static_branch_unlikely(&switch_mm_always_ibpb)) { 390 /* 391 * Only flush when switching to a user space task with a 392 * different context than the user space task which ran 393 * last on this CPU. 394 */ 395 if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) { 396 indirect_branch_prediction_barrier(); 397 this_cpu_write(cpu_tlbstate.last_user_mm, next->mm); 398 } 399 } 400 } 401 402 #ifdef CONFIG_PERF_EVENTS 403 static inline void cr4_update_pce_mm(struct mm_struct *mm) 404 { 405 if (static_branch_unlikely(&rdpmc_always_available_key) || 406 (!static_branch_unlikely(&rdpmc_never_available_key) && 407 atomic_read(&mm->context.perf_rdpmc_allowed))) 408 cr4_set_bits_irqsoff(X86_CR4_PCE); 409 else 410 cr4_clear_bits_irqsoff(X86_CR4_PCE); 411 } 412 413 void cr4_update_pce(void *ignored) 414 { 415 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm)); 416 } 417 418 #else 419 static inline void cr4_update_pce_mm(struct mm_struct *mm) { } 420 #endif 421 422 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, 423 struct task_struct *tsk) 424 { 425 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm); 426 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 427 bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy); 428 unsigned cpu = smp_processor_id(); 429 u64 next_tlb_gen; 430 bool need_flush; 431 u16 new_asid; 432 433 /* 434 * NB: The scheduler will call us with prev == next when switching 435 * from lazy TLB mode to normal mode if active_mm isn't changing. 436 * When this happens, we don't assume that CR3 (and hence 437 * cpu_tlbstate.loaded_mm) matches next. 438 * 439 * NB: leave_mm() calls us with prev == NULL and tsk == NULL. 440 */ 441 442 /* We don't want flush_tlb_func_* to run concurrently with us. */ 443 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 444 WARN_ON_ONCE(!irqs_disabled()); 445 446 /* 447 * Verify that CR3 is what we think it is. This will catch 448 * hypothetical buggy code that directly switches to swapper_pg_dir 449 * without going through leave_mm() / switch_mm_irqs_off() or that 450 * does something like write_cr3(read_cr3_pa()). 451 * 452 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() 453 * isn't free. 454 */ 455 #ifdef CONFIG_DEBUG_VM 456 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) { 457 /* 458 * If we were to BUG here, we'd be very likely to kill 459 * the system so hard that we don't see the call trace. 460 * Try to recover instead by ignoring the error and doing 461 * a global flush to minimize the chance of corruption. 462 * 463 * (This is far from being a fully correct recovery. 464 * Architecturally, the CPU could prefetch something 465 * back into an incorrect ASID slot and leave it there 466 * to cause trouble down the road. It's better than 467 * nothing, though.) 468 */ 469 __flush_tlb_all(); 470 } 471 #endif 472 this_cpu_write(cpu_tlbstate.is_lazy, false); 473 474 /* 475 * The membarrier system call requires a full memory barrier and 476 * core serialization before returning to user-space, after 477 * storing to rq->curr, when changing mm. This is because 478 * membarrier() sends IPIs to all CPUs that are in the target mm 479 * to make them issue memory barriers. However, if another CPU 480 * switches to/from the target mm concurrently with 481 * membarrier(), it can cause that CPU not to receive an IPI 482 * when it really should issue a memory barrier. Writing to CR3 483 * provides that full memory barrier and core serializing 484 * instruction. 485 */ 486 if (real_prev == next) { 487 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != 488 next->context.ctx_id); 489 490 /* 491 * Even in lazy TLB mode, the CPU should stay set in the 492 * mm_cpumask. The TLB shootdown code can figure out from 493 * from cpu_tlbstate.is_lazy whether or not to send an IPI. 494 */ 495 if (WARN_ON_ONCE(real_prev != &init_mm && 496 !cpumask_test_cpu(cpu, mm_cpumask(next)))) 497 cpumask_set_cpu(cpu, mm_cpumask(next)); 498 499 /* 500 * If the CPU is not in lazy TLB mode, we are just switching 501 * from one thread in a process to another thread in the same 502 * process. No TLB flush required. 503 */ 504 if (!was_lazy) 505 return; 506 507 /* 508 * Read the tlb_gen to check whether a flush is needed. 509 * If the TLB is up to date, just use it. 510 * The barrier synchronizes with the tlb_gen increment in 511 * the TLB shootdown code. 512 */ 513 smp_mb(); 514 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 515 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == 516 next_tlb_gen) 517 return; 518 519 /* 520 * TLB contents went out of date while we were in lazy 521 * mode. Fall through to the TLB switching code below. 522 */ 523 new_asid = prev_asid; 524 need_flush = true; 525 } else { 526 /* 527 * Avoid user/user BTB poisoning by flushing the branch 528 * predictor when switching between processes. This stops 529 * one process from doing Spectre-v2 attacks on another. 530 */ 531 cond_ibpb(tsk); 532 533 /* 534 * Stop remote flushes for the previous mm. 535 * Skip kernel threads; we never send init_mm TLB flushing IPIs, 536 * but the bitmap manipulation can cause cache line contention. 537 */ 538 if (real_prev != &init_mm) { 539 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, 540 mm_cpumask(real_prev))); 541 cpumask_clear_cpu(cpu, mm_cpumask(real_prev)); 542 } 543 544 /* 545 * Start remote flushes and then read tlb_gen. 546 */ 547 if (next != &init_mm) 548 cpumask_set_cpu(cpu, mm_cpumask(next)); 549 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 550 551 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); 552 553 /* Let nmi_uaccess_okay() know that we're changing CR3. */ 554 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING); 555 barrier(); 556 } 557 558 if (need_flush) { 559 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); 560 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); 561 load_new_mm_cr3(next->pgd, new_asid, true); 562 563 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 564 } else { 565 /* The new ASID is already up to date. */ 566 load_new_mm_cr3(next->pgd, new_asid, false); 567 568 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0); 569 } 570 571 /* Make sure we write CR3 before loaded_mm. */ 572 barrier(); 573 574 this_cpu_write(cpu_tlbstate.loaded_mm, next); 575 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); 576 577 if (next != real_prev) { 578 cr4_update_pce_mm(next); 579 switch_ldt(real_prev, next); 580 } 581 } 582 583 /* 584 * Please ignore the name of this function. It should be called 585 * switch_to_kernel_thread(). 586 * 587 * enter_lazy_tlb() is a hint from the scheduler that we are entering a 588 * kernel thread or other context without an mm. Acceptable implementations 589 * include doing nothing whatsoever, switching to init_mm, or various clever 590 * lazy tricks to try to minimize TLB flushes. 591 * 592 * The scheduler reserves the right to call enter_lazy_tlb() several times 593 * in a row. It will notify us that we're going back to a real mm by 594 * calling switch_mm_irqs_off(). 595 */ 596 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 597 { 598 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) 599 return; 600 601 this_cpu_write(cpu_tlbstate.is_lazy, true); 602 } 603 604 /* 605 * Call this when reinitializing a CPU. It fixes the following potential 606 * problems: 607 * 608 * - The ASID changed from what cpu_tlbstate thinks it is (most likely 609 * because the CPU was taken down and came back up with CR3's PCID 610 * bits clear. CPU hotplug can do this. 611 * 612 * - The TLB contains junk in slots corresponding to inactive ASIDs. 613 * 614 * - The CPU went so far out to lunch that it may have missed a TLB 615 * flush. 616 */ 617 void initialize_tlbstate_and_flush(void) 618 { 619 int i; 620 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); 621 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); 622 unsigned long cr3 = __read_cr3(); 623 624 /* Assert that CR3 already references the right mm. */ 625 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); 626 627 /* 628 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization 629 * doesn't work like other CR4 bits because it can only be set from 630 * long mode.) 631 */ 632 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && 633 !(cr4_read_shadow() & X86_CR4_PCIDE)); 634 635 /* Force ASID 0 and force a TLB flush. */ 636 write_cr3(build_cr3(mm->pgd, 0)); 637 638 /* Reinitialize tlbstate. */ 639 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB); 640 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); 641 this_cpu_write(cpu_tlbstate.next_asid, 1); 642 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); 643 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); 644 645 for (i = 1; i < TLB_NR_DYN_ASIDS; i++) 646 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); 647 } 648 649 /* 650 * flush_tlb_func_common()'s memory ordering requirement is that any 651 * TLB fills that happen after we flush the TLB are ordered after we 652 * read active_mm's tlb_gen. We don't need any explicit barriers 653 * because all x86 flush operations are serializing and the 654 * atomic64_read operation won't be reordered by the compiler. 655 */ 656 static void flush_tlb_func_common(const struct flush_tlb_info *f, 657 bool local, enum tlb_flush_reason reason) 658 { 659 /* 660 * We have three different tlb_gen values in here. They are: 661 * 662 * - mm_tlb_gen: the latest generation. 663 * - local_tlb_gen: the generation that this CPU has already caught 664 * up to. 665 * - f->new_tlb_gen: the generation that the requester of the flush 666 * wants us to catch up to. 667 */ 668 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 669 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 670 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); 671 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); 672 673 /* This code cannot presently handle being reentered. */ 674 VM_WARN_ON(!irqs_disabled()); 675 676 if (unlikely(loaded_mm == &init_mm)) 677 return; 678 679 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != 680 loaded_mm->context.ctx_id); 681 682 if (this_cpu_read(cpu_tlbstate.is_lazy)) { 683 /* 684 * We're in lazy mode. We need to at least flush our 685 * paging-structure cache to avoid speculatively reading 686 * garbage into our TLB. Since switching to init_mm is barely 687 * slower than a minimal flush, just switch to init_mm. 688 * 689 * This should be rare, with native_flush_tlb_others skipping 690 * IPIs to lazy TLB mode CPUs. 691 */ 692 switch_mm_irqs_off(NULL, &init_mm, NULL); 693 return; 694 } 695 696 if (unlikely(local_tlb_gen == mm_tlb_gen)) { 697 /* 698 * There's nothing to do: we're already up to date. This can 699 * happen if two concurrent flushes happen -- the first flush to 700 * be handled can catch us all the way up, leaving no work for 701 * the second flush. 702 */ 703 trace_tlb_flush(reason, 0); 704 return; 705 } 706 707 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); 708 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); 709 710 /* 711 * If we get to this point, we know that our TLB is out of date. 712 * This does not strictly imply that we need to flush (it's 713 * possible that f->new_tlb_gen <= local_tlb_gen), but we're 714 * going to need to flush in the very near future, so we might 715 * as well get it over with. 716 * 717 * The only question is whether to do a full or partial flush. 718 * 719 * We do a partial flush if requested and two extra conditions 720 * are met: 721 * 722 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that 723 * we've always done all needed flushes to catch up to 724 * local_tlb_gen. If, for example, local_tlb_gen == 2 and 725 * f->new_tlb_gen == 3, then we know that the flush needed to bring 726 * us up to date for tlb_gen 3 is the partial flush we're 727 * processing. 728 * 729 * As an example of why this check is needed, suppose that there 730 * are two concurrent flushes. The first is a full flush that 731 * changes context.tlb_gen from 1 to 2. The second is a partial 732 * flush that changes context.tlb_gen from 2 to 3. If they get 733 * processed on this CPU in reverse order, we'll see 734 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. 735 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to 736 * 3, we'd be break the invariant: we'd update local_tlb_gen above 737 * 1 without the full flush that's needed for tlb_gen 2. 738 * 739 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization. 740 * Partial TLB flushes are not all that much cheaper than full TLB 741 * flushes, so it seems unlikely that it would be a performance win 742 * to do a partial flush if that won't bring our TLB fully up to 743 * date. By doing a full flush instead, we can increase 744 * local_tlb_gen all the way to mm_tlb_gen and we can probably 745 * avoid another flush in the very near future. 746 */ 747 if (f->end != TLB_FLUSH_ALL && 748 f->new_tlb_gen == local_tlb_gen + 1 && 749 f->new_tlb_gen == mm_tlb_gen) { 750 /* Partial flush */ 751 unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift; 752 unsigned long addr = f->start; 753 754 while (addr < f->end) { 755 flush_tlb_one_user(addr); 756 addr += 1UL << f->stride_shift; 757 } 758 if (local) 759 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate); 760 trace_tlb_flush(reason, nr_invalidate); 761 } else { 762 /* Full flush. */ 763 flush_tlb_local(); 764 if (local) 765 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 766 trace_tlb_flush(reason, TLB_FLUSH_ALL); 767 } 768 769 /* Both paths above update our state to mm_tlb_gen. */ 770 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); 771 } 772 773 static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason) 774 { 775 const struct flush_tlb_info *f = info; 776 777 flush_tlb_func_common(f, true, reason); 778 } 779 780 static void flush_tlb_func_remote(void *info) 781 { 782 const struct flush_tlb_info *f = info; 783 784 inc_irq_stat(irq_tlb_count); 785 786 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm)) 787 return; 788 789 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 790 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN); 791 } 792 793 static bool tlb_is_not_lazy(int cpu, void *data) 794 { 795 return !per_cpu(cpu_tlbstate.is_lazy, cpu); 796 } 797 798 STATIC_NOPV void native_flush_tlb_others(const struct cpumask *cpumask, 799 const struct flush_tlb_info *info) 800 { 801 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 802 if (info->end == TLB_FLUSH_ALL) 803 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); 804 else 805 trace_tlb_flush(TLB_REMOTE_SEND_IPI, 806 (info->end - info->start) >> PAGE_SHIFT); 807 808 /* 809 * If no page tables were freed, we can skip sending IPIs to 810 * CPUs in lazy TLB mode. They will flush the CPU themselves 811 * at the next context switch. 812 * 813 * However, if page tables are getting freed, we need to send the 814 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping 815 * up on the new contents of what used to be page tables, while 816 * doing a speculative memory access. 817 */ 818 if (info->freed_tables) 819 smp_call_function_many(cpumask, flush_tlb_func_remote, 820 (void *)info, 1); 821 else 822 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote, 823 (void *)info, 1, cpumask); 824 } 825 826 void flush_tlb_others(const struct cpumask *cpumask, 827 const struct flush_tlb_info *info) 828 { 829 __flush_tlb_others(cpumask, info); 830 } 831 832 /* 833 * See Documentation/x86/tlb.rst for details. We choose 33 834 * because it is large enough to cover the vast majority (at 835 * least 95%) of allocations, and is small enough that we are 836 * confident it will not cause too much overhead. Each single 837 * flush is about 100 ns, so this caps the maximum overhead at 838 * _about_ 3,000 ns. 839 * 840 * This is in units of pages. 841 */ 842 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; 843 844 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info); 845 846 #ifdef CONFIG_DEBUG_VM 847 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx); 848 #endif 849 850 static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm, 851 unsigned long start, unsigned long end, 852 unsigned int stride_shift, bool freed_tables, 853 u64 new_tlb_gen) 854 { 855 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info); 856 857 #ifdef CONFIG_DEBUG_VM 858 /* 859 * Ensure that the following code is non-reentrant and flush_tlb_info 860 * is not overwritten. This means no TLB flushing is initiated by 861 * interrupt handlers and machine-check exception handlers. 862 */ 863 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1); 864 #endif 865 866 info->start = start; 867 info->end = end; 868 info->mm = mm; 869 info->stride_shift = stride_shift; 870 info->freed_tables = freed_tables; 871 info->new_tlb_gen = new_tlb_gen; 872 873 return info; 874 } 875 876 static inline void put_flush_tlb_info(void) 877 { 878 #ifdef CONFIG_DEBUG_VM 879 /* Complete reentrancy prevention checks */ 880 barrier(); 881 this_cpu_dec(flush_tlb_info_idx); 882 #endif 883 } 884 885 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 886 unsigned long end, unsigned int stride_shift, 887 bool freed_tables) 888 { 889 struct flush_tlb_info *info; 890 u64 new_tlb_gen; 891 int cpu; 892 893 cpu = get_cpu(); 894 895 /* Should we flush just the requested range? */ 896 if ((end == TLB_FLUSH_ALL) || 897 ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) { 898 start = 0; 899 end = TLB_FLUSH_ALL; 900 } 901 902 /* This is also a barrier that synchronizes with switch_mm(). */ 903 new_tlb_gen = inc_mm_tlb_gen(mm); 904 905 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables, 906 new_tlb_gen); 907 908 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { 909 lockdep_assert_irqs_enabled(); 910 local_irq_disable(); 911 flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN); 912 local_irq_enable(); 913 } 914 915 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) 916 flush_tlb_others(mm_cpumask(mm), info); 917 918 put_flush_tlb_info(); 919 put_cpu(); 920 } 921 922 923 static void do_flush_tlb_all(void *info) 924 { 925 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 926 __flush_tlb_all(); 927 } 928 929 void flush_tlb_all(void) 930 { 931 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 932 on_each_cpu(do_flush_tlb_all, NULL, 1); 933 } 934 935 static void do_kernel_range_flush(void *info) 936 { 937 struct flush_tlb_info *f = info; 938 unsigned long addr; 939 940 /* flush range by one by one 'invlpg' */ 941 for (addr = f->start; addr < f->end; addr += PAGE_SIZE) 942 flush_tlb_one_kernel(addr); 943 } 944 945 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 946 { 947 /* Balance as user space task's flush, a bit conservative */ 948 if (end == TLB_FLUSH_ALL || 949 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) { 950 on_each_cpu(do_flush_tlb_all, NULL, 1); 951 } else { 952 struct flush_tlb_info *info; 953 954 preempt_disable(); 955 info = get_flush_tlb_info(NULL, start, end, 0, false, 0); 956 957 on_each_cpu(do_kernel_range_flush, info, 1); 958 959 put_flush_tlb_info(); 960 preempt_enable(); 961 } 962 } 963 964 /* 965 * This can be used from process context to figure out what the value of 966 * CR3 is without needing to do a (slow) __read_cr3(). 967 * 968 * It's intended to be used for code like KVM that sneakily changes CR3 969 * and needs to restore it. It needs to be used very carefully. 970 */ 971 unsigned long __get_current_cr3_fast(void) 972 { 973 unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd, 974 this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 975 976 /* For now, be very restrictive about when this can be called. */ 977 VM_WARN_ON(in_nmi() || preemptible()); 978 979 VM_BUG_ON(cr3 != __read_cr3()); 980 return cr3; 981 } 982 EXPORT_SYMBOL_GPL(__get_current_cr3_fast); 983 984 /* 985 * Flush one page in the kernel mapping 986 */ 987 void flush_tlb_one_kernel(unsigned long addr) 988 { 989 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); 990 991 /* 992 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its 993 * paravirt equivalent. Even with PCID, this is sufficient: we only 994 * use PCID if we also use global PTEs for the kernel mapping, and 995 * INVLPG flushes global translations across all address spaces. 996 * 997 * If PTI is on, then the kernel is mapped with non-global PTEs, and 998 * __flush_tlb_one_user() will flush the given address for the current 999 * kernel address space and for its usermode counterpart, but it does 1000 * not flush it for other address spaces. 1001 */ 1002 flush_tlb_one_user(addr); 1003 1004 if (!static_cpu_has(X86_FEATURE_PTI)) 1005 return; 1006 1007 /* 1008 * See above. We need to propagate the flush to all other address 1009 * spaces. In principle, we only need to propagate it to kernelmode 1010 * address spaces, but the extra bookkeeping we would need is not 1011 * worth it. 1012 */ 1013 this_cpu_write(cpu_tlbstate.invalidate_other, true); 1014 } 1015 1016 /* 1017 * Flush one page in the user mapping 1018 */ 1019 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr) 1020 { 1021 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 1022 1023 asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); 1024 1025 if (!static_cpu_has(X86_FEATURE_PTI)) 1026 return; 1027 1028 /* 1029 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1. 1030 * Just use invalidate_user_asid() in case we are called early. 1031 */ 1032 if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE)) 1033 invalidate_user_asid(loaded_mm_asid); 1034 else 1035 invpcid_flush_one(user_pcid(loaded_mm_asid), addr); 1036 } 1037 1038 void flush_tlb_one_user(unsigned long addr) 1039 { 1040 __flush_tlb_one_user(addr); 1041 } 1042 1043 /* 1044 * Flush everything 1045 */ 1046 STATIC_NOPV void native_flush_tlb_global(void) 1047 { 1048 unsigned long cr4, flags; 1049 1050 if (static_cpu_has(X86_FEATURE_INVPCID)) { 1051 /* 1052 * Using INVPCID is considerably faster than a pair of writes 1053 * to CR4 sandwiched inside an IRQ flag save/restore. 1054 * 1055 * Note, this works with CR4.PCIDE=0 or 1. 1056 */ 1057 invpcid_flush_all(); 1058 return; 1059 } 1060 1061 /* 1062 * Read-modify-write to CR4 - protect it from preemption and 1063 * from interrupts. (Use the raw variant because this code can 1064 * be called from deep inside debugging code.) 1065 */ 1066 raw_local_irq_save(flags); 1067 1068 cr4 = this_cpu_read(cpu_tlbstate.cr4); 1069 /* toggle PGE */ 1070 native_write_cr4(cr4 ^ X86_CR4_PGE); 1071 /* write old PGE again and flush TLBs */ 1072 native_write_cr4(cr4); 1073 1074 raw_local_irq_restore(flags); 1075 } 1076 1077 /* 1078 * Flush the entire current user mapping 1079 */ 1080 STATIC_NOPV void native_flush_tlb_local(void) 1081 { 1082 /* 1083 * Preemption or interrupts must be disabled to protect the access 1084 * to the per CPU variable and to prevent being preempted between 1085 * read_cr3() and write_cr3(). 1086 */ 1087 WARN_ON_ONCE(preemptible()); 1088 1089 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 1090 1091 /* If current->mm == NULL then the read_cr3() "borrows" an mm */ 1092 native_write_cr3(__native_read_cr3()); 1093 } 1094 1095 void flush_tlb_local(void) 1096 { 1097 __flush_tlb_local(); 1098 } 1099 1100 /* 1101 * Flush everything 1102 */ 1103 void __flush_tlb_all(void) 1104 { 1105 /* 1106 * This is to catch users with enabled preemption and the PGE feature 1107 * and don't trigger the warning in __native_flush_tlb(). 1108 */ 1109 VM_WARN_ON_ONCE(preemptible()); 1110 1111 if (boot_cpu_has(X86_FEATURE_PGE)) { 1112 __flush_tlb_global(); 1113 } else { 1114 /* 1115 * !PGE -> !PCID (setup_pcid()), thus every flush is total. 1116 */ 1117 flush_tlb_local(); 1118 } 1119 } 1120 EXPORT_SYMBOL_GPL(__flush_tlb_all); 1121 1122 /* 1123 * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm. 1124 * This means that the 'struct flush_tlb_info' that describes which mappings to 1125 * flush is actually fixed. We therefore set a single fixed struct and use it in 1126 * arch_tlbbatch_flush(). 1127 */ 1128 static const struct flush_tlb_info full_flush_tlb_info = { 1129 .mm = NULL, 1130 .start = 0, 1131 .end = TLB_FLUSH_ALL, 1132 }; 1133 1134 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) 1135 { 1136 int cpu = get_cpu(); 1137 1138 if (cpumask_test_cpu(cpu, &batch->cpumask)) { 1139 lockdep_assert_irqs_enabled(); 1140 local_irq_disable(); 1141 flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN); 1142 local_irq_enable(); 1143 } 1144 1145 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) 1146 flush_tlb_others(&batch->cpumask, &full_flush_tlb_info); 1147 1148 cpumask_clear(&batch->cpumask); 1149 1150 put_cpu(); 1151 } 1152 1153 /* 1154 * Blindly accessing user memory from NMI context can be dangerous 1155 * if we're in the middle of switching the current user task or 1156 * switching the loaded mm. It can also be dangerous if we 1157 * interrupted some kernel code that was temporarily using a 1158 * different mm. 1159 */ 1160 bool nmi_uaccess_okay(void) 1161 { 1162 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 1163 struct mm_struct *current_mm = current->mm; 1164 1165 VM_WARN_ON_ONCE(!loaded_mm); 1166 1167 /* 1168 * The condition we want to check is 1169 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though, 1170 * if we're running in a VM with shadow paging, and nmi_uaccess_okay() 1171 * is supposed to be reasonably fast. 1172 * 1173 * Instead, we check the almost equivalent but somewhat conservative 1174 * condition below, and we rely on the fact that switch_mm_irqs_off() 1175 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3. 1176 */ 1177 if (loaded_mm != current_mm) 1178 return false; 1179 1180 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa())); 1181 1182 return true; 1183 } 1184 1185 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, 1186 size_t count, loff_t *ppos) 1187 { 1188 char buf[32]; 1189 unsigned int len; 1190 1191 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); 1192 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 1193 } 1194 1195 static ssize_t tlbflush_write_file(struct file *file, 1196 const char __user *user_buf, size_t count, loff_t *ppos) 1197 { 1198 char buf[32]; 1199 ssize_t len; 1200 int ceiling; 1201 1202 len = min(count, sizeof(buf) - 1); 1203 if (copy_from_user(buf, user_buf, len)) 1204 return -EFAULT; 1205 1206 buf[len] = '\0'; 1207 if (kstrtoint(buf, 0, &ceiling)) 1208 return -EINVAL; 1209 1210 if (ceiling < 0) 1211 return -EINVAL; 1212 1213 tlb_single_page_flush_ceiling = ceiling; 1214 return count; 1215 } 1216 1217 static const struct file_operations fops_tlbflush = { 1218 .read = tlbflush_read_file, 1219 .write = tlbflush_write_file, 1220 .llseek = default_llseek, 1221 }; 1222 1223 static int __init create_tlb_single_page_flush_ceiling(void) 1224 { 1225 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, 1226 arch_debugfs_dir, NULL, &fops_tlbflush); 1227 return 0; 1228 } 1229 late_initcall(create_tlb_single_page_flush_ceiling); 1230