1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "smm.h" 10 #include "cpuid.h" 11 #include "pmu.h" 12 13 #include <linux/module.h> 14 #include <linux/mod_devicetable.h> 15 #include <linux/kernel.h> 16 #include <linux/vmalloc.h> 17 #include <linux/highmem.h> 18 #include <linux/amd-iommu.h> 19 #include <linux/sched.h> 20 #include <linux/trace_events.h> 21 #include <linux/slab.h> 22 #include <linux/hashtable.h> 23 #include <linux/objtool.h> 24 #include <linux/psp-sev.h> 25 #include <linux/file.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/rwsem.h> 29 #include <linux/cc_platform.h> 30 #include <linux/smp.h> 31 32 #include <asm/apic.h> 33 #include <asm/perf_event.h> 34 #include <asm/tlbflush.h> 35 #include <asm/desc.h> 36 #include <asm/debugreg.h> 37 #include <asm/kvm_para.h> 38 #include <asm/irq_remapping.h> 39 #include <asm/spec-ctrl.h> 40 #include <asm/cpu_device_id.h> 41 #include <asm/traps.h> 42 #include <asm/reboot.h> 43 #include <asm/fpu/api.h> 44 45 #include <trace/events/ipi.h> 46 47 #include "trace.h" 48 49 #include "svm.h" 50 #include "svm_ops.h" 51 52 #include "kvm_onhyperv.h" 53 #include "svm_onhyperv.h" 54 55 MODULE_AUTHOR("Qumranet"); 56 MODULE_LICENSE("GPL"); 57 58 #ifdef MODULE 59 static const struct x86_cpu_id svm_cpu_id[] = { 60 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 61 {} 62 }; 63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 64 #endif 65 66 #define SEG_TYPE_LDT 2 67 #define SEG_TYPE_BUSY_TSS16 3 68 69 static bool erratum_383_found __read_mostly; 70 71 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 72 73 /* 74 * Set osvw_len to higher value when updated Revision Guides 75 * are published and we know what the new status bits are 76 */ 77 static uint64_t osvw_len = 4, osvw_status; 78 79 static DEFINE_PER_CPU(u64, current_tsc_ratio); 80 81 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4)) 82 83 static const struct svm_direct_access_msrs { 84 u32 index; /* Index of the MSR */ 85 bool always; /* True if intercept is initially cleared */ 86 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 87 { .index = MSR_STAR, .always = true }, 88 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 89 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 90 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 91 #ifdef CONFIG_X86_64 92 { .index = MSR_GS_BASE, .always = true }, 93 { .index = MSR_FS_BASE, .always = true }, 94 { .index = MSR_KERNEL_GS_BASE, .always = true }, 95 { .index = MSR_LSTAR, .always = true }, 96 { .index = MSR_CSTAR, .always = true }, 97 { .index = MSR_SYSCALL_MASK, .always = true }, 98 #endif 99 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 100 { .index = MSR_IA32_PRED_CMD, .always = false }, 101 { .index = MSR_IA32_FLUSH_CMD, .always = false }, 102 { .index = MSR_IA32_DEBUGCTLMSR, .always = false }, 103 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 104 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 105 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 106 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 107 { .index = MSR_IA32_XSS, .always = false }, 108 { .index = MSR_EFER, .always = false }, 109 { .index = MSR_IA32_CR_PAT, .always = false }, 110 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 111 { .index = MSR_TSC_AUX, .always = false }, 112 { .index = X2APIC_MSR(APIC_ID), .always = false }, 113 { .index = X2APIC_MSR(APIC_LVR), .always = false }, 114 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false }, 115 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false }, 116 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false }, 117 { .index = X2APIC_MSR(APIC_EOI), .always = false }, 118 { .index = X2APIC_MSR(APIC_RRR), .always = false }, 119 { .index = X2APIC_MSR(APIC_LDR), .always = false }, 120 { .index = X2APIC_MSR(APIC_DFR), .always = false }, 121 { .index = X2APIC_MSR(APIC_SPIV), .always = false }, 122 { .index = X2APIC_MSR(APIC_ISR), .always = false }, 123 { .index = X2APIC_MSR(APIC_TMR), .always = false }, 124 { .index = X2APIC_MSR(APIC_IRR), .always = false }, 125 { .index = X2APIC_MSR(APIC_ESR), .always = false }, 126 { .index = X2APIC_MSR(APIC_ICR), .always = false }, 127 { .index = X2APIC_MSR(APIC_ICR2), .always = false }, 128 129 /* 130 * Note: 131 * AMD does not virtualize APIC TSC-deadline timer mode, but it is 132 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18, 133 * the AVIC hardware would generate GP fault. Therefore, always 134 * intercept the MSR 0x832, and do not setup direct_access_msr. 135 */ 136 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false }, 137 { .index = X2APIC_MSR(APIC_LVTPC), .always = false }, 138 { .index = X2APIC_MSR(APIC_LVT0), .always = false }, 139 { .index = X2APIC_MSR(APIC_LVT1), .always = false }, 140 { .index = X2APIC_MSR(APIC_LVTERR), .always = false }, 141 { .index = X2APIC_MSR(APIC_TMICT), .always = false }, 142 { .index = X2APIC_MSR(APIC_TMCCT), .always = false }, 143 { .index = X2APIC_MSR(APIC_TDCR), .always = false }, 144 { .index = MSR_INVALID, .always = false }, 145 }; 146 147 /* 148 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 149 * pause_filter_count: On processors that support Pause filtering(indicated 150 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 151 * count value. On VMRUN this value is loaded into an internal counter. 152 * Each time a pause instruction is executed, this counter is decremented 153 * until it reaches zero at which time a #VMEXIT is generated if pause 154 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 155 * Intercept Filtering for more details. 156 * This also indicate if ple logic enabled. 157 * 158 * pause_filter_thresh: In addition, some processor families support advanced 159 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 160 * the amount of time a guest is allowed to execute in a pause loop. 161 * In this mode, a 16-bit pause filter threshold field is added in the 162 * VMCB. The threshold value is a cycle count that is used to reset the 163 * pause counter. As with simple pause filtering, VMRUN loads the pause 164 * count value from VMCB into an internal counter. Then, on each pause 165 * instruction the hardware checks the elapsed number of cycles since 166 * the most recent pause instruction against the pause filter threshold. 167 * If the elapsed cycle count is greater than the pause filter threshold, 168 * then the internal pause count is reloaded from the VMCB and execution 169 * continues. If the elapsed cycle count is less than the pause filter 170 * threshold, then the internal pause count is decremented. If the count 171 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 172 * triggered. If advanced pause filtering is supported and pause filter 173 * threshold field is set to zero, the filter will operate in the simpler, 174 * count only mode. 175 */ 176 177 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 178 module_param(pause_filter_thresh, ushort, 0444); 179 180 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 181 module_param(pause_filter_count, ushort, 0444); 182 183 /* Default doubles per-vcpu window every exit. */ 184 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 185 module_param(pause_filter_count_grow, ushort, 0444); 186 187 /* Default resets per-vcpu window every exit to pause_filter_count. */ 188 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 189 module_param(pause_filter_count_shrink, ushort, 0444); 190 191 /* Default is to compute the maximum so we can never overflow. */ 192 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 193 module_param(pause_filter_count_max, ushort, 0444); 194 195 /* 196 * Use nested page tables by default. Note, NPT may get forced off by 197 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 198 */ 199 bool npt_enabled = true; 200 module_param_named(npt, npt_enabled, bool, 0444); 201 202 /* allow nested virtualization in KVM/SVM */ 203 static int nested = true; 204 module_param(nested, int, S_IRUGO); 205 206 /* enable/disable Next RIP Save */ 207 int nrips = true; 208 module_param(nrips, int, 0444); 209 210 /* enable/disable Virtual VMLOAD VMSAVE */ 211 static int vls = true; 212 module_param(vls, int, 0444); 213 214 /* enable/disable Virtual GIF */ 215 int vgif = true; 216 module_param(vgif, int, 0444); 217 218 /* enable/disable LBR virtualization */ 219 int lbrv = true; 220 module_param(lbrv, int, 0444); 221 222 static int tsc_scaling = true; 223 module_param(tsc_scaling, int, 0444); 224 225 /* 226 * enable / disable AVIC. Because the defaults differ for APICv 227 * support between VMX and SVM we cannot use module_param_named. 228 */ 229 static bool avic; 230 module_param(avic, bool, 0444); 231 232 bool __read_mostly dump_invalid_vmcb; 233 module_param(dump_invalid_vmcb, bool, 0644); 234 235 236 bool intercept_smi = true; 237 module_param(intercept_smi, bool, 0444); 238 239 bool vnmi = true; 240 module_param(vnmi, bool, 0444); 241 242 static bool svm_gp_erratum_intercept = true; 243 244 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 245 246 static unsigned long iopm_base; 247 248 DEFINE_PER_CPU(struct svm_cpu_data, svm_data); 249 250 /* 251 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 252 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 253 * 254 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 255 * defer the restoration of TSC_AUX until the CPU returns to userspace. 256 */ 257 static int tsc_aux_uret_slot __read_mostly = -1; 258 259 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 260 261 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 262 #define MSRS_RANGE_SIZE 2048 263 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 264 265 u32 svm_msrpm_offset(u32 msr) 266 { 267 u32 offset; 268 int i; 269 270 for (i = 0; i < NUM_MSR_MAPS; i++) { 271 if (msr < msrpm_ranges[i] || 272 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 273 continue; 274 275 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 276 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 277 278 /* Now we have the u8 offset - but need the u32 offset */ 279 return offset / 4; 280 } 281 282 /* MSR not in any range */ 283 return MSR_INVALID; 284 } 285 286 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu); 287 288 static int get_npt_level(void) 289 { 290 #ifdef CONFIG_X86_64 291 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 292 #else 293 return PT32E_ROOT_LEVEL; 294 #endif 295 } 296 297 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 298 { 299 struct vcpu_svm *svm = to_svm(vcpu); 300 u64 old_efer = vcpu->arch.efer; 301 vcpu->arch.efer = efer; 302 303 if (!npt_enabled) { 304 /* Shadow paging assumes NX to be available. */ 305 efer |= EFER_NX; 306 307 if (!(efer & EFER_LMA)) 308 efer &= ~EFER_LME; 309 } 310 311 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 312 if (!(efer & EFER_SVME)) { 313 svm_leave_nested(vcpu); 314 svm_set_gif(svm, true); 315 /* #GP intercept is still needed for vmware backdoor */ 316 if (!enable_vmware_backdoor) 317 clr_exception_intercept(svm, GP_VECTOR); 318 319 /* 320 * Free the nested guest state, unless we are in SMM. 321 * In this case we will return to the nested guest 322 * as soon as we leave SMM. 323 */ 324 if (!is_smm(vcpu)) 325 svm_free_nested(svm); 326 327 } else { 328 int ret = svm_allocate_nested(svm); 329 330 if (ret) { 331 vcpu->arch.efer = old_efer; 332 return ret; 333 } 334 335 /* 336 * Never intercept #GP for SEV guests, KVM can't 337 * decrypt guest memory to workaround the erratum. 338 */ 339 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 340 set_exception_intercept(svm, GP_VECTOR); 341 } 342 } 343 344 svm->vmcb->save.efer = efer | EFER_SVME; 345 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 346 return 0; 347 } 348 349 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 350 { 351 struct vcpu_svm *svm = to_svm(vcpu); 352 u32 ret = 0; 353 354 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 355 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 356 return ret; 357 } 358 359 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 360 { 361 struct vcpu_svm *svm = to_svm(vcpu); 362 363 if (mask == 0) 364 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 365 else 366 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 367 368 } 369 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 370 void *insn, int insn_len); 371 372 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 373 bool commit_side_effects) 374 { 375 struct vcpu_svm *svm = to_svm(vcpu); 376 unsigned long old_rflags; 377 378 /* 379 * SEV-ES does not expose the next RIP. The RIP update is controlled by 380 * the type of exit and the #VC handler in the guest. 381 */ 382 if (sev_es_guest(vcpu->kvm)) 383 goto done; 384 385 if (nrips && svm->vmcb->control.next_rip != 0) { 386 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 387 svm->next_rip = svm->vmcb->control.next_rip; 388 } 389 390 if (!svm->next_rip) { 391 /* 392 * FIXME: Drop this when kvm_emulate_instruction() does the 393 * right thing and treats "can't emulate" as outright failure 394 * for EMULTYPE_SKIP. 395 */ 396 if (!svm_can_emulate_instruction(vcpu, EMULTYPE_SKIP, NULL, 0)) 397 return 0; 398 399 if (unlikely(!commit_side_effects)) 400 old_rflags = svm->vmcb->save.rflags; 401 402 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 403 return 0; 404 405 if (unlikely(!commit_side_effects)) 406 svm->vmcb->save.rflags = old_rflags; 407 } else { 408 kvm_rip_write(vcpu, svm->next_rip); 409 } 410 411 done: 412 if (likely(commit_side_effects)) 413 svm_set_interrupt_shadow(vcpu, 0); 414 415 return 1; 416 } 417 418 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 419 { 420 return __svm_skip_emulated_instruction(vcpu, true); 421 } 422 423 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) 424 { 425 unsigned long rip, old_rip = kvm_rip_read(vcpu); 426 struct vcpu_svm *svm = to_svm(vcpu); 427 428 /* 429 * Due to architectural shortcomings, the CPU doesn't always provide 430 * NextRIP, e.g. if KVM intercepted an exception that occurred while 431 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 432 * the instruction even if NextRIP is supported to acquire the next 433 * RIP so that it can be shoved into the NextRIP field, otherwise 434 * hardware will fail to advance guest RIP during event injection. 435 * Drop the exception/interrupt if emulation fails and effectively 436 * retry the instruction, it's the least awful option. If NRIPS is 437 * in use, the skip must not commit any side effects such as clearing 438 * the interrupt shadow or RFLAGS.RF. 439 */ 440 if (!__svm_skip_emulated_instruction(vcpu, !nrips)) 441 return -EIO; 442 443 rip = kvm_rip_read(vcpu); 444 445 /* 446 * Save the injection information, even when using next_rip, as the 447 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 448 * doesn't complete due to a VM-Exit occurring while the CPU is 449 * vectoring the event. Decoding the instruction isn't guaranteed to 450 * work as there may be no backing instruction, e.g. if the event is 451 * being injected by L1 for L2, or if the guest is patching INT3 into 452 * a different instruction. 453 */ 454 svm->soft_int_injected = true; 455 svm->soft_int_csbase = svm->vmcb->save.cs.base; 456 svm->soft_int_old_rip = old_rip; 457 svm->soft_int_next_rip = rip; 458 459 if (nrips) 460 kvm_rip_write(vcpu, old_rip); 461 462 if (static_cpu_has(X86_FEATURE_NRIPS)) 463 svm->vmcb->control.next_rip = rip; 464 465 return 0; 466 } 467 468 static void svm_inject_exception(struct kvm_vcpu *vcpu) 469 { 470 struct kvm_queued_exception *ex = &vcpu->arch.exception; 471 struct vcpu_svm *svm = to_svm(vcpu); 472 473 kvm_deliver_exception_payload(vcpu, ex); 474 475 if (kvm_exception_is_soft(ex->vector) && 476 svm_update_soft_interrupt_rip(vcpu)) 477 return; 478 479 svm->vmcb->control.event_inj = ex->vector 480 | SVM_EVTINJ_VALID 481 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 482 | SVM_EVTINJ_TYPE_EXEPT; 483 svm->vmcb->control.event_inj_err = ex->error_code; 484 } 485 486 static void svm_init_erratum_383(void) 487 { 488 u32 low, high; 489 int err; 490 u64 val; 491 492 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 493 return; 494 495 /* Use _safe variants to not break nested virtualization */ 496 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 497 if (err) 498 return; 499 500 val |= (1ULL << 47); 501 502 low = lower_32_bits(val); 503 high = upper_32_bits(val); 504 505 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 506 507 erratum_383_found = true; 508 } 509 510 static void svm_init_osvw(struct kvm_vcpu *vcpu) 511 { 512 /* 513 * Guests should see errata 400 and 415 as fixed (assuming that 514 * HLT and IO instructions are intercepted). 515 */ 516 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 517 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 518 519 /* 520 * By increasing VCPU's osvw.length to 3 we are telling the guest that 521 * all osvw.status bits inside that length, including bit 0 (which is 522 * reserved for erratum 298), are valid. However, if host processor's 523 * osvw_len is 0 then osvw_status[0] carries no information. We need to 524 * be conservative here and therefore we tell the guest that erratum 298 525 * is present (because we really don't know). 526 */ 527 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 528 vcpu->arch.osvw.status |= 1; 529 } 530 531 static bool __kvm_is_svm_supported(void) 532 { 533 int cpu = smp_processor_id(); 534 struct cpuinfo_x86 *c = &cpu_data(cpu); 535 536 u64 vm_cr; 537 538 if (c->x86_vendor != X86_VENDOR_AMD && 539 c->x86_vendor != X86_VENDOR_HYGON) { 540 pr_err("CPU %d isn't AMD or Hygon\n", cpu); 541 return false; 542 } 543 544 if (!cpu_has(c, X86_FEATURE_SVM)) { 545 pr_err("SVM not supported by CPU %d\n", cpu); 546 return false; 547 } 548 549 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 550 pr_info("KVM is unsupported when running as an SEV guest\n"); 551 return false; 552 } 553 554 rdmsrl(MSR_VM_CR, vm_cr); 555 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) { 556 pr_err("SVM disabled (by BIOS) in MSR_VM_CR on CPU %d\n", cpu); 557 return false; 558 } 559 560 return true; 561 } 562 563 static bool kvm_is_svm_supported(void) 564 { 565 bool supported; 566 567 migrate_disable(); 568 supported = __kvm_is_svm_supported(); 569 migrate_enable(); 570 571 return supported; 572 } 573 574 static int svm_check_processor_compat(void) 575 { 576 if (!__kvm_is_svm_supported()) 577 return -EIO; 578 579 return 0; 580 } 581 582 static void __svm_write_tsc_multiplier(u64 multiplier) 583 { 584 if (multiplier == __this_cpu_read(current_tsc_ratio)) 585 return; 586 587 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 588 __this_cpu_write(current_tsc_ratio, multiplier); 589 } 590 591 static inline void kvm_cpu_svm_disable(void) 592 { 593 uint64_t efer; 594 595 wrmsrl(MSR_VM_HSAVE_PA, 0); 596 rdmsrl(MSR_EFER, efer); 597 if (efer & EFER_SVME) { 598 /* 599 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and 600 * NMI aren't blocked. 601 */ 602 stgi(); 603 wrmsrl(MSR_EFER, efer & ~EFER_SVME); 604 } 605 } 606 607 static void svm_emergency_disable(void) 608 { 609 kvm_rebooting = true; 610 611 kvm_cpu_svm_disable(); 612 } 613 614 static void svm_hardware_disable(void) 615 { 616 /* Make sure we clean up behind us */ 617 if (tsc_scaling) 618 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 619 620 kvm_cpu_svm_disable(); 621 622 amd_pmu_disable_virt(); 623 } 624 625 static int svm_hardware_enable(void) 626 { 627 628 struct svm_cpu_data *sd; 629 uint64_t efer; 630 int me = raw_smp_processor_id(); 631 632 rdmsrl(MSR_EFER, efer); 633 if (efer & EFER_SVME) 634 return -EBUSY; 635 636 sd = per_cpu_ptr(&svm_data, me); 637 sd->asid_generation = 1; 638 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 639 sd->next_asid = sd->max_asid + 1; 640 sd->min_asid = max_sev_asid + 1; 641 642 wrmsrl(MSR_EFER, efer | EFER_SVME); 643 644 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa); 645 646 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 647 /* 648 * Set the default value, even if we don't use TSC scaling 649 * to avoid having stale value in the msr 650 */ 651 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 652 } 653 654 655 /* 656 * Get OSVW bits. 657 * 658 * Note that it is possible to have a system with mixed processor 659 * revisions and therefore different OSVW bits. If bits are not the same 660 * on different processors then choose the worst case (i.e. if erratum 661 * is present on one processor and not on another then assume that the 662 * erratum is present everywhere). 663 */ 664 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 665 uint64_t len, status = 0; 666 int err; 667 668 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 669 if (!err) 670 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 671 &err); 672 673 if (err) 674 osvw_status = osvw_len = 0; 675 else { 676 if (len < osvw_len) 677 osvw_len = len; 678 osvw_status |= status; 679 osvw_status &= (1ULL << osvw_len) - 1; 680 } 681 } else 682 osvw_status = osvw_len = 0; 683 684 svm_init_erratum_383(); 685 686 amd_pmu_enable_virt(); 687 688 /* 689 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type 690 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests. 691 * Since Linux does not change the value of TSC_AUX once set, prime the 692 * TSC_AUX field now to avoid a RDMSR on every vCPU run. 693 */ 694 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 695 struct sev_es_save_area *hostsa; 696 u32 __maybe_unused msr_hi; 697 698 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); 699 700 rdmsr(MSR_TSC_AUX, hostsa->tsc_aux, msr_hi); 701 } 702 703 return 0; 704 } 705 706 static void svm_cpu_uninit(int cpu) 707 { 708 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 709 710 if (!sd->save_area) 711 return; 712 713 kfree(sd->sev_vmcbs); 714 __free_page(sd->save_area); 715 sd->save_area_pa = 0; 716 sd->save_area = NULL; 717 } 718 719 static int svm_cpu_init(int cpu) 720 { 721 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 722 int ret = -ENOMEM; 723 724 memset(sd, 0, sizeof(struct svm_cpu_data)); 725 sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO); 726 if (!sd->save_area) 727 return ret; 728 729 ret = sev_cpu_init(sd); 730 if (ret) 731 goto free_save_area; 732 733 sd->save_area_pa = __sme_page_pa(sd->save_area); 734 return 0; 735 736 free_save_area: 737 __free_page(sd->save_area); 738 sd->save_area = NULL; 739 return ret; 740 741 } 742 743 static void set_dr_intercepts(struct vcpu_svm *svm) 744 { 745 struct vmcb *vmcb = svm->vmcb01.ptr; 746 747 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ); 748 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ); 749 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ); 750 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ); 751 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ); 752 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ); 753 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ); 754 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE); 755 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE); 756 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE); 757 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE); 758 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE); 759 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE); 760 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE); 761 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 762 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 763 764 recalc_intercepts(svm); 765 } 766 767 static void clr_dr_intercepts(struct vcpu_svm *svm) 768 { 769 struct vmcb *vmcb = svm->vmcb01.ptr; 770 771 vmcb->control.intercepts[INTERCEPT_DR] = 0; 772 773 recalc_intercepts(svm); 774 } 775 776 static int direct_access_msr_slot(u32 msr) 777 { 778 u32 i; 779 780 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 781 if (direct_access_msrs[i].index == msr) 782 return i; 783 784 return -ENOENT; 785 } 786 787 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 788 int write) 789 { 790 struct vcpu_svm *svm = to_svm(vcpu); 791 int slot = direct_access_msr_slot(msr); 792 793 if (slot == -ENOENT) 794 return; 795 796 /* Set the shadow bitmaps to the desired intercept states */ 797 if (read) 798 set_bit(slot, svm->shadow_msr_intercept.read); 799 else 800 clear_bit(slot, svm->shadow_msr_intercept.read); 801 802 if (write) 803 set_bit(slot, svm->shadow_msr_intercept.write); 804 else 805 clear_bit(slot, svm->shadow_msr_intercept.write); 806 } 807 808 static bool valid_msr_intercept(u32 index) 809 { 810 return direct_access_msr_slot(index) != -ENOENT; 811 } 812 813 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 814 { 815 u8 bit_write; 816 unsigned long tmp; 817 u32 offset; 818 u32 *msrpm; 819 820 /* 821 * For non-nested case: 822 * If the L01 MSR bitmap does not intercept the MSR, then we need to 823 * save it. 824 * 825 * For nested case: 826 * If the L02 MSR bitmap does not intercept the MSR, then we need to 827 * save it. 828 */ 829 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 830 to_svm(vcpu)->msrpm; 831 832 offset = svm_msrpm_offset(msr); 833 bit_write = 2 * (msr & 0x0f) + 1; 834 tmp = msrpm[offset]; 835 836 BUG_ON(offset == MSR_INVALID); 837 838 return test_bit(bit_write, &tmp); 839 } 840 841 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 842 u32 msr, int read, int write) 843 { 844 struct vcpu_svm *svm = to_svm(vcpu); 845 u8 bit_read, bit_write; 846 unsigned long tmp; 847 u32 offset; 848 849 /* 850 * If this warning triggers extend the direct_access_msrs list at the 851 * beginning of the file 852 */ 853 WARN_ON(!valid_msr_intercept(msr)); 854 855 /* Enforce non allowed MSRs to trap */ 856 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 857 read = 0; 858 859 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 860 write = 0; 861 862 offset = svm_msrpm_offset(msr); 863 bit_read = 2 * (msr & 0x0f); 864 bit_write = 2 * (msr & 0x0f) + 1; 865 tmp = msrpm[offset]; 866 867 BUG_ON(offset == MSR_INVALID); 868 869 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 870 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 871 872 msrpm[offset] = tmp; 873 874 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 875 svm->nested.force_msr_bitmap_recalc = true; 876 } 877 878 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 879 int read, int write) 880 { 881 set_shadow_msr_intercept(vcpu, msr, read, write); 882 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 883 } 884 885 u32 *svm_vcpu_alloc_msrpm(void) 886 { 887 unsigned int order = get_order(MSRPM_SIZE); 888 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 889 u32 *msrpm; 890 891 if (!pages) 892 return NULL; 893 894 msrpm = page_address(pages); 895 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 896 897 return msrpm; 898 } 899 900 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 901 { 902 int i; 903 904 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 905 if (!direct_access_msrs[i].always) 906 continue; 907 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 908 } 909 } 910 911 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept) 912 { 913 int i; 914 915 if (intercept == svm->x2avic_msrs_intercepted) 916 return; 917 918 if (!x2avic_enabled) 919 return; 920 921 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) { 922 int index = direct_access_msrs[i].index; 923 924 if ((index < APIC_BASE_MSR) || 925 (index > APIC_BASE_MSR + 0xff)) 926 continue; 927 set_msr_interception(&svm->vcpu, svm->msrpm, index, 928 !intercept, !intercept); 929 } 930 931 svm->x2avic_msrs_intercepted = intercept; 932 } 933 934 void svm_vcpu_free_msrpm(u32 *msrpm) 935 { 936 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 937 } 938 939 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 940 { 941 struct vcpu_svm *svm = to_svm(vcpu); 942 u32 i; 943 944 /* 945 * Set intercept permissions for all direct access MSRs again. They 946 * will automatically get filtered through the MSR filter, so we are 947 * back in sync after this. 948 */ 949 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 950 u32 msr = direct_access_msrs[i].index; 951 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 952 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 953 954 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 955 } 956 } 957 958 static void add_msr_offset(u32 offset) 959 { 960 int i; 961 962 for (i = 0; i < MSRPM_OFFSETS; ++i) { 963 964 /* Offset already in list? */ 965 if (msrpm_offsets[i] == offset) 966 return; 967 968 /* Slot used by another offset? */ 969 if (msrpm_offsets[i] != MSR_INVALID) 970 continue; 971 972 /* Add offset to list */ 973 msrpm_offsets[i] = offset; 974 975 return; 976 } 977 978 /* 979 * If this BUG triggers the msrpm_offsets table has an overflow. Just 980 * increase MSRPM_OFFSETS in this case. 981 */ 982 BUG(); 983 } 984 985 static void init_msrpm_offsets(void) 986 { 987 int i; 988 989 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 990 991 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 992 u32 offset; 993 994 offset = svm_msrpm_offset(direct_access_msrs[i].index); 995 BUG_ON(offset == MSR_INVALID); 996 997 add_msr_offset(offset); 998 } 999 } 1000 1001 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 1002 { 1003 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 1004 to_vmcb->save.br_from = from_vmcb->save.br_from; 1005 to_vmcb->save.br_to = from_vmcb->save.br_to; 1006 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 1007 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 1008 1009 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 1010 } 1011 1012 void svm_enable_lbrv(struct kvm_vcpu *vcpu) 1013 { 1014 struct vcpu_svm *svm = to_svm(vcpu); 1015 1016 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 1017 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 1018 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 1019 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 1020 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 1021 1022 if (sev_es_guest(vcpu->kvm)) 1023 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1); 1024 1025 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ 1026 if (is_guest_mode(vcpu)) 1027 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); 1028 } 1029 1030 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 1031 { 1032 struct vcpu_svm *svm = to_svm(vcpu); 1033 1034 KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm); 1035 1036 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 1037 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 1038 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 1039 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 1040 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 1041 1042 /* 1043 * Move the LBR msrs back to the vmcb01 to avoid copying them 1044 * on nested guest entries. 1045 */ 1046 if (is_guest_mode(vcpu)) 1047 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); 1048 } 1049 1050 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm) 1051 { 1052 /* 1053 * If LBR virtualization is disabled, the LBR MSRs are always kept in 1054 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of 1055 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed. 1056 */ 1057 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb : 1058 svm->vmcb01.ptr; 1059 } 1060 1061 void svm_update_lbrv(struct kvm_vcpu *vcpu) 1062 { 1063 struct vcpu_svm *svm = to_svm(vcpu); 1064 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK; 1065 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) || 1066 (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) && 1067 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)); 1068 1069 if (enable_lbrv == current_enable_lbrv) 1070 return; 1071 1072 if (enable_lbrv) 1073 svm_enable_lbrv(vcpu); 1074 else 1075 svm_disable_lbrv(vcpu); 1076 } 1077 1078 void disable_nmi_singlestep(struct vcpu_svm *svm) 1079 { 1080 svm->nmi_singlestep = false; 1081 1082 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 1083 /* Clear our flags if they were not set by the guest */ 1084 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1085 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 1086 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1087 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 1088 } 1089 } 1090 1091 static void grow_ple_window(struct kvm_vcpu *vcpu) 1092 { 1093 struct vcpu_svm *svm = to_svm(vcpu); 1094 struct vmcb_control_area *control = &svm->vmcb->control; 1095 int old = control->pause_filter_count; 1096 1097 if (kvm_pause_in_guest(vcpu->kvm)) 1098 return; 1099 1100 control->pause_filter_count = __grow_ple_window(old, 1101 pause_filter_count, 1102 pause_filter_count_grow, 1103 pause_filter_count_max); 1104 1105 if (control->pause_filter_count != old) { 1106 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1107 trace_kvm_ple_window_update(vcpu->vcpu_id, 1108 control->pause_filter_count, old); 1109 } 1110 } 1111 1112 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1113 { 1114 struct vcpu_svm *svm = to_svm(vcpu); 1115 struct vmcb_control_area *control = &svm->vmcb->control; 1116 int old = control->pause_filter_count; 1117 1118 if (kvm_pause_in_guest(vcpu->kvm)) 1119 return; 1120 1121 control->pause_filter_count = 1122 __shrink_ple_window(old, 1123 pause_filter_count, 1124 pause_filter_count_shrink, 1125 pause_filter_count); 1126 if (control->pause_filter_count != old) { 1127 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1128 trace_kvm_ple_window_update(vcpu->vcpu_id, 1129 control->pause_filter_count, old); 1130 } 1131 } 1132 1133 static void svm_hardware_unsetup(void) 1134 { 1135 int cpu; 1136 1137 sev_hardware_unsetup(); 1138 1139 for_each_possible_cpu(cpu) 1140 svm_cpu_uninit(cpu); 1141 1142 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 1143 get_order(IOPM_SIZE)); 1144 iopm_base = 0; 1145 } 1146 1147 static void init_seg(struct vmcb_seg *seg) 1148 { 1149 seg->selector = 0; 1150 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1151 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1152 seg->limit = 0xffff; 1153 seg->base = 0; 1154 } 1155 1156 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1157 { 1158 seg->selector = 0; 1159 seg->attrib = SVM_SELECTOR_P_MASK | type; 1160 seg->limit = 0xffff; 1161 seg->base = 0; 1162 } 1163 1164 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1165 { 1166 struct vcpu_svm *svm = to_svm(vcpu); 1167 1168 return svm->nested.ctl.tsc_offset; 1169 } 1170 1171 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1172 { 1173 struct vcpu_svm *svm = to_svm(vcpu); 1174 1175 return svm->tsc_ratio_msr; 1176 } 1177 1178 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu) 1179 { 1180 struct vcpu_svm *svm = to_svm(vcpu); 1181 1182 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1183 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset; 1184 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1185 } 1186 1187 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1188 { 1189 preempt_disable(); 1190 if (to_svm(vcpu)->guest_state_loaded) 1191 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1192 preempt_enable(); 1193 } 1194 1195 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1196 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1197 struct vcpu_svm *svm) 1198 { 1199 /* 1200 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1201 * roots, or if INVPCID is disabled in the guest to inject #UD. 1202 */ 1203 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1204 if (!npt_enabled || 1205 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1206 svm_set_intercept(svm, INTERCEPT_INVPCID); 1207 else 1208 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1209 } 1210 1211 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1212 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1213 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1214 else 1215 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1216 } 1217 } 1218 1219 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 1220 { 1221 struct vcpu_svm *svm = to_svm(vcpu); 1222 1223 if (guest_cpuid_is_intel(vcpu)) { 1224 /* 1225 * We must intercept SYSENTER_EIP and SYSENTER_ESP 1226 * accesses because the processor only stores 32 bits. 1227 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 1228 */ 1229 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1230 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1231 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1232 1233 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 1234 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 1235 } else { 1236 /* 1237 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1238 * in VMCB and clear intercepts to avoid #VMEXIT. 1239 */ 1240 if (vls) { 1241 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1242 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1243 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1244 } 1245 /* No need to intercept these MSRs */ 1246 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 1247 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 1248 } 1249 } 1250 1251 static void init_vmcb(struct kvm_vcpu *vcpu) 1252 { 1253 struct vcpu_svm *svm = to_svm(vcpu); 1254 struct vmcb *vmcb = svm->vmcb01.ptr; 1255 struct vmcb_control_area *control = &vmcb->control; 1256 struct vmcb_save_area *save = &vmcb->save; 1257 1258 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1259 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1260 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1261 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1262 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1263 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1264 if (!kvm_vcpu_apicv_active(vcpu)) 1265 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1266 1267 set_dr_intercepts(svm); 1268 1269 set_exception_intercept(svm, PF_VECTOR); 1270 set_exception_intercept(svm, UD_VECTOR); 1271 set_exception_intercept(svm, MC_VECTOR); 1272 set_exception_intercept(svm, AC_VECTOR); 1273 set_exception_intercept(svm, DB_VECTOR); 1274 /* 1275 * Guest access to VMware backdoor ports could legitimately 1276 * trigger #GP because of TSS I/O permission bitmap. 1277 * We intercept those #GP and allow access to them anyway 1278 * as VMware does. 1279 */ 1280 if (enable_vmware_backdoor) 1281 set_exception_intercept(svm, GP_VECTOR); 1282 1283 svm_set_intercept(svm, INTERCEPT_INTR); 1284 svm_set_intercept(svm, INTERCEPT_NMI); 1285 1286 if (intercept_smi) 1287 svm_set_intercept(svm, INTERCEPT_SMI); 1288 1289 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1290 svm_set_intercept(svm, INTERCEPT_RDPMC); 1291 svm_set_intercept(svm, INTERCEPT_CPUID); 1292 svm_set_intercept(svm, INTERCEPT_INVD); 1293 svm_set_intercept(svm, INTERCEPT_INVLPG); 1294 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1295 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1296 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1297 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1298 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1299 svm_set_intercept(svm, INTERCEPT_VMRUN); 1300 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1301 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1302 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1303 svm_set_intercept(svm, INTERCEPT_STGI); 1304 svm_set_intercept(svm, INTERCEPT_CLGI); 1305 svm_set_intercept(svm, INTERCEPT_SKINIT); 1306 svm_set_intercept(svm, INTERCEPT_WBINVD); 1307 svm_set_intercept(svm, INTERCEPT_XSETBV); 1308 svm_set_intercept(svm, INTERCEPT_RDPRU); 1309 svm_set_intercept(svm, INTERCEPT_RSM); 1310 1311 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1312 svm_set_intercept(svm, INTERCEPT_MONITOR); 1313 svm_set_intercept(svm, INTERCEPT_MWAIT); 1314 } 1315 1316 if (!kvm_hlt_in_guest(vcpu->kvm)) 1317 svm_set_intercept(svm, INTERCEPT_HLT); 1318 1319 control->iopm_base_pa = __sme_set(iopm_base); 1320 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1321 control->int_ctl = V_INTR_MASKING_MASK; 1322 1323 init_seg(&save->es); 1324 init_seg(&save->ss); 1325 init_seg(&save->ds); 1326 init_seg(&save->fs); 1327 init_seg(&save->gs); 1328 1329 save->cs.selector = 0xf000; 1330 save->cs.base = 0xffff0000; 1331 /* Executable/Readable Code Segment */ 1332 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1333 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1334 save->cs.limit = 0xffff; 1335 1336 save->gdtr.base = 0; 1337 save->gdtr.limit = 0xffff; 1338 save->idtr.base = 0; 1339 save->idtr.limit = 0xffff; 1340 1341 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1342 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1343 1344 if (npt_enabled) { 1345 /* Setup VMCB for Nested Paging */ 1346 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1347 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1348 clr_exception_intercept(svm, PF_VECTOR); 1349 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1350 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1351 save->g_pat = vcpu->arch.pat; 1352 save->cr3 = 0; 1353 } 1354 svm->current_vmcb->asid_generation = 0; 1355 svm->asid = 0; 1356 1357 svm->nested.vmcb12_gpa = INVALID_GPA; 1358 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1359 1360 if (!kvm_pause_in_guest(vcpu->kvm)) { 1361 control->pause_filter_count = pause_filter_count; 1362 if (pause_filter_thresh) 1363 control->pause_filter_thresh = pause_filter_thresh; 1364 svm_set_intercept(svm, INTERCEPT_PAUSE); 1365 } else { 1366 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1367 } 1368 1369 svm_recalc_instruction_intercepts(vcpu, svm); 1370 1371 /* 1372 * If the host supports V_SPEC_CTRL then disable the interception 1373 * of MSR_IA32_SPEC_CTRL. 1374 */ 1375 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1376 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1377 1378 if (kvm_vcpu_apicv_active(vcpu)) 1379 avic_init_vmcb(svm, vmcb); 1380 1381 if (vnmi) 1382 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; 1383 1384 if (vgif) { 1385 svm_clr_intercept(svm, INTERCEPT_STGI); 1386 svm_clr_intercept(svm, INTERCEPT_CLGI); 1387 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1388 } 1389 1390 if (sev_guest(vcpu->kvm)) 1391 sev_init_vmcb(svm); 1392 1393 svm_hv_init_vmcb(vmcb); 1394 init_vmcb_after_set_cpuid(vcpu); 1395 1396 vmcb_mark_all_dirty(vmcb); 1397 1398 enable_gif(svm); 1399 } 1400 1401 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1402 { 1403 struct vcpu_svm *svm = to_svm(vcpu); 1404 1405 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1406 1407 svm_init_osvw(vcpu); 1408 vcpu->arch.microcode_version = 0x01000065; 1409 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1410 1411 svm->nmi_masked = false; 1412 svm->awaiting_iret_completion = false; 1413 1414 if (sev_es_guest(vcpu->kvm)) 1415 sev_es_vcpu_reset(svm); 1416 } 1417 1418 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1419 { 1420 struct vcpu_svm *svm = to_svm(vcpu); 1421 1422 svm->spec_ctrl = 0; 1423 svm->virt_spec_ctrl = 0; 1424 1425 init_vmcb(vcpu); 1426 1427 if (!init_event) 1428 __svm_vcpu_reset(vcpu); 1429 } 1430 1431 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1432 { 1433 svm->current_vmcb = target_vmcb; 1434 svm->vmcb = target_vmcb->ptr; 1435 } 1436 1437 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1438 { 1439 struct vcpu_svm *svm; 1440 struct page *vmcb01_page; 1441 struct page *vmsa_page = NULL; 1442 int err; 1443 1444 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1445 svm = to_svm(vcpu); 1446 1447 err = -ENOMEM; 1448 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1449 if (!vmcb01_page) 1450 goto out; 1451 1452 if (sev_es_guest(vcpu->kvm)) { 1453 /* 1454 * SEV-ES guests require a separate VMSA page used to contain 1455 * the encrypted register state of the guest. 1456 */ 1457 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1458 if (!vmsa_page) 1459 goto error_free_vmcb_page; 1460 1461 /* 1462 * SEV-ES guests maintain an encrypted version of their FPU 1463 * state which is restored and saved on VMRUN and VMEXIT. 1464 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 1465 * do xsave/xrstor on it. 1466 */ 1467 fpstate_set_confidential(&vcpu->arch.guest_fpu); 1468 } 1469 1470 err = avic_init_vcpu(svm); 1471 if (err) 1472 goto error_free_vmsa_page; 1473 1474 svm->msrpm = svm_vcpu_alloc_msrpm(); 1475 if (!svm->msrpm) { 1476 err = -ENOMEM; 1477 goto error_free_vmsa_page; 1478 } 1479 1480 svm->x2avic_msrs_intercepted = true; 1481 1482 svm->vmcb01.ptr = page_address(vmcb01_page); 1483 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1484 svm_switch_vmcb(svm, &svm->vmcb01); 1485 1486 if (vmsa_page) 1487 svm->sev_es.vmsa = page_address(vmsa_page); 1488 1489 svm->guest_state_loaded = false; 1490 1491 return 0; 1492 1493 error_free_vmsa_page: 1494 if (vmsa_page) 1495 __free_page(vmsa_page); 1496 error_free_vmcb_page: 1497 __free_page(vmcb01_page); 1498 out: 1499 return err; 1500 } 1501 1502 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1503 { 1504 int i; 1505 1506 for_each_online_cpu(i) 1507 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL); 1508 } 1509 1510 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1511 { 1512 struct vcpu_svm *svm = to_svm(vcpu); 1513 1514 /* 1515 * The vmcb page can be recycled, causing a false negative in 1516 * svm_vcpu_load(). So, ensure that no logical CPU has this 1517 * vmcb page recorded as its current vmcb. 1518 */ 1519 svm_clear_current_vmcb(svm->vmcb); 1520 1521 svm_leave_nested(vcpu); 1522 svm_free_nested(svm); 1523 1524 sev_free_vcpu(vcpu); 1525 1526 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1527 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1528 } 1529 1530 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1531 { 1532 struct vcpu_svm *svm = to_svm(vcpu); 1533 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 1534 1535 if (sev_es_guest(vcpu->kvm)) 1536 sev_es_unmap_ghcb(svm); 1537 1538 if (svm->guest_state_loaded) 1539 return; 1540 1541 /* 1542 * Save additional host state that will be restored on VMEXIT (sev-es) 1543 * or subsequent vmload of host save area. 1544 */ 1545 vmsave(sd->save_area_pa); 1546 if (sev_es_guest(vcpu->kvm)) { 1547 struct sev_es_save_area *hostsa; 1548 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); 1549 1550 sev_es_prepare_switch_to_guest(hostsa); 1551 } 1552 1553 if (tsc_scaling) 1554 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1555 1556 /* 1557 * TSC_AUX is always virtualized for SEV-ES guests when the feature is 1558 * available. The user return MSR support is not required in this case 1559 * because TSC_AUX is restored on #VMEXIT from the host save area 1560 * (which has been initialized in svm_hardware_enable()). 1561 */ 1562 if (likely(tsc_aux_uret_slot >= 0) && 1563 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm))) 1564 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1565 1566 svm->guest_state_loaded = true; 1567 } 1568 1569 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1570 { 1571 to_svm(vcpu)->guest_state_loaded = false; 1572 } 1573 1574 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1575 { 1576 struct vcpu_svm *svm = to_svm(vcpu); 1577 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 1578 1579 if (sd->current_vmcb != svm->vmcb) { 1580 sd->current_vmcb = svm->vmcb; 1581 1582 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT)) 1583 indirect_branch_prediction_barrier(); 1584 } 1585 if (kvm_vcpu_apicv_active(vcpu)) 1586 avic_vcpu_load(vcpu, cpu); 1587 } 1588 1589 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1590 { 1591 if (kvm_vcpu_apicv_active(vcpu)) 1592 avic_vcpu_put(vcpu); 1593 1594 svm_prepare_host_switch(vcpu); 1595 1596 ++vcpu->stat.host_state_reload; 1597 } 1598 1599 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1600 { 1601 struct vcpu_svm *svm = to_svm(vcpu); 1602 unsigned long rflags = svm->vmcb->save.rflags; 1603 1604 if (svm->nmi_singlestep) { 1605 /* Hide our flags if they were not set by the guest */ 1606 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1607 rflags &= ~X86_EFLAGS_TF; 1608 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1609 rflags &= ~X86_EFLAGS_RF; 1610 } 1611 return rflags; 1612 } 1613 1614 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1615 { 1616 if (to_svm(vcpu)->nmi_singlestep) 1617 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1618 1619 /* 1620 * Any change of EFLAGS.VM is accompanied by a reload of SS 1621 * (caused by either a task switch or an inter-privilege IRET), 1622 * so we do not need to update the CPL here. 1623 */ 1624 to_svm(vcpu)->vmcb->save.rflags = rflags; 1625 } 1626 1627 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1628 { 1629 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1630 1631 return sev_es_guest(vcpu->kvm) 1632 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1633 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1634 } 1635 1636 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1637 { 1638 kvm_register_mark_available(vcpu, reg); 1639 1640 switch (reg) { 1641 case VCPU_EXREG_PDPTR: 1642 /* 1643 * When !npt_enabled, mmu->pdptrs[] is already available since 1644 * it is always updated per SDM when moving to CRs. 1645 */ 1646 if (npt_enabled) 1647 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1648 break; 1649 default: 1650 KVM_BUG_ON(1, vcpu->kvm); 1651 } 1652 } 1653 1654 static void svm_set_vintr(struct vcpu_svm *svm) 1655 { 1656 struct vmcb_control_area *control; 1657 1658 /* 1659 * The following fields are ignored when AVIC is enabled 1660 */ 1661 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1662 1663 svm_set_intercept(svm, INTERCEPT_VINTR); 1664 1665 /* 1666 * Recalculating intercepts may have cleared the VINTR intercept. If 1667 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF 1668 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. 1669 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as 1670 * interrupts will never be unblocked while L2 is running. 1671 */ 1672 if (!svm_is_intercept(svm, INTERCEPT_VINTR)) 1673 return; 1674 1675 /* 1676 * This is just a dummy VINTR to actually cause a vmexit to happen. 1677 * Actual injection of virtual interrupts happens through EVENTINJ. 1678 */ 1679 control = &svm->vmcb->control; 1680 control->int_vector = 0x0; 1681 control->int_ctl &= ~V_INTR_PRIO_MASK; 1682 control->int_ctl |= V_IRQ_MASK | 1683 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1684 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1685 } 1686 1687 static void svm_clear_vintr(struct vcpu_svm *svm) 1688 { 1689 svm_clr_intercept(svm, INTERCEPT_VINTR); 1690 1691 /* Drop int_ctl fields related to VINTR injection. */ 1692 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1693 if (is_guest_mode(&svm->vcpu)) { 1694 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1695 1696 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1697 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1698 1699 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1700 V_IRQ_INJECTION_BITS_MASK; 1701 1702 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1703 } 1704 1705 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1706 } 1707 1708 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1709 { 1710 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1711 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1712 1713 switch (seg) { 1714 case VCPU_SREG_CS: return &save->cs; 1715 case VCPU_SREG_DS: return &save->ds; 1716 case VCPU_SREG_ES: return &save->es; 1717 case VCPU_SREG_FS: return &save01->fs; 1718 case VCPU_SREG_GS: return &save01->gs; 1719 case VCPU_SREG_SS: return &save->ss; 1720 case VCPU_SREG_TR: return &save01->tr; 1721 case VCPU_SREG_LDTR: return &save01->ldtr; 1722 } 1723 BUG(); 1724 return NULL; 1725 } 1726 1727 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1728 { 1729 struct vmcb_seg *s = svm_seg(vcpu, seg); 1730 1731 return s->base; 1732 } 1733 1734 static void svm_get_segment(struct kvm_vcpu *vcpu, 1735 struct kvm_segment *var, int seg) 1736 { 1737 struct vmcb_seg *s = svm_seg(vcpu, seg); 1738 1739 var->base = s->base; 1740 var->limit = s->limit; 1741 var->selector = s->selector; 1742 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1743 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1744 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1745 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1746 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1747 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1748 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1749 1750 /* 1751 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1752 * However, the SVM spec states that the G bit is not observed by the 1753 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1754 * So let's synthesize a legal G bit for all segments, this helps 1755 * running KVM nested. It also helps cross-vendor migration, because 1756 * Intel's vmentry has a check on the 'G' bit. 1757 */ 1758 var->g = s->limit > 0xfffff; 1759 1760 /* 1761 * AMD's VMCB does not have an explicit unusable field, so emulate it 1762 * for cross vendor migration purposes by "not present" 1763 */ 1764 var->unusable = !var->present; 1765 1766 switch (seg) { 1767 case VCPU_SREG_TR: 1768 /* 1769 * Work around a bug where the busy flag in the tr selector 1770 * isn't exposed 1771 */ 1772 var->type |= 0x2; 1773 break; 1774 case VCPU_SREG_DS: 1775 case VCPU_SREG_ES: 1776 case VCPU_SREG_FS: 1777 case VCPU_SREG_GS: 1778 /* 1779 * The accessed bit must always be set in the segment 1780 * descriptor cache, although it can be cleared in the 1781 * descriptor, the cached bit always remains at 1. Since 1782 * Intel has a check on this, set it here to support 1783 * cross-vendor migration. 1784 */ 1785 if (!var->unusable) 1786 var->type |= 0x1; 1787 break; 1788 case VCPU_SREG_SS: 1789 /* 1790 * On AMD CPUs sometimes the DB bit in the segment 1791 * descriptor is left as 1, although the whole segment has 1792 * been made unusable. Clear it here to pass an Intel VMX 1793 * entry check when cross vendor migrating. 1794 */ 1795 if (var->unusable) 1796 var->db = 0; 1797 /* This is symmetric with svm_set_segment() */ 1798 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1799 break; 1800 } 1801 } 1802 1803 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1804 { 1805 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1806 1807 return save->cpl; 1808 } 1809 1810 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1811 { 1812 struct kvm_segment cs; 1813 1814 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1815 *db = cs.db; 1816 *l = cs.l; 1817 } 1818 1819 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1820 { 1821 struct vcpu_svm *svm = to_svm(vcpu); 1822 1823 dt->size = svm->vmcb->save.idtr.limit; 1824 dt->address = svm->vmcb->save.idtr.base; 1825 } 1826 1827 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1828 { 1829 struct vcpu_svm *svm = to_svm(vcpu); 1830 1831 svm->vmcb->save.idtr.limit = dt->size; 1832 svm->vmcb->save.idtr.base = dt->address ; 1833 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1834 } 1835 1836 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1837 { 1838 struct vcpu_svm *svm = to_svm(vcpu); 1839 1840 dt->size = svm->vmcb->save.gdtr.limit; 1841 dt->address = svm->vmcb->save.gdtr.base; 1842 } 1843 1844 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1845 { 1846 struct vcpu_svm *svm = to_svm(vcpu); 1847 1848 svm->vmcb->save.gdtr.limit = dt->size; 1849 svm->vmcb->save.gdtr.base = dt->address ; 1850 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1851 } 1852 1853 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1854 { 1855 struct vcpu_svm *svm = to_svm(vcpu); 1856 1857 /* 1858 * For guests that don't set guest_state_protected, the cr3 update is 1859 * handled via kvm_mmu_load() while entering the guest. For guests 1860 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1861 * VMCB save area now, since the save area will become the initial 1862 * contents of the VMSA, and future VMCB save area updates won't be 1863 * seen. 1864 */ 1865 if (sev_es_guest(vcpu->kvm)) { 1866 svm->vmcb->save.cr3 = cr3; 1867 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1868 } 1869 } 1870 1871 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1872 { 1873 return true; 1874 } 1875 1876 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1877 { 1878 struct vcpu_svm *svm = to_svm(vcpu); 1879 u64 hcr0 = cr0; 1880 bool old_paging = is_paging(vcpu); 1881 1882 #ifdef CONFIG_X86_64 1883 if (vcpu->arch.efer & EFER_LME) { 1884 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1885 vcpu->arch.efer |= EFER_LMA; 1886 if (!vcpu->arch.guest_state_protected) 1887 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1888 } 1889 1890 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1891 vcpu->arch.efer &= ~EFER_LMA; 1892 if (!vcpu->arch.guest_state_protected) 1893 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1894 } 1895 } 1896 #endif 1897 vcpu->arch.cr0 = cr0; 1898 1899 if (!npt_enabled) { 1900 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1901 if (old_paging != is_paging(vcpu)) 1902 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1903 } 1904 1905 /* 1906 * re-enable caching here because the QEMU bios 1907 * does not do it - this results in some delay at 1908 * reboot 1909 */ 1910 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1911 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1912 1913 svm->vmcb->save.cr0 = hcr0; 1914 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1915 1916 /* 1917 * SEV-ES guests must always keep the CR intercepts cleared. CR 1918 * tracking is done using the CR write traps. 1919 */ 1920 if (sev_es_guest(vcpu->kvm)) 1921 return; 1922 1923 if (hcr0 == cr0) { 1924 /* Selective CR0 write remains on. */ 1925 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1926 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1927 } else { 1928 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1929 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1930 } 1931 } 1932 1933 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1934 { 1935 return true; 1936 } 1937 1938 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1939 { 1940 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1941 unsigned long old_cr4 = vcpu->arch.cr4; 1942 1943 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1944 svm_flush_tlb_current(vcpu); 1945 1946 vcpu->arch.cr4 = cr4; 1947 if (!npt_enabled) { 1948 cr4 |= X86_CR4_PAE; 1949 1950 if (!is_paging(vcpu)) 1951 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1952 } 1953 cr4 |= host_cr4_mce; 1954 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1955 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1956 1957 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1958 kvm_update_cpuid_runtime(vcpu); 1959 } 1960 1961 static void svm_set_segment(struct kvm_vcpu *vcpu, 1962 struct kvm_segment *var, int seg) 1963 { 1964 struct vcpu_svm *svm = to_svm(vcpu); 1965 struct vmcb_seg *s = svm_seg(vcpu, seg); 1966 1967 s->base = var->base; 1968 s->limit = var->limit; 1969 s->selector = var->selector; 1970 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1971 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1972 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1973 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1974 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1975 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1976 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1977 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1978 1979 /* 1980 * This is always accurate, except if SYSRET returned to a segment 1981 * with SS.DPL != 3. Intel does not have this quirk, and always 1982 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1983 * would entail passing the CPL to userspace and back. 1984 */ 1985 if (seg == VCPU_SREG_SS) 1986 /* This is symmetric with svm_get_segment() */ 1987 svm->vmcb->save.cpl = (var->dpl & 3); 1988 1989 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1990 } 1991 1992 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1993 { 1994 struct vcpu_svm *svm = to_svm(vcpu); 1995 1996 clr_exception_intercept(svm, BP_VECTOR); 1997 1998 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1999 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 2000 set_exception_intercept(svm, BP_VECTOR); 2001 } 2002 } 2003 2004 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 2005 { 2006 if (sd->next_asid > sd->max_asid) { 2007 ++sd->asid_generation; 2008 sd->next_asid = sd->min_asid; 2009 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 2010 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2011 } 2012 2013 svm->current_vmcb->asid_generation = sd->asid_generation; 2014 svm->asid = sd->next_asid++; 2015 } 2016 2017 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 2018 { 2019 struct vmcb *vmcb = svm->vmcb; 2020 2021 if (svm->vcpu.arch.guest_state_protected) 2022 return; 2023 2024 if (unlikely(value != vmcb->save.dr6)) { 2025 vmcb->save.dr6 = value; 2026 vmcb_mark_dirty(vmcb, VMCB_DR); 2027 } 2028 } 2029 2030 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 2031 { 2032 struct vcpu_svm *svm = to_svm(vcpu); 2033 2034 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm))) 2035 return; 2036 2037 get_debugreg(vcpu->arch.db[0], 0); 2038 get_debugreg(vcpu->arch.db[1], 1); 2039 get_debugreg(vcpu->arch.db[2], 2); 2040 get_debugreg(vcpu->arch.db[3], 3); 2041 /* 2042 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 2043 * because db_interception might need it. We can do it before vmentry. 2044 */ 2045 vcpu->arch.dr6 = svm->vmcb->save.dr6; 2046 vcpu->arch.dr7 = svm->vmcb->save.dr7; 2047 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 2048 set_dr_intercepts(svm); 2049 } 2050 2051 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 2052 { 2053 struct vcpu_svm *svm = to_svm(vcpu); 2054 2055 if (vcpu->arch.guest_state_protected) 2056 return; 2057 2058 svm->vmcb->save.dr7 = value; 2059 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 2060 } 2061 2062 static int pf_interception(struct kvm_vcpu *vcpu) 2063 { 2064 struct vcpu_svm *svm = to_svm(vcpu); 2065 2066 u64 fault_address = svm->vmcb->control.exit_info_2; 2067 u64 error_code = svm->vmcb->control.exit_info_1; 2068 2069 return kvm_handle_page_fault(vcpu, error_code, fault_address, 2070 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2071 svm->vmcb->control.insn_bytes : NULL, 2072 svm->vmcb->control.insn_len); 2073 } 2074 2075 static int npf_interception(struct kvm_vcpu *vcpu) 2076 { 2077 struct vcpu_svm *svm = to_svm(vcpu); 2078 2079 u64 fault_address = svm->vmcb->control.exit_info_2; 2080 u64 error_code = svm->vmcb->control.exit_info_1; 2081 2082 trace_kvm_page_fault(vcpu, fault_address, error_code); 2083 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 2084 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2085 svm->vmcb->control.insn_bytes : NULL, 2086 svm->vmcb->control.insn_len); 2087 } 2088 2089 static int db_interception(struct kvm_vcpu *vcpu) 2090 { 2091 struct kvm_run *kvm_run = vcpu->run; 2092 struct vcpu_svm *svm = to_svm(vcpu); 2093 2094 if (!(vcpu->guest_debug & 2095 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 2096 !svm->nmi_singlestep) { 2097 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 2098 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 2099 return 1; 2100 } 2101 2102 if (svm->nmi_singlestep) { 2103 disable_nmi_singlestep(svm); 2104 /* Make sure we check for pending NMIs upon entry */ 2105 kvm_make_request(KVM_REQ_EVENT, vcpu); 2106 } 2107 2108 if (vcpu->guest_debug & 2109 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 2110 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2111 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 2112 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 2113 kvm_run->debug.arch.pc = 2114 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2115 kvm_run->debug.arch.exception = DB_VECTOR; 2116 return 0; 2117 } 2118 2119 return 1; 2120 } 2121 2122 static int bp_interception(struct kvm_vcpu *vcpu) 2123 { 2124 struct vcpu_svm *svm = to_svm(vcpu); 2125 struct kvm_run *kvm_run = vcpu->run; 2126 2127 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2128 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2129 kvm_run->debug.arch.exception = BP_VECTOR; 2130 return 0; 2131 } 2132 2133 static int ud_interception(struct kvm_vcpu *vcpu) 2134 { 2135 return handle_ud(vcpu); 2136 } 2137 2138 static int ac_interception(struct kvm_vcpu *vcpu) 2139 { 2140 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 2141 return 1; 2142 } 2143 2144 static bool is_erratum_383(void) 2145 { 2146 int err, i; 2147 u64 value; 2148 2149 if (!erratum_383_found) 2150 return false; 2151 2152 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 2153 if (err) 2154 return false; 2155 2156 /* Bit 62 may or may not be set for this mce */ 2157 value &= ~(1ULL << 62); 2158 2159 if (value != 0xb600000000010015ULL) 2160 return false; 2161 2162 /* Clear MCi_STATUS registers */ 2163 for (i = 0; i < 6; ++i) 2164 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 2165 2166 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 2167 if (!err) { 2168 u32 low, high; 2169 2170 value &= ~(1ULL << 2); 2171 low = lower_32_bits(value); 2172 high = upper_32_bits(value); 2173 2174 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2175 } 2176 2177 /* Flush tlb to evict multi-match entries */ 2178 __flush_tlb_all(); 2179 2180 return true; 2181 } 2182 2183 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2184 { 2185 if (is_erratum_383()) { 2186 /* 2187 * Erratum 383 triggered. Guest state is corrupt so kill the 2188 * guest. 2189 */ 2190 pr_err("Guest triggered AMD Erratum 383\n"); 2191 2192 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2193 2194 return; 2195 } 2196 2197 /* 2198 * On an #MC intercept the MCE handler is not called automatically in 2199 * the host. So do it by hand here. 2200 */ 2201 kvm_machine_check(); 2202 } 2203 2204 static int mc_interception(struct kvm_vcpu *vcpu) 2205 { 2206 return 1; 2207 } 2208 2209 static int shutdown_interception(struct kvm_vcpu *vcpu) 2210 { 2211 struct kvm_run *kvm_run = vcpu->run; 2212 struct vcpu_svm *svm = to_svm(vcpu); 2213 2214 /* 2215 * The VM save area has already been encrypted so it 2216 * cannot be reinitialized - just terminate. 2217 */ 2218 if (sev_es_guest(vcpu->kvm)) 2219 return -EINVAL; 2220 2221 /* 2222 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2223 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2224 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2225 * userspace. At a platform view, INIT is acceptable behavior as 2226 * there exist bare metal platforms that automatically INIT the CPU 2227 * in response to shutdown. 2228 */ 2229 clear_page(svm->vmcb); 2230 kvm_vcpu_reset(vcpu, true); 2231 2232 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2233 return 0; 2234 } 2235 2236 static int io_interception(struct kvm_vcpu *vcpu) 2237 { 2238 struct vcpu_svm *svm = to_svm(vcpu); 2239 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2240 int size, in, string; 2241 unsigned port; 2242 2243 ++vcpu->stat.io_exits; 2244 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2245 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2246 port = io_info >> 16; 2247 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2248 2249 if (string) { 2250 if (sev_es_guest(vcpu->kvm)) 2251 return sev_es_string_io(svm, size, port, in); 2252 else 2253 return kvm_emulate_instruction(vcpu, 0); 2254 } 2255 2256 svm->next_rip = svm->vmcb->control.exit_info_2; 2257 2258 return kvm_fast_pio(vcpu, size, port, in); 2259 } 2260 2261 static int nmi_interception(struct kvm_vcpu *vcpu) 2262 { 2263 return 1; 2264 } 2265 2266 static int smi_interception(struct kvm_vcpu *vcpu) 2267 { 2268 return 1; 2269 } 2270 2271 static int intr_interception(struct kvm_vcpu *vcpu) 2272 { 2273 ++vcpu->stat.irq_exits; 2274 return 1; 2275 } 2276 2277 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2278 { 2279 struct vcpu_svm *svm = to_svm(vcpu); 2280 struct vmcb *vmcb12; 2281 struct kvm_host_map map; 2282 int ret; 2283 2284 if (nested_svm_check_permissions(vcpu)) 2285 return 1; 2286 2287 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2288 if (ret) { 2289 if (ret == -EINVAL) 2290 kvm_inject_gp(vcpu, 0); 2291 return 1; 2292 } 2293 2294 vmcb12 = map.hva; 2295 2296 ret = kvm_skip_emulated_instruction(vcpu); 2297 2298 if (vmload) { 2299 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2300 svm->sysenter_eip_hi = 0; 2301 svm->sysenter_esp_hi = 0; 2302 } else { 2303 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2304 } 2305 2306 kvm_vcpu_unmap(vcpu, &map, true); 2307 2308 return ret; 2309 } 2310 2311 static int vmload_interception(struct kvm_vcpu *vcpu) 2312 { 2313 return vmload_vmsave_interception(vcpu, true); 2314 } 2315 2316 static int vmsave_interception(struct kvm_vcpu *vcpu) 2317 { 2318 return vmload_vmsave_interception(vcpu, false); 2319 } 2320 2321 static int vmrun_interception(struct kvm_vcpu *vcpu) 2322 { 2323 if (nested_svm_check_permissions(vcpu)) 2324 return 1; 2325 2326 return nested_svm_vmrun(vcpu); 2327 } 2328 2329 enum { 2330 NONE_SVM_INSTR, 2331 SVM_INSTR_VMRUN, 2332 SVM_INSTR_VMLOAD, 2333 SVM_INSTR_VMSAVE, 2334 }; 2335 2336 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2337 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2338 { 2339 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2340 2341 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2342 return NONE_SVM_INSTR; 2343 2344 switch (ctxt->modrm) { 2345 case 0xd8: /* VMRUN */ 2346 return SVM_INSTR_VMRUN; 2347 case 0xda: /* VMLOAD */ 2348 return SVM_INSTR_VMLOAD; 2349 case 0xdb: /* VMSAVE */ 2350 return SVM_INSTR_VMSAVE; 2351 default: 2352 break; 2353 } 2354 2355 return NONE_SVM_INSTR; 2356 } 2357 2358 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2359 { 2360 const int guest_mode_exit_codes[] = { 2361 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2362 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2363 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2364 }; 2365 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2366 [SVM_INSTR_VMRUN] = vmrun_interception, 2367 [SVM_INSTR_VMLOAD] = vmload_interception, 2368 [SVM_INSTR_VMSAVE] = vmsave_interception, 2369 }; 2370 struct vcpu_svm *svm = to_svm(vcpu); 2371 int ret; 2372 2373 if (is_guest_mode(vcpu)) { 2374 /* Returns '1' or -errno on failure, '0' on success. */ 2375 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2376 if (ret) 2377 return ret; 2378 return 1; 2379 } 2380 return svm_instr_handlers[opcode](vcpu); 2381 } 2382 2383 /* 2384 * #GP handling code. Note that #GP can be triggered under the following two 2385 * cases: 2386 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2387 * some AMD CPUs when EAX of these instructions are in the reserved memory 2388 * regions (e.g. SMM memory on host). 2389 * 2) VMware backdoor 2390 */ 2391 static int gp_interception(struct kvm_vcpu *vcpu) 2392 { 2393 struct vcpu_svm *svm = to_svm(vcpu); 2394 u32 error_code = svm->vmcb->control.exit_info_1; 2395 int opcode; 2396 2397 /* Both #GP cases have zero error_code */ 2398 if (error_code) 2399 goto reinject; 2400 2401 /* Decode the instruction for usage later */ 2402 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2403 goto reinject; 2404 2405 opcode = svm_instr_opcode(vcpu); 2406 2407 if (opcode == NONE_SVM_INSTR) { 2408 if (!enable_vmware_backdoor) 2409 goto reinject; 2410 2411 /* 2412 * VMware backdoor emulation on #GP interception only handles 2413 * IN{S}, OUT{S}, and RDPMC. 2414 */ 2415 if (!is_guest_mode(vcpu)) 2416 return kvm_emulate_instruction(vcpu, 2417 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2418 } else { 2419 /* All SVM instructions expect page aligned RAX */ 2420 if (svm->vmcb->save.rax & ~PAGE_MASK) 2421 goto reinject; 2422 2423 return emulate_svm_instr(vcpu, opcode); 2424 } 2425 2426 reinject: 2427 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2428 return 1; 2429 } 2430 2431 void svm_set_gif(struct vcpu_svm *svm, bool value) 2432 { 2433 if (value) { 2434 /* 2435 * If VGIF is enabled, the STGI intercept is only added to 2436 * detect the opening of the SMI/NMI window; remove it now. 2437 * Likewise, clear the VINTR intercept, we will set it 2438 * again while processing KVM_REQ_EVENT if needed. 2439 */ 2440 if (vgif) 2441 svm_clr_intercept(svm, INTERCEPT_STGI); 2442 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2443 svm_clear_vintr(svm); 2444 2445 enable_gif(svm); 2446 if (svm->vcpu.arch.smi_pending || 2447 svm->vcpu.arch.nmi_pending || 2448 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2449 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2450 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2451 } else { 2452 disable_gif(svm); 2453 2454 /* 2455 * After a CLGI no interrupts should come. But if vGIF is 2456 * in use, we still rely on the VINTR intercept (rather than 2457 * STGI) to detect an open interrupt window. 2458 */ 2459 if (!vgif) 2460 svm_clear_vintr(svm); 2461 } 2462 } 2463 2464 static int stgi_interception(struct kvm_vcpu *vcpu) 2465 { 2466 int ret; 2467 2468 if (nested_svm_check_permissions(vcpu)) 2469 return 1; 2470 2471 ret = kvm_skip_emulated_instruction(vcpu); 2472 svm_set_gif(to_svm(vcpu), true); 2473 return ret; 2474 } 2475 2476 static int clgi_interception(struct kvm_vcpu *vcpu) 2477 { 2478 int ret; 2479 2480 if (nested_svm_check_permissions(vcpu)) 2481 return 1; 2482 2483 ret = kvm_skip_emulated_instruction(vcpu); 2484 svm_set_gif(to_svm(vcpu), false); 2485 return ret; 2486 } 2487 2488 static int invlpga_interception(struct kvm_vcpu *vcpu) 2489 { 2490 gva_t gva = kvm_rax_read(vcpu); 2491 u32 asid = kvm_rcx_read(vcpu); 2492 2493 /* FIXME: Handle an address size prefix. */ 2494 if (!is_long_mode(vcpu)) 2495 gva = (u32)gva; 2496 2497 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2498 2499 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2500 kvm_mmu_invlpg(vcpu, gva); 2501 2502 return kvm_skip_emulated_instruction(vcpu); 2503 } 2504 2505 static int skinit_interception(struct kvm_vcpu *vcpu) 2506 { 2507 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2508 2509 kvm_queue_exception(vcpu, UD_VECTOR); 2510 return 1; 2511 } 2512 2513 static int task_switch_interception(struct kvm_vcpu *vcpu) 2514 { 2515 struct vcpu_svm *svm = to_svm(vcpu); 2516 u16 tss_selector; 2517 int reason; 2518 int int_type = svm->vmcb->control.exit_int_info & 2519 SVM_EXITINTINFO_TYPE_MASK; 2520 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2521 uint32_t type = 2522 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2523 uint32_t idt_v = 2524 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2525 bool has_error_code = false; 2526 u32 error_code = 0; 2527 2528 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2529 2530 if (svm->vmcb->control.exit_info_2 & 2531 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2532 reason = TASK_SWITCH_IRET; 2533 else if (svm->vmcb->control.exit_info_2 & 2534 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2535 reason = TASK_SWITCH_JMP; 2536 else if (idt_v) 2537 reason = TASK_SWITCH_GATE; 2538 else 2539 reason = TASK_SWITCH_CALL; 2540 2541 if (reason == TASK_SWITCH_GATE) { 2542 switch (type) { 2543 case SVM_EXITINTINFO_TYPE_NMI: 2544 vcpu->arch.nmi_injected = false; 2545 break; 2546 case SVM_EXITINTINFO_TYPE_EXEPT: 2547 if (svm->vmcb->control.exit_info_2 & 2548 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2549 has_error_code = true; 2550 error_code = 2551 (u32)svm->vmcb->control.exit_info_2; 2552 } 2553 kvm_clear_exception_queue(vcpu); 2554 break; 2555 case SVM_EXITINTINFO_TYPE_INTR: 2556 case SVM_EXITINTINFO_TYPE_SOFT: 2557 kvm_clear_interrupt_queue(vcpu); 2558 break; 2559 default: 2560 break; 2561 } 2562 } 2563 2564 if (reason != TASK_SWITCH_GATE || 2565 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2566 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2567 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2568 if (!svm_skip_emulated_instruction(vcpu)) 2569 return 0; 2570 } 2571 2572 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2573 int_vec = -1; 2574 2575 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2576 has_error_code, error_code); 2577 } 2578 2579 static void svm_clr_iret_intercept(struct vcpu_svm *svm) 2580 { 2581 if (!sev_es_guest(svm->vcpu.kvm)) 2582 svm_clr_intercept(svm, INTERCEPT_IRET); 2583 } 2584 2585 static void svm_set_iret_intercept(struct vcpu_svm *svm) 2586 { 2587 if (!sev_es_guest(svm->vcpu.kvm)) 2588 svm_set_intercept(svm, INTERCEPT_IRET); 2589 } 2590 2591 static int iret_interception(struct kvm_vcpu *vcpu) 2592 { 2593 struct vcpu_svm *svm = to_svm(vcpu); 2594 2595 WARN_ON_ONCE(sev_es_guest(vcpu->kvm)); 2596 2597 ++vcpu->stat.nmi_window_exits; 2598 svm->awaiting_iret_completion = true; 2599 2600 svm_clr_iret_intercept(svm); 2601 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2602 2603 kvm_make_request(KVM_REQ_EVENT, vcpu); 2604 return 1; 2605 } 2606 2607 static int invlpg_interception(struct kvm_vcpu *vcpu) 2608 { 2609 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2610 return kvm_emulate_instruction(vcpu, 0); 2611 2612 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2613 return kvm_skip_emulated_instruction(vcpu); 2614 } 2615 2616 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2617 { 2618 return kvm_emulate_instruction(vcpu, 0); 2619 } 2620 2621 static int rsm_interception(struct kvm_vcpu *vcpu) 2622 { 2623 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2624 } 2625 2626 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2627 unsigned long val) 2628 { 2629 struct vcpu_svm *svm = to_svm(vcpu); 2630 unsigned long cr0 = vcpu->arch.cr0; 2631 bool ret = false; 2632 2633 if (!is_guest_mode(vcpu) || 2634 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2635 return false; 2636 2637 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2638 val &= ~SVM_CR0_SELECTIVE_MASK; 2639 2640 if (cr0 ^ val) { 2641 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2642 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2643 } 2644 2645 return ret; 2646 } 2647 2648 #define CR_VALID (1ULL << 63) 2649 2650 static int cr_interception(struct kvm_vcpu *vcpu) 2651 { 2652 struct vcpu_svm *svm = to_svm(vcpu); 2653 int reg, cr; 2654 unsigned long val; 2655 int err; 2656 2657 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2658 return emulate_on_interception(vcpu); 2659 2660 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2661 return emulate_on_interception(vcpu); 2662 2663 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2664 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2665 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2666 else 2667 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2668 2669 err = 0; 2670 if (cr >= 16) { /* mov to cr */ 2671 cr -= 16; 2672 val = kvm_register_read(vcpu, reg); 2673 trace_kvm_cr_write(cr, val); 2674 switch (cr) { 2675 case 0: 2676 if (!check_selective_cr0_intercepted(vcpu, val)) 2677 err = kvm_set_cr0(vcpu, val); 2678 else 2679 return 1; 2680 2681 break; 2682 case 3: 2683 err = kvm_set_cr3(vcpu, val); 2684 break; 2685 case 4: 2686 err = kvm_set_cr4(vcpu, val); 2687 break; 2688 case 8: 2689 err = kvm_set_cr8(vcpu, val); 2690 break; 2691 default: 2692 WARN(1, "unhandled write to CR%d", cr); 2693 kvm_queue_exception(vcpu, UD_VECTOR); 2694 return 1; 2695 } 2696 } else { /* mov from cr */ 2697 switch (cr) { 2698 case 0: 2699 val = kvm_read_cr0(vcpu); 2700 break; 2701 case 2: 2702 val = vcpu->arch.cr2; 2703 break; 2704 case 3: 2705 val = kvm_read_cr3(vcpu); 2706 break; 2707 case 4: 2708 val = kvm_read_cr4(vcpu); 2709 break; 2710 case 8: 2711 val = kvm_get_cr8(vcpu); 2712 break; 2713 default: 2714 WARN(1, "unhandled read from CR%d", cr); 2715 kvm_queue_exception(vcpu, UD_VECTOR); 2716 return 1; 2717 } 2718 kvm_register_write(vcpu, reg, val); 2719 trace_kvm_cr_read(cr, val); 2720 } 2721 return kvm_complete_insn_gp(vcpu, err); 2722 } 2723 2724 static int cr_trap(struct kvm_vcpu *vcpu) 2725 { 2726 struct vcpu_svm *svm = to_svm(vcpu); 2727 unsigned long old_value, new_value; 2728 unsigned int cr; 2729 int ret = 0; 2730 2731 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2732 2733 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2734 switch (cr) { 2735 case 0: 2736 old_value = kvm_read_cr0(vcpu); 2737 svm_set_cr0(vcpu, new_value); 2738 2739 kvm_post_set_cr0(vcpu, old_value, new_value); 2740 break; 2741 case 4: 2742 old_value = kvm_read_cr4(vcpu); 2743 svm_set_cr4(vcpu, new_value); 2744 2745 kvm_post_set_cr4(vcpu, old_value, new_value); 2746 break; 2747 case 8: 2748 ret = kvm_set_cr8(vcpu, new_value); 2749 break; 2750 default: 2751 WARN(1, "unhandled CR%d write trap", cr); 2752 kvm_queue_exception(vcpu, UD_VECTOR); 2753 return 1; 2754 } 2755 2756 return kvm_complete_insn_gp(vcpu, ret); 2757 } 2758 2759 static int dr_interception(struct kvm_vcpu *vcpu) 2760 { 2761 struct vcpu_svm *svm = to_svm(vcpu); 2762 int reg, dr; 2763 unsigned long val; 2764 int err = 0; 2765 2766 /* 2767 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT 2768 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early. 2769 */ 2770 if (sev_es_guest(vcpu->kvm)) 2771 return 1; 2772 2773 if (vcpu->guest_debug == 0) { 2774 /* 2775 * No more DR vmexits; force a reload of the debug registers 2776 * and reenter on this instruction. The next vmexit will 2777 * retrieve the full state of the debug registers. 2778 */ 2779 clr_dr_intercepts(svm); 2780 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2781 return 1; 2782 } 2783 2784 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2785 return emulate_on_interception(vcpu); 2786 2787 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2788 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2789 if (dr >= 16) { /* mov to DRn */ 2790 dr -= 16; 2791 val = kvm_register_read(vcpu, reg); 2792 err = kvm_set_dr(vcpu, dr, val); 2793 } else { 2794 kvm_get_dr(vcpu, dr, &val); 2795 kvm_register_write(vcpu, reg, val); 2796 } 2797 2798 return kvm_complete_insn_gp(vcpu, err); 2799 } 2800 2801 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2802 { 2803 int r; 2804 2805 u8 cr8_prev = kvm_get_cr8(vcpu); 2806 /* instruction emulation calls kvm_set_cr8() */ 2807 r = cr_interception(vcpu); 2808 if (lapic_in_kernel(vcpu)) 2809 return r; 2810 if (cr8_prev <= kvm_get_cr8(vcpu)) 2811 return r; 2812 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2813 return 0; 2814 } 2815 2816 static int efer_trap(struct kvm_vcpu *vcpu) 2817 { 2818 struct msr_data msr_info; 2819 int ret; 2820 2821 /* 2822 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2823 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2824 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2825 * the guest doesn't have X86_FEATURE_SVM. 2826 */ 2827 msr_info.host_initiated = false; 2828 msr_info.index = MSR_EFER; 2829 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2830 ret = kvm_set_msr_common(vcpu, &msr_info); 2831 2832 return kvm_complete_insn_gp(vcpu, ret); 2833 } 2834 2835 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2836 { 2837 msr->data = 0; 2838 2839 switch (msr->index) { 2840 case MSR_AMD64_DE_CFG: 2841 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 2842 msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; 2843 break; 2844 default: 2845 return KVM_MSR_RET_INVALID; 2846 } 2847 2848 return 0; 2849 } 2850 2851 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2852 { 2853 struct vcpu_svm *svm = to_svm(vcpu); 2854 2855 switch (msr_info->index) { 2856 case MSR_AMD64_TSC_RATIO: 2857 if (!msr_info->host_initiated && 2858 !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) 2859 return 1; 2860 msr_info->data = svm->tsc_ratio_msr; 2861 break; 2862 case MSR_STAR: 2863 msr_info->data = svm->vmcb01.ptr->save.star; 2864 break; 2865 #ifdef CONFIG_X86_64 2866 case MSR_LSTAR: 2867 msr_info->data = svm->vmcb01.ptr->save.lstar; 2868 break; 2869 case MSR_CSTAR: 2870 msr_info->data = svm->vmcb01.ptr->save.cstar; 2871 break; 2872 case MSR_KERNEL_GS_BASE: 2873 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2874 break; 2875 case MSR_SYSCALL_MASK: 2876 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2877 break; 2878 #endif 2879 case MSR_IA32_SYSENTER_CS: 2880 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2881 break; 2882 case MSR_IA32_SYSENTER_EIP: 2883 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2884 if (guest_cpuid_is_intel(vcpu)) 2885 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2886 break; 2887 case MSR_IA32_SYSENTER_ESP: 2888 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2889 if (guest_cpuid_is_intel(vcpu)) 2890 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2891 break; 2892 case MSR_TSC_AUX: 2893 msr_info->data = svm->tsc_aux; 2894 break; 2895 case MSR_IA32_DEBUGCTLMSR: 2896 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl; 2897 break; 2898 case MSR_IA32_LASTBRANCHFROMIP: 2899 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from; 2900 break; 2901 case MSR_IA32_LASTBRANCHTOIP: 2902 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to; 2903 break; 2904 case MSR_IA32_LASTINTFROMIP: 2905 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from; 2906 break; 2907 case MSR_IA32_LASTINTTOIP: 2908 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to; 2909 break; 2910 case MSR_VM_HSAVE_PA: 2911 msr_info->data = svm->nested.hsave_msr; 2912 break; 2913 case MSR_VM_CR: 2914 msr_info->data = svm->nested.vm_cr_msr; 2915 break; 2916 case MSR_IA32_SPEC_CTRL: 2917 if (!msr_info->host_initiated && 2918 !guest_has_spec_ctrl_msr(vcpu)) 2919 return 1; 2920 2921 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2922 msr_info->data = svm->vmcb->save.spec_ctrl; 2923 else 2924 msr_info->data = svm->spec_ctrl; 2925 break; 2926 case MSR_AMD64_VIRT_SPEC_CTRL: 2927 if (!msr_info->host_initiated && 2928 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2929 return 1; 2930 2931 msr_info->data = svm->virt_spec_ctrl; 2932 break; 2933 case MSR_F15H_IC_CFG: { 2934 2935 int family, model; 2936 2937 family = guest_cpuid_family(vcpu); 2938 model = guest_cpuid_model(vcpu); 2939 2940 if (family < 0 || model < 0) 2941 return kvm_get_msr_common(vcpu, msr_info); 2942 2943 msr_info->data = 0; 2944 2945 if (family == 0x15 && 2946 (model >= 0x2 && model < 0x20)) 2947 msr_info->data = 0x1E; 2948 } 2949 break; 2950 case MSR_AMD64_DE_CFG: 2951 msr_info->data = svm->msr_decfg; 2952 break; 2953 default: 2954 return kvm_get_msr_common(vcpu, msr_info); 2955 } 2956 return 0; 2957 } 2958 2959 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2960 { 2961 struct vcpu_svm *svm = to_svm(vcpu); 2962 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2963 return kvm_complete_insn_gp(vcpu, err); 2964 2965 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); 2966 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 2967 X86_TRAP_GP | 2968 SVM_EVTINJ_TYPE_EXEPT | 2969 SVM_EVTINJ_VALID); 2970 return 1; 2971 } 2972 2973 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2974 { 2975 struct vcpu_svm *svm = to_svm(vcpu); 2976 int svm_dis, chg_mask; 2977 2978 if (data & ~SVM_VM_CR_VALID_MASK) 2979 return 1; 2980 2981 chg_mask = SVM_VM_CR_VALID_MASK; 2982 2983 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2984 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2985 2986 svm->nested.vm_cr_msr &= ~chg_mask; 2987 svm->nested.vm_cr_msr |= (data & chg_mask); 2988 2989 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2990 2991 /* check for svm_disable while efer.svme is set */ 2992 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2993 return 1; 2994 2995 return 0; 2996 } 2997 2998 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2999 { 3000 struct vcpu_svm *svm = to_svm(vcpu); 3001 int ret = 0; 3002 3003 u32 ecx = msr->index; 3004 u64 data = msr->data; 3005 switch (ecx) { 3006 case MSR_AMD64_TSC_RATIO: 3007 3008 if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) { 3009 3010 if (!msr->host_initiated) 3011 return 1; 3012 /* 3013 * In case TSC scaling is not enabled, always 3014 * leave this MSR at the default value. 3015 * 3016 * Due to bug in qemu 6.2.0, it would try to set 3017 * this msr to 0 if tsc scaling is not enabled. 3018 * Ignore this value as well. 3019 */ 3020 if (data != 0 && data != svm->tsc_ratio_msr) 3021 return 1; 3022 break; 3023 } 3024 3025 if (data & SVM_TSC_RATIO_RSVD) 3026 return 1; 3027 3028 svm->tsc_ratio_msr = data; 3029 3030 if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) && 3031 is_guest_mode(vcpu)) 3032 nested_svm_update_tsc_ratio_msr(vcpu); 3033 3034 break; 3035 case MSR_IA32_CR_PAT: 3036 ret = kvm_set_msr_common(vcpu, msr); 3037 if (ret) 3038 break; 3039 3040 svm->vmcb01.ptr->save.g_pat = data; 3041 if (is_guest_mode(vcpu)) 3042 nested_vmcb02_compute_g_pat(svm); 3043 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3044 break; 3045 case MSR_IA32_SPEC_CTRL: 3046 if (!msr->host_initiated && 3047 !guest_has_spec_ctrl_msr(vcpu)) 3048 return 1; 3049 3050 if (kvm_spec_ctrl_test_value(data)) 3051 return 1; 3052 3053 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3054 svm->vmcb->save.spec_ctrl = data; 3055 else 3056 svm->spec_ctrl = data; 3057 if (!data) 3058 break; 3059 3060 /* 3061 * For non-nested: 3062 * When it's written (to non-zero) for the first time, pass 3063 * it through. 3064 * 3065 * For nested: 3066 * The handling of the MSR bitmap for L2 guests is done in 3067 * nested_svm_vmrun_msrpm. 3068 * We update the L1 MSR bit as well since it will end up 3069 * touching the MSR anyway now. 3070 */ 3071 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 3072 break; 3073 case MSR_AMD64_VIRT_SPEC_CTRL: 3074 if (!msr->host_initiated && 3075 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 3076 return 1; 3077 3078 if (data & ~SPEC_CTRL_SSBD) 3079 return 1; 3080 3081 svm->virt_spec_ctrl = data; 3082 break; 3083 case MSR_STAR: 3084 svm->vmcb01.ptr->save.star = data; 3085 break; 3086 #ifdef CONFIG_X86_64 3087 case MSR_LSTAR: 3088 svm->vmcb01.ptr->save.lstar = data; 3089 break; 3090 case MSR_CSTAR: 3091 svm->vmcb01.ptr->save.cstar = data; 3092 break; 3093 case MSR_KERNEL_GS_BASE: 3094 svm->vmcb01.ptr->save.kernel_gs_base = data; 3095 break; 3096 case MSR_SYSCALL_MASK: 3097 svm->vmcb01.ptr->save.sfmask = data; 3098 break; 3099 #endif 3100 case MSR_IA32_SYSENTER_CS: 3101 svm->vmcb01.ptr->save.sysenter_cs = data; 3102 break; 3103 case MSR_IA32_SYSENTER_EIP: 3104 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 3105 /* 3106 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 3107 * when we spoof an Intel vendor ID (for cross vendor migration). 3108 * In this case we use this intercept to track the high 3109 * 32 bit part of these msrs to support Intel's 3110 * implementation of SYSENTER/SYSEXIT. 3111 */ 3112 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 3113 break; 3114 case MSR_IA32_SYSENTER_ESP: 3115 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 3116 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 3117 break; 3118 case MSR_TSC_AUX: 3119 /* 3120 * TSC_AUX is always virtualized for SEV-ES guests when the 3121 * feature is available. The user return MSR support is not 3122 * required in this case because TSC_AUX is restored on #VMEXIT 3123 * from the host save area (which has been initialized in 3124 * svm_hardware_enable()). 3125 */ 3126 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm)) 3127 break; 3128 3129 /* 3130 * TSC_AUX is usually changed only during boot and never read 3131 * directly. Intercept TSC_AUX instead of exposing it to the 3132 * guest via direct_access_msrs, and switch it via user return. 3133 */ 3134 preempt_disable(); 3135 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 3136 preempt_enable(); 3137 if (ret) 3138 break; 3139 3140 svm->tsc_aux = data; 3141 break; 3142 case MSR_IA32_DEBUGCTLMSR: 3143 if (!lbrv) { 3144 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3145 break; 3146 } 3147 if (data & DEBUGCTL_RESERVED_BITS) 3148 return 1; 3149 3150 svm_get_lbr_vmcb(svm)->save.dbgctl = data; 3151 svm_update_lbrv(vcpu); 3152 break; 3153 case MSR_VM_HSAVE_PA: 3154 /* 3155 * Old kernels did not validate the value written to 3156 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3157 * value to allow live migrating buggy or malicious guests 3158 * originating from those kernels. 3159 */ 3160 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3161 return 1; 3162 3163 svm->nested.hsave_msr = data & PAGE_MASK; 3164 break; 3165 case MSR_VM_CR: 3166 return svm_set_vm_cr(vcpu, data); 3167 case MSR_VM_IGNNE: 3168 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3169 break; 3170 case MSR_AMD64_DE_CFG: { 3171 struct kvm_msr_entry msr_entry; 3172 3173 msr_entry.index = msr->index; 3174 if (svm_get_msr_feature(&msr_entry)) 3175 return 1; 3176 3177 /* Check the supported bits */ 3178 if (data & ~msr_entry.data) 3179 return 1; 3180 3181 /* Don't allow the guest to change a bit, #GP */ 3182 if (!msr->host_initiated && (data ^ msr_entry.data)) 3183 return 1; 3184 3185 svm->msr_decfg = data; 3186 break; 3187 } 3188 default: 3189 return kvm_set_msr_common(vcpu, msr); 3190 } 3191 return ret; 3192 } 3193 3194 static int msr_interception(struct kvm_vcpu *vcpu) 3195 { 3196 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3197 return kvm_emulate_wrmsr(vcpu); 3198 else 3199 return kvm_emulate_rdmsr(vcpu); 3200 } 3201 3202 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3203 { 3204 kvm_make_request(KVM_REQ_EVENT, vcpu); 3205 svm_clear_vintr(to_svm(vcpu)); 3206 3207 /* 3208 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3209 * In this case AVIC was temporarily disabled for 3210 * requesting the IRQ window and we have to re-enable it. 3211 * 3212 * If running nested, still remove the VM wide AVIC inhibit to 3213 * support case in which the interrupt window was requested when the 3214 * vCPU was not running nested. 3215 3216 * All vCPUs which run still run nested, will remain to have their 3217 * AVIC still inhibited due to per-cpu AVIC inhibition. 3218 */ 3219 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3220 3221 ++vcpu->stat.irq_window_exits; 3222 return 1; 3223 } 3224 3225 static int pause_interception(struct kvm_vcpu *vcpu) 3226 { 3227 bool in_kernel; 3228 /* 3229 * CPL is not made available for an SEV-ES guest, therefore 3230 * vcpu->arch.preempted_in_kernel can never be true. Just 3231 * set in_kernel to false as well. 3232 */ 3233 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3234 3235 grow_ple_window(vcpu); 3236 3237 kvm_vcpu_on_spin(vcpu, in_kernel); 3238 return kvm_skip_emulated_instruction(vcpu); 3239 } 3240 3241 static int invpcid_interception(struct kvm_vcpu *vcpu) 3242 { 3243 struct vcpu_svm *svm = to_svm(vcpu); 3244 unsigned long type; 3245 gva_t gva; 3246 3247 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3248 kvm_queue_exception(vcpu, UD_VECTOR); 3249 return 1; 3250 } 3251 3252 /* 3253 * For an INVPCID intercept: 3254 * EXITINFO1 provides the linear address of the memory operand. 3255 * EXITINFO2 provides the contents of the register operand. 3256 */ 3257 type = svm->vmcb->control.exit_info_2; 3258 gva = svm->vmcb->control.exit_info_1; 3259 3260 return kvm_handle_invpcid(vcpu, type, gva); 3261 } 3262 3263 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3264 [SVM_EXIT_READ_CR0] = cr_interception, 3265 [SVM_EXIT_READ_CR3] = cr_interception, 3266 [SVM_EXIT_READ_CR4] = cr_interception, 3267 [SVM_EXIT_READ_CR8] = cr_interception, 3268 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3269 [SVM_EXIT_WRITE_CR0] = cr_interception, 3270 [SVM_EXIT_WRITE_CR3] = cr_interception, 3271 [SVM_EXIT_WRITE_CR4] = cr_interception, 3272 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3273 [SVM_EXIT_READ_DR0] = dr_interception, 3274 [SVM_EXIT_READ_DR1] = dr_interception, 3275 [SVM_EXIT_READ_DR2] = dr_interception, 3276 [SVM_EXIT_READ_DR3] = dr_interception, 3277 [SVM_EXIT_READ_DR4] = dr_interception, 3278 [SVM_EXIT_READ_DR5] = dr_interception, 3279 [SVM_EXIT_READ_DR6] = dr_interception, 3280 [SVM_EXIT_READ_DR7] = dr_interception, 3281 [SVM_EXIT_WRITE_DR0] = dr_interception, 3282 [SVM_EXIT_WRITE_DR1] = dr_interception, 3283 [SVM_EXIT_WRITE_DR2] = dr_interception, 3284 [SVM_EXIT_WRITE_DR3] = dr_interception, 3285 [SVM_EXIT_WRITE_DR4] = dr_interception, 3286 [SVM_EXIT_WRITE_DR5] = dr_interception, 3287 [SVM_EXIT_WRITE_DR6] = dr_interception, 3288 [SVM_EXIT_WRITE_DR7] = dr_interception, 3289 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3290 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3291 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3292 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3293 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3294 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3295 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3296 [SVM_EXIT_INTR] = intr_interception, 3297 [SVM_EXIT_NMI] = nmi_interception, 3298 [SVM_EXIT_SMI] = smi_interception, 3299 [SVM_EXIT_VINTR] = interrupt_window_interception, 3300 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3301 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3302 [SVM_EXIT_IRET] = iret_interception, 3303 [SVM_EXIT_INVD] = kvm_emulate_invd, 3304 [SVM_EXIT_PAUSE] = pause_interception, 3305 [SVM_EXIT_HLT] = kvm_emulate_halt, 3306 [SVM_EXIT_INVLPG] = invlpg_interception, 3307 [SVM_EXIT_INVLPGA] = invlpga_interception, 3308 [SVM_EXIT_IOIO] = io_interception, 3309 [SVM_EXIT_MSR] = msr_interception, 3310 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3311 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3312 [SVM_EXIT_VMRUN] = vmrun_interception, 3313 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3314 [SVM_EXIT_VMLOAD] = vmload_interception, 3315 [SVM_EXIT_VMSAVE] = vmsave_interception, 3316 [SVM_EXIT_STGI] = stgi_interception, 3317 [SVM_EXIT_CLGI] = clgi_interception, 3318 [SVM_EXIT_SKINIT] = skinit_interception, 3319 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3320 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3321 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3322 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3323 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3324 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3325 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3326 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3327 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3328 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3329 [SVM_EXIT_INVPCID] = invpcid_interception, 3330 [SVM_EXIT_NPF] = npf_interception, 3331 [SVM_EXIT_RSM] = rsm_interception, 3332 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3333 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3334 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3335 }; 3336 3337 static void dump_vmcb(struct kvm_vcpu *vcpu) 3338 { 3339 struct vcpu_svm *svm = to_svm(vcpu); 3340 struct vmcb_control_area *control = &svm->vmcb->control; 3341 struct vmcb_save_area *save = &svm->vmcb->save; 3342 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3343 3344 if (!dump_invalid_vmcb) { 3345 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3346 return; 3347 } 3348 3349 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3350 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3351 pr_err("VMCB Control Area:\n"); 3352 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3353 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3354 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3355 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3356 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3357 pr_err("%-20s%08x %08x\n", "intercepts:", 3358 control->intercepts[INTERCEPT_WORD3], 3359 control->intercepts[INTERCEPT_WORD4]); 3360 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3361 pr_err("%-20s%d\n", "pause filter threshold:", 3362 control->pause_filter_thresh); 3363 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3364 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3365 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3366 pr_err("%-20s%d\n", "asid:", control->asid); 3367 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3368 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3369 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3370 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3371 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3372 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3373 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3374 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3375 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3376 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3377 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3378 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3379 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3380 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3381 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3382 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3383 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3384 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3385 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3386 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3387 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3388 pr_err("VMCB State Save Area:\n"); 3389 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3390 "es:", 3391 save->es.selector, save->es.attrib, 3392 save->es.limit, save->es.base); 3393 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3394 "cs:", 3395 save->cs.selector, save->cs.attrib, 3396 save->cs.limit, save->cs.base); 3397 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3398 "ss:", 3399 save->ss.selector, save->ss.attrib, 3400 save->ss.limit, save->ss.base); 3401 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3402 "ds:", 3403 save->ds.selector, save->ds.attrib, 3404 save->ds.limit, save->ds.base); 3405 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3406 "fs:", 3407 save01->fs.selector, save01->fs.attrib, 3408 save01->fs.limit, save01->fs.base); 3409 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3410 "gs:", 3411 save01->gs.selector, save01->gs.attrib, 3412 save01->gs.limit, save01->gs.base); 3413 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3414 "gdtr:", 3415 save->gdtr.selector, save->gdtr.attrib, 3416 save->gdtr.limit, save->gdtr.base); 3417 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3418 "ldtr:", 3419 save01->ldtr.selector, save01->ldtr.attrib, 3420 save01->ldtr.limit, save01->ldtr.base); 3421 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3422 "idtr:", 3423 save->idtr.selector, save->idtr.attrib, 3424 save->idtr.limit, save->idtr.base); 3425 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3426 "tr:", 3427 save01->tr.selector, save01->tr.attrib, 3428 save01->tr.limit, save01->tr.base); 3429 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3430 save->vmpl, save->cpl, save->efer); 3431 pr_err("%-15s %016llx %-13s %016llx\n", 3432 "cr0:", save->cr0, "cr2:", save->cr2); 3433 pr_err("%-15s %016llx %-13s %016llx\n", 3434 "cr3:", save->cr3, "cr4:", save->cr4); 3435 pr_err("%-15s %016llx %-13s %016llx\n", 3436 "dr6:", save->dr6, "dr7:", save->dr7); 3437 pr_err("%-15s %016llx %-13s %016llx\n", 3438 "rip:", save->rip, "rflags:", save->rflags); 3439 pr_err("%-15s %016llx %-13s %016llx\n", 3440 "rsp:", save->rsp, "rax:", save->rax); 3441 pr_err("%-15s %016llx %-13s %016llx\n", 3442 "star:", save01->star, "lstar:", save01->lstar); 3443 pr_err("%-15s %016llx %-13s %016llx\n", 3444 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3445 pr_err("%-15s %016llx %-13s %016llx\n", 3446 "kernel_gs_base:", save01->kernel_gs_base, 3447 "sysenter_cs:", save01->sysenter_cs); 3448 pr_err("%-15s %016llx %-13s %016llx\n", 3449 "sysenter_esp:", save01->sysenter_esp, 3450 "sysenter_eip:", save01->sysenter_eip); 3451 pr_err("%-15s %016llx %-13s %016llx\n", 3452 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3453 pr_err("%-15s %016llx %-13s %016llx\n", 3454 "br_from:", save->br_from, "br_to:", save->br_to); 3455 pr_err("%-15s %016llx %-13s %016llx\n", 3456 "excp_from:", save->last_excp_from, 3457 "excp_to:", save->last_excp_to); 3458 } 3459 3460 static bool svm_check_exit_valid(u64 exit_code) 3461 { 3462 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3463 svm_exit_handlers[exit_code]); 3464 } 3465 3466 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3467 { 3468 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3469 dump_vmcb(vcpu); 3470 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3471 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3472 vcpu->run->internal.ndata = 2; 3473 vcpu->run->internal.data[0] = exit_code; 3474 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3475 return 0; 3476 } 3477 3478 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3479 { 3480 if (!svm_check_exit_valid(exit_code)) 3481 return svm_handle_invalid_exit(vcpu, exit_code); 3482 3483 #ifdef CONFIG_RETPOLINE 3484 if (exit_code == SVM_EXIT_MSR) 3485 return msr_interception(vcpu); 3486 else if (exit_code == SVM_EXIT_VINTR) 3487 return interrupt_window_interception(vcpu); 3488 else if (exit_code == SVM_EXIT_INTR) 3489 return intr_interception(vcpu); 3490 else if (exit_code == SVM_EXIT_HLT) 3491 return kvm_emulate_halt(vcpu); 3492 else if (exit_code == SVM_EXIT_NPF) 3493 return npf_interception(vcpu); 3494 #endif 3495 return svm_exit_handlers[exit_code](vcpu); 3496 } 3497 3498 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3499 u64 *info1, u64 *info2, 3500 u32 *intr_info, u32 *error_code) 3501 { 3502 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3503 3504 *reason = control->exit_code; 3505 *info1 = control->exit_info_1; 3506 *info2 = control->exit_info_2; 3507 *intr_info = control->exit_int_info; 3508 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3509 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3510 *error_code = control->exit_int_info_err; 3511 else 3512 *error_code = 0; 3513 } 3514 3515 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3516 { 3517 struct vcpu_svm *svm = to_svm(vcpu); 3518 struct kvm_run *kvm_run = vcpu->run; 3519 u32 exit_code = svm->vmcb->control.exit_code; 3520 3521 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3522 if (!sev_es_guest(vcpu->kvm)) { 3523 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3524 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3525 if (npt_enabled) 3526 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3527 } 3528 3529 if (is_guest_mode(vcpu)) { 3530 int vmexit; 3531 3532 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3533 3534 vmexit = nested_svm_exit_special(svm); 3535 3536 if (vmexit == NESTED_EXIT_CONTINUE) 3537 vmexit = nested_svm_exit_handled(svm); 3538 3539 if (vmexit == NESTED_EXIT_DONE) 3540 return 1; 3541 } 3542 3543 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3544 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3545 kvm_run->fail_entry.hardware_entry_failure_reason 3546 = svm->vmcb->control.exit_code; 3547 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3548 dump_vmcb(vcpu); 3549 return 0; 3550 } 3551 3552 if (exit_fastpath != EXIT_FASTPATH_NONE) 3553 return 1; 3554 3555 return svm_invoke_exit_handler(vcpu, exit_code); 3556 } 3557 3558 static void pre_svm_run(struct kvm_vcpu *vcpu) 3559 { 3560 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3561 struct vcpu_svm *svm = to_svm(vcpu); 3562 3563 /* 3564 * If the previous vmrun of the vmcb occurred on a different physical 3565 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3566 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3567 */ 3568 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3569 svm->current_vmcb->asid_generation = 0; 3570 vmcb_mark_all_dirty(svm->vmcb); 3571 svm->current_vmcb->cpu = vcpu->cpu; 3572 } 3573 3574 if (sev_guest(vcpu->kvm)) 3575 return pre_sev_run(svm, vcpu->cpu); 3576 3577 /* FIXME: handle wraparound of asid_generation */ 3578 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3579 new_asid(svm, sd); 3580 } 3581 3582 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3583 { 3584 struct vcpu_svm *svm = to_svm(vcpu); 3585 3586 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3587 3588 if (svm->nmi_l1_to_l2) 3589 return; 3590 3591 svm->nmi_masked = true; 3592 svm_set_iret_intercept(svm); 3593 ++vcpu->stat.nmi_injections; 3594 } 3595 3596 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) 3597 { 3598 struct vcpu_svm *svm = to_svm(vcpu); 3599 3600 if (!is_vnmi_enabled(svm)) 3601 return false; 3602 3603 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); 3604 } 3605 3606 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) 3607 { 3608 struct vcpu_svm *svm = to_svm(vcpu); 3609 3610 if (!is_vnmi_enabled(svm)) 3611 return false; 3612 3613 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) 3614 return false; 3615 3616 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; 3617 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 3618 3619 /* 3620 * Because the pending NMI is serviced by hardware, KVM can't know when 3621 * the NMI is "injected", but for all intents and purposes, passing the 3622 * NMI off to hardware counts as injection. 3623 */ 3624 ++vcpu->stat.nmi_injections; 3625 3626 return true; 3627 } 3628 3629 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3630 { 3631 struct vcpu_svm *svm = to_svm(vcpu); 3632 u32 type; 3633 3634 if (vcpu->arch.interrupt.soft) { 3635 if (svm_update_soft_interrupt_rip(vcpu)) 3636 return; 3637 3638 type = SVM_EVTINJ_TYPE_SOFT; 3639 } else { 3640 type = SVM_EVTINJ_TYPE_INTR; 3641 } 3642 3643 trace_kvm_inj_virq(vcpu->arch.interrupt.nr, 3644 vcpu->arch.interrupt.soft, reinjected); 3645 ++vcpu->stat.irq_injections; 3646 3647 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3648 SVM_EVTINJ_VALID | type; 3649 } 3650 3651 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3652 int trig_mode, int vector) 3653 { 3654 /* 3655 * apic->apicv_active must be read after vcpu->mode. 3656 * Pairs with smp_store_release in vcpu_enter_guest. 3657 */ 3658 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3659 3660 /* Note, this is called iff the local APIC is in-kernel. */ 3661 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3662 /* Process the interrupt via kvm_check_and_inject_events(). */ 3663 kvm_make_request(KVM_REQ_EVENT, vcpu); 3664 kvm_vcpu_kick(vcpu); 3665 return; 3666 } 3667 3668 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3669 if (in_guest_mode) { 3670 /* 3671 * Signal the doorbell to tell hardware to inject the IRQ. If 3672 * the vCPU exits the guest before the doorbell chimes, hardware 3673 * will automatically process AVIC interrupts at the next VMRUN. 3674 */ 3675 avic_ring_doorbell(vcpu); 3676 } else { 3677 /* 3678 * Wake the vCPU if it was blocking. KVM will then detect the 3679 * pending IRQ when checking if the vCPU has a wake event. 3680 */ 3681 kvm_vcpu_wake_up(vcpu); 3682 } 3683 } 3684 3685 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3686 int trig_mode, int vector) 3687 { 3688 kvm_lapic_set_irr(vector, apic); 3689 3690 /* 3691 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3692 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3693 * the read of guest_mode. This guarantees that either VMRUN will see 3694 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3695 * will signal the doorbell if the CPU has already entered the guest. 3696 */ 3697 smp_mb__after_atomic(); 3698 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3699 } 3700 3701 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3702 { 3703 struct vcpu_svm *svm = to_svm(vcpu); 3704 3705 /* 3706 * SEV-ES guests must always keep the CR intercepts cleared. CR 3707 * tracking is done using the CR write traps. 3708 */ 3709 if (sev_es_guest(vcpu->kvm)) 3710 return; 3711 3712 if (nested_svm_virtualize_tpr(vcpu)) 3713 return; 3714 3715 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3716 3717 if (irr == -1) 3718 return; 3719 3720 if (tpr >= irr) 3721 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3722 } 3723 3724 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3725 { 3726 struct vcpu_svm *svm = to_svm(vcpu); 3727 3728 if (is_vnmi_enabled(svm)) 3729 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; 3730 else 3731 return svm->nmi_masked; 3732 } 3733 3734 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3735 { 3736 struct vcpu_svm *svm = to_svm(vcpu); 3737 3738 if (is_vnmi_enabled(svm)) { 3739 if (masked) 3740 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; 3741 else 3742 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 3743 3744 } else { 3745 svm->nmi_masked = masked; 3746 if (masked) 3747 svm_set_iret_intercept(svm); 3748 else 3749 svm_clr_iret_intercept(svm); 3750 } 3751 } 3752 3753 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3754 { 3755 struct vcpu_svm *svm = to_svm(vcpu); 3756 struct vmcb *vmcb = svm->vmcb; 3757 3758 if (!gif_set(svm)) 3759 return true; 3760 3761 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3762 return false; 3763 3764 if (svm_get_nmi_mask(vcpu)) 3765 return true; 3766 3767 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; 3768 } 3769 3770 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3771 { 3772 struct vcpu_svm *svm = to_svm(vcpu); 3773 if (svm->nested.nested_run_pending) 3774 return -EBUSY; 3775 3776 if (svm_nmi_blocked(vcpu)) 3777 return 0; 3778 3779 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3780 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3781 return -EBUSY; 3782 return 1; 3783 } 3784 3785 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3786 { 3787 struct vcpu_svm *svm = to_svm(vcpu); 3788 struct vmcb *vmcb = svm->vmcb; 3789 3790 if (!gif_set(svm)) 3791 return true; 3792 3793 if (is_guest_mode(vcpu)) { 3794 /* As long as interrupts are being delivered... */ 3795 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3796 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3797 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3798 return true; 3799 3800 /* ... vmexits aren't blocked by the interrupt shadow */ 3801 if (nested_exit_on_intr(svm)) 3802 return false; 3803 } else { 3804 if (!svm_get_if_flag(vcpu)) 3805 return true; 3806 } 3807 3808 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3809 } 3810 3811 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3812 { 3813 struct vcpu_svm *svm = to_svm(vcpu); 3814 3815 if (svm->nested.nested_run_pending) 3816 return -EBUSY; 3817 3818 if (svm_interrupt_blocked(vcpu)) 3819 return 0; 3820 3821 /* 3822 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3823 * e.g. if the IRQ arrived asynchronously after checking nested events. 3824 */ 3825 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3826 return -EBUSY; 3827 3828 return 1; 3829 } 3830 3831 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3832 { 3833 struct vcpu_svm *svm = to_svm(vcpu); 3834 3835 /* 3836 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3837 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3838 * get that intercept, this function will be called again though and 3839 * we'll get the vintr intercept. However, if the vGIF feature is 3840 * enabled, the STGI interception will not occur. Enable the irq 3841 * window under the assumption that the hardware will set the GIF. 3842 */ 3843 if (vgif || gif_set(svm)) { 3844 /* 3845 * IRQ window is not needed when AVIC is enabled, 3846 * unless we have pending ExtINT since it cannot be injected 3847 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3848 * and fallback to injecting IRQ via V_IRQ. 3849 * 3850 * If running nested, AVIC is already locally inhibited 3851 * on this vCPU, therefore there is no need to request 3852 * the VM wide AVIC inhibition. 3853 */ 3854 if (!is_guest_mode(vcpu)) 3855 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3856 3857 svm_set_vintr(svm); 3858 } 3859 } 3860 3861 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3862 { 3863 struct vcpu_svm *svm = to_svm(vcpu); 3864 3865 /* 3866 * If NMIs are outright masked, i.e. the vCPU is already handling an 3867 * NMI, and KVM has not yet intercepted an IRET, then there is nothing 3868 * more to do at this time as KVM has already enabled IRET intercepts. 3869 * If KVM has already intercepted IRET, then single-step over the IRET, 3870 * as NMIs aren't architecturally unmasked until the IRET completes. 3871 * 3872 * If vNMI is enabled, KVM should never request an NMI window if NMIs 3873 * are masked, as KVM allows at most one to-be-injected NMI and one 3874 * pending NMI. If two NMIs arrive simultaneously, KVM will inject one 3875 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are 3876 * unmasked. KVM _will_ request an NMI window in some situations, e.g. 3877 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately 3878 * inject the NMI. In those situations, KVM needs to single-step over 3879 * the STI shadow or intercept STGI. 3880 */ 3881 if (svm_get_nmi_mask(vcpu)) { 3882 WARN_ON_ONCE(is_vnmi_enabled(svm)); 3883 3884 if (!svm->awaiting_iret_completion) 3885 return; /* IRET will cause a vm exit */ 3886 } 3887 3888 /* 3889 * SEV-ES guests are responsible for signaling when a vCPU is ready to 3890 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e. 3891 * KVM can't intercept and single-step IRET to detect when NMIs are 3892 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE. 3893 * 3894 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware 3895 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not 3896 * supported NAEs in the GHCB protocol. 3897 */ 3898 if (sev_es_guest(vcpu->kvm)) 3899 return; 3900 3901 if (!gif_set(svm)) { 3902 if (vgif) 3903 svm_set_intercept(svm, INTERCEPT_STGI); 3904 return; /* STGI will cause a vm exit */ 3905 } 3906 3907 /* 3908 * Something prevents NMI from been injected. Single step over possible 3909 * problem (IRET or exception injection or interrupt shadow) 3910 */ 3911 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3912 svm->nmi_singlestep = true; 3913 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3914 } 3915 3916 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) 3917 { 3918 struct vcpu_svm *svm = to_svm(vcpu); 3919 3920 /* 3921 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. 3922 * A TLB flush for the current ASID flushes both "host" and "guest" TLB 3923 * entries, and thus is a superset of Hyper-V's fine grained flushing. 3924 */ 3925 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3926 3927 /* 3928 * Flush only the current ASID even if the TLB flush was invoked via 3929 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3930 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3931 * unconditionally does a TLB flush on both nested VM-Enter and nested 3932 * VM-Exit (via kvm_mmu_reset_context()). 3933 */ 3934 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3935 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3936 else 3937 svm->current_vmcb->asid_generation--; 3938 } 3939 3940 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 3941 { 3942 hpa_t root_tdp = vcpu->arch.mmu->root.hpa; 3943 3944 /* 3945 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly 3946 * flush the NPT mappings via hypercall as flushing the ASID only 3947 * affects virtual to physical mappings, it does not invalidate guest 3948 * physical to host physical mappings. 3949 */ 3950 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) 3951 hyperv_flush_guest_mapping(root_tdp); 3952 3953 svm_flush_tlb_asid(vcpu); 3954 } 3955 3956 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) 3957 { 3958 /* 3959 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB 3960 * flushes should be routed to hv_flush_remote_tlbs() without requesting 3961 * a "regular" remote flush. Reaching this point means either there's 3962 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of 3963 * which might be fatal to the guest. Yell, but try to recover. 3964 */ 3965 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) 3966 hv_flush_remote_tlbs(vcpu->kvm); 3967 3968 svm_flush_tlb_asid(vcpu); 3969 } 3970 3971 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3972 { 3973 struct vcpu_svm *svm = to_svm(vcpu); 3974 3975 invlpga(gva, svm->vmcb->control.asid); 3976 } 3977 3978 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3979 { 3980 struct vcpu_svm *svm = to_svm(vcpu); 3981 3982 if (nested_svm_virtualize_tpr(vcpu)) 3983 return; 3984 3985 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3986 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3987 kvm_set_cr8(vcpu, cr8); 3988 } 3989 } 3990 3991 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3992 { 3993 struct vcpu_svm *svm = to_svm(vcpu); 3994 u64 cr8; 3995 3996 if (nested_svm_virtualize_tpr(vcpu) || 3997 kvm_vcpu_apicv_active(vcpu)) 3998 return; 3999 4000 cr8 = kvm_get_cr8(vcpu); 4001 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 4002 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 4003 } 4004 4005 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 4006 int type) 4007 { 4008 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 4009 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 4010 struct vcpu_svm *svm = to_svm(vcpu); 4011 4012 /* 4013 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 4014 * associated with the original soft exception/interrupt. next_rip is 4015 * cleared on all exits that can occur while vectoring an event, so KVM 4016 * needs to manually set next_rip for re-injection. Unlike the !nrips 4017 * case below, this needs to be done if and only if KVM is re-injecting 4018 * the same event, i.e. if the event is a soft exception/interrupt, 4019 * otherwise next_rip is unused on VMRUN. 4020 */ 4021 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 4022 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 4023 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 4024 /* 4025 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 4026 * injecting the soft exception/interrupt. That advancement needs to 4027 * be unwound if vectoring didn't complete. Note, the new event may 4028 * not be the injected event, e.g. if KVM injected an INTn, the INTn 4029 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 4030 * be the reported vectored event, but RIP still needs to be unwound. 4031 */ 4032 else if (!nrips && (is_soft || is_exception) && 4033 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 4034 kvm_rip_write(vcpu, svm->soft_int_old_rip); 4035 } 4036 4037 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 4038 { 4039 struct vcpu_svm *svm = to_svm(vcpu); 4040 u8 vector; 4041 int type; 4042 u32 exitintinfo = svm->vmcb->control.exit_int_info; 4043 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 4044 bool soft_int_injected = svm->soft_int_injected; 4045 4046 svm->nmi_l1_to_l2 = false; 4047 svm->soft_int_injected = false; 4048 4049 /* 4050 * If we've made progress since setting awaiting_iret_completion, we've 4051 * executed an IRET and can allow NMI injection. 4052 */ 4053 if (svm->awaiting_iret_completion && 4054 kvm_rip_read(vcpu) != svm->nmi_iret_rip) { 4055 svm->awaiting_iret_completion = false; 4056 svm->nmi_masked = false; 4057 kvm_make_request(KVM_REQ_EVENT, vcpu); 4058 } 4059 4060 vcpu->arch.nmi_injected = false; 4061 kvm_clear_exception_queue(vcpu); 4062 kvm_clear_interrupt_queue(vcpu); 4063 4064 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 4065 return; 4066 4067 kvm_make_request(KVM_REQ_EVENT, vcpu); 4068 4069 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 4070 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 4071 4072 if (soft_int_injected) 4073 svm_complete_soft_interrupt(vcpu, vector, type); 4074 4075 switch (type) { 4076 case SVM_EXITINTINFO_TYPE_NMI: 4077 vcpu->arch.nmi_injected = true; 4078 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 4079 break; 4080 case SVM_EXITINTINFO_TYPE_EXEPT: 4081 /* 4082 * Never re-inject a #VC exception. 4083 */ 4084 if (vector == X86_TRAP_VC) 4085 break; 4086 4087 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 4088 u32 err = svm->vmcb->control.exit_int_info_err; 4089 kvm_requeue_exception_e(vcpu, vector, err); 4090 4091 } else 4092 kvm_requeue_exception(vcpu, vector); 4093 break; 4094 case SVM_EXITINTINFO_TYPE_INTR: 4095 kvm_queue_interrupt(vcpu, vector, false); 4096 break; 4097 case SVM_EXITINTINFO_TYPE_SOFT: 4098 kvm_queue_interrupt(vcpu, vector, true); 4099 break; 4100 default: 4101 break; 4102 } 4103 4104 } 4105 4106 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 4107 { 4108 struct vcpu_svm *svm = to_svm(vcpu); 4109 struct vmcb_control_area *control = &svm->vmcb->control; 4110 4111 control->exit_int_info = control->event_inj; 4112 control->exit_int_info_err = control->event_inj_err; 4113 control->event_inj = 0; 4114 svm_complete_interrupts(vcpu); 4115 } 4116 4117 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 4118 { 4119 return 1; 4120 } 4121 4122 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 4123 { 4124 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 4125 to_svm(vcpu)->vmcb->control.exit_info_1) 4126 return handle_fastpath_set_msr_irqoff(vcpu); 4127 4128 return EXIT_FASTPATH_NONE; 4129 } 4130 4131 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) 4132 { 4133 struct vcpu_svm *svm = to_svm(vcpu); 4134 4135 guest_state_enter_irqoff(); 4136 4137 amd_clear_divider(); 4138 4139 if (sev_es_guest(vcpu->kvm)) 4140 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted); 4141 else 4142 __svm_vcpu_run(svm, spec_ctrl_intercepted); 4143 4144 guest_state_exit_irqoff(); 4145 } 4146 4147 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 4148 { 4149 struct vcpu_svm *svm = to_svm(vcpu); 4150 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); 4151 4152 trace_kvm_entry(vcpu); 4153 4154 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4155 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4156 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4157 4158 /* 4159 * Disable singlestep if we're injecting an interrupt/exception. 4160 * We don't want our modified rflags to be pushed on the stack where 4161 * we might not be able to easily reset them if we disabled NMI 4162 * singlestep later. 4163 */ 4164 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 4165 /* 4166 * Event injection happens before external interrupts cause a 4167 * vmexit and interrupts are disabled here, so smp_send_reschedule 4168 * is enough to force an immediate vmexit. 4169 */ 4170 disable_nmi_singlestep(svm); 4171 smp_send_reschedule(vcpu->cpu); 4172 } 4173 4174 pre_svm_run(vcpu); 4175 4176 sync_lapic_to_cr8(vcpu); 4177 4178 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 4179 svm->vmcb->control.asid = svm->asid; 4180 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 4181 } 4182 svm->vmcb->save.cr2 = vcpu->arch.cr2; 4183 4184 svm_hv_update_vp_id(svm->vmcb, vcpu); 4185 4186 /* 4187 * Run with all-zero DR6 unless needed, so that we can get the exact cause 4188 * of a #DB. 4189 */ 4190 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 4191 svm_set_dr6(svm, vcpu->arch.dr6); 4192 else 4193 svm_set_dr6(svm, DR6_ACTIVE_LOW); 4194 4195 clgi(); 4196 kvm_load_guest_xsave_state(vcpu); 4197 4198 kvm_wait_lapic_expire(vcpu); 4199 4200 /* 4201 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 4202 * it's non-zero. Since vmentry is serialising on affected CPUs, there 4203 * is no need to worry about the conditional branch over the wrmsr 4204 * being speculatively taken. 4205 */ 4206 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4207 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); 4208 4209 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); 4210 4211 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4212 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); 4213 4214 if (!sev_es_guest(vcpu->kvm)) { 4215 vcpu->arch.cr2 = svm->vmcb->save.cr2; 4216 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 4217 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 4218 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4219 } 4220 vcpu->arch.regs_dirty = 0; 4221 4222 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4223 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4224 4225 kvm_load_host_xsave_state(vcpu); 4226 stgi(); 4227 4228 /* Any pending NMI will happen here */ 4229 4230 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4231 kvm_after_interrupt(vcpu); 4232 4233 sync_cr8_to_lapic(vcpu); 4234 4235 svm->next_rip = 0; 4236 if (is_guest_mode(vcpu)) { 4237 nested_sync_control_from_vmcb02(svm); 4238 4239 /* Track VMRUNs that have made past consistency checking */ 4240 if (svm->nested.nested_run_pending && 4241 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 4242 ++vcpu->stat.nested_run; 4243 4244 svm->nested.nested_run_pending = 0; 4245 } 4246 4247 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4248 vmcb_mark_all_clean(svm->vmcb); 4249 4250 /* if exit due to PF check for async PF */ 4251 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4252 vcpu->arch.apf.host_apf_flags = 4253 kvm_read_and_reset_apf_flags(); 4254 4255 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4256 4257 /* 4258 * We need to handle MC intercepts here before the vcpu has a chance to 4259 * change the physical cpu 4260 */ 4261 if (unlikely(svm->vmcb->control.exit_code == 4262 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 4263 svm_handle_mce(vcpu); 4264 4265 trace_kvm_exit(vcpu, KVM_ISA_SVM); 4266 4267 svm_complete_interrupts(vcpu); 4268 4269 if (is_guest_mode(vcpu)) 4270 return EXIT_FASTPATH_NONE; 4271 4272 return svm_exit_handlers_fastpath(vcpu); 4273 } 4274 4275 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4276 int root_level) 4277 { 4278 struct vcpu_svm *svm = to_svm(vcpu); 4279 unsigned long cr3; 4280 4281 if (npt_enabled) { 4282 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4283 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4284 4285 hv_track_root_tdp(vcpu, root_hpa); 4286 4287 cr3 = vcpu->arch.cr3; 4288 } else if (root_level >= PT64_ROOT_4LEVEL) { 4289 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4290 } else { 4291 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4292 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4293 cr3 = root_hpa; 4294 } 4295 4296 svm->vmcb->save.cr3 = cr3; 4297 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4298 } 4299 4300 static void 4301 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4302 { 4303 /* 4304 * Patch in the VMMCALL instruction: 4305 */ 4306 hypercall[0] = 0x0f; 4307 hypercall[1] = 0x01; 4308 hypercall[2] = 0xd9; 4309 } 4310 4311 /* 4312 * The kvm parameter can be NULL (module initialization, or invocation before 4313 * VM creation). Be sure to check the kvm parameter before using it. 4314 */ 4315 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4316 { 4317 switch (index) { 4318 case MSR_IA32_MCG_EXT_CTL: 4319 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 4320 return false; 4321 case MSR_IA32_SMBASE: 4322 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4323 return false; 4324 /* SEV-ES guests do not support SMM, so report false */ 4325 if (kvm && sev_es_guest(kvm)) 4326 return false; 4327 break; 4328 default: 4329 break; 4330 } 4331 4332 return true; 4333 } 4334 4335 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4336 { 4337 struct vcpu_svm *svm = to_svm(vcpu); 4338 4339 /* 4340 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM 4341 * can only disable all variants of by disallowing CR4.OSXSAVE from 4342 * being set. As a result, if the host has XSAVE and XSAVES, and the 4343 * guest has XSAVE enabled, the guest can execute XSAVES without 4344 * faulting. Treat XSAVES as enabled in this case regardless of 4345 * whether it's advertised to the guest so that KVM context switches 4346 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give 4347 * the guest read/write access to the host's XSS. 4348 */ 4349 if (boot_cpu_has(X86_FEATURE_XSAVE) && 4350 boot_cpu_has(X86_FEATURE_XSAVES) && 4351 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) 4352 kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES); 4353 4354 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS); 4355 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR); 4356 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV); 4357 4358 /* 4359 * Intercept VMLOAD if the vCPU mode is Intel in order to emulate that 4360 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing 4361 * SVM on Intel is bonkers and extremely unlikely to work). 4362 */ 4363 if (!guest_cpuid_is_intel(vcpu)) 4364 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4365 4366 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER); 4367 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD); 4368 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF); 4369 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI); 4370 4371 svm_recalc_instruction_intercepts(vcpu, svm); 4372 4373 if (boot_cpu_has(X86_FEATURE_IBPB)) 4374 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 4375 !!guest_has_pred_cmd_msr(vcpu)); 4376 4377 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 4378 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0, 4379 !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 4380 4381 if (sev_guest(vcpu->kvm)) 4382 sev_vcpu_after_set_cpuid(svm); 4383 4384 init_vmcb_after_set_cpuid(vcpu); 4385 } 4386 4387 static bool svm_has_wbinvd_exit(void) 4388 { 4389 return true; 4390 } 4391 4392 #define PRE_EX(exit) { .exit_code = (exit), \ 4393 .stage = X86_ICPT_PRE_EXCEPT, } 4394 #define POST_EX(exit) { .exit_code = (exit), \ 4395 .stage = X86_ICPT_POST_EXCEPT, } 4396 #define POST_MEM(exit) { .exit_code = (exit), \ 4397 .stage = X86_ICPT_POST_MEMACCESS, } 4398 4399 static const struct __x86_intercept { 4400 u32 exit_code; 4401 enum x86_intercept_stage stage; 4402 } x86_intercept_map[] = { 4403 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4404 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4405 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4406 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4407 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4408 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4409 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4410 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4411 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4412 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4413 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4414 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4415 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4416 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4417 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4418 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4419 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4420 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4421 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4422 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4423 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4424 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4425 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4426 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4427 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4428 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4429 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4430 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4431 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4432 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4433 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4434 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4435 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4436 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4437 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4438 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4439 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4440 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4441 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4442 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4443 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4444 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4445 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4446 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4447 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4448 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4449 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4450 }; 4451 4452 #undef PRE_EX 4453 #undef POST_EX 4454 #undef POST_MEM 4455 4456 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4457 struct x86_instruction_info *info, 4458 enum x86_intercept_stage stage, 4459 struct x86_exception *exception) 4460 { 4461 struct vcpu_svm *svm = to_svm(vcpu); 4462 int vmexit, ret = X86EMUL_CONTINUE; 4463 struct __x86_intercept icpt_info; 4464 struct vmcb *vmcb = svm->vmcb; 4465 4466 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4467 goto out; 4468 4469 icpt_info = x86_intercept_map[info->intercept]; 4470 4471 if (stage != icpt_info.stage) 4472 goto out; 4473 4474 switch (icpt_info.exit_code) { 4475 case SVM_EXIT_READ_CR0: 4476 if (info->intercept == x86_intercept_cr_read) 4477 icpt_info.exit_code += info->modrm_reg; 4478 break; 4479 case SVM_EXIT_WRITE_CR0: { 4480 unsigned long cr0, val; 4481 4482 if (info->intercept == x86_intercept_cr_write) 4483 icpt_info.exit_code += info->modrm_reg; 4484 4485 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4486 info->intercept == x86_intercept_clts) 4487 break; 4488 4489 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4490 INTERCEPT_SELECTIVE_CR0))) 4491 break; 4492 4493 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4494 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4495 4496 if (info->intercept == x86_intercept_lmsw) { 4497 cr0 &= 0xfUL; 4498 val &= 0xfUL; 4499 /* lmsw can't clear PE - catch this here */ 4500 if (cr0 & X86_CR0_PE) 4501 val |= X86_CR0_PE; 4502 } 4503 4504 if (cr0 ^ val) 4505 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4506 4507 break; 4508 } 4509 case SVM_EXIT_READ_DR0: 4510 case SVM_EXIT_WRITE_DR0: 4511 icpt_info.exit_code += info->modrm_reg; 4512 break; 4513 case SVM_EXIT_MSR: 4514 if (info->intercept == x86_intercept_wrmsr) 4515 vmcb->control.exit_info_1 = 1; 4516 else 4517 vmcb->control.exit_info_1 = 0; 4518 break; 4519 case SVM_EXIT_PAUSE: 4520 /* 4521 * We get this for NOP only, but pause 4522 * is rep not, check this here 4523 */ 4524 if (info->rep_prefix != REPE_PREFIX) 4525 goto out; 4526 break; 4527 case SVM_EXIT_IOIO: { 4528 u64 exit_info; 4529 u32 bytes; 4530 4531 if (info->intercept == x86_intercept_in || 4532 info->intercept == x86_intercept_ins) { 4533 exit_info = ((info->src_val & 0xffff) << 16) | 4534 SVM_IOIO_TYPE_MASK; 4535 bytes = info->dst_bytes; 4536 } else { 4537 exit_info = (info->dst_val & 0xffff) << 16; 4538 bytes = info->src_bytes; 4539 } 4540 4541 if (info->intercept == x86_intercept_outs || 4542 info->intercept == x86_intercept_ins) 4543 exit_info |= SVM_IOIO_STR_MASK; 4544 4545 if (info->rep_prefix) 4546 exit_info |= SVM_IOIO_REP_MASK; 4547 4548 bytes = min(bytes, 4u); 4549 4550 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4551 4552 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4553 4554 vmcb->control.exit_info_1 = exit_info; 4555 vmcb->control.exit_info_2 = info->next_rip; 4556 4557 break; 4558 } 4559 default: 4560 break; 4561 } 4562 4563 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4564 if (static_cpu_has(X86_FEATURE_NRIPS)) 4565 vmcb->control.next_rip = info->next_rip; 4566 vmcb->control.exit_code = icpt_info.exit_code; 4567 vmexit = nested_svm_exit_handled(svm); 4568 4569 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4570 : X86EMUL_CONTINUE; 4571 4572 out: 4573 return ret; 4574 } 4575 4576 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4577 { 4578 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) 4579 vcpu->arch.at_instruction_boundary = true; 4580 } 4581 4582 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4583 { 4584 if (!kvm_pause_in_guest(vcpu->kvm)) 4585 shrink_ple_window(vcpu); 4586 } 4587 4588 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4589 { 4590 /* [63:9] are reserved. */ 4591 vcpu->arch.mcg_cap &= 0x1ff; 4592 } 4593 4594 #ifdef CONFIG_KVM_SMM 4595 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4596 { 4597 struct vcpu_svm *svm = to_svm(vcpu); 4598 4599 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4600 if (!gif_set(svm)) 4601 return true; 4602 4603 return is_smm(vcpu); 4604 } 4605 4606 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4607 { 4608 struct vcpu_svm *svm = to_svm(vcpu); 4609 if (svm->nested.nested_run_pending) 4610 return -EBUSY; 4611 4612 if (svm_smi_blocked(vcpu)) 4613 return 0; 4614 4615 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4616 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4617 return -EBUSY; 4618 4619 return 1; 4620 } 4621 4622 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 4623 { 4624 struct vcpu_svm *svm = to_svm(vcpu); 4625 struct kvm_host_map map_save; 4626 int ret; 4627 4628 if (!is_guest_mode(vcpu)) 4629 return 0; 4630 4631 /* 4632 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is 4633 * responsible for ensuring nested SVM and SMIs are mutually exclusive. 4634 */ 4635 4636 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4637 return 1; 4638 4639 smram->smram64.svm_guest_flag = 1; 4640 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; 4641 4642 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4643 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4644 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4645 4646 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4647 if (ret) 4648 return ret; 4649 4650 /* 4651 * KVM uses VMCB01 to store L1 host state while L2 runs but 4652 * VMCB01 is going to be used during SMM and thus the state will 4653 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4654 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4655 * format of the area is identical to guest save area offsetted 4656 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4657 * within 'struct vmcb'). Note: HSAVE area may also be used by 4658 * L1 hypervisor to save additional host context (e.g. KVM does 4659 * that, see svm_prepare_switch_to_guest()) which must be 4660 * preserved. 4661 */ 4662 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4663 return 1; 4664 4665 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4666 4667 svm_copy_vmrun_state(map_save.hva + 0x400, 4668 &svm->vmcb01.ptr->save); 4669 4670 kvm_vcpu_unmap(vcpu, &map_save, true); 4671 return 0; 4672 } 4673 4674 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 4675 { 4676 struct vcpu_svm *svm = to_svm(vcpu); 4677 struct kvm_host_map map, map_save; 4678 struct vmcb *vmcb12; 4679 int ret; 4680 4681 const struct kvm_smram_state_64 *smram64 = &smram->smram64; 4682 4683 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4684 return 0; 4685 4686 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4687 if (!smram64->svm_guest_flag) 4688 return 0; 4689 4690 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4691 return 1; 4692 4693 if (!(smram64->efer & EFER_SVME)) 4694 return 1; 4695 4696 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) 4697 return 1; 4698 4699 ret = 1; 4700 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4701 goto unmap_map; 4702 4703 if (svm_allocate_nested(svm)) 4704 goto unmap_save; 4705 4706 /* 4707 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4708 * used during SMM (see svm_enter_smm()) 4709 */ 4710 4711 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4712 4713 /* 4714 * Enter the nested guest now 4715 */ 4716 4717 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4718 4719 vmcb12 = map.hva; 4720 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4721 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4722 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); 4723 4724 if (ret) 4725 goto unmap_save; 4726 4727 svm->nested.nested_run_pending = 1; 4728 4729 unmap_save: 4730 kvm_vcpu_unmap(vcpu, &map_save, true); 4731 unmap_map: 4732 kvm_vcpu_unmap(vcpu, &map, true); 4733 return ret; 4734 } 4735 4736 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4737 { 4738 struct vcpu_svm *svm = to_svm(vcpu); 4739 4740 if (!gif_set(svm)) { 4741 if (vgif) 4742 svm_set_intercept(svm, INTERCEPT_STGI); 4743 /* STGI will cause a vm exit */ 4744 } else { 4745 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4746 } 4747 } 4748 #endif 4749 4750 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4751 void *insn, int insn_len) 4752 { 4753 bool smep, smap, is_user; 4754 u64 error_code; 4755 4756 /* Emulation is always possible when KVM has access to all guest state. */ 4757 if (!sev_guest(vcpu->kvm)) 4758 return true; 4759 4760 /* #UD and #GP should never be intercepted for SEV guests. */ 4761 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4762 EMULTYPE_TRAP_UD_FORCED | 4763 EMULTYPE_VMWARE_GP)); 4764 4765 /* 4766 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4767 * to guest register state. 4768 */ 4769 if (sev_es_guest(vcpu->kvm)) 4770 return false; 4771 4772 /* 4773 * Emulation is possible if the instruction is already decoded, e.g. 4774 * when completing I/O after returning from userspace. 4775 */ 4776 if (emul_type & EMULTYPE_NO_DECODE) 4777 return true; 4778 4779 /* 4780 * Emulation is possible for SEV guests if and only if a prefilled 4781 * buffer containing the bytes of the intercepted instruction is 4782 * available. SEV guest memory is encrypted with a guest specific key 4783 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and 4784 * decode garbage. 4785 * 4786 * If KVM is NOT trying to simply skip an instruction, inject #UD if 4787 * KVM reached this point without an instruction buffer. In practice, 4788 * this path should never be hit by a well-behaved guest, e.g. KVM 4789 * doesn't intercept #UD or #GP for SEV guests, but this path is still 4790 * theoretically reachable, e.g. via unaccelerated fault-like AVIC 4791 * access, and needs to be handled by KVM to avoid putting the guest 4792 * into an infinite loop. Injecting #UD is somewhat arbitrary, but 4793 * its the least awful option given lack of insight into the guest. 4794 * 4795 * If KVM is trying to skip an instruction, simply resume the guest. 4796 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM 4797 * will attempt to re-inject the INT3/INTO and skip the instruction. 4798 * In that scenario, retrying the INT3/INTO and hoping the guest will 4799 * make forward progress is the only option that has a chance of 4800 * success (and in practice it will work the vast majority of the time). 4801 */ 4802 if (unlikely(!insn)) { 4803 if (!(emul_type & EMULTYPE_SKIP)) 4804 kvm_queue_exception(vcpu, UD_VECTOR); 4805 return false; 4806 } 4807 4808 /* 4809 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4810 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4811 * the faulting instruction because the code fetch itself faulted, e.g. 4812 * the guest attempted to fetch from emulated MMIO or a guest page 4813 * table used to translate CS:RIP resides in emulated MMIO. 4814 */ 4815 if (likely(insn_len)) 4816 return true; 4817 4818 /* 4819 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4820 * 4821 * Errata: 4822 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4823 * possible that CPU microcode implementing DecodeAssist will fail to 4824 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4825 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4826 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4827 * gives up and does not fill the instruction bytes buffer. 4828 * 4829 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4830 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4831 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 4832 * GuestIntrBytes field of the VMCB. 4833 * 4834 * This does _not_ mean that the erratum has been encountered, as the 4835 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 4836 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 4837 * encountered a reserved/not-present #PF. 4838 * 4839 * To hit the erratum, the following conditions must be true: 4840 * 1. CR4.SMAP=1 (obviously). 4841 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 4842 * have been hit as the guest would have encountered a SMEP 4843 * violation #PF, not a #NPF. 4844 * 3. The #NPF is not due to a code fetch, in which case failure to 4845 * retrieve the instruction bytes is legitimate (see abvoe). 4846 * 4847 * In addition, don't apply the erratum workaround if the #NPF occurred 4848 * while translating guest page tables (see below). 4849 */ 4850 error_code = to_svm(vcpu)->vmcb->control.exit_info_1; 4851 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 4852 goto resume_guest; 4853 4854 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); 4855 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); 4856 is_user = svm_get_cpl(vcpu) == 3; 4857 if (smap && (!smep || is_user)) { 4858 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); 4859 4860 /* 4861 * If the fault occurred in userspace, arbitrarily inject #GP 4862 * to avoid killing the guest and to hopefully avoid confusing 4863 * the guest kernel too much, e.g. injecting #PF would not be 4864 * coherent with respect to the guest's page tables. Request 4865 * triple fault if the fault occurred in the kernel as there's 4866 * no fault that KVM can inject without confusing the guest. 4867 * In practice, the triple fault is moot as no sane SEV kernel 4868 * will execute from user memory while also running with SMAP=1. 4869 */ 4870 if (is_user) 4871 kvm_inject_gp(vcpu, 0); 4872 else 4873 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4874 } 4875 4876 resume_guest: 4877 /* 4878 * If the erratum was not hit, simply resume the guest and let it fault 4879 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 4880 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 4881 * userspace will kill the guest, and letting the emulator read garbage 4882 * will yield random behavior and potentially corrupt the guest. 4883 * 4884 * Simply resuming the guest is technically not a violation of the SEV 4885 * architecture. AMD's APM states that all code fetches and page table 4886 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 4887 * APM also states that encrypted accesses to MMIO are "ignored", but 4888 * doesn't explicitly define "ignored", i.e. doing nothing and letting 4889 * the guest spin is technically "ignoring" the access. 4890 */ 4891 return false; 4892 } 4893 4894 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4895 { 4896 struct vcpu_svm *svm = to_svm(vcpu); 4897 4898 return !gif_set(svm); 4899 } 4900 4901 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4902 { 4903 if (!sev_es_guest(vcpu->kvm)) 4904 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4905 4906 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4907 } 4908 4909 static void svm_vm_destroy(struct kvm *kvm) 4910 { 4911 avic_vm_destroy(kvm); 4912 sev_vm_destroy(kvm); 4913 } 4914 4915 static int svm_vm_init(struct kvm *kvm) 4916 { 4917 if (!pause_filter_count || !pause_filter_thresh) 4918 kvm->arch.pause_in_guest = true; 4919 4920 if (enable_apicv) { 4921 int ret = avic_vm_init(kvm); 4922 if (ret) 4923 return ret; 4924 } 4925 4926 return 0; 4927 } 4928 4929 static struct kvm_x86_ops svm_x86_ops __initdata = { 4930 .name = KBUILD_MODNAME, 4931 4932 .check_processor_compatibility = svm_check_processor_compat, 4933 4934 .hardware_unsetup = svm_hardware_unsetup, 4935 .hardware_enable = svm_hardware_enable, 4936 .hardware_disable = svm_hardware_disable, 4937 .has_emulated_msr = svm_has_emulated_msr, 4938 4939 .vcpu_create = svm_vcpu_create, 4940 .vcpu_free = svm_vcpu_free, 4941 .vcpu_reset = svm_vcpu_reset, 4942 4943 .vm_size = sizeof(struct kvm_svm), 4944 .vm_init = svm_vm_init, 4945 .vm_destroy = svm_vm_destroy, 4946 4947 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 4948 .vcpu_load = svm_vcpu_load, 4949 .vcpu_put = svm_vcpu_put, 4950 .vcpu_blocking = avic_vcpu_blocking, 4951 .vcpu_unblocking = avic_vcpu_unblocking, 4952 4953 .update_exception_bitmap = svm_update_exception_bitmap, 4954 .get_msr_feature = svm_get_msr_feature, 4955 .get_msr = svm_get_msr, 4956 .set_msr = svm_set_msr, 4957 .get_segment_base = svm_get_segment_base, 4958 .get_segment = svm_get_segment, 4959 .set_segment = svm_set_segment, 4960 .get_cpl = svm_get_cpl, 4961 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 4962 .is_valid_cr0 = svm_is_valid_cr0, 4963 .set_cr0 = svm_set_cr0, 4964 .post_set_cr3 = sev_post_set_cr3, 4965 .is_valid_cr4 = svm_is_valid_cr4, 4966 .set_cr4 = svm_set_cr4, 4967 .set_efer = svm_set_efer, 4968 .get_idt = svm_get_idt, 4969 .set_idt = svm_set_idt, 4970 .get_gdt = svm_get_gdt, 4971 .set_gdt = svm_set_gdt, 4972 .set_dr7 = svm_set_dr7, 4973 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4974 .cache_reg = svm_cache_reg, 4975 .get_rflags = svm_get_rflags, 4976 .set_rflags = svm_set_rflags, 4977 .get_if_flag = svm_get_if_flag, 4978 4979 .flush_tlb_all = svm_flush_tlb_all, 4980 .flush_tlb_current = svm_flush_tlb_current, 4981 .flush_tlb_gva = svm_flush_tlb_gva, 4982 .flush_tlb_guest = svm_flush_tlb_asid, 4983 4984 .vcpu_pre_run = svm_vcpu_pre_run, 4985 .vcpu_run = svm_vcpu_run, 4986 .handle_exit = svm_handle_exit, 4987 .skip_emulated_instruction = svm_skip_emulated_instruction, 4988 .update_emulated_instruction = NULL, 4989 .set_interrupt_shadow = svm_set_interrupt_shadow, 4990 .get_interrupt_shadow = svm_get_interrupt_shadow, 4991 .patch_hypercall = svm_patch_hypercall, 4992 .inject_irq = svm_inject_irq, 4993 .inject_nmi = svm_inject_nmi, 4994 .is_vnmi_pending = svm_is_vnmi_pending, 4995 .set_vnmi_pending = svm_set_vnmi_pending, 4996 .inject_exception = svm_inject_exception, 4997 .cancel_injection = svm_cancel_injection, 4998 .interrupt_allowed = svm_interrupt_allowed, 4999 .nmi_allowed = svm_nmi_allowed, 5000 .get_nmi_mask = svm_get_nmi_mask, 5001 .set_nmi_mask = svm_set_nmi_mask, 5002 .enable_nmi_window = svm_enable_nmi_window, 5003 .enable_irq_window = svm_enable_irq_window, 5004 .update_cr8_intercept = svm_update_cr8_intercept, 5005 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, 5006 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 5007 .apicv_post_state_restore = avic_apicv_post_state_restore, 5008 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, 5009 5010 .get_exit_info = svm_get_exit_info, 5011 5012 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 5013 5014 .has_wbinvd_exit = svm_has_wbinvd_exit, 5015 5016 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 5017 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 5018 .write_tsc_offset = svm_write_tsc_offset, 5019 .write_tsc_multiplier = svm_write_tsc_multiplier, 5020 5021 .load_mmu_pgd = svm_load_mmu_pgd, 5022 5023 .check_intercept = svm_check_intercept, 5024 .handle_exit_irqoff = svm_handle_exit_irqoff, 5025 5026 .request_immediate_exit = __kvm_request_immediate_exit, 5027 5028 .sched_in = svm_sched_in, 5029 5030 .nested_ops = &svm_nested_ops, 5031 5032 .deliver_interrupt = svm_deliver_interrupt, 5033 .pi_update_irte = avic_pi_update_irte, 5034 .setup_mce = svm_setup_mce, 5035 5036 #ifdef CONFIG_KVM_SMM 5037 .smi_allowed = svm_smi_allowed, 5038 .enter_smm = svm_enter_smm, 5039 .leave_smm = svm_leave_smm, 5040 .enable_smi_window = svm_enable_smi_window, 5041 #endif 5042 5043 .mem_enc_ioctl = sev_mem_enc_ioctl, 5044 .mem_enc_register_region = sev_mem_enc_register_region, 5045 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 5046 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 5047 5048 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 5049 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 5050 5051 .can_emulate_instruction = svm_can_emulate_instruction, 5052 5053 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 5054 5055 .msr_filter_changed = svm_msr_filter_changed, 5056 .complete_emulated_msr = svm_complete_emulated_msr, 5057 5058 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 5059 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 5060 }; 5061 5062 /* 5063 * The default MMIO mask is a single bit (excluding the present bit), 5064 * which could conflict with the memory encryption bit. Check for 5065 * memory encryption support and override the default MMIO mask if 5066 * memory encryption is enabled. 5067 */ 5068 static __init void svm_adjust_mmio_mask(void) 5069 { 5070 unsigned int enc_bit, mask_bit; 5071 u64 msr, mask; 5072 5073 /* If there is no memory encryption support, use existing mask */ 5074 if (cpuid_eax(0x80000000) < 0x8000001f) 5075 return; 5076 5077 /* If memory encryption is not enabled, use existing mask */ 5078 rdmsrl(MSR_AMD64_SYSCFG, msr); 5079 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 5080 return; 5081 5082 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 5083 mask_bit = boot_cpu_data.x86_phys_bits; 5084 5085 /* Increment the mask bit if it is the same as the encryption bit */ 5086 if (enc_bit == mask_bit) 5087 mask_bit++; 5088 5089 /* 5090 * If the mask bit location is below 52, then some bits above the 5091 * physical addressing limit will always be reserved, so use the 5092 * rsvd_bits() function to generate the mask. This mask, along with 5093 * the present bit, will be used to generate a page fault with 5094 * PFER.RSV = 1. 5095 * 5096 * If the mask bit location is 52 (or above), then clear the mask. 5097 */ 5098 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 5099 5100 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 5101 } 5102 5103 static __init void svm_set_cpu_caps(void) 5104 { 5105 kvm_set_cpu_caps(); 5106 5107 kvm_caps.supported_perf_cap = 0; 5108 kvm_caps.supported_xss = 0; 5109 5110 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 5111 if (nested) { 5112 kvm_cpu_cap_set(X86_FEATURE_SVM); 5113 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 5114 5115 if (nrips) 5116 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 5117 5118 if (npt_enabled) 5119 kvm_cpu_cap_set(X86_FEATURE_NPT); 5120 5121 if (tsc_scaling) 5122 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 5123 5124 if (vls) 5125 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 5126 if (lbrv) 5127 kvm_cpu_cap_set(X86_FEATURE_LBRV); 5128 5129 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 5130 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 5131 5132 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 5133 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 5134 5135 if (vgif) 5136 kvm_cpu_cap_set(X86_FEATURE_VGIF); 5137 5138 if (vnmi) 5139 kvm_cpu_cap_set(X86_FEATURE_VNMI); 5140 5141 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 5142 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 5143 } 5144 5145 /* CPUID 0x80000008 */ 5146 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 5147 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 5148 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 5149 5150 if (enable_pmu) { 5151 /* 5152 * Enumerate support for PERFCTR_CORE if and only if KVM has 5153 * access to enough counters to virtualize "core" support, 5154 * otherwise limit vPMU support to the legacy number of counters. 5155 */ 5156 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE) 5157 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS, 5158 kvm_pmu_cap.num_counters_gp); 5159 else 5160 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE); 5161 5162 if (kvm_pmu_cap.version != 2 || 5163 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) 5164 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2); 5165 } 5166 5167 /* CPUID 0x8000001F (SME/SEV features) */ 5168 sev_set_cpu_caps(); 5169 } 5170 5171 static __init int svm_hardware_setup(void) 5172 { 5173 int cpu; 5174 struct page *iopm_pages; 5175 void *iopm_va; 5176 int r; 5177 unsigned int order = get_order(IOPM_SIZE); 5178 5179 /* 5180 * NX is required for shadow paging and for NPT if the NX huge pages 5181 * mitigation is enabled. 5182 */ 5183 if (!boot_cpu_has(X86_FEATURE_NX)) { 5184 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 5185 return -EOPNOTSUPP; 5186 } 5187 kvm_enable_efer_bits(EFER_NX); 5188 5189 iopm_pages = alloc_pages(GFP_KERNEL, order); 5190 5191 if (!iopm_pages) 5192 return -ENOMEM; 5193 5194 iopm_va = page_address(iopm_pages); 5195 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 5196 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 5197 5198 init_msrpm_offsets(); 5199 5200 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 5201 XFEATURE_MASK_BNDCSR); 5202 5203 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 5204 kvm_enable_efer_bits(EFER_FFXSR); 5205 5206 if (tsc_scaling) { 5207 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 5208 tsc_scaling = false; 5209 } else { 5210 pr_info("TSC scaling supported\n"); 5211 kvm_caps.has_tsc_control = true; 5212 } 5213 } 5214 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 5215 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 5216 5217 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 5218 5219 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) 5220 kvm_enable_efer_bits(EFER_AUTOIBRS); 5221 5222 /* Check for pause filtering support */ 5223 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 5224 pause_filter_count = 0; 5225 pause_filter_thresh = 0; 5226 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 5227 pause_filter_thresh = 0; 5228 } 5229 5230 if (nested) { 5231 pr_info("Nested Virtualization enabled\n"); 5232 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 5233 } 5234 5235 /* 5236 * KVM's MMU doesn't support using 2-level paging for itself, and thus 5237 * NPT isn't supported if the host is using 2-level paging since host 5238 * CR4 is unchanged on VMRUN. 5239 */ 5240 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 5241 npt_enabled = false; 5242 5243 if (!boot_cpu_has(X86_FEATURE_NPT)) 5244 npt_enabled = false; 5245 5246 /* Force VM NPT level equal to the host's paging level */ 5247 kvm_configure_mmu(npt_enabled, get_npt_level(), 5248 get_npt_level(), PG_LEVEL_1G); 5249 pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 5250 5251 /* Setup shadow_me_value and shadow_me_mask */ 5252 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5253 5254 svm_adjust_mmio_mask(); 5255 5256 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS); 5257 5258 if (lbrv) { 5259 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5260 lbrv = false; 5261 else 5262 pr_info("LBR virtualization supported\n"); 5263 } 5264 /* 5265 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5266 * may be modified by svm_adjust_mmio_mask()), as well as nrips. 5267 */ 5268 sev_hardware_setup(); 5269 5270 svm_hv_hardware_setup(); 5271 5272 for_each_possible_cpu(cpu) { 5273 r = svm_cpu_init(cpu); 5274 if (r) 5275 goto err; 5276 } 5277 5278 enable_apicv = avic = avic && avic_hardware_setup(); 5279 5280 if (!enable_apicv) { 5281 svm_x86_ops.vcpu_blocking = NULL; 5282 svm_x86_ops.vcpu_unblocking = NULL; 5283 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5284 } else if (!x2avic_enabled) { 5285 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true; 5286 } 5287 5288 if (vls) { 5289 if (!npt_enabled || 5290 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5291 !IS_ENABLED(CONFIG_X86_64)) { 5292 vls = false; 5293 } else { 5294 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5295 } 5296 } 5297 5298 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5299 svm_gp_erratum_intercept = false; 5300 5301 if (vgif) { 5302 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5303 vgif = false; 5304 else 5305 pr_info("Virtual GIF supported\n"); 5306 } 5307 5308 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); 5309 if (vnmi) 5310 pr_info("Virtual NMI enabled\n"); 5311 5312 if (!vnmi) { 5313 svm_x86_ops.is_vnmi_pending = NULL; 5314 svm_x86_ops.set_vnmi_pending = NULL; 5315 } 5316 5317 if (!enable_pmu) 5318 pr_info("PMU virtualization is disabled\n"); 5319 5320 svm_set_cpu_caps(); 5321 5322 /* 5323 * It seems that on AMD processors PTE's accessed bit is 5324 * being set by the CPU hardware before the NPF vmexit. 5325 * This is not expected behaviour and our tests fail because 5326 * of it. 5327 * A workaround here is to disable support for 5328 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5329 * In this case userspace can know if there is support using 5330 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5331 * it 5332 * If future AMD CPU models change the behaviour described above, 5333 * this variable can be changed accordingly 5334 */ 5335 allow_smaller_maxphyaddr = !npt_enabled; 5336 5337 return 0; 5338 5339 err: 5340 svm_hardware_unsetup(); 5341 return r; 5342 } 5343 5344 5345 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5346 .hardware_setup = svm_hardware_setup, 5347 5348 .runtime_ops = &svm_x86_ops, 5349 .pmu_ops = &amd_pmu_ops, 5350 }; 5351 5352 static void __svm_exit(void) 5353 { 5354 kvm_x86_vendor_exit(); 5355 5356 cpu_emergency_unregister_virt_callback(svm_emergency_disable); 5357 } 5358 5359 static int __init svm_init(void) 5360 { 5361 int r; 5362 5363 __unused_size_checks(); 5364 5365 if (!kvm_is_svm_supported()) 5366 return -EOPNOTSUPP; 5367 5368 r = kvm_x86_vendor_init(&svm_init_ops); 5369 if (r) 5370 return r; 5371 5372 cpu_emergency_register_virt_callback(svm_emergency_disable); 5373 5374 /* 5375 * Common KVM initialization _must_ come last, after this, /dev/kvm is 5376 * exposed to userspace! 5377 */ 5378 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), 5379 THIS_MODULE); 5380 if (r) 5381 goto err_kvm_init; 5382 5383 return 0; 5384 5385 err_kvm_init: 5386 __svm_exit(); 5387 return r; 5388 } 5389 5390 static void __exit svm_exit(void) 5391 { 5392 kvm_exit(); 5393 __svm_exit(); 5394 } 5395 5396 module_init(svm_init) 5397 module_exit(svm_exit) 5398