#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include "irq.h" #include "mmu.h" #include "kvm_cache_regs.h" #include "x86.h" #include "smm.h" #include "cpuid.h" #include "pmu.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "trace.h" #include "svm.h" #include "svm_ops.h" #include "kvm_onhyperv.h" #include "svm_onhyperv.h" MODULE_AUTHOR("Qumranet"); MODULE_LICENSE("GPL"); #ifdef MODULE static const struct x86_cpu_id svm_cpu_id[] = { X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), {} }; MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); #endif #define SEG_TYPE_LDT 2 #define SEG_TYPE_BUSY_TSS16 3 static bool erratum_383_found __read_mostly; u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; /* * Set osvw_len to higher value when updated Revision Guides * are published and we know what the new status bits are */ static uint64_t osvw_len = 4, osvw_status; static DEFINE_PER_CPU(u64, current_tsc_ratio); #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4)) static const struct svm_direct_access_msrs { u32 index; /* Index of the MSR */ bool always; /* True if intercept is initially cleared */ } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { { .index = MSR_STAR, .always = true }, { .index = MSR_IA32_SYSENTER_CS, .always = true }, { .index = MSR_IA32_SYSENTER_EIP, .always = false }, { .index = MSR_IA32_SYSENTER_ESP, .always = false }, #ifdef CONFIG_X86_64 { .index = MSR_GS_BASE, .always = true }, { .index = MSR_FS_BASE, .always = true }, { .index = MSR_KERNEL_GS_BASE, .always = true }, { .index = MSR_LSTAR, .always = true }, { .index = MSR_CSTAR, .always = true }, { .index = MSR_SYSCALL_MASK, .always = true }, #endif { .index = MSR_IA32_SPEC_CTRL, .always = false }, { .index = MSR_IA32_PRED_CMD, .always = false }, { .index = MSR_IA32_FLUSH_CMD, .always = false }, { .index = MSR_IA32_DEBUGCTLMSR, .always = false }, { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, { .index = MSR_IA32_LASTINTFROMIP, .always = false }, { .index = MSR_IA32_LASTINTTOIP, .always = false }, { .index = MSR_IA32_XSS, .always = false }, { .index = MSR_EFER, .always = false }, { .index = MSR_IA32_CR_PAT, .always = false }, { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, { .index = MSR_TSC_AUX, .always = false }, { .index = X2APIC_MSR(APIC_ID), .always = false }, { .index = X2APIC_MSR(APIC_LVR), .always = false }, { .index = X2APIC_MSR(APIC_TASKPRI), .always = false }, { .index = X2APIC_MSR(APIC_ARBPRI), .always = false }, { .index = X2APIC_MSR(APIC_PROCPRI), .always = false }, { .index = X2APIC_MSR(APIC_EOI), .always = false }, { .index = X2APIC_MSR(APIC_RRR), .always = false }, { .index = X2APIC_MSR(APIC_LDR), .always = false }, { .index = X2APIC_MSR(APIC_DFR), .always = false }, { .index = X2APIC_MSR(APIC_SPIV), .always = false }, { .index = X2APIC_MSR(APIC_ISR), .always = false }, { .index = X2APIC_MSR(APIC_TMR), .always = false }, { .index = X2APIC_MSR(APIC_IRR), .always = false }, { .index = X2APIC_MSR(APIC_ESR), .always = false }, { .index = X2APIC_MSR(APIC_ICR), .always = false }, { .index = X2APIC_MSR(APIC_ICR2), .always = false }, /* * Note: * AMD does not virtualize APIC TSC-deadline timer mode, but it is * emulated by KVM. When setting APIC LVTT (0x832) register bit 18, * the AVIC hardware would generate GP fault. Therefore, always * intercept the MSR 0x832, and do not setup direct_access_msr. */ { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false }, { .index = X2APIC_MSR(APIC_LVTPC), .always = false }, { .index = X2APIC_MSR(APIC_LVT0), .always = false }, { .index = X2APIC_MSR(APIC_LVT1), .always = false }, { .index = X2APIC_MSR(APIC_LVTERR), .always = false }, { .index = X2APIC_MSR(APIC_TMICT), .always = false }, { .index = X2APIC_MSR(APIC_TMCCT), .always = false }, { .index = X2APIC_MSR(APIC_TDCR), .always = false }, { .index = MSR_INVALID, .always = false }, }; /* * These 2 parameters are used to config the controls for Pause-Loop Exiting: * pause_filter_count: On processors that support Pause filtering(indicated * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter * count value. On VMRUN this value is loaded into an internal counter. * Each time a pause instruction is executed, this counter is decremented * until it reaches zero at which time a #VMEXIT is generated if pause * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause * Intercept Filtering for more details. * This also indicate if ple logic enabled. * * pause_filter_thresh: In addition, some processor families support advanced * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on * the amount of time a guest is allowed to execute in a pause loop. * In this mode, a 16-bit pause filter threshold field is added in the * VMCB. The threshold value is a cycle count that is used to reset the * pause counter. As with simple pause filtering, VMRUN loads the pause * count value from VMCB into an internal counter. Then, on each pause * instruction the hardware checks the elapsed number of cycles since * the most recent pause instruction against the pause filter threshold. * If the elapsed cycle count is greater than the pause filter threshold, * then the internal pause count is reloaded from the VMCB and execution * continues. If the elapsed cycle count is less than the pause filter * threshold, then the internal pause count is decremented. If the count * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is * triggered. If advanced pause filtering is supported and pause filter * threshold field is set to zero, the filter will operate in the simpler, * count only mode. */ static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; module_param(pause_filter_thresh, ushort, 0444); static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; module_param(pause_filter_count, ushort, 0444); /* Default doubles per-vcpu window every exit. */ static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; module_param(pause_filter_count_grow, ushort, 0444); /* Default resets per-vcpu window every exit to pause_filter_count. */ static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; module_param(pause_filter_count_shrink, ushort, 0444); /* Default is to compute the maximum so we can never overflow. */ static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; module_param(pause_filter_count_max, ushort, 0444); /* * Use nested page tables by default. Note, NPT may get forced off by * svm_hardware_setup() if it's unsupported by hardware or the host kernel. */ bool npt_enabled = true; module_param_named(npt, npt_enabled, bool, 0444); /* allow nested virtualization in KVM/SVM */ static int nested = true; module_param(nested, int, S_IRUGO); /* enable/disable Next RIP Save */ int nrips = true; module_param(nrips, int, 0444); /* enable/disable Virtual VMLOAD VMSAVE */ static int vls = true; module_param(vls, int, 0444); /* enable/disable Virtual GIF */ int vgif = true; module_param(vgif, int, 0444); /* enable/disable LBR virtualization */ int lbrv = true; module_param(lbrv, int, 0444); static int tsc_scaling = true; module_param(tsc_scaling, int, 0444); /* * enable / disable AVIC. Because the defaults differ for APICv * support between VMX and SVM we cannot use module_param_named. */ static bool avic; module_param(avic, bool, 0444); bool __read_mostly dump_invalid_vmcb; module_param(dump_invalid_vmcb, bool, 0644); bool intercept_smi = true; module_param(intercept_smi, bool, 0444); bool vnmi = true; module_param(vnmi, bool, 0444); static bool svm_gp_erratum_intercept = true; static u8 rsm_ins_bytes[] = "\x0f\xaa"; static unsigned long iopm_base; DEFINE_PER_CPU(struct svm_cpu_data, svm_data); /* * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. * * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to * defer the restoration of TSC_AUX until the CPU returns to userspace. */ static int tsc_aux_uret_slot __read_mostly = -1; static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) #define MSRS_RANGE_SIZE 2048 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) u32 svm_msrpm_offset(u32 msr) { u32 offset; int i; for (i = 0; i < NUM_MSR_MAPS; i++) { if (msr < msrpm_ranges[i] || msr >= msrpm_ranges[i] + MSRS_IN_RANGE) continue; offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ offset += (i * MSRS_RANGE_SIZE); /* add range offset */ /* Now we have the u8 offset - but need the u32 offset */ return offset / 4; } /* MSR not in any range */ return MSR_INVALID; } static void svm_flush_tlb_current(struct kvm_vcpu *vcpu); static int get_npt_level(void) { #ifdef CONFIG_X86_64 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; #else return PT32E_ROOT_LEVEL; #endif } int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) { struct vcpu_svm *svm = to_svm(vcpu); u64 old_efer = vcpu->arch.efer; vcpu->arch.efer = efer; if (!npt_enabled) { /* Shadow paging assumes NX to be available. */ efer |= EFER_NX; if (!(efer & EFER_LMA)) efer &= ~EFER_LME; } if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { if (!(efer & EFER_SVME)) { svm_leave_nested(vcpu); svm_set_gif(svm, true); /* #GP intercept is still needed for vmware backdoor */ if (!enable_vmware_backdoor) clr_exception_intercept(svm, GP_VECTOR); /* * Free the nested guest state, unless we are in SMM. * In this case we will return to the nested guest * as soon as we leave SMM. */ if (!is_smm(vcpu)) svm_free_nested(svm); } else { int ret = svm_allocate_nested(svm); if (ret) { vcpu->arch.efer = old_efer; return ret; } /* * Never intercept #GP for SEV guests, KVM can't * decrypt guest memory to workaround the erratum. */ if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) set_exception_intercept(svm, GP_VECTOR); } } svm->vmcb->save.efer = efer | EFER_SVME; vmcb_mark_dirty(svm->vmcb, VMCB_CR); return 0; } static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u32 ret = 0; if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; return ret; } static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) { struct vcpu_svm *svm = to_svm(vcpu); if (mask == 0) svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; else svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; } static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, void *insn, int insn_len); static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, bool commit_side_effects) { struct vcpu_svm *svm = to_svm(vcpu); unsigned long old_rflags; /* * SEV-ES does not expose the next RIP. The RIP update is controlled by * the type of exit and the #VC handler in the guest. */ if (sev_es_guest(vcpu->kvm)) goto done; if (nrips && svm->vmcb->control.next_rip != 0) { WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); svm->next_rip = svm->vmcb->control.next_rip; } if (!svm->next_rip) { /* * FIXME: Drop this when kvm_emulate_instruction() does the * right thing and treats "can't emulate" as outright failure * for EMULTYPE_SKIP. */ if (!svm_can_emulate_instruction(vcpu, EMULTYPE_SKIP, NULL, 0)) return 0; if (unlikely(!commit_side_effects)) old_rflags = svm->vmcb->save.rflags; if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) return 0; if (unlikely(!commit_side_effects)) svm->vmcb->save.rflags = old_rflags; } else { kvm_rip_write(vcpu, svm->next_rip); } done: if (likely(commit_side_effects)) svm_set_interrupt_shadow(vcpu, 0); return 1; } static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) { return __svm_skip_emulated_instruction(vcpu, true); } static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) { unsigned long rip, old_rip = kvm_rip_read(vcpu); struct vcpu_svm *svm = to_svm(vcpu); /* * Due to architectural shortcomings, the CPU doesn't always provide * NextRIP, e.g. if KVM intercepted an exception that occurred while * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip * the instruction even if NextRIP is supported to acquire the next * RIP so that it can be shoved into the NextRIP field, otherwise * hardware will fail to advance guest RIP during event injection. * Drop the exception/interrupt if emulation fails and effectively * retry the instruction, it's the least awful option. If NRIPS is * in use, the skip must not commit any side effects such as clearing * the interrupt shadow or RFLAGS.RF. */ if (!__svm_skip_emulated_instruction(vcpu, !nrips)) return -EIO; rip = kvm_rip_read(vcpu); /* * Save the injection information, even when using next_rip, as the * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection * doesn't complete due to a VM-Exit occurring while the CPU is * vectoring the event. Decoding the instruction isn't guaranteed to * work as there may be no backing instruction, e.g. if the event is * being injected by L1 for L2, or if the guest is patching INT3 into * a different instruction. */ svm->soft_int_injected = true; svm->soft_int_csbase = svm->vmcb->save.cs.base; svm->soft_int_old_rip = old_rip; svm->soft_int_next_rip = rip; if (nrips) kvm_rip_write(vcpu, old_rip); if (static_cpu_has(X86_FEATURE_NRIPS)) svm->vmcb->control.next_rip = rip; return 0; } static void svm_inject_exception(struct kvm_vcpu *vcpu) { struct kvm_queued_exception *ex = &vcpu->arch.exception; struct vcpu_svm *svm = to_svm(vcpu); kvm_deliver_exception_payload(vcpu, ex); if (kvm_exception_is_soft(ex->vector) && svm_update_soft_interrupt_rip(vcpu)) return; svm->vmcb->control.event_inj = ex->vector | SVM_EVTINJ_VALID | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) | SVM_EVTINJ_TYPE_EXEPT; svm->vmcb->control.event_inj_err = ex->error_code; } static void svm_init_erratum_383(void) { u32 low, high; int err; u64 val; if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) return; /* Use _safe variants to not break nested virtualization */ val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); if (err) return; val |= (1ULL << 47); low = lower_32_bits(val); high = upper_32_bits(val); native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); erratum_383_found = true; } static void svm_init_osvw(struct kvm_vcpu *vcpu) { /* * Guests should see errata 400 and 415 as fixed (assuming that * HLT and IO instructions are intercepted). */ vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; vcpu->arch.osvw.status = osvw_status & ~(6ULL); /* * By increasing VCPU's osvw.length to 3 we are telling the guest that * all osvw.status bits inside that length, including bit 0 (which is * reserved for erratum 298), are valid. However, if host processor's * osvw_len is 0 then osvw_status[0] carries no information. We need to * be conservative here and therefore we tell the guest that erratum 298 * is present (because we really don't know). */ if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) vcpu->arch.osvw.status |= 1; } static bool __kvm_is_svm_supported(void) { int cpu = smp_processor_id(); struct cpuinfo_x86 *c = &cpu_data(cpu); u64 vm_cr; if (c->x86_vendor != X86_VENDOR_AMD && c->x86_vendor != X86_VENDOR_HYGON) { pr_err("CPU %d isn't AMD or Hygon\n", cpu); return false; } if (!cpu_has(c, X86_FEATURE_SVM)) { pr_err("SVM not supported by CPU %d\n", cpu); return false; } if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { pr_info("KVM is unsupported when running as an SEV guest\n"); return false; } rdmsrl(MSR_VM_CR, vm_cr); if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) { pr_err("SVM disabled (by BIOS) in MSR_VM_CR on CPU %d\n", cpu); return false; } return true; } static bool kvm_is_svm_supported(void) { bool supported; migrate_disable(); supported = __kvm_is_svm_supported(); migrate_enable(); return supported; } static int svm_check_processor_compat(void) { if (!__kvm_is_svm_supported()) return -EIO; return 0; } static void __svm_write_tsc_multiplier(u64 multiplier) { if (multiplier == __this_cpu_read(current_tsc_ratio)) return; wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); __this_cpu_write(current_tsc_ratio, multiplier); } static inline void kvm_cpu_svm_disable(void) { uint64_t efer; wrmsrl(MSR_VM_HSAVE_PA, 0); rdmsrl(MSR_EFER, efer); if (efer & EFER_SVME) { /* * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and * NMI aren't blocked. */ stgi(); wrmsrl(MSR_EFER, efer & ~EFER_SVME); } } static void svm_emergency_disable(void) { kvm_rebooting = true; kvm_cpu_svm_disable(); } static void svm_hardware_disable(void) { /* Make sure we clean up behind us */ if (tsc_scaling) __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); kvm_cpu_svm_disable(); amd_pmu_disable_virt(); } static int svm_hardware_enable(void) { struct svm_cpu_data *sd; uint64_t efer; int me = raw_smp_processor_id(); rdmsrl(MSR_EFER, efer); if (efer & EFER_SVME) return -EBUSY; sd = per_cpu_ptr(&svm_data, me); sd->asid_generation = 1; sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; sd->next_asid = sd->max_asid + 1; sd->min_asid = max_sev_asid + 1; wrmsrl(MSR_EFER, efer | EFER_SVME); wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa); if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { /* * Set the default value, even if we don't use TSC scaling * to avoid having stale value in the msr */ __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); } /* * Get OSVW bits. * * Note that it is possible to have a system with mixed processor * revisions and therefore different OSVW bits. If bits are not the same * on different processors then choose the worst case (i.e. if erratum * is present on one processor and not on another then assume that the * erratum is present everywhere). */ if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { uint64_t len, status = 0; int err; len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); if (!err) status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, &err); if (err) osvw_status = osvw_len = 0; else { if (len < osvw_len) osvw_len = len; osvw_status |= status; osvw_status &= (1ULL << osvw_len) - 1; } } else osvw_status = osvw_len = 0; svm_init_erratum_383(); amd_pmu_enable_virt(); /* * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests. * Since Linux does not change the value of TSC_AUX once set, prime the * TSC_AUX field now to avoid a RDMSR on every vCPU run. */ if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { struct sev_es_save_area *hostsa; u32 __maybe_unused msr_hi; hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); rdmsr(MSR_TSC_AUX, hostsa->tsc_aux, msr_hi); } return 0; } static void svm_cpu_uninit(int cpu) { struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); if (!sd->save_area) return; kfree(sd->sev_vmcbs); __free_page(sd->save_area); sd->save_area_pa = 0; sd->save_area = NULL; } static int svm_cpu_init(int cpu) { struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); int ret = -ENOMEM; memset(sd, 0, sizeof(struct svm_cpu_data)); sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO); if (!sd->save_area) return ret; ret = sev_cpu_init(sd); if (ret) goto free_save_area; sd->save_area_pa = __sme_page_pa(sd->save_area); return 0; free_save_area: __free_page(sd->save_area); sd->save_area = NULL; return ret; } static void set_dr_intercepts(struct vcpu_svm *svm) { struct vmcb *vmcb = svm->vmcb01.ptr; vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ); vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ); vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ); vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ); vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ); vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ); vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ); vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE); vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE); vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE); vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE); vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE); vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE); vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE); vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); recalc_intercepts(svm); } static void clr_dr_intercepts(struct vcpu_svm *svm) { struct vmcb *vmcb = svm->vmcb01.ptr; vmcb->control.intercepts[INTERCEPT_DR] = 0; recalc_intercepts(svm); } static int direct_access_msr_slot(u32 msr) { u32 i; for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) if (direct_access_msrs[i].index == msr) return i; return -ENOENT; } static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, int write) { struct vcpu_svm *svm = to_svm(vcpu); int slot = direct_access_msr_slot(msr); if (slot == -ENOENT) return; /* Set the shadow bitmaps to the desired intercept states */ if (read) set_bit(slot, svm->shadow_msr_intercept.read); else clear_bit(slot, svm->shadow_msr_intercept.read); if (write) set_bit(slot, svm->shadow_msr_intercept.write); else clear_bit(slot, svm->shadow_msr_intercept.write); } static bool valid_msr_intercept(u32 index) { return direct_access_msr_slot(index) != -ENOENT; } static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) { u8 bit_write; unsigned long tmp; u32 offset; u32 *msrpm; /* * For non-nested case: * If the L01 MSR bitmap does not intercept the MSR, then we need to * save it. * * For nested case: * If the L02 MSR bitmap does not intercept the MSR, then we need to * save it. */ msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: to_svm(vcpu)->msrpm; offset = svm_msrpm_offset(msr); bit_write = 2 * (msr & 0x0f) + 1; tmp = msrpm[offset]; BUG_ON(offset == MSR_INVALID); return test_bit(bit_write, &tmp); } static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, int read, int write) { struct vcpu_svm *svm = to_svm(vcpu); u8 bit_read, bit_write; unsigned long tmp; u32 offset; /* * If this warning triggers extend the direct_access_msrs list at the * beginning of the file */ WARN_ON(!valid_msr_intercept(msr)); /* Enforce non allowed MSRs to trap */ if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) read = 0; if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) write = 0; offset = svm_msrpm_offset(msr); bit_read = 2 * (msr & 0x0f); bit_write = 2 * (msr & 0x0f) + 1; tmp = msrpm[offset]; BUG_ON(offset == MSR_INVALID); read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); msrpm[offset] = tmp; svm_hv_vmcb_dirty_nested_enlightenments(vcpu); svm->nested.force_msr_bitmap_recalc = true; } void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, int read, int write) { set_shadow_msr_intercept(vcpu, msr, read, write); set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); } u32 *svm_vcpu_alloc_msrpm(void) { unsigned int order = get_order(MSRPM_SIZE); struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); u32 *msrpm; if (!pages) return NULL; msrpm = page_address(pages); memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); return msrpm; } void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) { int i; for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { if (!direct_access_msrs[i].always) continue; set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); } } void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept) { int i; if (intercept == svm->x2avic_msrs_intercepted) return; if (!x2avic_enabled) return; for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) { int index = direct_access_msrs[i].index; if ((index < APIC_BASE_MSR) || (index > APIC_BASE_MSR + 0xff)) continue; set_msr_interception(&svm->vcpu, svm->msrpm, index, !intercept, !intercept); } svm->x2avic_msrs_intercepted = intercept; } void svm_vcpu_free_msrpm(u32 *msrpm) { __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); } static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u32 i; /* * Set intercept permissions for all direct access MSRs again. They * will automatically get filtered through the MSR filter, so we are * back in sync after this. */ for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { u32 msr = direct_access_msrs[i].index; u32 read = test_bit(i, svm->shadow_msr_intercept.read); u32 write = test_bit(i, svm->shadow_msr_intercept.write); set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); } } static void add_msr_offset(u32 offset) { int i; for (i = 0; i < MSRPM_OFFSETS; ++i) { /* Offset already in list? */ if (msrpm_offsets[i] == offset) return; /* Slot used by another offset? */ if (msrpm_offsets[i] != MSR_INVALID) continue; /* Add offset to list */ msrpm_offsets[i] = offset; return; } /* * If this BUG triggers the msrpm_offsets table has an overflow. Just * increase MSRPM_OFFSETS in this case. */ BUG(); } static void init_msrpm_offsets(void) { int i; memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { u32 offset; offset = svm_msrpm_offset(direct_access_msrs[i].index); BUG_ON(offset == MSR_INVALID); add_msr_offset(offset); } } void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) { to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; to_vmcb->save.br_from = from_vmcb->save.br_from; to_vmcb->save.br_to = from_vmcb->save.br_to; to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; vmcb_mark_dirty(to_vmcb, VMCB_LBR); } void svm_enable_lbrv(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); if (sev_es_guest(vcpu->kvm)) set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1); /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ if (is_guest_mode(vcpu)) svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); } static void svm_disable_lbrv(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm); svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); /* * Move the LBR msrs back to the vmcb01 to avoid copying them * on nested guest entries. */ if (is_guest_mode(vcpu)) svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); } static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm) { /* * If LBR virtualization is disabled, the LBR MSRs are always kept in * vmcb01. If LBR virtualization is enabled and L1 is running VMs of * its own, the MSRs are moved between vmcb01 and vmcb02 as needed. */ return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb : svm->vmcb01.ptr; } void svm_update_lbrv(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK; bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) || (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) && (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)); if (enable_lbrv == current_enable_lbrv) return; if (enable_lbrv) svm_enable_lbrv(vcpu); else svm_disable_lbrv(vcpu); } void disable_nmi_singlestep(struct vcpu_svm *svm) { svm->nmi_singlestep = false; if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { /* Clear our flags if they were not set by the guest */ if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; } } static void grow_ple_window(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb_control_area *control = &svm->vmcb->control; int old = control->pause_filter_count; if (kvm_pause_in_guest(vcpu->kvm)) return; control->pause_filter_count = __grow_ple_window(old, pause_filter_count, pause_filter_count_grow, pause_filter_count_max); if (control->pause_filter_count != old) { vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); trace_kvm_ple_window_update(vcpu->vcpu_id, control->pause_filter_count, old); } } static void shrink_ple_window(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb_control_area *control = &svm->vmcb->control; int old = control->pause_filter_count; if (kvm_pause_in_guest(vcpu->kvm)) return; control->pause_filter_count = __shrink_ple_window(old, pause_filter_count, pause_filter_count_shrink, pause_filter_count); if (control->pause_filter_count != old) { vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); trace_kvm_ple_window_update(vcpu->vcpu_id, control->pause_filter_count, old); } } static void svm_hardware_unsetup(void) { int cpu; sev_hardware_unsetup(); for_each_possible_cpu(cpu) svm_cpu_uninit(cpu); __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), get_order(IOPM_SIZE)); iopm_base = 0; } static void init_seg(struct vmcb_seg *seg) { seg->selector = 0; seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ seg->limit = 0xffff; seg->base = 0; } static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) { seg->selector = 0; seg->attrib = SVM_SELECTOR_P_MASK | type; seg->limit = 0xffff; seg->base = 0; } static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); return svm->nested.ctl.tsc_offset; } static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); return svm->tsc_ratio_msr; } static void svm_write_tsc_offset(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset; vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); } void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu) { preempt_disable(); if (to_svm(vcpu)->guest_state_loaded) __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); preempt_enable(); } /* Evaluate instruction intercepts that depend on guest CPUID features. */ static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, struct vcpu_svm *svm) { /* * Intercept INVPCID if shadow paging is enabled to sync/free shadow * roots, or if INVPCID is disabled in the guest to inject #UD. */ if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { if (!npt_enabled || !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) svm_set_intercept(svm, INTERCEPT_INVPCID); else svm_clr_intercept(svm, INTERCEPT_INVPCID); } if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) svm_clr_intercept(svm, INTERCEPT_RDTSCP); else svm_set_intercept(svm, INTERCEPT_RDTSCP); } } static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (guest_cpuid_is_intel(vcpu)) { /* * We must intercept SYSENTER_EIP and SYSENTER_ESP * accesses because the processor only stores 32 bits. * For the same reason we cannot use virtual VMLOAD/VMSAVE. */ svm_set_intercept(svm, INTERCEPT_VMLOAD); svm_set_intercept(svm, INTERCEPT_VMSAVE); svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); } else { /* * If hardware supports Virtual VMLOAD VMSAVE then enable it * in VMCB and clear intercepts to avoid #VMEXIT. */ if (vls) { svm_clr_intercept(svm, INTERCEPT_VMLOAD); svm_clr_intercept(svm, INTERCEPT_VMSAVE); svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; } /* No need to intercept these MSRs */ set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); } } static void init_vmcb(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb *vmcb = svm->vmcb01.ptr; struct vmcb_control_area *control = &vmcb->control; struct vmcb_save_area *save = &vmcb->save; svm_set_intercept(svm, INTERCEPT_CR0_READ); svm_set_intercept(svm, INTERCEPT_CR3_READ); svm_set_intercept(svm, INTERCEPT_CR4_READ); svm_set_intercept(svm, INTERCEPT_CR0_WRITE); svm_set_intercept(svm, INTERCEPT_CR3_WRITE); svm_set_intercept(svm, INTERCEPT_CR4_WRITE); if (!kvm_vcpu_apicv_active(vcpu)) svm_set_intercept(svm, INTERCEPT_CR8_WRITE); set_dr_intercepts(svm); set_exception_intercept(svm, PF_VECTOR); set_exception_intercept(svm, UD_VECTOR); set_exception_intercept(svm, MC_VECTOR); set_exception_intercept(svm, AC_VECTOR); set_exception_intercept(svm, DB_VECTOR); /* * Guest access to VMware backdoor ports could legitimately * trigger #GP because of TSS I/O permission bitmap. * We intercept those #GP and allow access to them anyway * as VMware does. */ if (enable_vmware_backdoor) set_exception_intercept(svm, GP_VECTOR); svm_set_intercept(svm, INTERCEPT_INTR); svm_set_intercept(svm, INTERCEPT_NMI); if (intercept_smi) svm_set_intercept(svm, INTERCEPT_SMI); svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); svm_set_intercept(svm, INTERCEPT_RDPMC); svm_set_intercept(svm, INTERCEPT_CPUID); svm_set_intercept(svm, INTERCEPT_INVD); svm_set_intercept(svm, INTERCEPT_INVLPG); svm_set_intercept(svm, INTERCEPT_INVLPGA); svm_set_intercept(svm, INTERCEPT_IOIO_PROT); svm_set_intercept(svm, INTERCEPT_MSR_PROT); svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); svm_set_intercept(svm, INTERCEPT_SHUTDOWN); svm_set_intercept(svm, INTERCEPT_VMRUN); svm_set_intercept(svm, INTERCEPT_VMMCALL); svm_set_intercept(svm, INTERCEPT_VMLOAD); svm_set_intercept(svm, INTERCEPT_VMSAVE); svm_set_intercept(svm, INTERCEPT_STGI); svm_set_intercept(svm, INTERCEPT_CLGI); svm_set_intercept(svm, INTERCEPT_SKINIT); svm_set_intercept(svm, INTERCEPT_WBINVD); svm_set_intercept(svm, INTERCEPT_XSETBV); svm_set_intercept(svm, INTERCEPT_RDPRU); svm_set_intercept(svm, INTERCEPT_RSM); if (!kvm_mwait_in_guest(vcpu->kvm)) { svm_set_intercept(svm, INTERCEPT_MONITOR); svm_set_intercept(svm, INTERCEPT_MWAIT); } if (!kvm_hlt_in_guest(vcpu->kvm)) svm_set_intercept(svm, INTERCEPT_HLT); control->iopm_base_pa = __sme_set(iopm_base); control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); control->int_ctl = V_INTR_MASKING_MASK; init_seg(&save->es); init_seg(&save->ss); init_seg(&save->ds); init_seg(&save->fs); init_seg(&save->gs); save->cs.selector = 0xf000; save->cs.base = 0xffff0000; /* Executable/Readable Code Segment */ save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; save->cs.limit = 0xffff; save->gdtr.base = 0; save->gdtr.limit = 0xffff; save->idtr.base = 0; save->idtr.limit = 0xffff; init_sys_seg(&save->ldtr, SEG_TYPE_LDT); init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); if (npt_enabled) { /* Setup VMCB for Nested Paging */ control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; svm_clr_intercept(svm, INTERCEPT_INVLPG); clr_exception_intercept(svm, PF_VECTOR); svm_clr_intercept(svm, INTERCEPT_CR3_READ); svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); save->g_pat = vcpu->arch.pat; save->cr3 = 0; } svm->current_vmcb->asid_generation = 0; svm->asid = 0; svm->nested.vmcb12_gpa = INVALID_GPA; svm->nested.last_vmcb12_gpa = INVALID_GPA; if (!kvm_pause_in_guest(vcpu->kvm)) { control->pause_filter_count = pause_filter_count; if (pause_filter_thresh) control->pause_filter_thresh = pause_filter_thresh; svm_set_intercept(svm, INTERCEPT_PAUSE); } else { svm_clr_intercept(svm, INTERCEPT_PAUSE); } svm_recalc_instruction_intercepts(vcpu, svm); /* * If the host supports V_SPEC_CTRL then disable the interception * of MSR_IA32_SPEC_CTRL. */ if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); if (kvm_vcpu_apicv_active(vcpu)) avic_init_vmcb(svm, vmcb); if (vnmi) svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; if (vgif) { svm_clr_intercept(svm, INTERCEPT_STGI); svm_clr_intercept(svm, INTERCEPT_CLGI); svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; } if (sev_guest(vcpu->kvm)) sev_init_vmcb(svm); svm_hv_init_vmcb(vmcb); init_vmcb_after_set_cpuid(vcpu); vmcb_mark_all_dirty(vmcb); enable_gif(svm); } static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); svm_vcpu_init_msrpm(vcpu, svm->msrpm); svm_init_osvw(vcpu); vcpu->arch.microcode_version = 0x01000065; svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; svm->nmi_masked = false; svm->awaiting_iret_completion = false; if (sev_es_guest(vcpu->kvm)) sev_es_vcpu_reset(svm); } static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) { struct vcpu_svm *svm = to_svm(vcpu); svm->spec_ctrl = 0; svm->virt_spec_ctrl = 0; init_vmcb(vcpu); if (!init_event) __svm_vcpu_reset(vcpu); } void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) { svm->current_vmcb = target_vmcb; svm->vmcb = target_vmcb->ptr; } static int svm_vcpu_create(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm; struct page *vmcb01_page; struct page *vmsa_page = NULL; int err; BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); svm = to_svm(vcpu); err = -ENOMEM; vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); if (!vmcb01_page) goto out; if (sev_es_guest(vcpu->kvm)) { /* * SEV-ES guests require a separate VMSA page used to contain * the encrypted register state of the guest. */ vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); if (!vmsa_page) goto error_free_vmcb_page; /* * SEV-ES guests maintain an encrypted version of their FPU * state which is restored and saved on VMRUN and VMEXIT. * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't * do xsave/xrstor on it. */ fpstate_set_confidential(&vcpu->arch.guest_fpu); } err = avic_init_vcpu(svm); if (err) goto error_free_vmsa_page; svm->msrpm = svm_vcpu_alloc_msrpm(); if (!svm->msrpm) { err = -ENOMEM; goto error_free_vmsa_page; } svm->x2avic_msrs_intercepted = true; svm->vmcb01.ptr = page_address(vmcb01_page); svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); svm_switch_vmcb(svm, &svm->vmcb01); if (vmsa_page) svm->sev_es.vmsa = page_address(vmsa_page); svm->guest_state_loaded = false; return 0; error_free_vmsa_page: if (vmsa_page) __free_page(vmsa_page); error_free_vmcb_page: __free_page(vmcb01_page); out: return err; } static void svm_clear_current_vmcb(struct vmcb *vmcb) { int i; for_each_online_cpu(i) cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL); } static void svm_vcpu_free(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); /* * The vmcb page can be recycled, causing a false negative in * svm_vcpu_load(). So, ensure that no logical CPU has this * vmcb page recorded as its current vmcb. */ svm_clear_current_vmcb(svm->vmcb); svm_leave_nested(vcpu); svm_free_nested(svm); sev_free_vcpu(vcpu); __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); } static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); if (sev_es_guest(vcpu->kvm)) sev_es_unmap_ghcb(svm); if (svm->guest_state_loaded) return; /* * Save additional host state that will be restored on VMEXIT (sev-es) * or subsequent vmload of host save area. */ vmsave(sd->save_area_pa); if (sev_es_guest(vcpu->kvm)) { struct sev_es_save_area *hostsa; hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); sev_es_prepare_switch_to_guest(hostsa); } if (tsc_scaling) __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); /* * TSC_AUX is always virtualized for SEV-ES guests when the feature is * available. The user return MSR support is not required in this case * because TSC_AUX is restored on #VMEXIT from the host save area * (which has been initialized in svm_hardware_enable()). */ if (likely(tsc_aux_uret_slot >= 0) && (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm))) kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); svm->guest_state_loaded = true; } static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) { to_svm(vcpu)->guest_state_loaded = false; } static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { struct vcpu_svm *svm = to_svm(vcpu); struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); if (sd->current_vmcb != svm->vmcb) { sd->current_vmcb = svm->vmcb; if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT)) indirect_branch_prediction_barrier(); } if (kvm_vcpu_apicv_active(vcpu)) avic_vcpu_load(vcpu, cpu); } static void svm_vcpu_put(struct kvm_vcpu *vcpu) { if (kvm_vcpu_apicv_active(vcpu)) avic_vcpu_put(vcpu); svm_prepare_host_switch(vcpu); ++vcpu->stat.host_state_reload; } static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); unsigned long rflags = svm->vmcb->save.rflags; if (svm->nmi_singlestep) { /* Hide our flags if they were not set by the guest */ if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) rflags &= ~X86_EFLAGS_TF; if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) rflags &= ~X86_EFLAGS_RF; } return rflags; } static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) { if (to_svm(vcpu)->nmi_singlestep) rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); /* * Any change of EFLAGS.VM is accompanied by a reload of SS * (caused by either a task switch or an inter-privilege IRET), * so we do not need to update the CPL here. */ to_svm(vcpu)->vmcb->save.rflags = rflags; } static bool svm_get_if_flag(struct kvm_vcpu *vcpu) { struct vmcb *vmcb = to_svm(vcpu)->vmcb; return sev_es_guest(vcpu->kvm) ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; } static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) { kvm_register_mark_available(vcpu, reg); switch (reg) { case VCPU_EXREG_PDPTR: /* * When !npt_enabled, mmu->pdptrs[] is already available since * it is always updated per SDM when moving to CRs. */ if (npt_enabled) load_pdptrs(vcpu, kvm_read_cr3(vcpu)); break; default: KVM_BUG_ON(1, vcpu->kvm); } } static void svm_set_vintr(struct vcpu_svm *svm) { struct vmcb_control_area *control; /* * The following fields are ignored when AVIC is enabled */ WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); svm_set_intercept(svm, INTERCEPT_VINTR); /* * Recalculating intercepts may have cleared the VINTR intercept. If * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as * interrupts will never be unblocked while L2 is running. */ if (!svm_is_intercept(svm, INTERCEPT_VINTR)) return; /* * This is just a dummy VINTR to actually cause a vmexit to happen. * Actual injection of virtual interrupts happens through EVENTINJ. */ control = &svm->vmcb->control; control->int_vector = 0x0; control->int_ctl &= ~V_INTR_PRIO_MASK; control->int_ctl |= V_IRQ_MASK | ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); vmcb_mark_dirty(svm->vmcb, VMCB_INTR); } static void svm_clear_vintr(struct vcpu_svm *svm) { svm_clr_intercept(svm, INTERCEPT_VINTR); /* Drop int_ctl fields related to VINTR injection. */ svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; if (is_guest_mode(&svm->vcpu)) { svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != (svm->nested.ctl.int_ctl & V_TPR_MASK)); svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & V_IRQ_INJECTION_BITS_MASK; svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; } vmcb_mark_dirty(svm->vmcb, VMCB_INTR); } static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) { struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; switch (seg) { case VCPU_SREG_CS: return &save->cs; case VCPU_SREG_DS: return &save->ds; case VCPU_SREG_ES: return &save->es; case VCPU_SREG_FS: return &save01->fs; case VCPU_SREG_GS: return &save01->gs; case VCPU_SREG_SS: return &save->ss; case VCPU_SREG_TR: return &save01->tr; case VCPU_SREG_LDTR: return &save01->ldtr; } BUG(); return NULL; } static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) { struct vmcb_seg *s = svm_seg(vcpu, seg); return s->base; } static void svm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vmcb_seg *s = svm_seg(vcpu, seg); var->base = s->base; var->limit = s->limit; var->selector = s->selector; var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; /* * AMD CPUs circa 2014 track the G bit for all segments except CS. * However, the SVM spec states that the G bit is not observed by the * CPU, and some VMware virtual CPUs drop the G bit for all segments. * So let's synthesize a legal G bit for all segments, this helps * running KVM nested. It also helps cross-vendor migration, because * Intel's vmentry has a check on the 'G' bit. */ var->g = s->limit > 0xfffff; /* * AMD's VMCB does not have an explicit unusable field, so emulate it * for cross vendor migration purposes by "not present" */ var->unusable = !var->present; switch (seg) { case VCPU_SREG_TR: /* * Work around a bug where the busy flag in the tr selector * isn't exposed */ var->type |= 0x2; break; case VCPU_SREG_DS: case VCPU_SREG_ES: case VCPU_SREG_FS: case VCPU_SREG_GS: /* * The accessed bit must always be set in the segment * descriptor cache, although it can be cleared in the * descriptor, the cached bit always remains at 1. Since * Intel has a check on this, set it here to support * cross-vendor migration. */ if (!var->unusable) var->type |= 0x1; break; case VCPU_SREG_SS: /* * On AMD CPUs sometimes the DB bit in the segment * descriptor is left as 1, although the whole segment has * been made unusable. Clear it here to pass an Intel VMX * entry check when cross vendor migrating. */ if (var->unusable) var->db = 0; /* This is symmetric with svm_set_segment() */ var->dpl = to_svm(vcpu)->vmcb->save.cpl; break; } } static int svm_get_cpl(struct kvm_vcpu *vcpu) { struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; return save->cpl; } static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) { struct kvm_segment cs; svm_get_segment(vcpu, &cs, VCPU_SREG_CS); *db = cs.db; *l = cs.l; } static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { struct vcpu_svm *svm = to_svm(vcpu); dt->size = svm->vmcb->save.idtr.limit; dt->address = svm->vmcb->save.idtr.base; } static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->save.idtr.limit = dt->size; svm->vmcb->save.idtr.base = dt->address ; vmcb_mark_dirty(svm->vmcb, VMCB_DT); } static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { struct vcpu_svm *svm = to_svm(vcpu); dt->size = svm->vmcb->save.gdtr.limit; dt->address = svm->vmcb->save.gdtr.base; } static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->save.gdtr.limit = dt->size; svm->vmcb->save.gdtr.base = dt->address ; vmcb_mark_dirty(svm->vmcb, VMCB_DT); } static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) { struct vcpu_svm *svm = to_svm(vcpu); /* * For guests that don't set guest_state_protected, the cr3 update is * handled via kvm_mmu_load() while entering the guest. For guests * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to * VMCB save area now, since the save area will become the initial * contents of the VMSA, and future VMCB save area updates won't be * seen. */ if (sev_es_guest(vcpu->kvm)) { svm->vmcb->save.cr3 = cr3; vmcb_mark_dirty(svm->vmcb, VMCB_CR); } } static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { return true; } void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { struct vcpu_svm *svm = to_svm(vcpu); u64 hcr0 = cr0; bool old_paging = is_paging(vcpu); #ifdef CONFIG_X86_64 if (vcpu->arch.efer & EFER_LME) { if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { vcpu->arch.efer |= EFER_LMA; if (!vcpu->arch.guest_state_protected) svm->vmcb->save.efer |= EFER_LMA | EFER_LME; } if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { vcpu->arch.efer &= ~EFER_LMA; if (!vcpu->arch.guest_state_protected) svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); } } #endif vcpu->arch.cr0 = cr0; if (!npt_enabled) { hcr0 |= X86_CR0_PG | X86_CR0_WP; if (old_paging != is_paging(vcpu)) svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); } /* * re-enable caching here because the QEMU bios * does not do it - this results in some delay at * reboot */ if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); svm->vmcb->save.cr0 = hcr0; vmcb_mark_dirty(svm->vmcb, VMCB_CR); /* * SEV-ES guests must always keep the CR intercepts cleared. CR * tracking is done using the CR write traps. */ if (sev_es_guest(vcpu->kvm)) return; if (hcr0 == cr0) { /* Selective CR0 write remains on. */ svm_clr_intercept(svm, INTERCEPT_CR0_READ); svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); } else { svm_set_intercept(svm, INTERCEPT_CR0_READ); svm_set_intercept(svm, INTERCEPT_CR0_WRITE); } } static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { return true; } void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; unsigned long old_cr4 = vcpu->arch.cr4; if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) svm_flush_tlb_current(vcpu); vcpu->arch.cr4 = cr4; if (!npt_enabled) { cr4 |= X86_CR4_PAE; if (!is_paging(vcpu)) cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); } cr4 |= host_cr4_mce; to_svm(vcpu)->vmcb->save.cr4 = cr4; vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) kvm_update_cpuid_runtime(vcpu); } static void svm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb_seg *s = svm_seg(vcpu, seg); s->base = var->base; s->limit = var->limit; s->selector = var->selector; s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; /* * This is always accurate, except if SYSRET returned to a segment * with SS.DPL != 3. Intel does not have this quirk, and always * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it * would entail passing the CPL to userspace and back. */ if (seg == VCPU_SREG_SS) /* This is symmetric with svm_get_segment() */ svm->vmcb->save.cpl = (var->dpl & 3); vmcb_mark_dirty(svm->vmcb, VMCB_SEG); } static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); clr_exception_intercept(svm, BP_VECTOR); if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) set_exception_intercept(svm, BP_VECTOR); } } static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) { if (sd->next_asid > sd->max_asid) { ++sd->asid_generation; sd->next_asid = sd->min_asid; svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; vmcb_mark_dirty(svm->vmcb, VMCB_ASID); } svm->current_vmcb->asid_generation = sd->asid_generation; svm->asid = sd->next_asid++; } static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) { struct vmcb *vmcb = svm->vmcb; if (svm->vcpu.arch.guest_state_protected) return; if (unlikely(value != vmcb->save.dr6)) { vmcb->save.dr6 = value; vmcb_mark_dirty(vmcb, VMCB_DR); } } static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm))) return; get_debugreg(vcpu->arch.db[0], 0); get_debugreg(vcpu->arch.db[1], 1); get_debugreg(vcpu->arch.db[2], 2); get_debugreg(vcpu->arch.db[3], 3); /* * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, * because db_interception might need it. We can do it before vmentry. */ vcpu->arch.dr6 = svm->vmcb->save.dr6; vcpu->arch.dr7 = svm->vmcb->save.dr7; vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; set_dr_intercepts(svm); } static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) { struct vcpu_svm *svm = to_svm(vcpu); if (vcpu->arch.guest_state_protected) return; svm->vmcb->save.dr7 = value; vmcb_mark_dirty(svm->vmcb, VMCB_DR); } static int pf_interception(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u64 fault_address = svm->vmcb->control.exit_info_2; u64 error_code = svm->vmcb->control.exit_info_1; return kvm_handle_page_fault(vcpu, error_code, fault_address, static_cpu_has(X86_FEATURE_DECODEASSISTS) ? svm->vmcb->control.insn_bytes : NULL, svm->vmcb->control.insn_len); } static int npf_interception(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u64 fault_address = svm->vmcb->control.exit_info_2; u64 error_code = svm->vmcb->control.exit_info_1; trace_kvm_page_fault(vcpu, fault_address, error_code); return kvm_mmu_page_fault(vcpu, fault_address, error_code, static_cpu_has(X86_FEATURE_DECODEASSISTS) ? svm->vmcb->control.insn_bytes : NULL, svm->vmcb->control.insn_len); } static int db_interception(struct kvm_vcpu *vcpu) { struct kvm_run *kvm_run = vcpu->run; struct vcpu_svm *svm = to_svm(vcpu); if (!(vcpu->guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && !svm->nmi_singlestep) { u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; kvm_queue_exception_p(vcpu, DB_VECTOR, payload); return 1; } if (svm->nmi_singlestep) { disable_nmi_singlestep(svm); /* Make sure we check for pending NMIs upon entry */ kvm_make_request(KVM_REQ_EVENT, vcpu); } if (vcpu->guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { kvm_run->exit_reason = KVM_EXIT_DEBUG; kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; kvm_run->debug.arch.exception = DB_VECTOR; return 0; } return 1; } static int bp_interception(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct kvm_run *kvm_run = vcpu->run; kvm_run->exit_reason = KVM_EXIT_DEBUG; kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; kvm_run->debug.arch.exception = BP_VECTOR; return 0; } static int ud_interception(struct kvm_vcpu *vcpu) { return handle_ud(vcpu); } static int ac_interception(struct kvm_vcpu *vcpu) { kvm_queue_exception_e(vcpu, AC_VECTOR, 0); return 1; } static bool is_erratum_383(void) { int err, i; u64 value; if (!erratum_383_found) return false; value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); if (err) return false; /* Bit 62 may or may not be set for this mce */ value &= ~(1ULL << 62); if (value != 0xb600000000010015ULL) return false; /* Clear MCi_STATUS registers */ for (i = 0; i < 6; ++i) native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); if (!err) { u32 low, high; value &= ~(1ULL << 2); low = lower_32_bits(value); high = upper_32_bits(value); native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); } /* Flush tlb to evict multi-match entries */ __flush_tlb_all(); return true; } static void svm_handle_mce(struct kvm_vcpu *vcpu) { if (is_erratum_383()) { /* * Erratum 383 triggered. Guest state is corrupt so kill the * guest. */ pr_err("Guest triggered AMD Erratum 383\n"); kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); return; } /* * On an #MC intercept the MCE handler is not called automatically in * the host. So do it by hand here. */ kvm_machine_check(); } static int mc_interception(struct kvm_vcpu *vcpu) { return 1; } static int shutdown_interception(struct kvm_vcpu *vcpu) { struct kvm_run *kvm_run = vcpu->run; struct vcpu_svm *svm = to_svm(vcpu); /* * The VM save area has already been encrypted so it * cannot be reinitialized - just terminate. */ if (sev_es_guest(vcpu->kvm)) return -EINVAL; /* * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put * the VMCB in a known good state. Unfortuately, KVM doesn't have * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking * userspace. At a platform view, INIT is acceptable behavior as * there exist bare metal platforms that automatically INIT the CPU * in response to shutdown. */ clear_page(svm->vmcb); kvm_vcpu_reset(vcpu, true); kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; return 0; } static int io_interception(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ int size, in, string; unsigned port; ++vcpu->stat.io_exits; string = (io_info & SVM_IOIO_STR_MASK) != 0; in = (io_info & SVM_IOIO_TYPE_MASK) != 0; port = io_info >> 16; size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; if (string) { if (sev_es_guest(vcpu->kvm)) return sev_es_string_io(svm, size, port, in); else return kvm_emulate_instruction(vcpu, 0); } svm->next_rip = svm->vmcb->control.exit_info_2; return kvm_fast_pio(vcpu, size, port, in); } static int nmi_interception(struct kvm_vcpu *vcpu) { return 1; } static int smi_interception(struct kvm_vcpu *vcpu) { return 1; } static int intr_interception(struct kvm_vcpu *vcpu) { ++vcpu->stat.irq_exits; return 1; } static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb *vmcb12; struct kvm_host_map map; int ret; if (nested_svm_check_permissions(vcpu)) return 1; ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); if (ret) { if (ret == -EINVAL) kvm_inject_gp(vcpu, 0); return 1; } vmcb12 = map.hva; ret = kvm_skip_emulated_instruction(vcpu); if (vmload) { svm_copy_vmloadsave_state(svm->vmcb, vmcb12); svm->sysenter_eip_hi = 0; svm->sysenter_esp_hi = 0; } else { svm_copy_vmloadsave_state(vmcb12, svm->vmcb); } kvm_vcpu_unmap(vcpu, &map, true); return ret; } static int vmload_interception(struct kvm_vcpu *vcpu) { return vmload_vmsave_interception(vcpu, true); } static int vmsave_interception(struct kvm_vcpu *vcpu) { return vmload_vmsave_interception(vcpu, false); } static int vmrun_interception(struct kvm_vcpu *vcpu) { if (nested_svm_check_permissions(vcpu)) return 1; return nested_svm_vmrun(vcpu); } enum { NONE_SVM_INSTR, SVM_INSTR_VMRUN, SVM_INSTR_VMLOAD, SVM_INSTR_VMSAVE, }; /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ static int svm_instr_opcode(struct kvm_vcpu *vcpu) { struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; if (ctxt->b != 0x1 || ctxt->opcode_len != 2) return NONE_SVM_INSTR; switch (ctxt->modrm) { case 0xd8: /* VMRUN */ return SVM_INSTR_VMRUN; case 0xda: /* VMLOAD */ return SVM_INSTR_VMLOAD; case 0xdb: /* VMSAVE */ return SVM_INSTR_VMSAVE; default: break; } return NONE_SVM_INSTR; } static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) { const int guest_mode_exit_codes[] = { [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, }; int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { [SVM_INSTR_VMRUN] = vmrun_interception, [SVM_INSTR_VMLOAD] = vmload_interception, [SVM_INSTR_VMSAVE] = vmsave_interception, }; struct vcpu_svm *svm = to_svm(vcpu); int ret; if (is_guest_mode(vcpu)) { /* Returns '1' or -errno on failure, '0' on success. */ ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); if (ret) return ret; return 1; } return svm_instr_handlers[opcode](vcpu); } /* * #GP handling code. Note that #GP can be triggered under the following two * cases: * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on * some AMD CPUs when EAX of these instructions are in the reserved memory * regions (e.g. SMM memory on host). * 2) VMware backdoor */ static int gp_interception(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u32 error_code = svm->vmcb->control.exit_info_1; int opcode; /* Both #GP cases have zero error_code */ if (error_code) goto reinject; /* Decode the instruction for usage later */ if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) goto reinject; opcode = svm_instr_opcode(vcpu); if (opcode == NONE_SVM_INSTR) { if (!enable_vmware_backdoor) goto reinject; /* * VMware backdoor emulation on #GP interception only handles * IN{S}, OUT{S}, and RDPMC. */ if (!is_guest_mode(vcpu)) return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); } else { /* All SVM instructions expect page aligned RAX */ if (svm->vmcb->save.rax & ~PAGE_MASK) goto reinject; return emulate_svm_instr(vcpu, opcode); } reinject: kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); return 1; } void svm_set_gif(struct vcpu_svm *svm, bool value) { if (value) { /* * If VGIF is enabled, the STGI intercept is only added to * detect the opening of the SMI/NMI window; remove it now. * Likewise, clear the VINTR intercept, we will set it * again while processing KVM_REQ_EVENT if needed. */ if (vgif) svm_clr_intercept(svm, INTERCEPT_STGI); if (svm_is_intercept(svm, INTERCEPT_VINTR)) svm_clear_vintr(svm); enable_gif(svm); if (svm->vcpu.arch.smi_pending || svm->vcpu.arch.nmi_pending || kvm_cpu_has_injectable_intr(&svm->vcpu) || kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); } else { disable_gif(svm); /* * After a CLGI no interrupts should come. But if vGIF is * in use, we still rely on the VINTR intercept (rather than * STGI) to detect an open interrupt window. */ if (!vgif) svm_clear_vintr(svm); } } static int stgi_interception(struct kvm_vcpu *vcpu) { int ret; if (nested_svm_check_permissions(vcpu)) return 1; ret = kvm_skip_emulated_instruction(vcpu); svm_set_gif(to_svm(vcpu), true); return ret; } static int clgi_interception(struct kvm_vcpu *vcpu) { int ret; if (nested_svm_check_permissions(vcpu)) return 1; ret = kvm_skip_emulated_instruction(vcpu); svm_set_gif(to_svm(vcpu), false); return ret; } static int invlpga_interception(struct kvm_vcpu *vcpu) { gva_t gva = kvm_rax_read(vcpu); u32 asid = kvm_rcx_read(vcpu); /* FIXME: Handle an address size prefix. */ if (!is_long_mode(vcpu)) gva = (u32)gva; trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ kvm_mmu_invlpg(vcpu, gva); return kvm_skip_emulated_instruction(vcpu); } static int skinit_interception(struct kvm_vcpu *vcpu) { trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); kvm_queue_exception(vcpu, UD_VECTOR); return 1; } static int task_switch_interception(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u16 tss_selector; int reason; int int_type = svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; uint32_t type = svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; uint32_t idt_v = svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; bool has_error_code = false; u32 error_code = 0; tss_selector = (u16)svm->vmcb->control.exit_info_1; if (svm->vmcb->control.exit_info_2 & (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) reason = TASK_SWITCH_IRET; else if (svm->vmcb->control.exit_info_2 & (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) reason = TASK_SWITCH_JMP; else if (idt_v) reason = TASK_SWITCH_GATE; else reason = TASK_SWITCH_CALL; if (reason == TASK_SWITCH_GATE) { switch (type) { case SVM_EXITINTINFO_TYPE_NMI: vcpu->arch.nmi_injected = false; break; case SVM_EXITINTINFO_TYPE_EXEPT: if (svm->vmcb->control.exit_info_2 & (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { has_error_code = true; error_code = (u32)svm->vmcb->control.exit_info_2; } kvm_clear_exception_queue(vcpu); break; case SVM_EXITINTINFO_TYPE_INTR: case SVM_EXITINTINFO_TYPE_SOFT: kvm_clear_interrupt_queue(vcpu); break; default: break; } } if (reason != TASK_SWITCH_GATE || int_type == SVM_EXITINTINFO_TYPE_SOFT || (int_type == SVM_EXITINTINFO_TYPE_EXEPT && (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { if (!svm_skip_emulated_instruction(vcpu)) return 0; } if (int_type != SVM_EXITINTINFO_TYPE_SOFT) int_vec = -1; return kvm_task_switch(vcpu, tss_selector, int_vec, reason, has_error_code, error_code); } static void svm_clr_iret_intercept(struct vcpu_svm *svm) { if (!sev_es_guest(svm->vcpu.kvm)) svm_clr_intercept(svm, INTERCEPT_IRET); } static void svm_set_iret_intercept(struct vcpu_svm *svm) { if (!sev_es_guest(svm->vcpu.kvm)) svm_set_intercept(svm, INTERCEPT_IRET); } static int iret_interception(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); WARN_ON_ONCE(sev_es_guest(vcpu->kvm)); ++vcpu->stat.nmi_window_exits; svm->awaiting_iret_completion = true; svm_clr_iret_intercept(svm); svm->nmi_iret_rip = kvm_rip_read(vcpu); kvm_make_request(KVM_REQ_EVENT, vcpu); return 1; } static int invlpg_interception(struct kvm_vcpu *vcpu) { if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) return kvm_emulate_instruction(vcpu, 0); kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); return kvm_skip_emulated_instruction(vcpu); } static int emulate_on_interception(struct kvm_vcpu *vcpu) { return kvm_emulate_instruction(vcpu, 0); } static int rsm_interception(struct kvm_vcpu *vcpu) { return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); } static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, unsigned long val) { struct vcpu_svm *svm = to_svm(vcpu); unsigned long cr0 = vcpu->arch.cr0; bool ret = false; if (!is_guest_mode(vcpu) || (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) return false; cr0 &= ~SVM_CR0_SELECTIVE_MASK; val &= ~SVM_CR0_SELECTIVE_MASK; if (cr0 ^ val) { svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); } return ret; } #define CR_VALID (1ULL << 63) static int cr_interception(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); int reg, cr; unsigned long val; int err; if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) return emulate_on_interception(vcpu); if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) return emulate_on_interception(vcpu); reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; else cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; err = 0; if (cr >= 16) { /* mov to cr */ cr -= 16; val = kvm_register_read(vcpu, reg); trace_kvm_cr_write(cr, val); switch (cr) { case 0: if (!check_selective_cr0_intercepted(vcpu, val)) err = kvm_set_cr0(vcpu, val); else return 1; break; case 3: err = kvm_set_cr3(vcpu, val); break; case 4: err = kvm_set_cr4(vcpu, val); break; case 8: err = kvm_set_cr8(vcpu, val); break; default: WARN(1, "unhandled write to CR%d", cr); kvm_queue_exception(vcpu, UD_VECTOR); return 1; } } else { /* mov from cr */ switch (cr) { case 0: val = kvm_read_cr0(vcpu); break; case 2: val = vcpu->arch.cr2; break; case 3: val = kvm_read_cr3(vcpu); break; case 4: val = kvm_read_cr4(vcpu); break; case 8: val = kvm_get_cr8(vcpu); break; default: WARN(1, "unhandled read from CR%d", cr); kvm_queue_exception(vcpu, UD_VECTOR); return 1; } kvm_register_write(vcpu, reg, val); trace_kvm_cr_read(cr, val); } return kvm_complete_insn_gp(vcpu, err); } static int cr_trap(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); unsigned long old_value, new_value; unsigned int cr; int ret = 0; new_value = (unsigned long)svm->vmcb->control.exit_info_1; cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; switch (cr) { case 0: old_value = kvm_read_cr0(vcpu); svm_set_cr0(vcpu, new_value); kvm_post_set_cr0(vcpu, old_value, new_value); break; case 4: old_value = kvm_read_cr4(vcpu); svm_set_cr4(vcpu, new_value); kvm_post_set_cr4(vcpu, old_value, new_value); break; case 8: ret = kvm_set_cr8(vcpu, new_value); break; default: WARN(1, "unhandled CR%d write trap", cr); kvm_queue_exception(vcpu, UD_VECTOR); return 1; } return kvm_complete_insn_gp(vcpu, ret); } static int dr_interception(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); int reg, dr; unsigned long val; int err = 0; /* * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early. */ if (sev_es_guest(vcpu->kvm)) return 1; if (vcpu->guest_debug == 0) { /* * No more DR vmexits; force a reload of the debug registers * and reenter on this instruction. The next vmexit will * retrieve the full state of the debug registers. */ clr_dr_intercepts(svm); vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; return 1; } if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) return emulate_on_interception(vcpu); reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; if (dr >= 16) { /* mov to DRn */ dr -= 16; val = kvm_register_read(vcpu, reg); err = kvm_set_dr(vcpu, dr, val); } else { kvm_get_dr(vcpu, dr, &val); kvm_register_write(vcpu, reg, val); } return kvm_complete_insn_gp(vcpu, err); } static int cr8_write_interception(struct kvm_vcpu *vcpu) { int r; u8 cr8_prev = kvm_get_cr8(vcpu); /* instruction emulation calls kvm_set_cr8() */ r = cr_interception(vcpu); if (lapic_in_kernel(vcpu)) return r; if (cr8_prev <= kvm_get_cr8(vcpu)) return r; vcpu->run->exit_reason = KVM_EXIT_SET_TPR; return 0; } static int efer_trap(struct kvm_vcpu *vcpu) { struct msr_data msr_info; int ret; /* * Clear the EFER_SVME bit from EFER. The SVM code always sets this * bit in svm_set_efer(), but __kvm_valid_efer() checks it against * whether the guest has X86_FEATURE_SVM - this avoids a failure if * the guest doesn't have X86_FEATURE_SVM. */ msr_info.host_initiated = false; msr_info.index = MSR_EFER; msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; ret = kvm_set_msr_common(vcpu, &msr_info); return kvm_complete_insn_gp(vcpu, ret); } static int svm_get_msr_feature(struct kvm_msr_entry *msr) { msr->data = 0; switch (msr->index) { case MSR_AMD64_DE_CFG: if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; break; default: return KVM_MSR_RET_INVALID; } return 0; } static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { struct vcpu_svm *svm = to_svm(vcpu); switch (msr_info->index) { case MSR_AMD64_TSC_RATIO: if (!msr_info->host_initiated && !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) return 1; msr_info->data = svm->tsc_ratio_msr; break; case MSR_STAR: msr_info->data = svm->vmcb01.ptr->save.star; break; #ifdef CONFIG_X86_64 case MSR_LSTAR: msr_info->data = svm->vmcb01.ptr->save.lstar; break; case MSR_CSTAR: msr_info->data = svm->vmcb01.ptr->save.cstar; break; case MSR_KERNEL_GS_BASE: msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; break; case MSR_SYSCALL_MASK: msr_info->data = svm->vmcb01.ptr->save.sfmask; break; #endif case MSR_IA32_SYSENTER_CS: msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; break; case MSR_IA32_SYSENTER_EIP: msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; if (guest_cpuid_is_intel(vcpu)) msr_info->data |= (u64)svm->sysenter_eip_hi << 32; break; case MSR_IA32_SYSENTER_ESP: msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; if (guest_cpuid_is_intel(vcpu)) msr_info->data |= (u64)svm->sysenter_esp_hi << 32; break; case MSR_TSC_AUX: msr_info->data = svm->tsc_aux; break; case MSR_IA32_DEBUGCTLMSR: msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl; break; case MSR_IA32_LASTBRANCHFROMIP: msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from; break; case MSR_IA32_LASTBRANCHTOIP: msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to; break; case MSR_IA32_LASTINTFROMIP: msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from; break; case MSR_IA32_LASTINTTOIP: msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to; break; case MSR_VM_HSAVE_PA: msr_info->data = svm->nested.hsave_msr; break; case MSR_VM_CR: msr_info->data = svm->nested.vm_cr_msr; break; case MSR_IA32_SPEC_CTRL: if (!msr_info->host_initiated && !guest_has_spec_ctrl_msr(vcpu)) return 1; if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) msr_info->data = svm->vmcb->save.spec_ctrl; else msr_info->data = svm->spec_ctrl; break; case MSR_AMD64_VIRT_SPEC_CTRL: if (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) return 1; msr_info->data = svm->virt_spec_ctrl; break; case MSR_F15H_IC_CFG: { int family, model; family = guest_cpuid_family(vcpu); model = guest_cpuid_model(vcpu); if (family < 0 || model < 0) return kvm_get_msr_common(vcpu, msr_info); msr_info->data = 0; if (family == 0x15 && (model >= 0x2 && model < 0x20)) msr_info->data = 0x1E; } break; case MSR_AMD64_DE_CFG: msr_info->data = svm->msr_decfg; break; default: return kvm_get_msr_common(vcpu, msr_info); } return 0; } static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) { struct vcpu_svm *svm = to_svm(vcpu); if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) return kvm_complete_insn_gp(vcpu, err); ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, X86_TRAP_GP | SVM_EVTINJ_TYPE_EXEPT | SVM_EVTINJ_VALID); return 1; } static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) { struct vcpu_svm *svm = to_svm(vcpu); int svm_dis, chg_mask; if (data & ~SVM_VM_CR_VALID_MASK) return 1; chg_mask = SVM_VM_CR_VALID_MASK; if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); svm->nested.vm_cr_msr &= ~chg_mask; svm->nested.vm_cr_msr |= (data & chg_mask); svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; /* check for svm_disable while efer.svme is set */ if (svm_dis && (vcpu->arch.efer & EFER_SVME)) return 1; return 0; } static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) { struct vcpu_svm *svm = to_svm(vcpu); int ret = 0; u32 ecx = msr->index; u64 data = msr->data; switch (ecx) { case MSR_AMD64_TSC_RATIO: if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) { if (!msr->host_initiated) return 1; /* * In case TSC scaling is not enabled, always * leave this MSR at the default value. * * Due to bug in qemu 6.2.0, it would try to set * this msr to 0 if tsc scaling is not enabled. * Ignore this value as well. */ if (data != 0 && data != svm->tsc_ratio_msr) return 1; break; } if (data & SVM_TSC_RATIO_RSVD) return 1; svm->tsc_ratio_msr = data; if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) && is_guest_mode(vcpu)) nested_svm_update_tsc_ratio_msr(vcpu); break; case MSR_IA32_CR_PAT: ret = kvm_set_msr_common(vcpu, msr); if (ret) break; svm->vmcb01.ptr->save.g_pat = data; if (is_guest_mode(vcpu)) nested_vmcb02_compute_g_pat(svm); vmcb_mark_dirty(svm->vmcb, VMCB_NPT); break; case MSR_IA32_SPEC_CTRL: if (!msr->host_initiated && !guest_has_spec_ctrl_msr(vcpu)) return 1; if (kvm_spec_ctrl_test_value(data)) return 1; if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) svm->vmcb->save.spec_ctrl = data; else svm->spec_ctrl = data; if (!data) break; /* * For non-nested: * When it's written (to non-zero) for the first time, pass * it through. * * For nested: * The handling of the MSR bitmap for L2 guests is done in * nested_svm_vmrun_msrpm. * We update the L1 MSR bit as well since it will end up * touching the MSR anyway now. */ set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); break; case MSR_AMD64_VIRT_SPEC_CTRL: if (!msr->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) return 1; if (data & ~SPEC_CTRL_SSBD) return 1; svm->virt_spec_ctrl = data; break; case MSR_STAR: svm->vmcb01.ptr->save.star = data; break; #ifdef CONFIG_X86_64 case MSR_LSTAR: svm->vmcb01.ptr->save.lstar = data; break; case MSR_CSTAR: svm->vmcb01.ptr->save.cstar = data; break; case MSR_KERNEL_GS_BASE: svm->vmcb01.ptr->save.kernel_gs_base = data; break; case MSR_SYSCALL_MASK: svm->vmcb01.ptr->save.sfmask = data; break; #endif case MSR_IA32_SYSENTER_CS: svm->vmcb01.ptr->save.sysenter_cs = data; break; case MSR_IA32_SYSENTER_EIP: svm->vmcb01.ptr->save.sysenter_eip = (u32)data; /* * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs * when we spoof an Intel vendor ID (for cross vendor migration). * In this case we use this intercept to track the high * 32 bit part of these msrs to support Intel's * implementation of SYSENTER/SYSEXIT. */ svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; break; case MSR_IA32_SYSENTER_ESP: svm->vmcb01.ptr->save.sysenter_esp = (u32)data; svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; break; case MSR_TSC_AUX: /* * TSC_AUX is always virtualized for SEV-ES guests when the * feature is available. The user return MSR support is not * required in this case because TSC_AUX is restored on #VMEXIT * from the host save area (which has been initialized in * svm_hardware_enable()). */ if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm)) break; /* * TSC_AUX is usually changed only during boot and never read * directly. Intercept TSC_AUX instead of exposing it to the * guest via direct_access_msrs, and switch it via user return. */ preempt_disable(); ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); preempt_enable(); if (ret) break; svm->tsc_aux = data; break; case MSR_IA32_DEBUGCTLMSR: if (!lbrv) { kvm_pr_unimpl_wrmsr(vcpu, ecx, data); break; } if (data & DEBUGCTL_RESERVED_BITS) return 1; svm_get_lbr_vmcb(svm)->save.dbgctl = data; svm_update_lbrv(vcpu); break; case MSR_VM_HSAVE_PA: /* * Old kernels did not validate the value written to * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid * value to allow live migrating buggy or malicious guests * originating from those kernels. */ if (!msr->host_initiated && !page_address_valid(vcpu, data)) return 1; svm->nested.hsave_msr = data & PAGE_MASK; break; case MSR_VM_CR: return svm_set_vm_cr(vcpu, data); case MSR_VM_IGNNE: kvm_pr_unimpl_wrmsr(vcpu, ecx, data); break; case MSR_AMD64_DE_CFG: { struct kvm_msr_entry msr_entry; msr_entry.index = msr->index; if (svm_get_msr_feature(&msr_entry)) return 1; /* Check the supported bits */ if (data & ~msr_entry.data) return 1; /* Don't allow the guest to change a bit, #GP */ if (!msr->host_initiated && (data ^ msr_entry.data)) return 1; svm->msr_decfg = data; break; } default: return kvm_set_msr_common(vcpu, msr); } return ret; } static int msr_interception(struct kvm_vcpu *vcpu) { if (to_svm(vcpu)->vmcb->control.exit_info_1) return kvm_emulate_wrmsr(vcpu); else return kvm_emulate_rdmsr(vcpu); } static int interrupt_window_interception(struct kvm_vcpu *vcpu) { kvm_make_request(KVM_REQ_EVENT, vcpu); svm_clear_vintr(to_svm(vcpu)); /* * If not running nested, for AVIC, the only reason to end up here is ExtINTs. * In this case AVIC was temporarily disabled for * requesting the IRQ window and we have to re-enable it. * * If running nested, still remove the VM wide AVIC inhibit to * support case in which the interrupt window was requested when the * vCPU was not running nested. * All vCPUs which run still run nested, will remain to have their * AVIC still inhibited due to per-cpu AVIC inhibition. */ kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); ++vcpu->stat.irq_window_exits; return 1; } static int pause_interception(struct kvm_vcpu *vcpu) { bool in_kernel; /* * CPL is not made available for an SEV-ES guest, therefore * vcpu->arch.preempted_in_kernel can never be true. Just * set in_kernel to false as well. */ in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; grow_ple_window(vcpu); kvm_vcpu_on_spin(vcpu, in_kernel); return kvm_skip_emulated_instruction(vcpu); } static int invpcid_interception(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); unsigned long type; gva_t gva; if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } /* * For an INVPCID intercept: * EXITINFO1 provides the linear address of the memory operand. * EXITINFO2 provides the contents of the register operand. */ type = svm->vmcb->control.exit_info_2; gva = svm->vmcb->control.exit_info_1; return kvm_handle_invpcid(vcpu, type, gva); } static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { [SVM_EXIT_READ_CR0] = cr_interception, [SVM_EXIT_READ_CR3] = cr_interception, [SVM_EXIT_READ_CR4] = cr_interception, [SVM_EXIT_READ_CR8] = cr_interception, [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, [SVM_EXIT_WRITE_CR0] = cr_interception, [SVM_EXIT_WRITE_CR3] = cr_interception, [SVM_EXIT_WRITE_CR4] = cr_interception, [SVM_EXIT_WRITE_CR8] = cr8_write_interception, [SVM_EXIT_READ_DR0] = dr_interception, [SVM_EXIT_READ_DR1] = dr_interception, [SVM_EXIT_READ_DR2] = dr_interception, [SVM_EXIT_READ_DR3] = dr_interception, [SVM_EXIT_READ_DR4] = dr_interception, [SVM_EXIT_READ_DR5] = dr_interception, [SVM_EXIT_READ_DR6] = dr_interception, [SVM_EXIT_READ_DR7] = dr_interception, [SVM_EXIT_WRITE_DR0] = dr_interception, [SVM_EXIT_WRITE_DR1] = dr_interception, [SVM_EXIT_WRITE_DR2] = dr_interception, [SVM_EXIT_WRITE_DR3] = dr_interception, [SVM_EXIT_WRITE_DR4] = dr_interception, [SVM_EXIT_WRITE_DR5] = dr_interception, [SVM_EXIT_WRITE_DR6] = dr_interception, [SVM_EXIT_WRITE_DR7] = dr_interception, [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, [SVM_EXIT_INTR] = intr_interception, [SVM_EXIT_NMI] = nmi_interception, [SVM_EXIT_SMI] = smi_interception, [SVM_EXIT_VINTR] = interrupt_window_interception, [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, [SVM_EXIT_CPUID] = kvm_emulate_cpuid, [SVM_EXIT_IRET] = iret_interception, [SVM_EXIT_INVD] = kvm_emulate_invd, [SVM_EXIT_PAUSE] = pause_interception, [SVM_EXIT_HLT] = kvm_emulate_halt, [SVM_EXIT_INVLPG] = invlpg_interception, [SVM_EXIT_INVLPGA] = invlpga_interception, [SVM_EXIT_IOIO] = io_interception, [SVM_EXIT_MSR] = msr_interception, [SVM_EXIT_TASK_SWITCH] = task_switch_interception, [SVM_EXIT_SHUTDOWN] = shutdown_interception, [SVM_EXIT_VMRUN] = vmrun_interception, [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, [SVM_EXIT_VMLOAD] = vmload_interception, [SVM_EXIT_VMSAVE] = vmsave_interception, [SVM_EXIT_STGI] = stgi_interception, [SVM_EXIT_CLGI] = clgi_interception, [SVM_EXIT_SKINIT] = skinit_interception, [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, [SVM_EXIT_MONITOR] = kvm_emulate_monitor, [SVM_EXIT_MWAIT] = kvm_emulate_mwait, [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, [SVM_EXIT_INVPCID] = invpcid_interception, [SVM_EXIT_NPF] = npf_interception, [SVM_EXIT_RSM] = rsm_interception, [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, }; static void dump_vmcb(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb_control_area *control = &svm->vmcb->control; struct vmcb_save_area *save = &svm->vmcb->save; struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; if (!dump_invalid_vmcb) { pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); return; } pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); pr_err("VMCB Control Area:\n"); pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); pr_err("%-20s%08x %08x\n", "intercepts:", control->intercepts[INTERCEPT_WORD3], control->intercepts[INTERCEPT_WORD4]); pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); pr_err("%-20s%d\n", "pause filter threshold:", control->pause_filter_thresh); pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); pr_err("%-20s%d\n", "asid:", control->asid); pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); pr_err("%-20s%08x\n", "int_vector:", control->int_vector); pr_err("%-20s%08x\n", "int_state:", control->int_state); pr_err("%-20s%08x\n", "exit_code:", control->exit_code); pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); pr_err("%-20s%08x\n", "event_inj:", control->event_inj); pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); pr_err("VMCB State Save Area:\n"); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "es:", save->es.selector, save->es.attrib, save->es.limit, save->es.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "cs:", save->cs.selector, save->cs.attrib, save->cs.limit, save->cs.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "ss:", save->ss.selector, save->ss.attrib, save->ss.limit, save->ss.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "ds:", save->ds.selector, save->ds.attrib, save->ds.limit, save->ds.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "fs:", save01->fs.selector, save01->fs.attrib, save01->fs.limit, save01->fs.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "gs:", save01->gs.selector, save01->gs.attrib, save01->gs.limit, save01->gs.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "gdtr:", save->gdtr.selector, save->gdtr.attrib, save->gdtr.limit, save->gdtr.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "ldtr:", save01->ldtr.selector, save01->ldtr.attrib, save01->ldtr.limit, save01->ldtr.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "idtr:", save->idtr.selector, save->idtr.attrib, save->idtr.limit, save->idtr.base); pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", "tr:", save01->tr.selector, save01->tr.attrib, save01->tr.limit, save01->tr.base); pr_err("vmpl: %d cpl: %d efer: %016llx\n", save->vmpl, save->cpl, save->efer); pr_err("%-15s %016llx %-13s %016llx\n", "cr0:", save->cr0, "cr2:", save->cr2); pr_err("%-15s %016llx %-13s %016llx\n", "cr3:", save->cr3, "cr4:", save->cr4); pr_err("%-15s %016llx %-13s %016llx\n", "dr6:", save->dr6, "dr7:", save->dr7); pr_err("%-15s %016llx %-13s %016llx\n", "rip:", save->rip, "rflags:", save->rflags); pr_err("%-15s %016llx %-13s %016llx\n", "rsp:", save->rsp, "rax:", save->rax); pr_err("%-15s %016llx %-13s %016llx\n", "star:", save01->star, "lstar:", save01->lstar); pr_err("%-15s %016llx %-13s %016llx\n", "cstar:", save01->cstar, "sfmask:", save01->sfmask); pr_err("%-15s %016llx %-13s %016llx\n", "kernel_gs_base:", save01->kernel_gs_base, "sysenter_cs:", save01->sysenter_cs); pr_err("%-15s %016llx %-13s %016llx\n", "sysenter_esp:", save01->sysenter_esp, "sysenter_eip:", save01->sysenter_eip); pr_err("%-15s %016llx %-13s %016llx\n", "gpat:", save->g_pat, "dbgctl:", save->dbgctl); pr_err("%-15s %016llx %-13s %016llx\n", "br_from:", save->br_from, "br_to:", save->br_to); pr_err("%-15s %016llx %-13s %016llx\n", "excp_from:", save->last_excp_from, "excp_to:", save->last_excp_to); } static bool svm_check_exit_valid(u64 exit_code) { return (exit_code < ARRAY_SIZE(svm_exit_handlers) && svm_exit_handlers[exit_code]); } static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) { vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); dump_vmcb(vcpu); vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; vcpu->run->internal.ndata = 2; vcpu->run->internal.data[0] = exit_code; vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; return 0; } int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) { if (!svm_check_exit_valid(exit_code)) return svm_handle_invalid_exit(vcpu, exit_code); #ifdef CONFIG_RETPOLINE if (exit_code == SVM_EXIT_MSR) return msr_interception(vcpu); else if (exit_code == SVM_EXIT_VINTR) return interrupt_window_interception(vcpu); else if (exit_code == SVM_EXIT_INTR) return intr_interception(vcpu); else if (exit_code == SVM_EXIT_HLT) return kvm_emulate_halt(vcpu); else if (exit_code == SVM_EXIT_NPF) return npf_interception(vcpu); #endif return svm_exit_handlers[exit_code](vcpu); } static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code) { struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; *reason = control->exit_code; *info1 = control->exit_info_1; *info2 = control->exit_info_2; *intr_info = control->exit_int_info; if ((*intr_info & SVM_EXITINTINFO_VALID) && (*intr_info & SVM_EXITINTINFO_VALID_ERR)) *error_code = control->exit_int_info_err; else *error_code = 0; } static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) { struct vcpu_svm *svm = to_svm(vcpu); struct kvm_run *kvm_run = vcpu->run; u32 exit_code = svm->vmcb->control.exit_code; /* SEV-ES guests must use the CR write traps to track CR registers. */ if (!sev_es_guest(vcpu->kvm)) { if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) vcpu->arch.cr0 = svm->vmcb->save.cr0; if (npt_enabled) vcpu->arch.cr3 = svm->vmcb->save.cr3; } if (is_guest_mode(vcpu)) { int vmexit; trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); vmexit = nested_svm_exit_special(svm); if (vmexit == NESTED_EXIT_CONTINUE) vmexit = nested_svm_exit_handled(svm); if (vmexit == NESTED_EXIT_DONE) return 1; } if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; kvm_run->fail_entry.hardware_entry_failure_reason = svm->vmcb->control.exit_code; kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; dump_vmcb(vcpu); return 0; } if (exit_fastpath != EXIT_FASTPATH_NONE) return 1; return svm_invoke_exit_handler(vcpu, exit_code); } static void pre_svm_run(struct kvm_vcpu *vcpu) { struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); struct vcpu_svm *svm = to_svm(vcpu); /* * If the previous vmrun of the vmcb occurred on a different physical * cpu, then mark the vmcb dirty and assign a new asid. Hardware's * vmcb clean bits are per logical CPU, as are KVM's asid assignments. */ if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { svm->current_vmcb->asid_generation = 0; vmcb_mark_all_dirty(svm->vmcb); svm->current_vmcb->cpu = vcpu->cpu; } if (sev_guest(vcpu->kvm)) return pre_sev_run(svm, vcpu->cpu); /* FIXME: handle wraparound of asid_generation */ if (svm->current_vmcb->asid_generation != sd->asid_generation) new_asid(svm, sd); } static void svm_inject_nmi(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; if (svm->nmi_l1_to_l2) return; svm->nmi_masked = true; svm_set_iret_intercept(svm); ++vcpu->stat.nmi_injections; } static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (!is_vnmi_enabled(svm)) return false; return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); } static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (!is_vnmi_enabled(svm)) return false; if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) return false; svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; vmcb_mark_dirty(svm->vmcb, VMCB_INTR); /* * Because the pending NMI is serviced by hardware, KVM can't know when * the NMI is "injected", but for all intents and purposes, passing the * NMI off to hardware counts as injection. */ ++vcpu->stat.nmi_injections; return true; } static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) { struct vcpu_svm *svm = to_svm(vcpu); u32 type; if (vcpu->arch.interrupt.soft) { if (svm_update_soft_interrupt_rip(vcpu)) return; type = SVM_EVTINJ_TYPE_SOFT; } else { type = SVM_EVTINJ_TYPE_INTR; } trace_kvm_inj_virq(vcpu->arch.interrupt.nr, vcpu->arch.interrupt.soft, reinjected); ++vcpu->stat.irq_injections; svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | SVM_EVTINJ_VALID | type; } void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, int trig_mode, int vector) { /* * apic->apicv_active must be read after vcpu->mode. * Pairs with smp_store_release in vcpu_enter_guest. */ bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); /* Note, this is called iff the local APIC is in-kernel. */ if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { /* Process the interrupt via kvm_check_and_inject_events(). */ kvm_make_request(KVM_REQ_EVENT, vcpu); kvm_vcpu_kick(vcpu); return; } trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); if (in_guest_mode) { /* * Signal the doorbell to tell hardware to inject the IRQ. If * the vCPU exits the guest before the doorbell chimes, hardware * will automatically process AVIC interrupts at the next VMRUN. */ avic_ring_doorbell(vcpu); } else { /* * Wake the vCPU if it was blocking. KVM will then detect the * pending IRQ when checking if the vCPU has a wake event. */ kvm_vcpu_wake_up(vcpu); } } static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, int trig_mode, int vector) { kvm_lapic_set_irr(vector, apic); /* * Pairs with the smp_mb_*() after setting vcpu->guest_mode in * vcpu_enter_guest() to ensure the write to the vIRR is ordered before * the read of guest_mode. This guarantees that either VMRUN will see * and process the new vIRR entry, or that svm_complete_interrupt_delivery * will signal the doorbell if the CPU has already entered the guest. */ smp_mb__after_atomic(); svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); } static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) { struct vcpu_svm *svm = to_svm(vcpu); /* * SEV-ES guests must always keep the CR intercepts cleared. CR * tracking is done using the CR write traps. */ if (sev_es_guest(vcpu->kvm)) return; if (nested_svm_virtualize_tpr(vcpu)) return; svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); if (irr == -1) return; if (tpr >= irr) svm_set_intercept(svm, INTERCEPT_CR8_WRITE); } static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (is_vnmi_enabled(svm)) return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; else return svm->nmi_masked; } static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) { struct vcpu_svm *svm = to_svm(vcpu); if (is_vnmi_enabled(svm)) { if (masked) svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; else svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; } else { svm->nmi_masked = masked; if (masked) svm_set_iret_intercept(svm); else svm_clr_iret_intercept(svm); } } bool svm_nmi_blocked(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb *vmcb = svm->vmcb; if (!gif_set(svm)) return true; if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) return false; if (svm_get_nmi_mask(vcpu)) return true; return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; } static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) { struct vcpu_svm *svm = to_svm(vcpu); if (svm->nested.nested_run_pending) return -EBUSY; if (svm_nmi_blocked(vcpu)) return 0; /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) return -EBUSY; return 1; } bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb *vmcb = svm->vmcb; if (!gif_set(svm)) return true; if (is_guest_mode(vcpu)) { /* As long as interrupts are being delivered... */ if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) return true; /* ... vmexits aren't blocked by the interrupt shadow */ if (nested_exit_on_intr(svm)) return false; } else { if (!svm_get_if_flag(vcpu)) return true; } return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); } static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) { struct vcpu_svm *svm = to_svm(vcpu); if (svm->nested.nested_run_pending) return -EBUSY; if (svm_interrupt_blocked(vcpu)) return 0; /* * An IRQ must not be injected into L2 if it's supposed to VM-Exit, * e.g. if the IRQ arrived asynchronously after checking nested events. */ if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) return -EBUSY; return 1; } static void svm_enable_irq_window(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); /* * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes * 1, because that's a separate STGI/VMRUN intercept. The next time we * get that intercept, this function will be called again though and * we'll get the vintr intercept. However, if the vGIF feature is * enabled, the STGI interception will not occur. Enable the irq * window under the assumption that the hardware will set the GIF. */ if (vgif || gif_set(svm)) { /* * IRQ window is not needed when AVIC is enabled, * unless we have pending ExtINT since it cannot be injected * via AVIC. In such case, KVM needs to temporarily disable AVIC, * and fallback to injecting IRQ via V_IRQ. * * If running nested, AVIC is already locally inhibited * on this vCPU, therefore there is no need to request * the VM wide AVIC inhibition. */ if (!is_guest_mode(vcpu)) kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); svm_set_vintr(svm); } } static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); /* * If NMIs are outright masked, i.e. the vCPU is already handling an * NMI, and KVM has not yet intercepted an IRET, then there is nothing * more to do at this time as KVM has already enabled IRET intercepts. * If KVM has already intercepted IRET, then single-step over the IRET, * as NMIs aren't architecturally unmasked until the IRET completes. * * If vNMI is enabled, KVM should never request an NMI window if NMIs * are masked, as KVM allows at most one to-be-injected NMI and one * pending NMI. If two NMIs arrive simultaneously, KVM will inject one * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are * unmasked. KVM _will_ request an NMI window in some situations, e.g. * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately * inject the NMI. In those situations, KVM needs to single-step over * the STI shadow or intercept STGI. */ if (svm_get_nmi_mask(vcpu)) { WARN_ON_ONCE(is_vnmi_enabled(svm)); if (!svm->awaiting_iret_completion) return; /* IRET will cause a vm exit */ } /* * SEV-ES guests are responsible for signaling when a vCPU is ready to * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e. * KVM can't intercept and single-step IRET to detect when NMIs are * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE. * * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not * supported NAEs in the GHCB protocol. */ if (sev_es_guest(vcpu->kvm)) return; if (!gif_set(svm)) { if (vgif) svm_set_intercept(svm, INTERCEPT_STGI); return; /* STGI will cause a vm exit */ } /* * Something prevents NMI from been injected. Single step over possible * problem (IRET or exception injection or interrupt shadow) */ svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); svm->nmi_singlestep = true; svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); } static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); /* * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. * A TLB flush for the current ASID flushes both "host" and "guest" TLB * entries, and thus is a superset of Hyper-V's fine grained flushing. */ kvm_hv_vcpu_purge_flush_tlb(vcpu); /* * Flush only the current ASID even if the TLB flush was invoked via * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and * unconditionally does a TLB flush on both nested VM-Enter and nested * VM-Exit (via kvm_mmu_reset_context()). */ if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; else svm->current_vmcb->asid_generation--; } static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) { hpa_t root_tdp = vcpu->arch.mmu->root.hpa; /* * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly * flush the NPT mappings via hypercall as flushing the ASID only * affects virtual to physical mappings, it does not invalidate guest * physical to host physical mappings. */ if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) hyperv_flush_guest_mapping(root_tdp); svm_flush_tlb_asid(vcpu); } static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) { /* * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB * flushes should be routed to hv_flush_remote_tlbs() without requesting * a "regular" remote flush. Reaching this point means either there's * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of * which might be fatal to the guest. Yell, but try to recover. */ if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) hv_flush_remote_tlbs(vcpu->kvm); svm_flush_tlb_asid(vcpu); } static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) { struct vcpu_svm *svm = to_svm(vcpu); invlpga(gva, svm->vmcb->control.asid); } static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (nested_svm_virtualize_tpr(vcpu)) return; if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; kvm_set_cr8(vcpu, cr8); } } static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u64 cr8; if (nested_svm_virtualize_tpr(vcpu) || kvm_vcpu_apicv_active(vcpu)) return; cr8 = kvm_get_cr8(vcpu); svm->vmcb->control.int_ctl &= ~V_TPR_MASK; svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; } static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, int type) { bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); struct vcpu_svm *svm = to_svm(vcpu); /* * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's * associated with the original soft exception/interrupt. next_rip is * cleared on all exits that can occur while vectoring an event, so KVM * needs to manually set next_rip for re-injection. Unlike the !nrips * case below, this needs to be done if and only if KVM is re-injecting * the same event, i.e. if the event is a soft exception/interrupt, * otherwise next_rip is unused on VMRUN. */ if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) svm->vmcb->control.next_rip = svm->soft_int_next_rip; /* * If NRIPS isn't enabled, KVM must manually advance RIP prior to * injecting the soft exception/interrupt. That advancement needs to * be unwound if vectoring didn't complete. Note, the new event may * not be the injected event, e.g. if KVM injected an INTn, the INTn * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will * be the reported vectored event, but RIP still needs to be unwound. */ else if (!nrips && (is_soft || is_exception) && kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) kvm_rip_write(vcpu, svm->soft_int_old_rip); } static void svm_complete_interrupts(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); u8 vector; int type; u32 exitintinfo = svm->vmcb->control.exit_int_info; bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; bool soft_int_injected = svm->soft_int_injected; svm->nmi_l1_to_l2 = false; svm->soft_int_injected = false; /* * If we've made progress since setting awaiting_iret_completion, we've * executed an IRET and can allow NMI injection. */ if (svm->awaiting_iret_completion && kvm_rip_read(vcpu) != svm->nmi_iret_rip) { svm->awaiting_iret_completion = false; svm->nmi_masked = false; kvm_make_request(KVM_REQ_EVENT, vcpu); } vcpu->arch.nmi_injected = false; kvm_clear_exception_queue(vcpu); kvm_clear_interrupt_queue(vcpu); if (!(exitintinfo & SVM_EXITINTINFO_VALID)) return; kvm_make_request(KVM_REQ_EVENT, vcpu); vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; if (soft_int_injected) svm_complete_soft_interrupt(vcpu, vector, type); switch (type) { case SVM_EXITINTINFO_TYPE_NMI: vcpu->arch.nmi_injected = true; svm->nmi_l1_to_l2 = nmi_l1_to_l2; break; case SVM_EXITINTINFO_TYPE_EXEPT: /* * Never re-inject a #VC exception. */ if (vector == X86_TRAP_VC) break; if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { u32 err = svm->vmcb->control.exit_int_info_err; kvm_requeue_exception_e(vcpu, vector, err); } else kvm_requeue_exception(vcpu, vector); break; case SVM_EXITINTINFO_TYPE_INTR: kvm_queue_interrupt(vcpu, vector, false); break; case SVM_EXITINTINFO_TYPE_SOFT: kvm_queue_interrupt(vcpu, vector, true); break; default: break; } } static void svm_cancel_injection(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); struct vmcb_control_area *control = &svm->vmcb->control; control->exit_int_info = control->event_inj; control->exit_int_info_err = control->event_inj_err; control->event_inj = 0; svm_complete_interrupts(vcpu); } static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) { return 1; } static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) { if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && to_svm(vcpu)->vmcb->control.exit_info_1) return handle_fastpath_set_msr_irqoff(vcpu); return EXIT_FASTPATH_NONE; } static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) { struct vcpu_svm *svm = to_svm(vcpu); guest_state_enter_irqoff(); amd_clear_divider(); if (sev_es_guest(vcpu->kvm)) __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted); else __svm_vcpu_run(svm, spec_ctrl_intercepted); guest_state_exit_irqoff(); } static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); trace_kvm_entry(vcpu); svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; /* * Disable singlestep if we're injecting an interrupt/exception. * We don't want our modified rflags to be pushed on the stack where * we might not be able to easily reset them if we disabled NMI * singlestep later. */ if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { /* * Event injection happens before external interrupts cause a * vmexit and interrupts are disabled here, so smp_send_reschedule * is enough to force an immediate vmexit. */ disable_nmi_singlestep(svm); smp_send_reschedule(vcpu->cpu); } pre_svm_run(vcpu); sync_lapic_to_cr8(vcpu); if (unlikely(svm->asid != svm->vmcb->control.asid)) { svm->vmcb->control.asid = svm->asid; vmcb_mark_dirty(svm->vmcb, VMCB_ASID); } svm->vmcb->save.cr2 = vcpu->arch.cr2; svm_hv_update_vp_id(svm->vmcb, vcpu); /* * Run with all-zero DR6 unless needed, so that we can get the exact cause * of a #DB. */ if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) svm_set_dr6(svm, vcpu->arch.dr6); else svm_set_dr6(svm, DR6_ACTIVE_LOW); clgi(); kvm_load_guest_xsave_state(vcpu); kvm_wait_lapic_expire(vcpu); /* * If this vCPU has touched SPEC_CTRL, restore the guest's value if * it's non-zero. Since vmentry is serialising on affected CPUs, there * is no need to worry about the conditional branch over the wrmsr * being speculatively taken. */ if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); if (!sev_es_guest(vcpu->kvm)) { vcpu->arch.cr2 = svm->vmcb->save.cr2; vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; } vcpu->arch.regs_dirty = 0; if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); kvm_load_host_xsave_state(vcpu); stgi(); /* Any pending NMI will happen here */ if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) kvm_after_interrupt(vcpu); sync_cr8_to_lapic(vcpu); svm->next_rip = 0; if (is_guest_mode(vcpu)) { nested_sync_control_from_vmcb02(svm); /* Track VMRUNs that have made past consistency checking */ if (svm->nested.nested_run_pending && svm->vmcb->control.exit_code != SVM_EXIT_ERR) ++vcpu->stat.nested_run; svm->nested.nested_run_pending = 0; } svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; vmcb_mark_all_clean(svm->vmcb); /* if exit due to PF check for async PF */ if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; /* * We need to handle MC intercepts here before the vcpu has a chance to * change the physical cpu */ if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + MC_VECTOR)) svm_handle_mce(vcpu); trace_kvm_exit(vcpu, KVM_ISA_SVM); svm_complete_interrupts(vcpu); if (is_guest_mode(vcpu)) return EXIT_FASTPATH_NONE; return svm_exit_handlers_fastpath(vcpu); } static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) { struct vcpu_svm *svm = to_svm(vcpu); unsigned long cr3; if (npt_enabled) { svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); vmcb_mark_dirty(svm->vmcb, VMCB_NPT); hv_track_root_tdp(vcpu, root_hpa); cr3 = vcpu->arch.cr3; } else if (root_level >= PT64_ROOT_4LEVEL) { cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); } else { /* PCID in the guest should be impossible with a 32-bit MMU. */ WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); cr3 = root_hpa; } svm->vmcb->save.cr3 = cr3; vmcb_mark_dirty(svm->vmcb, VMCB_CR); } static void svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) { /* * Patch in the VMMCALL instruction: */ hypercall[0] = 0x0f; hypercall[1] = 0x01; hypercall[2] = 0xd9; } /* * The kvm parameter can be NULL (module initialization, or invocation before * VM creation). Be sure to check the kvm parameter before using it. */ static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) { switch (index) { case MSR_IA32_MCG_EXT_CTL: case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: return false; case MSR_IA32_SMBASE: if (!IS_ENABLED(CONFIG_KVM_SMM)) return false; /* SEV-ES guests do not support SMM, so report false */ if (kvm && sev_es_guest(kvm)) return false; break; default: break; } return true; } static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); /* * SVM doesn't provide a way to disable just XSAVES in the guest, KVM * can only disable all variants of by disallowing CR4.OSXSAVE from * being set. As a result, if the host has XSAVE and XSAVES, and the * guest has XSAVE enabled, the guest can execute XSAVES without * faulting. Treat XSAVES as enabled in this case regardless of * whether it's advertised to the guest so that KVM context switches * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give * the guest read/write access to the host's XSS. */ if (boot_cpu_has(X86_FEATURE_XSAVE) && boot_cpu_has(X86_FEATURE_XSAVES) && guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES); kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS); kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR); kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV); /* * Intercept VMLOAD if the vCPU mode is Intel in order to emulate that * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing * SVM on Intel is bonkers and extremely unlikely to work). */ if (!guest_cpuid_is_intel(vcpu)) kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER); kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD); kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF); kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI); svm_recalc_instruction_intercepts(vcpu, svm); if (boot_cpu_has(X86_FEATURE_IBPB)) set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, !!guest_has_pred_cmd_msr(vcpu)); if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0, !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); if (sev_guest(vcpu->kvm)) sev_vcpu_after_set_cpuid(svm); init_vmcb_after_set_cpuid(vcpu); } static bool svm_has_wbinvd_exit(void) { return true; } #define PRE_EX(exit) { .exit_code = (exit), \ .stage = X86_ICPT_PRE_EXCEPT, } #define POST_EX(exit) { .exit_code = (exit), \ .stage = X86_ICPT_POST_EXCEPT, } #define POST_MEM(exit) { .exit_code = (exit), \ .stage = X86_ICPT_POST_MEMACCESS, } static const struct __x86_intercept { u32 exit_code; enum x86_intercept_stage stage; } x86_intercept_map[] = { [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), }; #undef PRE_EX #undef POST_EX #undef POST_MEM static int svm_check_intercept(struct kvm_vcpu *vcpu, struct x86_instruction_info *info, enum x86_intercept_stage stage, struct x86_exception *exception) { struct vcpu_svm *svm = to_svm(vcpu); int vmexit, ret = X86EMUL_CONTINUE; struct __x86_intercept icpt_info; struct vmcb *vmcb = svm->vmcb; if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) goto out; icpt_info = x86_intercept_map[info->intercept]; if (stage != icpt_info.stage) goto out; switch (icpt_info.exit_code) { case SVM_EXIT_READ_CR0: if (info->intercept == x86_intercept_cr_read) icpt_info.exit_code += info->modrm_reg; break; case SVM_EXIT_WRITE_CR0: { unsigned long cr0, val; if (info->intercept == x86_intercept_cr_write) icpt_info.exit_code += info->modrm_reg; if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || info->intercept == x86_intercept_clts) break; if (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))) break; cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; if (info->intercept == x86_intercept_lmsw) { cr0 &= 0xfUL; val &= 0xfUL; /* lmsw can't clear PE - catch this here */ if (cr0 & X86_CR0_PE) val |= X86_CR0_PE; } if (cr0 ^ val) icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; break; } case SVM_EXIT_READ_DR0: case SVM_EXIT_WRITE_DR0: icpt_info.exit_code += info->modrm_reg; break; case SVM_EXIT_MSR: if (info->intercept == x86_intercept_wrmsr) vmcb->control.exit_info_1 = 1; else vmcb->control.exit_info_1 = 0; break; case SVM_EXIT_PAUSE: /* * We get this for NOP only, but pause * is rep not, check this here */ if (info->rep_prefix != REPE_PREFIX) goto out; break; case SVM_EXIT_IOIO: { u64 exit_info; u32 bytes; if (info->intercept == x86_intercept_in || info->intercept == x86_intercept_ins) { exit_info = ((info->src_val & 0xffff) << 16) | SVM_IOIO_TYPE_MASK; bytes = info->dst_bytes; } else { exit_info = (info->dst_val & 0xffff) << 16; bytes = info->src_bytes; } if (info->intercept == x86_intercept_outs || info->intercept == x86_intercept_ins) exit_info |= SVM_IOIO_STR_MASK; if (info->rep_prefix) exit_info |= SVM_IOIO_REP_MASK; bytes = min(bytes, 4u); exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); vmcb->control.exit_info_1 = exit_info; vmcb->control.exit_info_2 = info->next_rip; break; } default: break; } /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ if (static_cpu_has(X86_FEATURE_NRIPS)) vmcb->control.next_rip = info->next_rip; vmcb->control.exit_code = icpt_info.exit_code; vmexit = nested_svm_exit_handled(svm); ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED : X86EMUL_CONTINUE; out: return ret; } static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) { if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) vcpu->arch.at_instruction_boundary = true; } static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) { if (!kvm_pause_in_guest(vcpu->kvm)) shrink_ple_window(vcpu); } static void svm_setup_mce(struct kvm_vcpu *vcpu) { /* [63:9] are reserved. */ vcpu->arch.mcg_cap &= 0x1ff; } #ifdef CONFIG_KVM_SMM bool svm_smi_blocked(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); /* Per APM Vol.2 15.22.2 "Response to SMI" */ if (!gif_set(svm)) return true; return is_smm(vcpu); } static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) { struct vcpu_svm *svm = to_svm(vcpu); if (svm->nested.nested_run_pending) return -EBUSY; if (svm_smi_blocked(vcpu)) return 0; /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) return -EBUSY; return 1; } static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) { struct vcpu_svm *svm = to_svm(vcpu); struct kvm_host_map map_save; int ret; if (!is_guest_mode(vcpu)) return 0; /* * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is * responsible for ensuring nested SVM and SMIs are mutually exclusive. */ if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) return 1; smram->smram64.svm_guest_flag = 1; smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); if (ret) return ret; /* * KVM uses VMCB01 to store L1 host state while L2 runs but * VMCB01 is going to be used during SMM and thus the state will * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the * format of the area is identical to guest save area offsetted * by 0x400 (matches the offset of 'struct vmcb_save_area' * within 'struct vmcb'). Note: HSAVE area may also be used by * L1 hypervisor to save additional host context (e.g. KVM does * that, see svm_prepare_switch_to_guest()) which must be * preserved. */ if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) return 1; BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); svm_copy_vmrun_state(map_save.hva + 0x400, &svm->vmcb01.ptr->save); kvm_vcpu_unmap(vcpu, &map_save, true); return 0; } static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) { struct vcpu_svm *svm = to_svm(vcpu); struct kvm_host_map map, map_save; struct vmcb *vmcb12; int ret; const struct kvm_smram_state_64 *smram64 = &smram->smram64; if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) return 0; /* Non-zero if SMI arrived while vCPU was in guest mode. */ if (!smram64->svm_guest_flag) return 0; if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) return 1; if (!(smram64->efer & EFER_SVME)) return 1; if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) return 1; ret = 1; if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) goto unmap_map; if (svm_allocate_nested(svm)) goto unmap_save; /* * Restore L1 host state from L1 HSAVE area as VMCB01 was * used during SMM (see svm_enter_smm()) */ svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); /* * Enter the nested guest now */ vmcb_mark_all_dirty(svm->vmcb01.ptr); vmcb12 = map.hva; nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); if (ret) goto unmap_save; svm->nested.nested_run_pending = 1; unmap_save: kvm_vcpu_unmap(vcpu, &map_save, true); unmap_map: kvm_vcpu_unmap(vcpu, &map, true); return ret; } static void svm_enable_smi_window(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); if (!gif_set(svm)) { if (vgif) svm_set_intercept(svm, INTERCEPT_STGI); /* STGI will cause a vm exit */ } else { /* We must be in SMM; RSM will cause a vmexit anyway. */ } } #endif static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, void *insn, int insn_len) { bool smep, smap, is_user; u64 error_code; /* Emulation is always possible when KVM has access to all guest state. */ if (!sev_guest(vcpu->kvm)) return true; /* #UD and #GP should never be intercepted for SEV guests. */ WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | EMULTYPE_TRAP_UD_FORCED | EMULTYPE_VMWARE_GP)); /* * Emulation is impossible for SEV-ES guests as KVM doesn't have access * to guest register state. */ if (sev_es_guest(vcpu->kvm)) return false; /* * Emulation is possible if the instruction is already decoded, e.g. * when completing I/O after returning from userspace. */ if (emul_type & EMULTYPE_NO_DECODE) return true; /* * Emulation is possible for SEV guests if and only if a prefilled * buffer containing the bytes of the intercepted instruction is * available. SEV guest memory is encrypted with a guest specific key * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and * decode garbage. * * If KVM is NOT trying to simply skip an instruction, inject #UD if * KVM reached this point without an instruction buffer. In practice, * this path should never be hit by a well-behaved guest, e.g. KVM * doesn't intercept #UD or #GP for SEV guests, but this path is still * theoretically reachable, e.g. via unaccelerated fault-like AVIC * access, and needs to be handled by KVM to avoid putting the guest * into an infinite loop. Injecting #UD is somewhat arbitrary, but * its the least awful option given lack of insight into the guest. * * If KVM is trying to skip an instruction, simply resume the guest. * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM * will attempt to re-inject the INT3/INTO and skip the instruction. * In that scenario, retrying the INT3/INTO and hoping the guest will * make forward progress is the only option that has a chance of * success (and in practice it will work the vast majority of the time). */ if (unlikely(!insn)) { if (!(emul_type & EMULTYPE_SKIP)) kvm_queue_exception(vcpu, UD_VECTOR); return false; } /* * Emulate for SEV guests if the insn buffer is not empty. The buffer * will be empty if the DecodeAssist microcode cannot fetch bytes for * the faulting instruction because the code fetch itself faulted, e.g. * the guest attempted to fetch from emulated MMIO or a guest page * table used to translate CS:RIP resides in emulated MMIO. */ if (likely(insn_len)) return true; /* * Detect and workaround Errata 1096 Fam_17h_00_0Fh. * * Errata: * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is * possible that CPU microcode implementing DecodeAssist will fail to * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly * be '0'. This happens because microcode reads CS:RIP using a _data_ * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode * gives up and does not fill the instruction bytes buffer. * * As above, KVM reaches this point iff the VM is an SEV guest, the CPU * supports DecodeAssist, a #NPF was raised, KVM's page fault handler * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the * GuestIntrBytes field of the VMCB. * * This does _not_ mean that the erratum has been encountered, as the * DecodeAssist will also fail if the load for CS:RIP hits a legitimate * #PF, e.g. if the guest attempt to execute from emulated MMIO and * encountered a reserved/not-present #PF. * * To hit the erratum, the following conditions must be true: * 1. CR4.SMAP=1 (obviously). * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot * have been hit as the guest would have encountered a SMEP * violation #PF, not a #NPF. * 3. The #NPF is not due to a code fetch, in which case failure to * retrieve the instruction bytes is legitimate (see abvoe). * * In addition, don't apply the erratum workaround if the #NPF occurred * while translating guest page tables (see below). */ error_code = to_svm(vcpu)->vmcb->control.exit_info_1; if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) goto resume_guest; smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); is_user = svm_get_cpl(vcpu) == 3; if (smap && (!smep || is_user)) { pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); /* * If the fault occurred in userspace, arbitrarily inject #GP * to avoid killing the guest and to hopefully avoid confusing * the guest kernel too much, e.g. injecting #PF would not be * coherent with respect to the guest's page tables. Request * triple fault if the fault occurred in the kernel as there's * no fault that KVM can inject without confusing the guest. * In practice, the triple fault is moot as no sane SEV kernel * will execute from user memory while also running with SMAP=1. */ if (is_user) kvm_inject_gp(vcpu, 0); else kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); } resume_guest: /* * If the erratum was not hit, simply resume the guest and let it fault * again. While awful, e.g. the vCPU may get stuck in an infinite loop * if the fault is at CPL=0, it's the lesser of all evils. Exiting to * userspace will kill the guest, and letting the emulator read garbage * will yield random behavior and potentially corrupt the guest. * * Simply resuming the guest is technically not a violation of the SEV * architecture. AMD's APM states that all code fetches and page table * accesses for SEV guest are encrypted, regardless of the C-Bit. The * APM also states that encrypted accesses to MMIO are "ignored", but * doesn't explicitly define "ignored", i.e. doing nothing and letting * the guest spin is technically "ignoring" the access. */ return false; } static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); return !gif_set(svm); } static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) { if (!sev_es_guest(vcpu->kvm)) return kvm_vcpu_deliver_sipi_vector(vcpu, vector); sev_vcpu_deliver_sipi_vector(vcpu, vector); } static void svm_vm_destroy(struct kvm *kvm) { avic_vm_destroy(kvm); sev_vm_destroy(kvm); } static int svm_vm_init(struct kvm *kvm) { if (!pause_filter_count || !pause_filter_thresh) kvm->arch.pause_in_guest = true; if (enable_apicv) { int ret = avic_vm_init(kvm); if (ret) return ret; } return 0; } static struct kvm_x86_ops svm_x86_ops __initdata = { .name = KBUILD_MODNAME, .check_processor_compatibility = svm_check_processor_compat, .hardware_unsetup = svm_hardware_unsetup, .hardware_enable = svm_hardware_enable, .hardware_disable = svm_hardware_disable, .has_emulated_msr = svm_has_emulated_msr, .vcpu_create = svm_vcpu_create, .vcpu_free = svm_vcpu_free, .vcpu_reset = svm_vcpu_reset, .vm_size = sizeof(struct kvm_svm), .vm_init = svm_vm_init, .vm_destroy = svm_vm_destroy, .prepare_switch_to_guest = svm_prepare_switch_to_guest, .vcpu_load = svm_vcpu_load, .vcpu_put = svm_vcpu_put, .vcpu_blocking = avic_vcpu_blocking, .vcpu_unblocking = avic_vcpu_unblocking, .update_exception_bitmap = svm_update_exception_bitmap, .get_msr_feature = svm_get_msr_feature, .get_msr = svm_get_msr, .set_msr = svm_set_msr, .get_segment_base = svm_get_segment_base, .get_segment = svm_get_segment, .set_segment = svm_set_segment, .get_cpl = svm_get_cpl, .get_cs_db_l_bits = svm_get_cs_db_l_bits, .is_valid_cr0 = svm_is_valid_cr0, .set_cr0 = svm_set_cr0, .post_set_cr3 = sev_post_set_cr3, .is_valid_cr4 = svm_is_valid_cr4, .set_cr4 = svm_set_cr4, .set_efer = svm_set_efer, .get_idt = svm_get_idt, .set_idt = svm_set_idt, .get_gdt = svm_get_gdt, .set_gdt = svm_set_gdt, .set_dr7 = svm_set_dr7, .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, .cache_reg = svm_cache_reg, .get_rflags = svm_get_rflags, .set_rflags = svm_set_rflags, .get_if_flag = svm_get_if_flag, .flush_tlb_all = svm_flush_tlb_all, .flush_tlb_current = svm_flush_tlb_current, .flush_tlb_gva = svm_flush_tlb_gva, .flush_tlb_guest = svm_flush_tlb_asid, .vcpu_pre_run = svm_vcpu_pre_run, .vcpu_run = svm_vcpu_run, .handle_exit = svm_handle_exit, .skip_emulated_instruction = svm_skip_emulated_instruction, .update_emulated_instruction = NULL, .set_interrupt_shadow = svm_set_interrupt_shadow, .get_interrupt_shadow = svm_get_interrupt_shadow, .patch_hypercall = svm_patch_hypercall, .inject_irq = svm_inject_irq, .inject_nmi = svm_inject_nmi, .is_vnmi_pending = svm_is_vnmi_pending, .set_vnmi_pending = svm_set_vnmi_pending, .inject_exception = svm_inject_exception, .cancel_injection = svm_cancel_injection, .interrupt_allowed = svm_interrupt_allowed, .nmi_allowed = svm_nmi_allowed, .get_nmi_mask = svm_get_nmi_mask, .set_nmi_mask = svm_set_nmi_mask, .enable_nmi_window = svm_enable_nmi_window, .enable_irq_window = svm_enable_irq_window, .update_cr8_intercept = svm_update_cr8_intercept, .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, .apicv_post_state_restore = avic_apicv_post_state_restore, .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, .get_exit_info = svm_get_exit_info, .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, .has_wbinvd_exit = svm_has_wbinvd_exit, .get_l2_tsc_offset = svm_get_l2_tsc_offset, .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, .write_tsc_offset = svm_write_tsc_offset, .write_tsc_multiplier = svm_write_tsc_multiplier, .load_mmu_pgd = svm_load_mmu_pgd, .check_intercept = svm_check_intercept, .handle_exit_irqoff = svm_handle_exit_irqoff, .request_immediate_exit = __kvm_request_immediate_exit, .sched_in = svm_sched_in, .nested_ops = &svm_nested_ops, .deliver_interrupt = svm_deliver_interrupt, .pi_update_irte = avic_pi_update_irte, .setup_mce = svm_setup_mce, #ifdef CONFIG_KVM_SMM .smi_allowed = svm_smi_allowed, .enter_smm = svm_enter_smm, .leave_smm = svm_leave_smm, .enable_smi_window = svm_enable_smi_window, #endif .mem_enc_ioctl = sev_mem_enc_ioctl, .mem_enc_register_region = sev_mem_enc_register_region, .mem_enc_unregister_region = sev_mem_enc_unregister_region, .guest_memory_reclaimed = sev_guest_memory_reclaimed, .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, .vm_move_enc_context_from = sev_vm_move_enc_context_from, .can_emulate_instruction = svm_can_emulate_instruction, .apic_init_signal_blocked = svm_apic_init_signal_blocked, .msr_filter_changed = svm_msr_filter_changed, .complete_emulated_msr = svm_complete_emulated_msr, .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, }; /* * The default MMIO mask is a single bit (excluding the present bit), * which could conflict with the memory encryption bit. Check for * memory encryption support and override the default MMIO mask if * memory encryption is enabled. */ static __init void svm_adjust_mmio_mask(void) { unsigned int enc_bit, mask_bit; u64 msr, mask; /* If there is no memory encryption support, use existing mask */ if (cpuid_eax(0x80000000) < 0x8000001f) return; /* If memory encryption is not enabled, use existing mask */ rdmsrl(MSR_AMD64_SYSCFG, msr); if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) return; enc_bit = cpuid_ebx(0x8000001f) & 0x3f; mask_bit = boot_cpu_data.x86_phys_bits; /* Increment the mask bit if it is the same as the encryption bit */ if (enc_bit == mask_bit) mask_bit++; /* * If the mask bit location is below 52, then some bits above the * physical addressing limit will always be reserved, so use the * rsvd_bits() function to generate the mask. This mask, along with * the present bit, will be used to generate a page fault with * PFER.RSV = 1. * * If the mask bit location is 52 (or above), then clear the mask. */ mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); } static __init void svm_set_cpu_caps(void) { kvm_set_cpu_caps(); kvm_caps.supported_perf_cap = 0; kvm_caps.supported_xss = 0; /* CPUID 0x80000001 and 0x8000000A (SVM features) */ if (nested) { kvm_cpu_cap_set(X86_FEATURE_SVM); kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); if (nrips) kvm_cpu_cap_set(X86_FEATURE_NRIPS); if (npt_enabled) kvm_cpu_cap_set(X86_FEATURE_NPT); if (tsc_scaling) kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); if (vls) kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); if (lbrv) kvm_cpu_cap_set(X86_FEATURE_LBRV); if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); if (vgif) kvm_cpu_cap_set(X86_FEATURE_VGIF); if (vnmi) kvm_cpu_cap_set(X86_FEATURE_VNMI); /* Nested VM can receive #VMEXIT instead of triggering #GP */ kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); } /* CPUID 0x80000008 */ if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || boot_cpu_has(X86_FEATURE_AMD_SSBD)) kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); if (enable_pmu) { /* * Enumerate support for PERFCTR_CORE if and only if KVM has * access to enough counters to virtualize "core" support, * otherwise limit vPMU support to the legacy number of counters. */ if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE) kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS, kvm_pmu_cap.num_counters_gp); else kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE); if (kvm_pmu_cap.version != 2 || !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2); } /* CPUID 0x8000001F (SME/SEV features) */ sev_set_cpu_caps(); } static __init int svm_hardware_setup(void) { int cpu; struct page *iopm_pages; void *iopm_va; int r; unsigned int order = get_order(IOPM_SIZE); /* * NX is required for shadow paging and for NPT if the NX huge pages * mitigation is enabled. */ if (!boot_cpu_has(X86_FEATURE_NX)) { pr_err_ratelimited("NX (Execute Disable) not supported\n"); return -EOPNOTSUPP; } kvm_enable_efer_bits(EFER_NX); iopm_pages = alloc_pages(GFP_KERNEL, order); if (!iopm_pages) return -ENOMEM; iopm_va = page_address(iopm_pages); memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; init_msrpm_offsets(); kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) kvm_enable_efer_bits(EFER_FFXSR); if (tsc_scaling) { if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { tsc_scaling = false; } else { pr_info("TSC scaling supported\n"); kvm_caps.has_tsc_control = true; } } kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; kvm_caps.tsc_scaling_ratio_frac_bits = 32; tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) kvm_enable_efer_bits(EFER_AUTOIBRS); /* Check for pause filtering support */ if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { pause_filter_count = 0; pause_filter_thresh = 0; } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { pause_filter_thresh = 0; } if (nested) { pr_info("Nested Virtualization enabled\n"); kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); } /* * KVM's MMU doesn't support using 2-level paging for itself, and thus * NPT isn't supported if the host is using 2-level paging since host * CR4 is unchanged on VMRUN. */ if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) npt_enabled = false; if (!boot_cpu_has(X86_FEATURE_NPT)) npt_enabled = false; /* Force VM NPT level equal to the host's paging level */ kvm_configure_mmu(npt_enabled, get_npt_level(), get_npt_level(), PG_LEVEL_1G); pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); /* Setup shadow_me_value and shadow_me_mask */ kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); svm_adjust_mmio_mask(); nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS); if (lbrv) { if (!boot_cpu_has(X86_FEATURE_LBRV)) lbrv = false; else pr_info("LBR virtualization supported\n"); } /* * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which * may be modified by svm_adjust_mmio_mask()), as well as nrips. */ sev_hardware_setup(); svm_hv_hardware_setup(); for_each_possible_cpu(cpu) { r = svm_cpu_init(cpu); if (r) goto err; } enable_apicv = avic = avic && avic_hardware_setup(); if (!enable_apicv) { svm_x86_ops.vcpu_blocking = NULL; svm_x86_ops.vcpu_unblocking = NULL; svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; } else if (!x2avic_enabled) { svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true; } if (vls) { if (!npt_enabled || !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || !IS_ENABLED(CONFIG_X86_64)) { vls = false; } else { pr_info("Virtual VMLOAD VMSAVE supported\n"); } } if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) svm_gp_erratum_intercept = false; if (vgif) { if (!boot_cpu_has(X86_FEATURE_VGIF)) vgif = false; else pr_info("Virtual GIF supported\n"); } vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); if (vnmi) pr_info("Virtual NMI enabled\n"); if (!vnmi) { svm_x86_ops.is_vnmi_pending = NULL; svm_x86_ops.set_vnmi_pending = NULL; } if (!enable_pmu) pr_info("PMU virtualization is disabled\n"); svm_set_cpu_caps(); /* * It seems that on AMD processors PTE's accessed bit is * being set by the CPU hardware before the NPF vmexit. * This is not expected behaviour and our tests fail because * of it. * A workaround here is to disable support for * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. * In this case userspace can know if there is support using * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle * it * If future AMD CPU models change the behaviour described above, * this variable can be changed accordingly */ allow_smaller_maxphyaddr = !npt_enabled; return 0; err: svm_hardware_unsetup(); return r; } static struct kvm_x86_init_ops svm_init_ops __initdata = { .hardware_setup = svm_hardware_setup, .runtime_ops = &svm_x86_ops, .pmu_ops = &amd_pmu_ops, }; static void __svm_exit(void) { kvm_x86_vendor_exit(); cpu_emergency_unregister_virt_callback(svm_emergency_disable); } static int __init svm_init(void) { int r; __unused_size_checks(); if (!kvm_is_svm_supported()) return -EOPNOTSUPP; r = kvm_x86_vendor_init(&svm_init_ops); if (r) return r; cpu_emergency_register_virt_callback(svm_emergency_disable); /* * Common KVM initialization _must_ come last, after this, /dev/kvm is * exposed to userspace! */ r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), THIS_MODULE); if (r) goto err_kvm_init; return 0; err_kvm_init: __svm_exit(); return r; } static void __exit svm_exit(void) { kvm_exit(); __svm_exit(); } module_init(svm_init) module_exit(svm_exit)