1 /****************************************************************************** 2 * emulate.c 3 * 4 * Generic x86 (32-bit and 64-bit) instruction decoder and emulator. 5 * 6 * Copyright (c) 2005 Keir Fraser 7 * 8 * Linux coding style, mod r/m decoder, segment base fixes, real-mode 9 * privileged instructions: 10 * 11 * Copyright (C) 2006 Qumranet 12 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 13 * 14 * Avi Kivity <avi@qumranet.com> 15 * Yaniv Kamay <yaniv@qumranet.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4 21 */ 22 23 #include <linux/kvm_host.h> 24 #include "kvm_cache_regs.h" 25 #include <linux/module.h> 26 #include <asm/kvm_emulate.h> 27 #include <linux/stringify.h> 28 29 #include "x86.h" 30 #include "tss.h" 31 32 /* 33 * Operand types 34 */ 35 #define OpNone 0ull 36 #define OpImplicit 1ull /* No generic decode */ 37 #define OpReg 2ull /* Register */ 38 #define OpMem 3ull /* Memory */ 39 #define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */ 40 #define OpDI 5ull /* ES:DI/EDI/RDI */ 41 #define OpMem64 6ull /* Memory, 64-bit */ 42 #define OpImmUByte 7ull /* Zero-extended 8-bit immediate */ 43 #define OpDX 8ull /* DX register */ 44 #define OpCL 9ull /* CL register (for shifts) */ 45 #define OpImmByte 10ull /* 8-bit sign extended immediate */ 46 #define OpOne 11ull /* Implied 1 */ 47 #define OpImm 12ull /* Sign extended up to 32-bit immediate */ 48 #define OpMem16 13ull /* Memory operand (16-bit). */ 49 #define OpMem32 14ull /* Memory operand (32-bit). */ 50 #define OpImmU 15ull /* Immediate operand, zero extended */ 51 #define OpSI 16ull /* SI/ESI/RSI */ 52 #define OpImmFAddr 17ull /* Immediate far address */ 53 #define OpMemFAddr 18ull /* Far address in memory */ 54 #define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */ 55 #define OpES 20ull /* ES */ 56 #define OpCS 21ull /* CS */ 57 #define OpSS 22ull /* SS */ 58 #define OpDS 23ull /* DS */ 59 #define OpFS 24ull /* FS */ 60 #define OpGS 25ull /* GS */ 61 #define OpMem8 26ull /* 8-bit zero extended memory operand */ 62 #define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */ 63 #define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */ 64 #define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */ 65 #define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */ 66 67 #define OpBits 5 /* Width of operand field */ 68 #define OpMask ((1ull << OpBits) - 1) 69 70 /* 71 * Opcode effective-address decode tables. 72 * Note that we only emulate instructions that have at least one memory 73 * operand (excluding implicit stack references). We assume that stack 74 * references and instruction fetches will never occur in special memory 75 * areas that require emulation. So, for example, 'mov <imm>,<reg>' need 76 * not be handled. 77 */ 78 79 /* Operand sizes: 8-bit operands or specified/overridden size. */ 80 #define ByteOp (1<<0) /* 8-bit operands. */ 81 /* Destination operand type. */ 82 #define DstShift 1 83 #define ImplicitOps (OpImplicit << DstShift) 84 #define DstReg (OpReg << DstShift) 85 #define DstMem (OpMem << DstShift) 86 #define DstAcc (OpAcc << DstShift) 87 #define DstDI (OpDI << DstShift) 88 #define DstMem64 (OpMem64 << DstShift) 89 #define DstMem16 (OpMem16 << DstShift) 90 #define DstImmUByte (OpImmUByte << DstShift) 91 #define DstDX (OpDX << DstShift) 92 #define DstAccLo (OpAccLo << DstShift) 93 #define DstMask (OpMask << DstShift) 94 /* Source operand type. */ 95 #define SrcShift 6 96 #define SrcNone (OpNone << SrcShift) 97 #define SrcReg (OpReg << SrcShift) 98 #define SrcMem (OpMem << SrcShift) 99 #define SrcMem16 (OpMem16 << SrcShift) 100 #define SrcMem32 (OpMem32 << SrcShift) 101 #define SrcImm (OpImm << SrcShift) 102 #define SrcImmByte (OpImmByte << SrcShift) 103 #define SrcOne (OpOne << SrcShift) 104 #define SrcImmUByte (OpImmUByte << SrcShift) 105 #define SrcImmU (OpImmU << SrcShift) 106 #define SrcSI (OpSI << SrcShift) 107 #define SrcXLat (OpXLat << SrcShift) 108 #define SrcImmFAddr (OpImmFAddr << SrcShift) 109 #define SrcMemFAddr (OpMemFAddr << SrcShift) 110 #define SrcAcc (OpAcc << SrcShift) 111 #define SrcImmU16 (OpImmU16 << SrcShift) 112 #define SrcImm64 (OpImm64 << SrcShift) 113 #define SrcDX (OpDX << SrcShift) 114 #define SrcMem8 (OpMem8 << SrcShift) 115 #define SrcAccHi (OpAccHi << SrcShift) 116 #define SrcMask (OpMask << SrcShift) 117 #define BitOp (1<<11) 118 #define MemAbs (1<<12) /* Memory operand is absolute displacement */ 119 #define String (1<<13) /* String instruction (rep capable) */ 120 #define Stack (1<<14) /* Stack instruction (push/pop) */ 121 #define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */ 122 #define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */ 123 #define GroupDual (2<<15) /* Alternate decoding of mod == 3 */ 124 #define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */ 125 #define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */ 126 #define Escape (5<<15) /* Escape to coprocessor instruction */ 127 #define InstrDual (6<<15) /* Alternate instruction decoding of mod == 3 */ 128 #define ModeDual (7<<15) /* Different instruction for 32/64 bit */ 129 #define Sse (1<<18) /* SSE Vector instruction */ 130 /* Generic ModRM decode. */ 131 #define ModRM (1<<19) 132 /* Destination is only written; never read. */ 133 #define Mov (1<<20) 134 /* Misc flags */ 135 #define Prot (1<<21) /* instruction generates #UD if not in prot-mode */ 136 #define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */ 137 #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */ 138 #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */ 139 #define Undefined (1<<25) /* No Such Instruction */ 140 #define Lock (1<<26) /* lock prefix is allowed for the instruction */ 141 #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */ 142 #define No64 (1<<28) 143 #define PageTable (1 << 29) /* instruction used to write page table */ 144 #define NotImpl (1 << 30) /* instruction is not implemented */ 145 /* Source 2 operand type */ 146 #define Src2Shift (31) 147 #define Src2None (OpNone << Src2Shift) 148 #define Src2Mem (OpMem << Src2Shift) 149 #define Src2CL (OpCL << Src2Shift) 150 #define Src2ImmByte (OpImmByte << Src2Shift) 151 #define Src2One (OpOne << Src2Shift) 152 #define Src2Imm (OpImm << Src2Shift) 153 #define Src2ES (OpES << Src2Shift) 154 #define Src2CS (OpCS << Src2Shift) 155 #define Src2SS (OpSS << Src2Shift) 156 #define Src2DS (OpDS << Src2Shift) 157 #define Src2FS (OpFS << Src2Shift) 158 #define Src2GS (OpGS << Src2Shift) 159 #define Src2Mask (OpMask << Src2Shift) 160 #define Mmx ((u64)1 << 40) /* MMX Vector instruction */ 161 #define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */ 162 #define Unaligned ((u64)1 << 42) /* Explicitly unaligned (e.g. MOVDQU) */ 163 #define Avx ((u64)1 << 43) /* Advanced Vector Extensions */ 164 #define Fastop ((u64)1 << 44) /* Use opcode::u.fastop */ 165 #define NoWrite ((u64)1 << 45) /* No writeback */ 166 #define SrcWrite ((u64)1 << 46) /* Write back src operand */ 167 #define NoMod ((u64)1 << 47) /* Mod field is ignored */ 168 #define Intercept ((u64)1 << 48) /* Has valid intercept field */ 169 #define CheckPerm ((u64)1 << 49) /* Has valid check_perm field */ 170 #define PrivUD ((u64)1 << 51) /* #UD instead of #GP on CPL > 0 */ 171 #define NearBranch ((u64)1 << 52) /* Near branches */ 172 #define No16 ((u64)1 << 53) /* No 16 bit operand */ 173 #define IncSP ((u64)1 << 54) /* SP is incremented before ModRM calc */ 174 175 #define DstXacc (DstAccLo | SrcAccHi | SrcWrite) 176 177 #define X2(x...) x, x 178 #define X3(x...) X2(x), x 179 #define X4(x...) X2(x), X2(x) 180 #define X5(x...) X4(x), x 181 #define X6(x...) X4(x), X2(x) 182 #define X7(x...) X4(x), X3(x) 183 #define X8(x...) X4(x), X4(x) 184 #define X16(x...) X8(x), X8(x) 185 186 #define NR_FASTOP (ilog2(sizeof(ulong)) + 1) 187 #define FASTOP_SIZE 8 188 189 /* 190 * fastop functions have a special calling convention: 191 * 192 * dst: rax (in/out) 193 * src: rdx (in/out) 194 * src2: rcx (in) 195 * flags: rflags (in/out) 196 * ex: rsi (in:fastop pointer, out:zero if exception) 197 * 198 * Moreover, they are all exactly FASTOP_SIZE bytes long, so functions for 199 * different operand sizes can be reached by calculation, rather than a jump 200 * table (which would be bigger than the code). 201 * 202 * fastop functions are declared as taking a never-defined fastop parameter, 203 * so they can't be called from C directly. 204 */ 205 206 struct fastop; 207 208 struct opcode { 209 u64 flags : 56; 210 u64 intercept : 8; 211 union { 212 int (*execute)(struct x86_emulate_ctxt *ctxt); 213 const struct opcode *group; 214 const struct group_dual *gdual; 215 const struct gprefix *gprefix; 216 const struct escape *esc; 217 const struct instr_dual *idual; 218 const struct mode_dual *mdual; 219 void (*fastop)(struct fastop *fake); 220 } u; 221 int (*check_perm)(struct x86_emulate_ctxt *ctxt); 222 }; 223 224 struct group_dual { 225 struct opcode mod012[8]; 226 struct opcode mod3[8]; 227 }; 228 229 struct gprefix { 230 struct opcode pfx_no; 231 struct opcode pfx_66; 232 struct opcode pfx_f2; 233 struct opcode pfx_f3; 234 }; 235 236 struct escape { 237 struct opcode op[8]; 238 struct opcode high[64]; 239 }; 240 241 struct instr_dual { 242 struct opcode mod012; 243 struct opcode mod3; 244 }; 245 246 struct mode_dual { 247 struct opcode mode32; 248 struct opcode mode64; 249 }; 250 251 /* EFLAGS bit definitions. */ 252 #define EFLG_ID (1<<21) 253 #define EFLG_VIP (1<<20) 254 #define EFLG_VIF (1<<19) 255 #define EFLG_AC (1<<18) 256 #define EFLG_VM (1<<17) 257 #define EFLG_RF (1<<16) 258 #define EFLG_IOPL (3<<12) 259 #define EFLG_NT (1<<14) 260 #define EFLG_OF (1<<11) 261 #define EFLG_DF (1<<10) 262 #define EFLG_IF (1<<9) 263 #define EFLG_TF (1<<8) 264 #define EFLG_SF (1<<7) 265 #define EFLG_ZF (1<<6) 266 #define EFLG_AF (1<<4) 267 #define EFLG_PF (1<<2) 268 #define EFLG_CF (1<<0) 269 270 #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a 271 #define EFLG_RESERVED_ONE_MASK 2 272 273 enum x86_transfer_type { 274 X86_TRANSFER_NONE, 275 X86_TRANSFER_CALL_JMP, 276 X86_TRANSFER_RET, 277 X86_TRANSFER_TASK_SWITCH, 278 }; 279 280 static ulong reg_read(struct x86_emulate_ctxt *ctxt, unsigned nr) 281 { 282 if (!(ctxt->regs_valid & (1 << nr))) { 283 ctxt->regs_valid |= 1 << nr; 284 ctxt->_regs[nr] = ctxt->ops->read_gpr(ctxt, nr); 285 } 286 return ctxt->_regs[nr]; 287 } 288 289 static ulong *reg_write(struct x86_emulate_ctxt *ctxt, unsigned nr) 290 { 291 ctxt->regs_valid |= 1 << nr; 292 ctxt->regs_dirty |= 1 << nr; 293 return &ctxt->_regs[nr]; 294 } 295 296 static ulong *reg_rmw(struct x86_emulate_ctxt *ctxt, unsigned nr) 297 { 298 reg_read(ctxt, nr); 299 return reg_write(ctxt, nr); 300 } 301 302 static void writeback_registers(struct x86_emulate_ctxt *ctxt) 303 { 304 unsigned reg; 305 306 for_each_set_bit(reg, (ulong *)&ctxt->regs_dirty, 16) 307 ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]); 308 } 309 310 static void invalidate_registers(struct x86_emulate_ctxt *ctxt) 311 { 312 ctxt->regs_dirty = 0; 313 ctxt->regs_valid = 0; 314 } 315 316 /* 317 * These EFLAGS bits are restored from saved value during emulation, and 318 * any changes are written back to the saved value after emulation. 319 */ 320 #define EFLAGS_MASK (EFLG_OF|EFLG_SF|EFLG_ZF|EFLG_AF|EFLG_PF|EFLG_CF) 321 322 #ifdef CONFIG_X86_64 323 #define ON64(x) x 324 #else 325 #define ON64(x) 326 #endif 327 328 static int fastop(struct x86_emulate_ctxt *ctxt, void (*fop)(struct fastop *)); 329 330 #define FOP_ALIGN ".align " __stringify(FASTOP_SIZE) " \n\t" 331 #define FOP_RET "ret \n\t" 332 333 #define FOP_START(op) \ 334 extern void em_##op(struct fastop *fake); \ 335 asm(".pushsection .text, \"ax\" \n\t" \ 336 ".global em_" #op " \n\t" \ 337 FOP_ALIGN \ 338 "em_" #op ": \n\t" 339 340 #define FOP_END \ 341 ".popsection") 342 343 #define FOPNOP() FOP_ALIGN FOP_RET 344 345 #define FOP1E(op, dst) \ 346 FOP_ALIGN "10: " #op " %" #dst " \n\t" FOP_RET 347 348 #define FOP1EEX(op, dst) \ 349 FOP1E(op, dst) _ASM_EXTABLE(10b, kvm_fastop_exception) 350 351 #define FASTOP1(op) \ 352 FOP_START(op) \ 353 FOP1E(op##b, al) \ 354 FOP1E(op##w, ax) \ 355 FOP1E(op##l, eax) \ 356 ON64(FOP1E(op##q, rax)) \ 357 FOP_END 358 359 /* 1-operand, using src2 (for MUL/DIV r/m) */ 360 #define FASTOP1SRC2(op, name) \ 361 FOP_START(name) \ 362 FOP1E(op, cl) \ 363 FOP1E(op, cx) \ 364 FOP1E(op, ecx) \ 365 ON64(FOP1E(op, rcx)) \ 366 FOP_END 367 368 /* 1-operand, using src2 (for MUL/DIV r/m), with exceptions */ 369 #define FASTOP1SRC2EX(op, name) \ 370 FOP_START(name) \ 371 FOP1EEX(op, cl) \ 372 FOP1EEX(op, cx) \ 373 FOP1EEX(op, ecx) \ 374 ON64(FOP1EEX(op, rcx)) \ 375 FOP_END 376 377 #define FOP2E(op, dst, src) \ 378 FOP_ALIGN #op " %" #src ", %" #dst " \n\t" FOP_RET 379 380 #define FASTOP2(op) \ 381 FOP_START(op) \ 382 FOP2E(op##b, al, dl) \ 383 FOP2E(op##w, ax, dx) \ 384 FOP2E(op##l, eax, edx) \ 385 ON64(FOP2E(op##q, rax, rdx)) \ 386 FOP_END 387 388 /* 2 operand, word only */ 389 #define FASTOP2W(op) \ 390 FOP_START(op) \ 391 FOPNOP() \ 392 FOP2E(op##w, ax, dx) \ 393 FOP2E(op##l, eax, edx) \ 394 ON64(FOP2E(op##q, rax, rdx)) \ 395 FOP_END 396 397 /* 2 operand, src is CL */ 398 #define FASTOP2CL(op) \ 399 FOP_START(op) \ 400 FOP2E(op##b, al, cl) \ 401 FOP2E(op##w, ax, cl) \ 402 FOP2E(op##l, eax, cl) \ 403 ON64(FOP2E(op##q, rax, cl)) \ 404 FOP_END 405 406 /* 2 operand, src and dest are reversed */ 407 #define FASTOP2R(op, name) \ 408 FOP_START(name) \ 409 FOP2E(op##b, dl, al) \ 410 FOP2E(op##w, dx, ax) \ 411 FOP2E(op##l, edx, eax) \ 412 ON64(FOP2E(op##q, rdx, rax)) \ 413 FOP_END 414 415 #define FOP3E(op, dst, src, src2) \ 416 FOP_ALIGN #op " %" #src2 ", %" #src ", %" #dst " \n\t" FOP_RET 417 418 /* 3-operand, word-only, src2=cl */ 419 #define FASTOP3WCL(op) \ 420 FOP_START(op) \ 421 FOPNOP() \ 422 FOP3E(op##w, ax, dx, cl) \ 423 FOP3E(op##l, eax, edx, cl) \ 424 ON64(FOP3E(op##q, rax, rdx, cl)) \ 425 FOP_END 426 427 /* Special case for SETcc - 1 instruction per cc */ 428 #define FOP_SETCC(op) ".align 4; " #op " %al; ret \n\t" 429 430 asm(".global kvm_fastop_exception \n" 431 "kvm_fastop_exception: xor %esi, %esi; ret"); 432 433 FOP_START(setcc) 434 FOP_SETCC(seto) 435 FOP_SETCC(setno) 436 FOP_SETCC(setc) 437 FOP_SETCC(setnc) 438 FOP_SETCC(setz) 439 FOP_SETCC(setnz) 440 FOP_SETCC(setbe) 441 FOP_SETCC(setnbe) 442 FOP_SETCC(sets) 443 FOP_SETCC(setns) 444 FOP_SETCC(setp) 445 FOP_SETCC(setnp) 446 FOP_SETCC(setl) 447 FOP_SETCC(setnl) 448 FOP_SETCC(setle) 449 FOP_SETCC(setnle) 450 FOP_END; 451 452 FOP_START(salc) "pushf; sbb %al, %al; popf \n\t" FOP_RET 453 FOP_END; 454 455 static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt, 456 enum x86_intercept intercept, 457 enum x86_intercept_stage stage) 458 { 459 struct x86_instruction_info info = { 460 .intercept = intercept, 461 .rep_prefix = ctxt->rep_prefix, 462 .modrm_mod = ctxt->modrm_mod, 463 .modrm_reg = ctxt->modrm_reg, 464 .modrm_rm = ctxt->modrm_rm, 465 .src_val = ctxt->src.val64, 466 .dst_val = ctxt->dst.val64, 467 .src_bytes = ctxt->src.bytes, 468 .dst_bytes = ctxt->dst.bytes, 469 .ad_bytes = ctxt->ad_bytes, 470 .next_rip = ctxt->eip, 471 }; 472 473 return ctxt->ops->intercept(ctxt, &info, stage); 474 } 475 476 static void assign_masked(ulong *dest, ulong src, ulong mask) 477 { 478 *dest = (*dest & ~mask) | (src & mask); 479 } 480 481 static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt) 482 { 483 return (1UL << (ctxt->ad_bytes << 3)) - 1; 484 } 485 486 static ulong stack_mask(struct x86_emulate_ctxt *ctxt) 487 { 488 u16 sel; 489 struct desc_struct ss; 490 491 if (ctxt->mode == X86EMUL_MODE_PROT64) 492 return ~0UL; 493 ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS); 494 return ~0U >> ((ss.d ^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */ 495 } 496 497 static int stack_size(struct x86_emulate_ctxt *ctxt) 498 { 499 return (__fls(stack_mask(ctxt)) + 1) >> 3; 500 } 501 502 /* Access/update address held in a register, based on addressing mode. */ 503 static inline unsigned long 504 address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg) 505 { 506 if (ctxt->ad_bytes == sizeof(unsigned long)) 507 return reg; 508 else 509 return reg & ad_mask(ctxt); 510 } 511 512 static inline unsigned long 513 register_address(struct x86_emulate_ctxt *ctxt, int reg) 514 { 515 return address_mask(ctxt, reg_read(ctxt, reg)); 516 } 517 518 static void masked_increment(ulong *reg, ulong mask, int inc) 519 { 520 assign_masked(reg, *reg + inc, mask); 521 } 522 523 static inline void 524 register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc) 525 { 526 ulong mask; 527 528 if (ctxt->ad_bytes == sizeof(unsigned long)) 529 mask = ~0UL; 530 else 531 mask = ad_mask(ctxt); 532 masked_increment(reg_rmw(ctxt, reg), mask, inc); 533 } 534 535 static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc) 536 { 537 masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc); 538 } 539 540 static u32 desc_limit_scaled(struct desc_struct *desc) 541 { 542 u32 limit = get_desc_limit(desc); 543 544 return desc->g ? (limit << 12) | 0xfff : limit; 545 } 546 547 static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg) 548 { 549 if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS) 550 return 0; 551 552 return ctxt->ops->get_cached_segment_base(ctxt, seg); 553 } 554 555 static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec, 556 u32 error, bool valid) 557 { 558 WARN_ON(vec > 0x1f); 559 ctxt->exception.vector = vec; 560 ctxt->exception.error_code = error; 561 ctxt->exception.error_code_valid = valid; 562 return X86EMUL_PROPAGATE_FAULT; 563 } 564 565 static int emulate_db(struct x86_emulate_ctxt *ctxt) 566 { 567 return emulate_exception(ctxt, DB_VECTOR, 0, false); 568 } 569 570 static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err) 571 { 572 return emulate_exception(ctxt, GP_VECTOR, err, true); 573 } 574 575 static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err) 576 { 577 return emulate_exception(ctxt, SS_VECTOR, err, true); 578 } 579 580 static int emulate_ud(struct x86_emulate_ctxt *ctxt) 581 { 582 return emulate_exception(ctxt, UD_VECTOR, 0, false); 583 } 584 585 static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err) 586 { 587 return emulate_exception(ctxt, TS_VECTOR, err, true); 588 } 589 590 static int emulate_de(struct x86_emulate_ctxt *ctxt) 591 { 592 return emulate_exception(ctxt, DE_VECTOR, 0, false); 593 } 594 595 static int emulate_nm(struct x86_emulate_ctxt *ctxt) 596 { 597 return emulate_exception(ctxt, NM_VECTOR, 0, false); 598 } 599 600 static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg) 601 { 602 u16 selector; 603 struct desc_struct desc; 604 605 ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg); 606 return selector; 607 } 608 609 static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector, 610 unsigned seg) 611 { 612 u16 dummy; 613 u32 base3; 614 struct desc_struct desc; 615 616 ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg); 617 ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg); 618 } 619 620 /* 621 * x86 defines three classes of vector instructions: explicitly 622 * aligned, explicitly unaligned, and the rest, which change behaviour 623 * depending on whether they're AVX encoded or not. 624 * 625 * Also included is CMPXCHG16B which is not a vector instruction, yet it is 626 * subject to the same check. 627 */ 628 static bool insn_aligned(struct x86_emulate_ctxt *ctxt, unsigned size) 629 { 630 if (likely(size < 16)) 631 return false; 632 633 if (ctxt->d & Aligned) 634 return true; 635 else if (ctxt->d & Unaligned) 636 return false; 637 else if (ctxt->d & Avx) 638 return false; 639 else 640 return true; 641 } 642 643 static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt, 644 struct segmented_address addr, 645 unsigned *max_size, unsigned size, 646 bool write, bool fetch, 647 enum x86emul_mode mode, ulong *linear) 648 { 649 struct desc_struct desc; 650 bool usable; 651 ulong la; 652 u32 lim; 653 u16 sel; 654 655 la = seg_base(ctxt, addr.seg) + addr.ea; 656 *max_size = 0; 657 switch (mode) { 658 case X86EMUL_MODE_PROT64: 659 if (is_noncanonical_address(la)) 660 goto bad; 661 662 *max_size = min_t(u64, ~0u, (1ull << 48) - la); 663 if (size > *max_size) 664 goto bad; 665 break; 666 default: 667 usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL, 668 addr.seg); 669 if (!usable) 670 goto bad; 671 /* code segment in protected mode or read-only data segment */ 672 if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8)) 673 || !(desc.type & 2)) && write) 674 goto bad; 675 /* unreadable code segment */ 676 if (!fetch && (desc.type & 8) && !(desc.type & 2)) 677 goto bad; 678 lim = desc_limit_scaled(&desc); 679 if (!(desc.type & 8) && (desc.type & 4)) { 680 /* expand-down segment */ 681 if (addr.ea <= lim) 682 goto bad; 683 lim = desc.d ? 0xffffffff : 0xffff; 684 } 685 if (addr.ea > lim) 686 goto bad; 687 if (lim == 0xffffffff) 688 *max_size = ~0u; 689 else { 690 *max_size = (u64)lim + 1 - addr.ea; 691 if (size > *max_size) 692 goto bad; 693 } 694 la &= (u32)-1; 695 break; 696 } 697 if (insn_aligned(ctxt, size) && ((la & (size - 1)) != 0)) 698 return emulate_gp(ctxt, 0); 699 *linear = la; 700 return X86EMUL_CONTINUE; 701 bad: 702 if (addr.seg == VCPU_SREG_SS) 703 return emulate_ss(ctxt, 0); 704 else 705 return emulate_gp(ctxt, 0); 706 } 707 708 static int linearize(struct x86_emulate_ctxt *ctxt, 709 struct segmented_address addr, 710 unsigned size, bool write, 711 ulong *linear) 712 { 713 unsigned max_size; 714 return __linearize(ctxt, addr, &max_size, size, write, false, 715 ctxt->mode, linear); 716 } 717 718 static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst, 719 enum x86emul_mode mode) 720 { 721 ulong linear; 722 int rc; 723 unsigned max_size; 724 struct segmented_address addr = { .seg = VCPU_SREG_CS, 725 .ea = dst }; 726 727 if (ctxt->op_bytes != sizeof(unsigned long)) 728 addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1); 729 rc = __linearize(ctxt, addr, &max_size, 1, false, true, mode, &linear); 730 if (rc == X86EMUL_CONTINUE) 731 ctxt->_eip = addr.ea; 732 return rc; 733 } 734 735 static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst) 736 { 737 return assign_eip(ctxt, dst, ctxt->mode); 738 } 739 740 static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst, 741 const struct desc_struct *cs_desc) 742 { 743 enum x86emul_mode mode = ctxt->mode; 744 int rc; 745 746 #ifdef CONFIG_X86_64 747 if (ctxt->mode >= X86EMUL_MODE_PROT16) { 748 if (cs_desc->l) { 749 u64 efer = 0; 750 751 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); 752 if (efer & EFER_LMA) 753 mode = X86EMUL_MODE_PROT64; 754 } else 755 mode = X86EMUL_MODE_PROT32; /* temporary value */ 756 } 757 #endif 758 if (mode == X86EMUL_MODE_PROT16 || mode == X86EMUL_MODE_PROT32) 759 mode = cs_desc->d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; 760 rc = assign_eip(ctxt, dst, mode); 761 if (rc == X86EMUL_CONTINUE) 762 ctxt->mode = mode; 763 return rc; 764 } 765 766 static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel) 767 { 768 return assign_eip_near(ctxt, ctxt->_eip + rel); 769 } 770 771 static int segmented_read_std(struct x86_emulate_ctxt *ctxt, 772 struct segmented_address addr, 773 void *data, 774 unsigned size) 775 { 776 int rc; 777 ulong linear; 778 779 rc = linearize(ctxt, addr, size, false, &linear); 780 if (rc != X86EMUL_CONTINUE) 781 return rc; 782 return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception); 783 } 784 785 /* 786 * Prefetch the remaining bytes of the instruction without crossing page 787 * boundary if they are not in fetch_cache yet. 788 */ 789 static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size) 790 { 791 int rc; 792 unsigned size, max_size; 793 unsigned long linear; 794 int cur_size = ctxt->fetch.end - ctxt->fetch.data; 795 struct segmented_address addr = { .seg = VCPU_SREG_CS, 796 .ea = ctxt->eip + cur_size }; 797 798 /* 799 * We do not know exactly how many bytes will be needed, and 800 * __linearize is expensive, so fetch as much as possible. We 801 * just have to avoid going beyond the 15 byte limit, the end 802 * of the segment, or the end of the page. 803 * 804 * __linearize is called with size 0 so that it does not do any 805 * boundary check itself. Instead, we use max_size to check 806 * against op_size. 807 */ 808 rc = __linearize(ctxt, addr, &max_size, 0, false, true, ctxt->mode, 809 &linear); 810 if (unlikely(rc != X86EMUL_CONTINUE)) 811 return rc; 812 813 size = min_t(unsigned, 15UL ^ cur_size, max_size); 814 size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear)); 815 816 /* 817 * One instruction can only straddle two pages, 818 * and one has been loaded at the beginning of 819 * x86_decode_insn. So, if not enough bytes 820 * still, we must have hit the 15-byte boundary. 821 */ 822 if (unlikely(size < op_size)) 823 return emulate_gp(ctxt, 0); 824 825 rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end, 826 size, &ctxt->exception); 827 if (unlikely(rc != X86EMUL_CONTINUE)) 828 return rc; 829 ctxt->fetch.end += size; 830 return X86EMUL_CONTINUE; 831 } 832 833 static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, 834 unsigned size) 835 { 836 unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr; 837 838 if (unlikely(done_size < size)) 839 return __do_insn_fetch_bytes(ctxt, size - done_size); 840 else 841 return X86EMUL_CONTINUE; 842 } 843 844 /* Fetch next part of the instruction being emulated. */ 845 #define insn_fetch(_type, _ctxt) \ 846 ({ _type _x; \ 847 \ 848 rc = do_insn_fetch_bytes(_ctxt, sizeof(_type)); \ 849 if (rc != X86EMUL_CONTINUE) \ 850 goto done; \ 851 ctxt->_eip += sizeof(_type); \ 852 _x = *(_type __aligned(1) *) ctxt->fetch.ptr; \ 853 ctxt->fetch.ptr += sizeof(_type); \ 854 _x; \ 855 }) 856 857 #define insn_fetch_arr(_arr, _size, _ctxt) \ 858 ({ \ 859 rc = do_insn_fetch_bytes(_ctxt, _size); \ 860 if (rc != X86EMUL_CONTINUE) \ 861 goto done; \ 862 ctxt->_eip += (_size); \ 863 memcpy(_arr, ctxt->fetch.ptr, _size); \ 864 ctxt->fetch.ptr += (_size); \ 865 }) 866 867 /* 868 * Given the 'reg' portion of a ModRM byte, and a register block, return a 869 * pointer into the block that addresses the relevant register. 870 * @highbyte_regs specifies whether to decode AH,CH,DH,BH. 871 */ 872 static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg, 873 int byteop) 874 { 875 void *p; 876 int highbyte_regs = (ctxt->rex_prefix == 0) && byteop; 877 878 if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8) 879 p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1; 880 else 881 p = reg_rmw(ctxt, modrm_reg); 882 return p; 883 } 884 885 static int read_descriptor(struct x86_emulate_ctxt *ctxt, 886 struct segmented_address addr, 887 u16 *size, unsigned long *address, int op_bytes) 888 { 889 int rc; 890 891 if (op_bytes == 2) 892 op_bytes = 3; 893 *address = 0; 894 rc = segmented_read_std(ctxt, addr, size, 2); 895 if (rc != X86EMUL_CONTINUE) 896 return rc; 897 addr.ea += 2; 898 rc = segmented_read_std(ctxt, addr, address, op_bytes); 899 return rc; 900 } 901 902 FASTOP2(add); 903 FASTOP2(or); 904 FASTOP2(adc); 905 FASTOP2(sbb); 906 FASTOP2(and); 907 FASTOP2(sub); 908 FASTOP2(xor); 909 FASTOP2(cmp); 910 FASTOP2(test); 911 912 FASTOP1SRC2(mul, mul_ex); 913 FASTOP1SRC2(imul, imul_ex); 914 FASTOP1SRC2EX(div, div_ex); 915 FASTOP1SRC2EX(idiv, idiv_ex); 916 917 FASTOP3WCL(shld); 918 FASTOP3WCL(shrd); 919 920 FASTOP2W(imul); 921 922 FASTOP1(not); 923 FASTOP1(neg); 924 FASTOP1(inc); 925 FASTOP1(dec); 926 927 FASTOP2CL(rol); 928 FASTOP2CL(ror); 929 FASTOP2CL(rcl); 930 FASTOP2CL(rcr); 931 FASTOP2CL(shl); 932 FASTOP2CL(shr); 933 FASTOP2CL(sar); 934 935 FASTOP2W(bsf); 936 FASTOP2W(bsr); 937 FASTOP2W(bt); 938 FASTOP2W(bts); 939 FASTOP2W(btr); 940 FASTOP2W(btc); 941 942 FASTOP2(xadd); 943 944 FASTOP2R(cmp, cmp_r); 945 946 static u8 test_cc(unsigned int condition, unsigned long flags) 947 { 948 u8 rc; 949 void (*fop)(void) = (void *)em_setcc + 4 * (condition & 0xf); 950 951 flags = (flags & EFLAGS_MASK) | X86_EFLAGS_IF; 952 asm("push %[flags]; popf; call *%[fastop]" 953 : "=a"(rc) : [fastop]"r"(fop), [flags]"r"(flags)); 954 return rc; 955 } 956 957 static void fetch_register_operand(struct operand *op) 958 { 959 switch (op->bytes) { 960 case 1: 961 op->val = *(u8 *)op->addr.reg; 962 break; 963 case 2: 964 op->val = *(u16 *)op->addr.reg; 965 break; 966 case 4: 967 op->val = *(u32 *)op->addr.reg; 968 break; 969 case 8: 970 op->val = *(u64 *)op->addr.reg; 971 break; 972 } 973 } 974 975 static void read_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data, int reg) 976 { 977 ctxt->ops->get_fpu(ctxt); 978 switch (reg) { 979 case 0: asm("movdqa %%xmm0, %0" : "=m"(*data)); break; 980 case 1: asm("movdqa %%xmm1, %0" : "=m"(*data)); break; 981 case 2: asm("movdqa %%xmm2, %0" : "=m"(*data)); break; 982 case 3: asm("movdqa %%xmm3, %0" : "=m"(*data)); break; 983 case 4: asm("movdqa %%xmm4, %0" : "=m"(*data)); break; 984 case 5: asm("movdqa %%xmm5, %0" : "=m"(*data)); break; 985 case 6: asm("movdqa %%xmm6, %0" : "=m"(*data)); break; 986 case 7: asm("movdqa %%xmm7, %0" : "=m"(*data)); break; 987 #ifdef CONFIG_X86_64 988 case 8: asm("movdqa %%xmm8, %0" : "=m"(*data)); break; 989 case 9: asm("movdqa %%xmm9, %0" : "=m"(*data)); break; 990 case 10: asm("movdqa %%xmm10, %0" : "=m"(*data)); break; 991 case 11: asm("movdqa %%xmm11, %0" : "=m"(*data)); break; 992 case 12: asm("movdqa %%xmm12, %0" : "=m"(*data)); break; 993 case 13: asm("movdqa %%xmm13, %0" : "=m"(*data)); break; 994 case 14: asm("movdqa %%xmm14, %0" : "=m"(*data)); break; 995 case 15: asm("movdqa %%xmm15, %0" : "=m"(*data)); break; 996 #endif 997 default: BUG(); 998 } 999 ctxt->ops->put_fpu(ctxt); 1000 } 1001 1002 static void write_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data, 1003 int reg) 1004 { 1005 ctxt->ops->get_fpu(ctxt); 1006 switch (reg) { 1007 case 0: asm("movdqa %0, %%xmm0" : : "m"(*data)); break; 1008 case 1: asm("movdqa %0, %%xmm1" : : "m"(*data)); break; 1009 case 2: asm("movdqa %0, %%xmm2" : : "m"(*data)); break; 1010 case 3: asm("movdqa %0, %%xmm3" : : "m"(*data)); break; 1011 case 4: asm("movdqa %0, %%xmm4" : : "m"(*data)); break; 1012 case 5: asm("movdqa %0, %%xmm5" : : "m"(*data)); break; 1013 case 6: asm("movdqa %0, %%xmm6" : : "m"(*data)); break; 1014 case 7: asm("movdqa %0, %%xmm7" : : "m"(*data)); break; 1015 #ifdef CONFIG_X86_64 1016 case 8: asm("movdqa %0, %%xmm8" : : "m"(*data)); break; 1017 case 9: asm("movdqa %0, %%xmm9" : : "m"(*data)); break; 1018 case 10: asm("movdqa %0, %%xmm10" : : "m"(*data)); break; 1019 case 11: asm("movdqa %0, %%xmm11" : : "m"(*data)); break; 1020 case 12: asm("movdqa %0, %%xmm12" : : "m"(*data)); break; 1021 case 13: asm("movdqa %0, %%xmm13" : : "m"(*data)); break; 1022 case 14: asm("movdqa %0, %%xmm14" : : "m"(*data)); break; 1023 case 15: asm("movdqa %0, %%xmm15" : : "m"(*data)); break; 1024 #endif 1025 default: BUG(); 1026 } 1027 ctxt->ops->put_fpu(ctxt); 1028 } 1029 1030 static void read_mmx_reg(struct x86_emulate_ctxt *ctxt, u64 *data, int reg) 1031 { 1032 ctxt->ops->get_fpu(ctxt); 1033 switch (reg) { 1034 case 0: asm("movq %%mm0, %0" : "=m"(*data)); break; 1035 case 1: asm("movq %%mm1, %0" : "=m"(*data)); break; 1036 case 2: asm("movq %%mm2, %0" : "=m"(*data)); break; 1037 case 3: asm("movq %%mm3, %0" : "=m"(*data)); break; 1038 case 4: asm("movq %%mm4, %0" : "=m"(*data)); break; 1039 case 5: asm("movq %%mm5, %0" : "=m"(*data)); break; 1040 case 6: asm("movq %%mm6, %0" : "=m"(*data)); break; 1041 case 7: asm("movq %%mm7, %0" : "=m"(*data)); break; 1042 default: BUG(); 1043 } 1044 ctxt->ops->put_fpu(ctxt); 1045 } 1046 1047 static void write_mmx_reg(struct x86_emulate_ctxt *ctxt, u64 *data, int reg) 1048 { 1049 ctxt->ops->get_fpu(ctxt); 1050 switch (reg) { 1051 case 0: asm("movq %0, %%mm0" : : "m"(*data)); break; 1052 case 1: asm("movq %0, %%mm1" : : "m"(*data)); break; 1053 case 2: asm("movq %0, %%mm2" : : "m"(*data)); break; 1054 case 3: asm("movq %0, %%mm3" : : "m"(*data)); break; 1055 case 4: asm("movq %0, %%mm4" : : "m"(*data)); break; 1056 case 5: asm("movq %0, %%mm5" : : "m"(*data)); break; 1057 case 6: asm("movq %0, %%mm6" : : "m"(*data)); break; 1058 case 7: asm("movq %0, %%mm7" : : "m"(*data)); break; 1059 default: BUG(); 1060 } 1061 ctxt->ops->put_fpu(ctxt); 1062 } 1063 1064 static int em_fninit(struct x86_emulate_ctxt *ctxt) 1065 { 1066 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) 1067 return emulate_nm(ctxt); 1068 1069 ctxt->ops->get_fpu(ctxt); 1070 asm volatile("fninit"); 1071 ctxt->ops->put_fpu(ctxt); 1072 return X86EMUL_CONTINUE; 1073 } 1074 1075 static int em_fnstcw(struct x86_emulate_ctxt *ctxt) 1076 { 1077 u16 fcw; 1078 1079 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) 1080 return emulate_nm(ctxt); 1081 1082 ctxt->ops->get_fpu(ctxt); 1083 asm volatile("fnstcw %0": "+m"(fcw)); 1084 ctxt->ops->put_fpu(ctxt); 1085 1086 ctxt->dst.val = fcw; 1087 1088 return X86EMUL_CONTINUE; 1089 } 1090 1091 static int em_fnstsw(struct x86_emulate_ctxt *ctxt) 1092 { 1093 u16 fsw; 1094 1095 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) 1096 return emulate_nm(ctxt); 1097 1098 ctxt->ops->get_fpu(ctxt); 1099 asm volatile("fnstsw %0": "+m"(fsw)); 1100 ctxt->ops->put_fpu(ctxt); 1101 1102 ctxt->dst.val = fsw; 1103 1104 return X86EMUL_CONTINUE; 1105 } 1106 1107 static void decode_register_operand(struct x86_emulate_ctxt *ctxt, 1108 struct operand *op) 1109 { 1110 unsigned reg = ctxt->modrm_reg; 1111 1112 if (!(ctxt->d & ModRM)) 1113 reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3); 1114 1115 if (ctxt->d & Sse) { 1116 op->type = OP_XMM; 1117 op->bytes = 16; 1118 op->addr.xmm = reg; 1119 read_sse_reg(ctxt, &op->vec_val, reg); 1120 return; 1121 } 1122 if (ctxt->d & Mmx) { 1123 reg &= 7; 1124 op->type = OP_MM; 1125 op->bytes = 8; 1126 op->addr.mm = reg; 1127 return; 1128 } 1129 1130 op->type = OP_REG; 1131 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 1132 op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp); 1133 1134 fetch_register_operand(op); 1135 op->orig_val = op->val; 1136 } 1137 1138 static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg) 1139 { 1140 if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP) 1141 ctxt->modrm_seg = VCPU_SREG_SS; 1142 } 1143 1144 static int decode_modrm(struct x86_emulate_ctxt *ctxt, 1145 struct operand *op) 1146 { 1147 u8 sib; 1148 int index_reg, base_reg, scale; 1149 int rc = X86EMUL_CONTINUE; 1150 ulong modrm_ea = 0; 1151 1152 ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */ 1153 index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */ 1154 base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */ 1155 1156 ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6; 1157 ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3; 1158 ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07); 1159 ctxt->modrm_seg = VCPU_SREG_DS; 1160 1161 if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) { 1162 op->type = OP_REG; 1163 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 1164 op->addr.reg = decode_register(ctxt, ctxt->modrm_rm, 1165 ctxt->d & ByteOp); 1166 if (ctxt->d & Sse) { 1167 op->type = OP_XMM; 1168 op->bytes = 16; 1169 op->addr.xmm = ctxt->modrm_rm; 1170 read_sse_reg(ctxt, &op->vec_val, ctxt->modrm_rm); 1171 return rc; 1172 } 1173 if (ctxt->d & Mmx) { 1174 op->type = OP_MM; 1175 op->bytes = 8; 1176 op->addr.mm = ctxt->modrm_rm & 7; 1177 return rc; 1178 } 1179 fetch_register_operand(op); 1180 return rc; 1181 } 1182 1183 op->type = OP_MEM; 1184 1185 if (ctxt->ad_bytes == 2) { 1186 unsigned bx = reg_read(ctxt, VCPU_REGS_RBX); 1187 unsigned bp = reg_read(ctxt, VCPU_REGS_RBP); 1188 unsigned si = reg_read(ctxt, VCPU_REGS_RSI); 1189 unsigned di = reg_read(ctxt, VCPU_REGS_RDI); 1190 1191 /* 16-bit ModR/M decode. */ 1192 switch (ctxt->modrm_mod) { 1193 case 0: 1194 if (ctxt->modrm_rm == 6) 1195 modrm_ea += insn_fetch(u16, ctxt); 1196 break; 1197 case 1: 1198 modrm_ea += insn_fetch(s8, ctxt); 1199 break; 1200 case 2: 1201 modrm_ea += insn_fetch(u16, ctxt); 1202 break; 1203 } 1204 switch (ctxt->modrm_rm) { 1205 case 0: 1206 modrm_ea += bx + si; 1207 break; 1208 case 1: 1209 modrm_ea += bx + di; 1210 break; 1211 case 2: 1212 modrm_ea += bp + si; 1213 break; 1214 case 3: 1215 modrm_ea += bp + di; 1216 break; 1217 case 4: 1218 modrm_ea += si; 1219 break; 1220 case 5: 1221 modrm_ea += di; 1222 break; 1223 case 6: 1224 if (ctxt->modrm_mod != 0) 1225 modrm_ea += bp; 1226 break; 1227 case 7: 1228 modrm_ea += bx; 1229 break; 1230 } 1231 if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 || 1232 (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0)) 1233 ctxt->modrm_seg = VCPU_SREG_SS; 1234 modrm_ea = (u16)modrm_ea; 1235 } else { 1236 /* 32/64-bit ModR/M decode. */ 1237 if ((ctxt->modrm_rm & 7) == 4) { 1238 sib = insn_fetch(u8, ctxt); 1239 index_reg |= (sib >> 3) & 7; 1240 base_reg |= sib & 7; 1241 scale = sib >> 6; 1242 1243 if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0) 1244 modrm_ea += insn_fetch(s32, ctxt); 1245 else { 1246 modrm_ea += reg_read(ctxt, base_reg); 1247 adjust_modrm_seg(ctxt, base_reg); 1248 /* Increment ESP on POP [ESP] */ 1249 if ((ctxt->d & IncSP) && 1250 base_reg == VCPU_REGS_RSP) 1251 modrm_ea += ctxt->op_bytes; 1252 } 1253 if (index_reg != 4) 1254 modrm_ea += reg_read(ctxt, index_reg) << scale; 1255 } else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) { 1256 modrm_ea += insn_fetch(s32, ctxt); 1257 if (ctxt->mode == X86EMUL_MODE_PROT64) 1258 ctxt->rip_relative = 1; 1259 } else { 1260 base_reg = ctxt->modrm_rm; 1261 modrm_ea += reg_read(ctxt, base_reg); 1262 adjust_modrm_seg(ctxt, base_reg); 1263 } 1264 switch (ctxt->modrm_mod) { 1265 case 1: 1266 modrm_ea += insn_fetch(s8, ctxt); 1267 break; 1268 case 2: 1269 modrm_ea += insn_fetch(s32, ctxt); 1270 break; 1271 } 1272 } 1273 op->addr.mem.ea = modrm_ea; 1274 if (ctxt->ad_bytes != 8) 1275 ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea; 1276 1277 done: 1278 return rc; 1279 } 1280 1281 static int decode_abs(struct x86_emulate_ctxt *ctxt, 1282 struct operand *op) 1283 { 1284 int rc = X86EMUL_CONTINUE; 1285 1286 op->type = OP_MEM; 1287 switch (ctxt->ad_bytes) { 1288 case 2: 1289 op->addr.mem.ea = insn_fetch(u16, ctxt); 1290 break; 1291 case 4: 1292 op->addr.mem.ea = insn_fetch(u32, ctxt); 1293 break; 1294 case 8: 1295 op->addr.mem.ea = insn_fetch(u64, ctxt); 1296 break; 1297 } 1298 done: 1299 return rc; 1300 } 1301 1302 static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt) 1303 { 1304 long sv = 0, mask; 1305 1306 if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) { 1307 mask = ~((long)ctxt->dst.bytes * 8 - 1); 1308 1309 if (ctxt->src.bytes == 2) 1310 sv = (s16)ctxt->src.val & (s16)mask; 1311 else if (ctxt->src.bytes == 4) 1312 sv = (s32)ctxt->src.val & (s32)mask; 1313 else 1314 sv = (s64)ctxt->src.val & (s64)mask; 1315 1316 ctxt->dst.addr.mem.ea = address_mask(ctxt, 1317 ctxt->dst.addr.mem.ea + (sv >> 3)); 1318 } 1319 1320 /* only subword offset */ 1321 ctxt->src.val &= (ctxt->dst.bytes << 3) - 1; 1322 } 1323 1324 static int read_emulated(struct x86_emulate_ctxt *ctxt, 1325 unsigned long addr, void *dest, unsigned size) 1326 { 1327 int rc; 1328 struct read_cache *mc = &ctxt->mem_read; 1329 1330 if (mc->pos < mc->end) 1331 goto read_cached; 1332 1333 WARN_ON((mc->end + size) >= sizeof(mc->data)); 1334 1335 rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size, 1336 &ctxt->exception); 1337 if (rc != X86EMUL_CONTINUE) 1338 return rc; 1339 1340 mc->end += size; 1341 1342 read_cached: 1343 memcpy(dest, mc->data + mc->pos, size); 1344 mc->pos += size; 1345 return X86EMUL_CONTINUE; 1346 } 1347 1348 static int segmented_read(struct x86_emulate_ctxt *ctxt, 1349 struct segmented_address addr, 1350 void *data, 1351 unsigned size) 1352 { 1353 int rc; 1354 ulong linear; 1355 1356 rc = linearize(ctxt, addr, size, false, &linear); 1357 if (rc != X86EMUL_CONTINUE) 1358 return rc; 1359 return read_emulated(ctxt, linear, data, size); 1360 } 1361 1362 static int segmented_write(struct x86_emulate_ctxt *ctxt, 1363 struct segmented_address addr, 1364 const void *data, 1365 unsigned size) 1366 { 1367 int rc; 1368 ulong linear; 1369 1370 rc = linearize(ctxt, addr, size, true, &linear); 1371 if (rc != X86EMUL_CONTINUE) 1372 return rc; 1373 return ctxt->ops->write_emulated(ctxt, linear, data, size, 1374 &ctxt->exception); 1375 } 1376 1377 static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt, 1378 struct segmented_address addr, 1379 const void *orig_data, const void *data, 1380 unsigned size) 1381 { 1382 int rc; 1383 ulong linear; 1384 1385 rc = linearize(ctxt, addr, size, true, &linear); 1386 if (rc != X86EMUL_CONTINUE) 1387 return rc; 1388 return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data, 1389 size, &ctxt->exception); 1390 } 1391 1392 static int pio_in_emulated(struct x86_emulate_ctxt *ctxt, 1393 unsigned int size, unsigned short port, 1394 void *dest) 1395 { 1396 struct read_cache *rc = &ctxt->io_read; 1397 1398 if (rc->pos == rc->end) { /* refill pio read ahead */ 1399 unsigned int in_page, n; 1400 unsigned int count = ctxt->rep_prefix ? 1401 address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1; 1402 in_page = (ctxt->eflags & EFLG_DF) ? 1403 offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) : 1404 PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)); 1405 n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count); 1406 if (n == 0) 1407 n = 1; 1408 rc->pos = rc->end = 0; 1409 if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n)) 1410 return 0; 1411 rc->end = n * size; 1412 } 1413 1414 if (ctxt->rep_prefix && (ctxt->d & String) && 1415 !(ctxt->eflags & EFLG_DF)) { 1416 ctxt->dst.data = rc->data + rc->pos; 1417 ctxt->dst.type = OP_MEM_STR; 1418 ctxt->dst.count = (rc->end - rc->pos) / size; 1419 rc->pos = rc->end; 1420 } else { 1421 memcpy(dest, rc->data + rc->pos, size); 1422 rc->pos += size; 1423 } 1424 return 1; 1425 } 1426 1427 static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt, 1428 u16 index, struct desc_struct *desc) 1429 { 1430 struct desc_ptr dt; 1431 ulong addr; 1432 1433 ctxt->ops->get_idt(ctxt, &dt); 1434 1435 if (dt.size < index * 8 + 7) 1436 return emulate_gp(ctxt, index << 3 | 0x2); 1437 1438 addr = dt.address + index * 8; 1439 return ctxt->ops->read_std(ctxt, addr, desc, sizeof *desc, 1440 &ctxt->exception); 1441 } 1442 1443 static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt, 1444 u16 selector, struct desc_ptr *dt) 1445 { 1446 const struct x86_emulate_ops *ops = ctxt->ops; 1447 u32 base3 = 0; 1448 1449 if (selector & 1 << 2) { 1450 struct desc_struct desc; 1451 u16 sel; 1452 1453 memset (dt, 0, sizeof *dt); 1454 if (!ops->get_segment(ctxt, &sel, &desc, &base3, 1455 VCPU_SREG_LDTR)) 1456 return; 1457 1458 dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */ 1459 dt->address = get_desc_base(&desc) | ((u64)base3 << 32); 1460 } else 1461 ops->get_gdt(ctxt, dt); 1462 } 1463 1464 static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt, 1465 u16 selector, ulong *desc_addr_p) 1466 { 1467 struct desc_ptr dt; 1468 u16 index = selector >> 3; 1469 ulong addr; 1470 1471 get_descriptor_table_ptr(ctxt, selector, &dt); 1472 1473 if (dt.size < index * 8 + 7) 1474 return emulate_gp(ctxt, selector & 0xfffc); 1475 1476 addr = dt.address + index * 8; 1477 1478 #ifdef CONFIG_X86_64 1479 if (addr >> 32 != 0) { 1480 u64 efer = 0; 1481 1482 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); 1483 if (!(efer & EFER_LMA)) 1484 addr &= (u32)-1; 1485 } 1486 #endif 1487 1488 *desc_addr_p = addr; 1489 return X86EMUL_CONTINUE; 1490 } 1491 1492 /* allowed just for 8 bytes segments */ 1493 static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt, 1494 u16 selector, struct desc_struct *desc, 1495 ulong *desc_addr_p) 1496 { 1497 int rc; 1498 1499 rc = get_descriptor_ptr(ctxt, selector, desc_addr_p); 1500 if (rc != X86EMUL_CONTINUE) 1501 return rc; 1502 1503 return ctxt->ops->read_std(ctxt, *desc_addr_p, desc, sizeof(*desc), 1504 &ctxt->exception); 1505 } 1506 1507 /* allowed just for 8 bytes segments */ 1508 static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt, 1509 u16 selector, struct desc_struct *desc) 1510 { 1511 int rc; 1512 ulong addr; 1513 1514 rc = get_descriptor_ptr(ctxt, selector, &addr); 1515 if (rc != X86EMUL_CONTINUE) 1516 return rc; 1517 1518 return ctxt->ops->write_std(ctxt, addr, desc, sizeof *desc, 1519 &ctxt->exception); 1520 } 1521 1522 /* Does not support long mode */ 1523 static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt, 1524 u16 selector, int seg, u8 cpl, 1525 enum x86_transfer_type transfer, 1526 struct desc_struct *desc) 1527 { 1528 struct desc_struct seg_desc, old_desc; 1529 u8 dpl, rpl; 1530 unsigned err_vec = GP_VECTOR; 1531 u32 err_code = 0; 1532 bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */ 1533 ulong desc_addr; 1534 int ret; 1535 u16 dummy; 1536 u32 base3 = 0; 1537 1538 memset(&seg_desc, 0, sizeof seg_desc); 1539 1540 if (ctxt->mode == X86EMUL_MODE_REAL) { 1541 /* set real mode segment descriptor (keep limit etc. for 1542 * unreal mode) */ 1543 ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg); 1544 set_desc_base(&seg_desc, selector << 4); 1545 goto load; 1546 } else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) { 1547 /* VM86 needs a clean new segment descriptor */ 1548 set_desc_base(&seg_desc, selector << 4); 1549 set_desc_limit(&seg_desc, 0xffff); 1550 seg_desc.type = 3; 1551 seg_desc.p = 1; 1552 seg_desc.s = 1; 1553 seg_desc.dpl = 3; 1554 goto load; 1555 } 1556 1557 rpl = selector & 3; 1558 1559 /* NULL selector is not valid for TR, CS and SS (except for long mode) */ 1560 if ((seg == VCPU_SREG_CS 1561 || (seg == VCPU_SREG_SS 1562 && (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl)) 1563 || seg == VCPU_SREG_TR) 1564 && null_selector) 1565 goto exception; 1566 1567 /* TR should be in GDT only */ 1568 if (seg == VCPU_SREG_TR && (selector & (1 << 2))) 1569 goto exception; 1570 1571 if (null_selector) /* for NULL selector skip all following checks */ 1572 goto load; 1573 1574 ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr); 1575 if (ret != X86EMUL_CONTINUE) 1576 return ret; 1577 1578 err_code = selector & 0xfffc; 1579 err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR : 1580 GP_VECTOR; 1581 1582 /* can't load system descriptor into segment selector */ 1583 if (seg <= VCPU_SREG_GS && !seg_desc.s) { 1584 if (transfer == X86_TRANSFER_CALL_JMP) 1585 return X86EMUL_UNHANDLEABLE; 1586 goto exception; 1587 } 1588 1589 if (!seg_desc.p) { 1590 err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR; 1591 goto exception; 1592 } 1593 1594 dpl = seg_desc.dpl; 1595 1596 switch (seg) { 1597 case VCPU_SREG_SS: 1598 /* 1599 * segment is not a writable data segment or segment 1600 * selector's RPL != CPL or segment selector's RPL != CPL 1601 */ 1602 if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl) 1603 goto exception; 1604 break; 1605 case VCPU_SREG_CS: 1606 if (!(seg_desc.type & 8)) 1607 goto exception; 1608 1609 if (seg_desc.type & 4) { 1610 /* conforming */ 1611 if (dpl > cpl) 1612 goto exception; 1613 } else { 1614 /* nonconforming */ 1615 if (rpl > cpl || dpl != cpl) 1616 goto exception; 1617 } 1618 /* in long-mode d/b must be clear if l is set */ 1619 if (seg_desc.d && seg_desc.l) { 1620 u64 efer = 0; 1621 1622 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); 1623 if (efer & EFER_LMA) 1624 goto exception; 1625 } 1626 1627 /* CS(RPL) <- CPL */ 1628 selector = (selector & 0xfffc) | cpl; 1629 break; 1630 case VCPU_SREG_TR: 1631 if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9)) 1632 goto exception; 1633 old_desc = seg_desc; 1634 seg_desc.type |= 2; /* busy */ 1635 ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc, 1636 sizeof(seg_desc), &ctxt->exception); 1637 if (ret != X86EMUL_CONTINUE) 1638 return ret; 1639 break; 1640 case VCPU_SREG_LDTR: 1641 if (seg_desc.s || seg_desc.type != 2) 1642 goto exception; 1643 break; 1644 default: /* DS, ES, FS, or GS */ 1645 /* 1646 * segment is not a data or readable code segment or 1647 * ((segment is a data or nonconforming code segment) 1648 * and (both RPL and CPL > DPL)) 1649 */ 1650 if ((seg_desc.type & 0xa) == 0x8 || 1651 (((seg_desc.type & 0xc) != 0xc) && 1652 (rpl > dpl && cpl > dpl))) 1653 goto exception; 1654 break; 1655 } 1656 1657 if (seg_desc.s) { 1658 /* mark segment as accessed */ 1659 if (!(seg_desc.type & 1)) { 1660 seg_desc.type |= 1; 1661 ret = write_segment_descriptor(ctxt, selector, 1662 &seg_desc); 1663 if (ret != X86EMUL_CONTINUE) 1664 return ret; 1665 } 1666 } else if (ctxt->mode == X86EMUL_MODE_PROT64) { 1667 ret = ctxt->ops->read_std(ctxt, desc_addr+8, &base3, 1668 sizeof(base3), &ctxt->exception); 1669 if (ret != X86EMUL_CONTINUE) 1670 return ret; 1671 if (is_noncanonical_address(get_desc_base(&seg_desc) | 1672 ((u64)base3 << 32))) 1673 return emulate_gp(ctxt, 0); 1674 } 1675 load: 1676 ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg); 1677 if (desc) 1678 *desc = seg_desc; 1679 return X86EMUL_CONTINUE; 1680 exception: 1681 return emulate_exception(ctxt, err_vec, err_code, true); 1682 } 1683 1684 static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt, 1685 u16 selector, int seg) 1686 { 1687 u8 cpl = ctxt->ops->cpl(ctxt); 1688 return __load_segment_descriptor(ctxt, selector, seg, cpl, 1689 X86_TRANSFER_NONE, NULL); 1690 } 1691 1692 static void write_register_operand(struct operand *op) 1693 { 1694 /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */ 1695 switch (op->bytes) { 1696 case 1: 1697 *(u8 *)op->addr.reg = (u8)op->val; 1698 break; 1699 case 2: 1700 *(u16 *)op->addr.reg = (u16)op->val; 1701 break; 1702 case 4: 1703 *op->addr.reg = (u32)op->val; 1704 break; /* 64b: zero-extend */ 1705 case 8: 1706 *op->addr.reg = op->val; 1707 break; 1708 } 1709 } 1710 1711 static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op) 1712 { 1713 switch (op->type) { 1714 case OP_REG: 1715 write_register_operand(op); 1716 break; 1717 case OP_MEM: 1718 if (ctxt->lock_prefix) 1719 return segmented_cmpxchg(ctxt, 1720 op->addr.mem, 1721 &op->orig_val, 1722 &op->val, 1723 op->bytes); 1724 else 1725 return segmented_write(ctxt, 1726 op->addr.mem, 1727 &op->val, 1728 op->bytes); 1729 break; 1730 case OP_MEM_STR: 1731 return segmented_write(ctxt, 1732 op->addr.mem, 1733 op->data, 1734 op->bytes * op->count); 1735 break; 1736 case OP_XMM: 1737 write_sse_reg(ctxt, &op->vec_val, op->addr.xmm); 1738 break; 1739 case OP_MM: 1740 write_mmx_reg(ctxt, &op->mm_val, op->addr.mm); 1741 break; 1742 case OP_NONE: 1743 /* no writeback */ 1744 break; 1745 default: 1746 break; 1747 } 1748 return X86EMUL_CONTINUE; 1749 } 1750 1751 static int push(struct x86_emulate_ctxt *ctxt, void *data, int bytes) 1752 { 1753 struct segmented_address addr; 1754 1755 rsp_increment(ctxt, -bytes); 1756 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt); 1757 addr.seg = VCPU_SREG_SS; 1758 1759 return segmented_write(ctxt, addr, data, bytes); 1760 } 1761 1762 static int em_push(struct x86_emulate_ctxt *ctxt) 1763 { 1764 /* Disable writeback. */ 1765 ctxt->dst.type = OP_NONE; 1766 return push(ctxt, &ctxt->src.val, ctxt->op_bytes); 1767 } 1768 1769 static int emulate_pop(struct x86_emulate_ctxt *ctxt, 1770 void *dest, int len) 1771 { 1772 int rc; 1773 struct segmented_address addr; 1774 1775 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt); 1776 addr.seg = VCPU_SREG_SS; 1777 rc = segmented_read(ctxt, addr, dest, len); 1778 if (rc != X86EMUL_CONTINUE) 1779 return rc; 1780 1781 rsp_increment(ctxt, len); 1782 return rc; 1783 } 1784 1785 static int em_pop(struct x86_emulate_ctxt *ctxt) 1786 { 1787 return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes); 1788 } 1789 1790 static int emulate_popf(struct x86_emulate_ctxt *ctxt, 1791 void *dest, int len) 1792 { 1793 int rc; 1794 unsigned long val, change_mask; 1795 int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT; 1796 int cpl = ctxt->ops->cpl(ctxt); 1797 1798 rc = emulate_pop(ctxt, &val, len); 1799 if (rc != X86EMUL_CONTINUE) 1800 return rc; 1801 1802 change_mask = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF | EFLG_OF 1803 | EFLG_TF | EFLG_DF | EFLG_NT | EFLG_AC | EFLG_ID; 1804 1805 switch(ctxt->mode) { 1806 case X86EMUL_MODE_PROT64: 1807 case X86EMUL_MODE_PROT32: 1808 case X86EMUL_MODE_PROT16: 1809 if (cpl == 0) 1810 change_mask |= EFLG_IOPL; 1811 if (cpl <= iopl) 1812 change_mask |= EFLG_IF; 1813 break; 1814 case X86EMUL_MODE_VM86: 1815 if (iopl < 3) 1816 return emulate_gp(ctxt, 0); 1817 change_mask |= EFLG_IF; 1818 break; 1819 default: /* real mode */ 1820 change_mask |= (EFLG_IOPL | EFLG_IF); 1821 break; 1822 } 1823 1824 *(unsigned long *)dest = 1825 (ctxt->eflags & ~change_mask) | (val & change_mask); 1826 1827 return rc; 1828 } 1829 1830 static int em_popf(struct x86_emulate_ctxt *ctxt) 1831 { 1832 ctxt->dst.type = OP_REG; 1833 ctxt->dst.addr.reg = &ctxt->eflags; 1834 ctxt->dst.bytes = ctxt->op_bytes; 1835 return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes); 1836 } 1837 1838 static int em_enter(struct x86_emulate_ctxt *ctxt) 1839 { 1840 int rc; 1841 unsigned frame_size = ctxt->src.val; 1842 unsigned nesting_level = ctxt->src2.val & 31; 1843 ulong rbp; 1844 1845 if (nesting_level) 1846 return X86EMUL_UNHANDLEABLE; 1847 1848 rbp = reg_read(ctxt, VCPU_REGS_RBP); 1849 rc = push(ctxt, &rbp, stack_size(ctxt)); 1850 if (rc != X86EMUL_CONTINUE) 1851 return rc; 1852 assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP), 1853 stack_mask(ctxt)); 1854 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), 1855 reg_read(ctxt, VCPU_REGS_RSP) - frame_size, 1856 stack_mask(ctxt)); 1857 return X86EMUL_CONTINUE; 1858 } 1859 1860 static int em_leave(struct x86_emulate_ctxt *ctxt) 1861 { 1862 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP), 1863 stack_mask(ctxt)); 1864 return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes); 1865 } 1866 1867 static int em_push_sreg(struct x86_emulate_ctxt *ctxt) 1868 { 1869 int seg = ctxt->src2.val; 1870 1871 ctxt->src.val = get_segment_selector(ctxt, seg); 1872 if (ctxt->op_bytes == 4) { 1873 rsp_increment(ctxt, -2); 1874 ctxt->op_bytes = 2; 1875 } 1876 1877 return em_push(ctxt); 1878 } 1879 1880 static int em_pop_sreg(struct x86_emulate_ctxt *ctxt) 1881 { 1882 int seg = ctxt->src2.val; 1883 unsigned long selector; 1884 int rc; 1885 1886 rc = emulate_pop(ctxt, &selector, 2); 1887 if (rc != X86EMUL_CONTINUE) 1888 return rc; 1889 1890 if (ctxt->modrm_reg == VCPU_SREG_SS) 1891 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS; 1892 if (ctxt->op_bytes > 2) 1893 rsp_increment(ctxt, ctxt->op_bytes - 2); 1894 1895 rc = load_segment_descriptor(ctxt, (u16)selector, seg); 1896 return rc; 1897 } 1898 1899 static int em_pusha(struct x86_emulate_ctxt *ctxt) 1900 { 1901 unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP); 1902 int rc = X86EMUL_CONTINUE; 1903 int reg = VCPU_REGS_RAX; 1904 1905 while (reg <= VCPU_REGS_RDI) { 1906 (reg == VCPU_REGS_RSP) ? 1907 (ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg)); 1908 1909 rc = em_push(ctxt); 1910 if (rc != X86EMUL_CONTINUE) 1911 return rc; 1912 1913 ++reg; 1914 } 1915 1916 return rc; 1917 } 1918 1919 static int em_pushf(struct x86_emulate_ctxt *ctxt) 1920 { 1921 ctxt->src.val = (unsigned long)ctxt->eflags & ~EFLG_VM; 1922 return em_push(ctxt); 1923 } 1924 1925 static int em_popa(struct x86_emulate_ctxt *ctxt) 1926 { 1927 int rc = X86EMUL_CONTINUE; 1928 int reg = VCPU_REGS_RDI; 1929 1930 while (reg >= VCPU_REGS_RAX) { 1931 if (reg == VCPU_REGS_RSP) { 1932 rsp_increment(ctxt, ctxt->op_bytes); 1933 --reg; 1934 } 1935 1936 rc = emulate_pop(ctxt, reg_rmw(ctxt, reg), ctxt->op_bytes); 1937 if (rc != X86EMUL_CONTINUE) 1938 break; 1939 --reg; 1940 } 1941 return rc; 1942 } 1943 1944 static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq) 1945 { 1946 const struct x86_emulate_ops *ops = ctxt->ops; 1947 int rc; 1948 struct desc_ptr dt; 1949 gva_t cs_addr; 1950 gva_t eip_addr; 1951 u16 cs, eip; 1952 1953 /* TODO: Add limit checks */ 1954 ctxt->src.val = ctxt->eflags; 1955 rc = em_push(ctxt); 1956 if (rc != X86EMUL_CONTINUE) 1957 return rc; 1958 1959 ctxt->eflags &= ~(EFLG_IF | EFLG_TF | EFLG_AC); 1960 1961 ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS); 1962 rc = em_push(ctxt); 1963 if (rc != X86EMUL_CONTINUE) 1964 return rc; 1965 1966 ctxt->src.val = ctxt->_eip; 1967 rc = em_push(ctxt); 1968 if (rc != X86EMUL_CONTINUE) 1969 return rc; 1970 1971 ops->get_idt(ctxt, &dt); 1972 1973 eip_addr = dt.address + (irq << 2); 1974 cs_addr = dt.address + (irq << 2) + 2; 1975 1976 rc = ops->read_std(ctxt, cs_addr, &cs, 2, &ctxt->exception); 1977 if (rc != X86EMUL_CONTINUE) 1978 return rc; 1979 1980 rc = ops->read_std(ctxt, eip_addr, &eip, 2, &ctxt->exception); 1981 if (rc != X86EMUL_CONTINUE) 1982 return rc; 1983 1984 rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS); 1985 if (rc != X86EMUL_CONTINUE) 1986 return rc; 1987 1988 ctxt->_eip = eip; 1989 1990 return rc; 1991 } 1992 1993 int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq) 1994 { 1995 int rc; 1996 1997 invalidate_registers(ctxt); 1998 rc = __emulate_int_real(ctxt, irq); 1999 if (rc == X86EMUL_CONTINUE) 2000 writeback_registers(ctxt); 2001 return rc; 2002 } 2003 2004 static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq) 2005 { 2006 switch(ctxt->mode) { 2007 case X86EMUL_MODE_REAL: 2008 return __emulate_int_real(ctxt, irq); 2009 case X86EMUL_MODE_VM86: 2010 case X86EMUL_MODE_PROT16: 2011 case X86EMUL_MODE_PROT32: 2012 case X86EMUL_MODE_PROT64: 2013 default: 2014 /* Protected mode interrupts unimplemented yet */ 2015 return X86EMUL_UNHANDLEABLE; 2016 } 2017 } 2018 2019 static int emulate_iret_real(struct x86_emulate_ctxt *ctxt) 2020 { 2021 int rc = X86EMUL_CONTINUE; 2022 unsigned long temp_eip = 0; 2023 unsigned long temp_eflags = 0; 2024 unsigned long cs = 0; 2025 unsigned long mask = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF | EFLG_TF | 2026 EFLG_IF | EFLG_DF | EFLG_OF | EFLG_IOPL | EFLG_NT | EFLG_RF | 2027 EFLG_AC | EFLG_ID | (1 << 1); /* Last one is the reserved bit */ 2028 unsigned long vm86_mask = EFLG_VM | EFLG_VIF | EFLG_VIP; 2029 2030 /* TODO: Add stack limit check */ 2031 2032 rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes); 2033 2034 if (rc != X86EMUL_CONTINUE) 2035 return rc; 2036 2037 if (temp_eip & ~0xffff) 2038 return emulate_gp(ctxt, 0); 2039 2040 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes); 2041 2042 if (rc != X86EMUL_CONTINUE) 2043 return rc; 2044 2045 rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes); 2046 2047 if (rc != X86EMUL_CONTINUE) 2048 return rc; 2049 2050 rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS); 2051 2052 if (rc != X86EMUL_CONTINUE) 2053 return rc; 2054 2055 ctxt->_eip = temp_eip; 2056 2057 2058 if (ctxt->op_bytes == 4) 2059 ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask)); 2060 else if (ctxt->op_bytes == 2) { 2061 ctxt->eflags &= ~0xffff; 2062 ctxt->eflags |= temp_eflags; 2063 } 2064 2065 ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */ 2066 ctxt->eflags |= EFLG_RESERVED_ONE_MASK; 2067 ctxt->ops->set_nmi_mask(ctxt, false); 2068 2069 return rc; 2070 } 2071 2072 static int em_iret(struct x86_emulate_ctxt *ctxt) 2073 { 2074 switch(ctxt->mode) { 2075 case X86EMUL_MODE_REAL: 2076 return emulate_iret_real(ctxt); 2077 case X86EMUL_MODE_VM86: 2078 case X86EMUL_MODE_PROT16: 2079 case X86EMUL_MODE_PROT32: 2080 case X86EMUL_MODE_PROT64: 2081 default: 2082 /* iret from protected mode unimplemented yet */ 2083 return X86EMUL_UNHANDLEABLE; 2084 } 2085 } 2086 2087 static int em_jmp_far(struct x86_emulate_ctxt *ctxt) 2088 { 2089 int rc; 2090 unsigned short sel, old_sel; 2091 struct desc_struct old_desc, new_desc; 2092 const struct x86_emulate_ops *ops = ctxt->ops; 2093 u8 cpl = ctxt->ops->cpl(ctxt); 2094 2095 /* Assignment of RIP may only fail in 64-bit mode */ 2096 if (ctxt->mode == X86EMUL_MODE_PROT64) 2097 ops->get_segment(ctxt, &old_sel, &old_desc, NULL, 2098 VCPU_SREG_CS); 2099 2100 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2); 2101 2102 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl, 2103 X86_TRANSFER_CALL_JMP, 2104 &new_desc); 2105 if (rc != X86EMUL_CONTINUE) 2106 return rc; 2107 2108 rc = assign_eip_far(ctxt, ctxt->src.val, &new_desc); 2109 if (rc != X86EMUL_CONTINUE) { 2110 WARN_ON(ctxt->mode != X86EMUL_MODE_PROT64); 2111 /* assigning eip failed; restore the old cs */ 2112 ops->set_segment(ctxt, old_sel, &old_desc, 0, VCPU_SREG_CS); 2113 return rc; 2114 } 2115 return rc; 2116 } 2117 2118 static int em_jmp_abs(struct x86_emulate_ctxt *ctxt) 2119 { 2120 return assign_eip_near(ctxt, ctxt->src.val); 2121 } 2122 2123 static int em_call_near_abs(struct x86_emulate_ctxt *ctxt) 2124 { 2125 int rc; 2126 long int old_eip; 2127 2128 old_eip = ctxt->_eip; 2129 rc = assign_eip_near(ctxt, ctxt->src.val); 2130 if (rc != X86EMUL_CONTINUE) 2131 return rc; 2132 ctxt->src.val = old_eip; 2133 rc = em_push(ctxt); 2134 return rc; 2135 } 2136 2137 static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt) 2138 { 2139 u64 old = ctxt->dst.orig_val64; 2140 2141 if (ctxt->dst.bytes == 16) 2142 return X86EMUL_UNHANDLEABLE; 2143 2144 if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) || 2145 ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) { 2146 *reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0); 2147 *reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32); 2148 ctxt->eflags &= ~EFLG_ZF; 2149 } else { 2150 ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) | 2151 (u32) reg_read(ctxt, VCPU_REGS_RBX); 2152 2153 ctxt->eflags |= EFLG_ZF; 2154 } 2155 return X86EMUL_CONTINUE; 2156 } 2157 2158 static int em_ret(struct x86_emulate_ctxt *ctxt) 2159 { 2160 int rc; 2161 unsigned long eip; 2162 2163 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes); 2164 if (rc != X86EMUL_CONTINUE) 2165 return rc; 2166 2167 return assign_eip_near(ctxt, eip); 2168 } 2169 2170 static int em_ret_far(struct x86_emulate_ctxt *ctxt) 2171 { 2172 int rc; 2173 unsigned long eip, cs; 2174 u16 old_cs; 2175 int cpl = ctxt->ops->cpl(ctxt); 2176 struct desc_struct old_desc, new_desc; 2177 const struct x86_emulate_ops *ops = ctxt->ops; 2178 2179 if (ctxt->mode == X86EMUL_MODE_PROT64) 2180 ops->get_segment(ctxt, &old_cs, &old_desc, NULL, 2181 VCPU_SREG_CS); 2182 2183 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes); 2184 if (rc != X86EMUL_CONTINUE) 2185 return rc; 2186 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes); 2187 if (rc != X86EMUL_CONTINUE) 2188 return rc; 2189 /* Outer-privilege level return is not implemented */ 2190 if (ctxt->mode >= X86EMUL_MODE_PROT16 && (cs & 3) > cpl) 2191 return X86EMUL_UNHANDLEABLE; 2192 rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl, 2193 X86_TRANSFER_RET, 2194 &new_desc); 2195 if (rc != X86EMUL_CONTINUE) 2196 return rc; 2197 rc = assign_eip_far(ctxt, eip, &new_desc); 2198 if (rc != X86EMUL_CONTINUE) { 2199 WARN_ON(ctxt->mode != X86EMUL_MODE_PROT64); 2200 ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS); 2201 } 2202 return rc; 2203 } 2204 2205 static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt) 2206 { 2207 int rc; 2208 2209 rc = em_ret_far(ctxt); 2210 if (rc != X86EMUL_CONTINUE) 2211 return rc; 2212 rsp_increment(ctxt, ctxt->src.val); 2213 return X86EMUL_CONTINUE; 2214 } 2215 2216 static int em_cmpxchg(struct x86_emulate_ctxt *ctxt) 2217 { 2218 /* Save real source value, then compare EAX against destination. */ 2219 ctxt->dst.orig_val = ctxt->dst.val; 2220 ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX); 2221 ctxt->src.orig_val = ctxt->src.val; 2222 ctxt->src.val = ctxt->dst.orig_val; 2223 fastop(ctxt, em_cmp); 2224 2225 if (ctxt->eflags & EFLG_ZF) { 2226 /* Success: write back to memory; no update of EAX */ 2227 ctxt->src.type = OP_NONE; 2228 ctxt->dst.val = ctxt->src.orig_val; 2229 } else { 2230 /* Failure: write the value we saw to EAX. */ 2231 ctxt->src.type = OP_REG; 2232 ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX); 2233 ctxt->src.val = ctxt->dst.orig_val; 2234 /* Create write-cycle to dest by writing the same value */ 2235 ctxt->dst.val = ctxt->dst.orig_val; 2236 } 2237 return X86EMUL_CONTINUE; 2238 } 2239 2240 static int em_lseg(struct x86_emulate_ctxt *ctxt) 2241 { 2242 int seg = ctxt->src2.val; 2243 unsigned short sel; 2244 int rc; 2245 2246 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2); 2247 2248 rc = load_segment_descriptor(ctxt, sel, seg); 2249 if (rc != X86EMUL_CONTINUE) 2250 return rc; 2251 2252 ctxt->dst.val = ctxt->src.val; 2253 return rc; 2254 } 2255 2256 static void 2257 setup_syscalls_segments(struct x86_emulate_ctxt *ctxt, 2258 struct desc_struct *cs, struct desc_struct *ss) 2259 { 2260 cs->l = 0; /* will be adjusted later */ 2261 set_desc_base(cs, 0); /* flat segment */ 2262 cs->g = 1; /* 4kb granularity */ 2263 set_desc_limit(cs, 0xfffff); /* 4GB limit */ 2264 cs->type = 0x0b; /* Read, Execute, Accessed */ 2265 cs->s = 1; 2266 cs->dpl = 0; /* will be adjusted later */ 2267 cs->p = 1; 2268 cs->d = 1; 2269 cs->avl = 0; 2270 2271 set_desc_base(ss, 0); /* flat segment */ 2272 set_desc_limit(ss, 0xfffff); /* 4GB limit */ 2273 ss->g = 1; /* 4kb granularity */ 2274 ss->s = 1; 2275 ss->type = 0x03; /* Read/Write, Accessed */ 2276 ss->d = 1; /* 32bit stack segment */ 2277 ss->dpl = 0; 2278 ss->p = 1; 2279 ss->l = 0; 2280 ss->avl = 0; 2281 } 2282 2283 static bool vendor_intel(struct x86_emulate_ctxt *ctxt) 2284 { 2285 u32 eax, ebx, ecx, edx; 2286 2287 eax = ecx = 0; 2288 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx); 2289 return ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx 2290 && ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx 2291 && edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx; 2292 } 2293 2294 static bool em_syscall_is_enabled(struct x86_emulate_ctxt *ctxt) 2295 { 2296 const struct x86_emulate_ops *ops = ctxt->ops; 2297 u32 eax, ebx, ecx, edx; 2298 2299 /* 2300 * syscall should always be enabled in longmode - so only become 2301 * vendor specific (cpuid) if other modes are active... 2302 */ 2303 if (ctxt->mode == X86EMUL_MODE_PROT64) 2304 return true; 2305 2306 eax = 0x00000000; 2307 ecx = 0x00000000; 2308 ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx); 2309 /* 2310 * Intel ("GenuineIntel") 2311 * remark: Intel CPUs only support "syscall" in 64bit 2312 * longmode. Also an 64bit guest with a 2313 * 32bit compat-app running will #UD !! While this 2314 * behaviour can be fixed (by emulating) into AMD 2315 * response - CPUs of AMD can't behave like Intel. 2316 */ 2317 if (ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx && 2318 ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx && 2319 edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx) 2320 return false; 2321 2322 /* AMD ("AuthenticAMD") */ 2323 if (ebx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx && 2324 ecx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx && 2325 edx == X86EMUL_CPUID_VENDOR_AuthenticAMD_edx) 2326 return true; 2327 2328 /* AMD ("AMDisbetter!") */ 2329 if (ebx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ebx && 2330 ecx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ecx && 2331 edx == X86EMUL_CPUID_VENDOR_AMDisbetterI_edx) 2332 return true; 2333 2334 /* default: (not Intel, not AMD), apply Intel's stricter rules... */ 2335 return false; 2336 } 2337 2338 static int em_syscall(struct x86_emulate_ctxt *ctxt) 2339 { 2340 const struct x86_emulate_ops *ops = ctxt->ops; 2341 struct desc_struct cs, ss; 2342 u64 msr_data; 2343 u16 cs_sel, ss_sel; 2344 u64 efer = 0; 2345 2346 /* syscall is not available in real mode */ 2347 if (ctxt->mode == X86EMUL_MODE_REAL || 2348 ctxt->mode == X86EMUL_MODE_VM86) 2349 return emulate_ud(ctxt); 2350 2351 if (!(em_syscall_is_enabled(ctxt))) 2352 return emulate_ud(ctxt); 2353 2354 ops->get_msr(ctxt, MSR_EFER, &efer); 2355 setup_syscalls_segments(ctxt, &cs, &ss); 2356 2357 if (!(efer & EFER_SCE)) 2358 return emulate_ud(ctxt); 2359 2360 ops->get_msr(ctxt, MSR_STAR, &msr_data); 2361 msr_data >>= 32; 2362 cs_sel = (u16)(msr_data & 0xfffc); 2363 ss_sel = (u16)(msr_data + 8); 2364 2365 if (efer & EFER_LMA) { 2366 cs.d = 0; 2367 cs.l = 1; 2368 } 2369 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS); 2370 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS); 2371 2372 *reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip; 2373 if (efer & EFER_LMA) { 2374 #ifdef CONFIG_X86_64 2375 *reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags; 2376 2377 ops->get_msr(ctxt, 2378 ctxt->mode == X86EMUL_MODE_PROT64 ? 2379 MSR_LSTAR : MSR_CSTAR, &msr_data); 2380 ctxt->_eip = msr_data; 2381 2382 ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data); 2383 ctxt->eflags &= ~msr_data; 2384 ctxt->eflags |= EFLG_RESERVED_ONE_MASK; 2385 #endif 2386 } else { 2387 /* legacy mode */ 2388 ops->get_msr(ctxt, MSR_STAR, &msr_data); 2389 ctxt->_eip = (u32)msr_data; 2390 2391 ctxt->eflags &= ~(EFLG_VM | EFLG_IF); 2392 } 2393 2394 return X86EMUL_CONTINUE; 2395 } 2396 2397 static int em_sysenter(struct x86_emulate_ctxt *ctxt) 2398 { 2399 const struct x86_emulate_ops *ops = ctxt->ops; 2400 struct desc_struct cs, ss; 2401 u64 msr_data; 2402 u16 cs_sel, ss_sel; 2403 u64 efer = 0; 2404 2405 ops->get_msr(ctxt, MSR_EFER, &efer); 2406 /* inject #GP if in real mode */ 2407 if (ctxt->mode == X86EMUL_MODE_REAL) 2408 return emulate_gp(ctxt, 0); 2409 2410 /* 2411 * Not recognized on AMD in compat mode (but is recognized in legacy 2412 * mode). 2413 */ 2414 if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA) 2415 && !vendor_intel(ctxt)) 2416 return emulate_ud(ctxt); 2417 2418 /* sysenter/sysexit have not been tested in 64bit mode. */ 2419 if (ctxt->mode == X86EMUL_MODE_PROT64) 2420 return X86EMUL_UNHANDLEABLE; 2421 2422 setup_syscalls_segments(ctxt, &cs, &ss); 2423 2424 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data); 2425 if ((msr_data & 0xfffc) == 0x0) 2426 return emulate_gp(ctxt, 0); 2427 2428 ctxt->eflags &= ~(EFLG_VM | EFLG_IF); 2429 cs_sel = (u16)msr_data & ~SELECTOR_RPL_MASK; 2430 ss_sel = cs_sel + 8; 2431 if (efer & EFER_LMA) { 2432 cs.d = 0; 2433 cs.l = 1; 2434 } 2435 2436 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS); 2437 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS); 2438 2439 ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data); 2440 ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data; 2441 2442 ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data); 2443 *reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data : 2444 (u32)msr_data; 2445 2446 return X86EMUL_CONTINUE; 2447 } 2448 2449 static int em_sysexit(struct x86_emulate_ctxt *ctxt) 2450 { 2451 const struct x86_emulate_ops *ops = ctxt->ops; 2452 struct desc_struct cs, ss; 2453 u64 msr_data, rcx, rdx; 2454 int usermode; 2455 u16 cs_sel = 0, ss_sel = 0; 2456 2457 /* inject #GP if in real mode or Virtual 8086 mode */ 2458 if (ctxt->mode == X86EMUL_MODE_REAL || 2459 ctxt->mode == X86EMUL_MODE_VM86) 2460 return emulate_gp(ctxt, 0); 2461 2462 setup_syscalls_segments(ctxt, &cs, &ss); 2463 2464 if ((ctxt->rex_prefix & 0x8) != 0x0) 2465 usermode = X86EMUL_MODE_PROT64; 2466 else 2467 usermode = X86EMUL_MODE_PROT32; 2468 2469 rcx = reg_read(ctxt, VCPU_REGS_RCX); 2470 rdx = reg_read(ctxt, VCPU_REGS_RDX); 2471 2472 cs.dpl = 3; 2473 ss.dpl = 3; 2474 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data); 2475 switch (usermode) { 2476 case X86EMUL_MODE_PROT32: 2477 cs_sel = (u16)(msr_data + 16); 2478 if ((msr_data & 0xfffc) == 0x0) 2479 return emulate_gp(ctxt, 0); 2480 ss_sel = (u16)(msr_data + 24); 2481 rcx = (u32)rcx; 2482 rdx = (u32)rdx; 2483 break; 2484 case X86EMUL_MODE_PROT64: 2485 cs_sel = (u16)(msr_data + 32); 2486 if (msr_data == 0x0) 2487 return emulate_gp(ctxt, 0); 2488 ss_sel = cs_sel + 8; 2489 cs.d = 0; 2490 cs.l = 1; 2491 if (is_noncanonical_address(rcx) || 2492 is_noncanonical_address(rdx)) 2493 return emulate_gp(ctxt, 0); 2494 break; 2495 } 2496 cs_sel |= SELECTOR_RPL_MASK; 2497 ss_sel |= SELECTOR_RPL_MASK; 2498 2499 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS); 2500 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS); 2501 2502 ctxt->_eip = rdx; 2503 *reg_write(ctxt, VCPU_REGS_RSP) = rcx; 2504 2505 return X86EMUL_CONTINUE; 2506 } 2507 2508 static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt) 2509 { 2510 int iopl; 2511 if (ctxt->mode == X86EMUL_MODE_REAL) 2512 return false; 2513 if (ctxt->mode == X86EMUL_MODE_VM86) 2514 return true; 2515 iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT; 2516 return ctxt->ops->cpl(ctxt) > iopl; 2517 } 2518 2519 static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt, 2520 u16 port, u16 len) 2521 { 2522 const struct x86_emulate_ops *ops = ctxt->ops; 2523 struct desc_struct tr_seg; 2524 u32 base3; 2525 int r; 2526 u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7; 2527 unsigned mask = (1 << len) - 1; 2528 unsigned long base; 2529 2530 ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR); 2531 if (!tr_seg.p) 2532 return false; 2533 if (desc_limit_scaled(&tr_seg) < 103) 2534 return false; 2535 base = get_desc_base(&tr_seg); 2536 #ifdef CONFIG_X86_64 2537 base |= ((u64)base3) << 32; 2538 #endif 2539 r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL); 2540 if (r != X86EMUL_CONTINUE) 2541 return false; 2542 if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg)) 2543 return false; 2544 r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL); 2545 if (r != X86EMUL_CONTINUE) 2546 return false; 2547 if ((perm >> bit_idx) & mask) 2548 return false; 2549 return true; 2550 } 2551 2552 static bool emulator_io_permited(struct x86_emulate_ctxt *ctxt, 2553 u16 port, u16 len) 2554 { 2555 if (ctxt->perm_ok) 2556 return true; 2557 2558 if (emulator_bad_iopl(ctxt)) 2559 if (!emulator_io_port_access_allowed(ctxt, port, len)) 2560 return false; 2561 2562 ctxt->perm_ok = true; 2563 2564 return true; 2565 } 2566 2567 static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt, 2568 struct tss_segment_16 *tss) 2569 { 2570 tss->ip = ctxt->_eip; 2571 tss->flag = ctxt->eflags; 2572 tss->ax = reg_read(ctxt, VCPU_REGS_RAX); 2573 tss->cx = reg_read(ctxt, VCPU_REGS_RCX); 2574 tss->dx = reg_read(ctxt, VCPU_REGS_RDX); 2575 tss->bx = reg_read(ctxt, VCPU_REGS_RBX); 2576 tss->sp = reg_read(ctxt, VCPU_REGS_RSP); 2577 tss->bp = reg_read(ctxt, VCPU_REGS_RBP); 2578 tss->si = reg_read(ctxt, VCPU_REGS_RSI); 2579 tss->di = reg_read(ctxt, VCPU_REGS_RDI); 2580 2581 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES); 2582 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS); 2583 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS); 2584 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS); 2585 tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR); 2586 } 2587 2588 static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt, 2589 struct tss_segment_16 *tss) 2590 { 2591 int ret; 2592 u8 cpl; 2593 2594 ctxt->_eip = tss->ip; 2595 ctxt->eflags = tss->flag | 2; 2596 *reg_write(ctxt, VCPU_REGS_RAX) = tss->ax; 2597 *reg_write(ctxt, VCPU_REGS_RCX) = tss->cx; 2598 *reg_write(ctxt, VCPU_REGS_RDX) = tss->dx; 2599 *reg_write(ctxt, VCPU_REGS_RBX) = tss->bx; 2600 *reg_write(ctxt, VCPU_REGS_RSP) = tss->sp; 2601 *reg_write(ctxt, VCPU_REGS_RBP) = tss->bp; 2602 *reg_write(ctxt, VCPU_REGS_RSI) = tss->si; 2603 *reg_write(ctxt, VCPU_REGS_RDI) = tss->di; 2604 2605 /* 2606 * SDM says that segment selectors are loaded before segment 2607 * descriptors 2608 */ 2609 set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR); 2610 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES); 2611 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS); 2612 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS); 2613 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS); 2614 2615 cpl = tss->cs & 3; 2616 2617 /* 2618 * Now load segment descriptors. If fault happens at this stage 2619 * it is handled in a context of new task 2620 */ 2621 ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl, 2622 X86_TRANSFER_TASK_SWITCH, NULL); 2623 if (ret != X86EMUL_CONTINUE) 2624 return ret; 2625 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl, 2626 X86_TRANSFER_TASK_SWITCH, NULL); 2627 if (ret != X86EMUL_CONTINUE) 2628 return ret; 2629 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl, 2630 X86_TRANSFER_TASK_SWITCH, NULL); 2631 if (ret != X86EMUL_CONTINUE) 2632 return ret; 2633 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl, 2634 X86_TRANSFER_TASK_SWITCH, NULL); 2635 if (ret != X86EMUL_CONTINUE) 2636 return ret; 2637 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl, 2638 X86_TRANSFER_TASK_SWITCH, NULL); 2639 if (ret != X86EMUL_CONTINUE) 2640 return ret; 2641 2642 return X86EMUL_CONTINUE; 2643 } 2644 2645 static int task_switch_16(struct x86_emulate_ctxt *ctxt, 2646 u16 tss_selector, u16 old_tss_sel, 2647 ulong old_tss_base, struct desc_struct *new_desc) 2648 { 2649 const struct x86_emulate_ops *ops = ctxt->ops; 2650 struct tss_segment_16 tss_seg; 2651 int ret; 2652 u32 new_tss_base = get_desc_base(new_desc); 2653 2654 ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg, 2655 &ctxt->exception); 2656 if (ret != X86EMUL_CONTINUE) 2657 return ret; 2658 2659 save_state_to_tss16(ctxt, &tss_seg); 2660 2661 ret = ops->write_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg, 2662 &ctxt->exception); 2663 if (ret != X86EMUL_CONTINUE) 2664 return ret; 2665 2666 ret = ops->read_std(ctxt, new_tss_base, &tss_seg, sizeof tss_seg, 2667 &ctxt->exception); 2668 if (ret != X86EMUL_CONTINUE) 2669 return ret; 2670 2671 if (old_tss_sel != 0xffff) { 2672 tss_seg.prev_task_link = old_tss_sel; 2673 2674 ret = ops->write_std(ctxt, new_tss_base, 2675 &tss_seg.prev_task_link, 2676 sizeof tss_seg.prev_task_link, 2677 &ctxt->exception); 2678 if (ret != X86EMUL_CONTINUE) 2679 return ret; 2680 } 2681 2682 return load_state_from_tss16(ctxt, &tss_seg); 2683 } 2684 2685 static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt, 2686 struct tss_segment_32 *tss) 2687 { 2688 /* CR3 and ldt selector are not saved intentionally */ 2689 tss->eip = ctxt->_eip; 2690 tss->eflags = ctxt->eflags; 2691 tss->eax = reg_read(ctxt, VCPU_REGS_RAX); 2692 tss->ecx = reg_read(ctxt, VCPU_REGS_RCX); 2693 tss->edx = reg_read(ctxt, VCPU_REGS_RDX); 2694 tss->ebx = reg_read(ctxt, VCPU_REGS_RBX); 2695 tss->esp = reg_read(ctxt, VCPU_REGS_RSP); 2696 tss->ebp = reg_read(ctxt, VCPU_REGS_RBP); 2697 tss->esi = reg_read(ctxt, VCPU_REGS_RSI); 2698 tss->edi = reg_read(ctxt, VCPU_REGS_RDI); 2699 2700 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES); 2701 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS); 2702 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS); 2703 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS); 2704 tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS); 2705 tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS); 2706 } 2707 2708 static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt, 2709 struct tss_segment_32 *tss) 2710 { 2711 int ret; 2712 u8 cpl; 2713 2714 if (ctxt->ops->set_cr(ctxt, 3, tss->cr3)) 2715 return emulate_gp(ctxt, 0); 2716 ctxt->_eip = tss->eip; 2717 ctxt->eflags = tss->eflags | 2; 2718 2719 /* General purpose registers */ 2720 *reg_write(ctxt, VCPU_REGS_RAX) = tss->eax; 2721 *reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx; 2722 *reg_write(ctxt, VCPU_REGS_RDX) = tss->edx; 2723 *reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx; 2724 *reg_write(ctxt, VCPU_REGS_RSP) = tss->esp; 2725 *reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp; 2726 *reg_write(ctxt, VCPU_REGS_RSI) = tss->esi; 2727 *reg_write(ctxt, VCPU_REGS_RDI) = tss->edi; 2728 2729 /* 2730 * SDM says that segment selectors are loaded before segment 2731 * descriptors. This is important because CPL checks will 2732 * use CS.RPL. 2733 */ 2734 set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR); 2735 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES); 2736 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS); 2737 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS); 2738 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS); 2739 set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS); 2740 set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS); 2741 2742 /* 2743 * If we're switching between Protected Mode and VM86, we need to make 2744 * sure to update the mode before loading the segment descriptors so 2745 * that the selectors are interpreted correctly. 2746 */ 2747 if (ctxt->eflags & X86_EFLAGS_VM) { 2748 ctxt->mode = X86EMUL_MODE_VM86; 2749 cpl = 3; 2750 } else { 2751 ctxt->mode = X86EMUL_MODE_PROT32; 2752 cpl = tss->cs & 3; 2753 } 2754 2755 /* 2756 * Now load segment descriptors. If fault happenes at this stage 2757 * it is handled in a context of new task 2758 */ 2759 ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR, 2760 cpl, X86_TRANSFER_TASK_SWITCH, NULL); 2761 if (ret != X86EMUL_CONTINUE) 2762 return ret; 2763 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl, 2764 X86_TRANSFER_TASK_SWITCH, NULL); 2765 if (ret != X86EMUL_CONTINUE) 2766 return ret; 2767 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl, 2768 X86_TRANSFER_TASK_SWITCH, NULL); 2769 if (ret != X86EMUL_CONTINUE) 2770 return ret; 2771 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl, 2772 X86_TRANSFER_TASK_SWITCH, NULL); 2773 if (ret != X86EMUL_CONTINUE) 2774 return ret; 2775 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl, 2776 X86_TRANSFER_TASK_SWITCH, NULL); 2777 if (ret != X86EMUL_CONTINUE) 2778 return ret; 2779 ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl, 2780 X86_TRANSFER_TASK_SWITCH, NULL); 2781 if (ret != X86EMUL_CONTINUE) 2782 return ret; 2783 ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl, 2784 X86_TRANSFER_TASK_SWITCH, NULL); 2785 if (ret != X86EMUL_CONTINUE) 2786 return ret; 2787 2788 return X86EMUL_CONTINUE; 2789 } 2790 2791 static int task_switch_32(struct x86_emulate_ctxt *ctxt, 2792 u16 tss_selector, u16 old_tss_sel, 2793 ulong old_tss_base, struct desc_struct *new_desc) 2794 { 2795 const struct x86_emulate_ops *ops = ctxt->ops; 2796 struct tss_segment_32 tss_seg; 2797 int ret; 2798 u32 new_tss_base = get_desc_base(new_desc); 2799 u32 eip_offset = offsetof(struct tss_segment_32, eip); 2800 u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector); 2801 2802 ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg, 2803 &ctxt->exception); 2804 if (ret != X86EMUL_CONTINUE) 2805 return ret; 2806 2807 save_state_to_tss32(ctxt, &tss_seg); 2808 2809 /* Only GP registers and segment selectors are saved */ 2810 ret = ops->write_std(ctxt, old_tss_base + eip_offset, &tss_seg.eip, 2811 ldt_sel_offset - eip_offset, &ctxt->exception); 2812 if (ret != X86EMUL_CONTINUE) 2813 return ret; 2814 2815 ret = ops->read_std(ctxt, new_tss_base, &tss_seg, sizeof tss_seg, 2816 &ctxt->exception); 2817 if (ret != X86EMUL_CONTINUE) 2818 return ret; 2819 2820 if (old_tss_sel != 0xffff) { 2821 tss_seg.prev_task_link = old_tss_sel; 2822 2823 ret = ops->write_std(ctxt, new_tss_base, 2824 &tss_seg.prev_task_link, 2825 sizeof tss_seg.prev_task_link, 2826 &ctxt->exception); 2827 if (ret != X86EMUL_CONTINUE) 2828 return ret; 2829 } 2830 2831 return load_state_from_tss32(ctxt, &tss_seg); 2832 } 2833 2834 static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt, 2835 u16 tss_selector, int idt_index, int reason, 2836 bool has_error_code, u32 error_code) 2837 { 2838 const struct x86_emulate_ops *ops = ctxt->ops; 2839 struct desc_struct curr_tss_desc, next_tss_desc; 2840 int ret; 2841 u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR); 2842 ulong old_tss_base = 2843 ops->get_cached_segment_base(ctxt, VCPU_SREG_TR); 2844 u32 desc_limit; 2845 ulong desc_addr; 2846 2847 /* FIXME: old_tss_base == ~0 ? */ 2848 2849 ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr); 2850 if (ret != X86EMUL_CONTINUE) 2851 return ret; 2852 ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr); 2853 if (ret != X86EMUL_CONTINUE) 2854 return ret; 2855 2856 /* FIXME: check that next_tss_desc is tss */ 2857 2858 /* 2859 * Check privileges. The three cases are task switch caused by... 2860 * 2861 * 1. jmp/call/int to task gate: Check against DPL of the task gate 2862 * 2. Exception/IRQ/iret: No check is performed 2863 * 3. jmp/call to TSS/task-gate: No check is performed since the 2864 * hardware checks it before exiting. 2865 */ 2866 if (reason == TASK_SWITCH_GATE) { 2867 if (idt_index != -1) { 2868 /* Software interrupts */ 2869 struct desc_struct task_gate_desc; 2870 int dpl; 2871 2872 ret = read_interrupt_descriptor(ctxt, idt_index, 2873 &task_gate_desc); 2874 if (ret != X86EMUL_CONTINUE) 2875 return ret; 2876 2877 dpl = task_gate_desc.dpl; 2878 if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl) 2879 return emulate_gp(ctxt, (idt_index << 3) | 0x2); 2880 } 2881 } 2882 2883 desc_limit = desc_limit_scaled(&next_tss_desc); 2884 if (!next_tss_desc.p || 2885 ((desc_limit < 0x67 && (next_tss_desc.type & 8)) || 2886 desc_limit < 0x2b)) { 2887 return emulate_ts(ctxt, tss_selector & 0xfffc); 2888 } 2889 2890 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) { 2891 curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */ 2892 write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc); 2893 } 2894 2895 if (reason == TASK_SWITCH_IRET) 2896 ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT; 2897 2898 /* set back link to prev task only if NT bit is set in eflags 2899 note that old_tss_sel is not used after this point */ 2900 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE) 2901 old_tss_sel = 0xffff; 2902 2903 if (next_tss_desc.type & 8) 2904 ret = task_switch_32(ctxt, tss_selector, old_tss_sel, 2905 old_tss_base, &next_tss_desc); 2906 else 2907 ret = task_switch_16(ctxt, tss_selector, old_tss_sel, 2908 old_tss_base, &next_tss_desc); 2909 if (ret != X86EMUL_CONTINUE) 2910 return ret; 2911 2912 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) 2913 ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT; 2914 2915 if (reason != TASK_SWITCH_IRET) { 2916 next_tss_desc.type |= (1 << 1); /* set busy flag */ 2917 write_segment_descriptor(ctxt, tss_selector, &next_tss_desc); 2918 } 2919 2920 ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS); 2921 ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR); 2922 2923 if (has_error_code) { 2924 ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2; 2925 ctxt->lock_prefix = 0; 2926 ctxt->src.val = (unsigned long) error_code; 2927 ret = em_push(ctxt); 2928 } 2929 2930 return ret; 2931 } 2932 2933 int emulator_task_switch(struct x86_emulate_ctxt *ctxt, 2934 u16 tss_selector, int idt_index, int reason, 2935 bool has_error_code, u32 error_code) 2936 { 2937 int rc; 2938 2939 invalidate_registers(ctxt); 2940 ctxt->_eip = ctxt->eip; 2941 ctxt->dst.type = OP_NONE; 2942 2943 rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason, 2944 has_error_code, error_code); 2945 2946 if (rc == X86EMUL_CONTINUE) { 2947 ctxt->eip = ctxt->_eip; 2948 writeback_registers(ctxt); 2949 } 2950 2951 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK; 2952 } 2953 2954 static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg, 2955 struct operand *op) 2956 { 2957 int df = (ctxt->eflags & EFLG_DF) ? -op->count : op->count; 2958 2959 register_address_increment(ctxt, reg, df * op->bytes); 2960 op->addr.mem.ea = register_address(ctxt, reg); 2961 } 2962 2963 static int em_das(struct x86_emulate_ctxt *ctxt) 2964 { 2965 u8 al, old_al; 2966 bool af, cf, old_cf; 2967 2968 cf = ctxt->eflags & X86_EFLAGS_CF; 2969 al = ctxt->dst.val; 2970 2971 old_al = al; 2972 old_cf = cf; 2973 cf = false; 2974 af = ctxt->eflags & X86_EFLAGS_AF; 2975 if ((al & 0x0f) > 9 || af) { 2976 al -= 6; 2977 cf = old_cf | (al >= 250); 2978 af = true; 2979 } else { 2980 af = false; 2981 } 2982 if (old_al > 0x99 || old_cf) { 2983 al -= 0x60; 2984 cf = true; 2985 } 2986 2987 ctxt->dst.val = al; 2988 /* Set PF, ZF, SF */ 2989 ctxt->src.type = OP_IMM; 2990 ctxt->src.val = 0; 2991 ctxt->src.bytes = 1; 2992 fastop(ctxt, em_or); 2993 ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF); 2994 if (cf) 2995 ctxt->eflags |= X86_EFLAGS_CF; 2996 if (af) 2997 ctxt->eflags |= X86_EFLAGS_AF; 2998 return X86EMUL_CONTINUE; 2999 } 3000 3001 static int em_aam(struct x86_emulate_ctxt *ctxt) 3002 { 3003 u8 al, ah; 3004 3005 if (ctxt->src.val == 0) 3006 return emulate_de(ctxt); 3007 3008 al = ctxt->dst.val & 0xff; 3009 ah = al / ctxt->src.val; 3010 al %= ctxt->src.val; 3011 3012 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8); 3013 3014 /* Set PF, ZF, SF */ 3015 ctxt->src.type = OP_IMM; 3016 ctxt->src.val = 0; 3017 ctxt->src.bytes = 1; 3018 fastop(ctxt, em_or); 3019 3020 return X86EMUL_CONTINUE; 3021 } 3022 3023 static int em_aad(struct x86_emulate_ctxt *ctxt) 3024 { 3025 u8 al = ctxt->dst.val & 0xff; 3026 u8 ah = (ctxt->dst.val >> 8) & 0xff; 3027 3028 al = (al + (ah * ctxt->src.val)) & 0xff; 3029 3030 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al; 3031 3032 /* Set PF, ZF, SF */ 3033 ctxt->src.type = OP_IMM; 3034 ctxt->src.val = 0; 3035 ctxt->src.bytes = 1; 3036 fastop(ctxt, em_or); 3037 3038 return X86EMUL_CONTINUE; 3039 } 3040 3041 static int em_call(struct x86_emulate_ctxt *ctxt) 3042 { 3043 int rc; 3044 long rel = ctxt->src.val; 3045 3046 ctxt->src.val = (unsigned long)ctxt->_eip; 3047 rc = jmp_rel(ctxt, rel); 3048 if (rc != X86EMUL_CONTINUE) 3049 return rc; 3050 return em_push(ctxt); 3051 } 3052 3053 static int em_call_far(struct x86_emulate_ctxt *ctxt) 3054 { 3055 u16 sel, old_cs; 3056 ulong old_eip; 3057 int rc; 3058 struct desc_struct old_desc, new_desc; 3059 const struct x86_emulate_ops *ops = ctxt->ops; 3060 int cpl = ctxt->ops->cpl(ctxt); 3061 enum x86emul_mode prev_mode = ctxt->mode; 3062 3063 old_eip = ctxt->_eip; 3064 ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS); 3065 3066 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2); 3067 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl, 3068 X86_TRANSFER_CALL_JMP, &new_desc); 3069 if (rc != X86EMUL_CONTINUE) 3070 return rc; 3071 3072 rc = assign_eip_far(ctxt, ctxt->src.val, &new_desc); 3073 if (rc != X86EMUL_CONTINUE) 3074 goto fail; 3075 3076 ctxt->src.val = old_cs; 3077 rc = em_push(ctxt); 3078 if (rc != X86EMUL_CONTINUE) 3079 goto fail; 3080 3081 ctxt->src.val = old_eip; 3082 rc = em_push(ctxt); 3083 /* If we failed, we tainted the memory, but the very least we should 3084 restore cs */ 3085 if (rc != X86EMUL_CONTINUE) { 3086 pr_warn_once("faulting far call emulation tainted memory\n"); 3087 goto fail; 3088 } 3089 return rc; 3090 fail: 3091 ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS); 3092 ctxt->mode = prev_mode; 3093 return rc; 3094 3095 } 3096 3097 static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt) 3098 { 3099 int rc; 3100 unsigned long eip; 3101 3102 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes); 3103 if (rc != X86EMUL_CONTINUE) 3104 return rc; 3105 rc = assign_eip_near(ctxt, eip); 3106 if (rc != X86EMUL_CONTINUE) 3107 return rc; 3108 rsp_increment(ctxt, ctxt->src.val); 3109 return X86EMUL_CONTINUE; 3110 } 3111 3112 static int em_xchg(struct x86_emulate_ctxt *ctxt) 3113 { 3114 /* Write back the register source. */ 3115 ctxt->src.val = ctxt->dst.val; 3116 write_register_operand(&ctxt->src); 3117 3118 /* Write back the memory destination with implicit LOCK prefix. */ 3119 ctxt->dst.val = ctxt->src.orig_val; 3120 ctxt->lock_prefix = 1; 3121 return X86EMUL_CONTINUE; 3122 } 3123 3124 static int em_imul_3op(struct x86_emulate_ctxt *ctxt) 3125 { 3126 ctxt->dst.val = ctxt->src2.val; 3127 return fastop(ctxt, em_imul); 3128 } 3129 3130 static int em_cwd(struct x86_emulate_ctxt *ctxt) 3131 { 3132 ctxt->dst.type = OP_REG; 3133 ctxt->dst.bytes = ctxt->src.bytes; 3134 ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX); 3135 ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1); 3136 3137 return X86EMUL_CONTINUE; 3138 } 3139 3140 static int em_rdtsc(struct x86_emulate_ctxt *ctxt) 3141 { 3142 u64 tsc = 0; 3143 3144 ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc); 3145 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc; 3146 *reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32; 3147 return X86EMUL_CONTINUE; 3148 } 3149 3150 static int em_rdpmc(struct x86_emulate_ctxt *ctxt) 3151 { 3152 u64 pmc; 3153 3154 if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc)) 3155 return emulate_gp(ctxt, 0); 3156 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc; 3157 *reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32; 3158 return X86EMUL_CONTINUE; 3159 } 3160 3161 static int em_mov(struct x86_emulate_ctxt *ctxt) 3162 { 3163 memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr)); 3164 return X86EMUL_CONTINUE; 3165 } 3166 3167 #define FFL(x) bit(X86_FEATURE_##x) 3168 3169 static int em_movbe(struct x86_emulate_ctxt *ctxt) 3170 { 3171 u32 ebx, ecx, edx, eax = 1; 3172 u16 tmp; 3173 3174 /* 3175 * Check MOVBE is set in the guest-visible CPUID leaf. 3176 */ 3177 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx); 3178 if (!(ecx & FFL(MOVBE))) 3179 return emulate_ud(ctxt); 3180 3181 switch (ctxt->op_bytes) { 3182 case 2: 3183 /* 3184 * From MOVBE definition: "...When the operand size is 16 bits, 3185 * the upper word of the destination register remains unchanged 3186 * ..." 3187 * 3188 * Both casting ->valptr and ->val to u16 breaks strict aliasing 3189 * rules so we have to do the operation almost per hand. 3190 */ 3191 tmp = (u16)ctxt->src.val; 3192 ctxt->dst.val &= ~0xffffUL; 3193 ctxt->dst.val |= (unsigned long)swab16(tmp); 3194 break; 3195 case 4: 3196 ctxt->dst.val = swab32((u32)ctxt->src.val); 3197 break; 3198 case 8: 3199 ctxt->dst.val = swab64(ctxt->src.val); 3200 break; 3201 default: 3202 BUG(); 3203 } 3204 return X86EMUL_CONTINUE; 3205 } 3206 3207 static int em_cr_write(struct x86_emulate_ctxt *ctxt) 3208 { 3209 if (ctxt->ops->set_cr(ctxt, ctxt->modrm_reg, ctxt->src.val)) 3210 return emulate_gp(ctxt, 0); 3211 3212 /* Disable writeback. */ 3213 ctxt->dst.type = OP_NONE; 3214 return X86EMUL_CONTINUE; 3215 } 3216 3217 static int em_dr_write(struct x86_emulate_ctxt *ctxt) 3218 { 3219 unsigned long val; 3220 3221 if (ctxt->mode == X86EMUL_MODE_PROT64) 3222 val = ctxt->src.val & ~0ULL; 3223 else 3224 val = ctxt->src.val & ~0U; 3225 3226 /* #UD condition is already handled. */ 3227 if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0) 3228 return emulate_gp(ctxt, 0); 3229 3230 /* Disable writeback. */ 3231 ctxt->dst.type = OP_NONE; 3232 return X86EMUL_CONTINUE; 3233 } 3234 3235 static int em_wrmsr(struct x86_emulate_ctxt *ctxt) 3236 { 3237 u64 msr_data; 3238 3239 msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX) 3240 | ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32); 3241 if (ctxt->ops->set_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), msr_data)) 3242 return emulate_gp(ctxt, 0); 3243 3244 return X86EMUL_CONTINUE; 3245 } 3246 3247 static int em_rdmsr(struct x86_emulate_ctxt *ctxt) 3248 { 3249 u64 msr_data; 3250 3251 if (ctxt->ops->get_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &msr_data)) 3252 return emulate_gp(ctxt, 0); 3253 3254 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data; 3255 *reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32; 3256 return X86EMUL_CONTINUE; 3257 } 3258 3259 static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt) 3260 { 3261 if (ctxt->modrm_reg > VCPU_SREG_GS) 3262 return emulate_ud(ctxt); 3263 3264 ctxt->dst.val = get_segment_selector(ctxt, ctxt->modrm_reg); 3265 if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM) 3266 ctxt->dst.bytes = 2; 3267 return X86EMUL_CONTINUE; 3268 } 3269 3270 static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt) 3271 { 3272 u16 sel = ctxt->src.val; 3273 3274 if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS) 3275 return emulate_ud(ctxt); 3276 3277 if (ctxt->modrm_reg == VCPU_SREG_SS) 3278 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS; 3279 3280 /* Disable writeback. */ 3281 ctxt->dst.type = OP_NONE; 3282 return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg); 3283 } 3284 3285 static int em_lldt(struct x86_emulate_ctxt *ctxt) 3286 { 3287 u16 sel = ctxt->src.val; 3288 3289 /* Disable writeback. */ 3290 ctxt->dst.type = OP_NONE; 3291 return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR); 3292 } 3293 3294 static int em_ltr(struct x86_emulate_ctxt *ctxt) 3295 { 3296 u16 sel = ctxt->src.val; 3297 3298 /* Disable writeback. */ 3299 ctxt->dst.type = OP_NONE; 3300 return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR); 3301 } 3302 3303 static int em_invlpg(struct x86_emulate_ctxt *ctxt) 3304 { 3305 int rc; 3306 ulong linear; 3307 3308 rc = linearize(ctxt, ctxt->src.addr.mem, 1, false, &linear); 3309 if (rc == X86EMUL_CONTINUE) 3310 ctxt->ops->invlpg(ctxt, linear); 3311 /* Disable writeback. */ 3312 ctxt->dst.type = OP_NONE; 3313 return X86EMUL_CONTINUE; 3314 } 3315 3316 static int em_clts(struct x86_emulate_ctxt *ctxt) 3317 { 3318 ulong cr0; 3319 3320 cr0 = ctxt->ops->get_cr(ctxt, 0); 3321 cr0 &= ~X86_CR0_TS; 3322 ctxt->ops->set_cr(ctxt, 0, cr0); 3323 return X86EMUL_CONTINUE; 3324 } 3325 3326 static int em_vmcall(struct x86_emulate_ctxt *ctxt) 3327 { 3328 int rc = ctxt->ops->fix_hypercall(ctxt); 3329 3330 if (rc != X86EMUL_CONTINUE) 3331 return rc; 3332 3333 /* Let the processor re-execute the fixed hypercall */ 3334 ctxt->_eip = ctxt->eip; 3335 /* Disable writeback. */ 3336 ctxt->dst.type = OP_NONE; 3337 return X86EMUL_CONTINUE; 3338 } 3339 3340 static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt, 3341 void (*get)(struct x86_emulate_ctxt *ctxt, 3342 struct desc_ptr *ptr)) 3343 { 3344 struct desc_ptr desc_ptr; 3345 3346 if (ctxt->mode == X86EMUL_MODE_PROT64) 3347 ctxt->op_bytes = 8; 3348 get(ctxt, &desc_ptr); 3349 if (ctxt->op_bytes == 2) { 3350 ctxt->op_bytes = 4; 3351 desc_ptr.address &= 0x00ffffff; 3352 } 3353 /* Disable writeback. */ 3354 ctxt->dst.type = OP_NONE; 3355 return segmented_write(ctxt, ctxt->dst.addr.mem, 3356 &desc_ptr, 2 + ctxt->op_bytes); 3357 } 3358 3359 static int em_sgdt(struct x86_emulate_ctxt *ctxt) 3360 { 3361 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt); 3362 } 3363 3364 static int em_sidt(struct x86_emulate_ctxt *ctxt) 3365 { 3366 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt); 3367 } 3368 3369 static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt) 3370 { 3371 struct desc_ptr desc_ptr; 3372 int rc; 3373 3374 if (ctxt->mode == X86EMUL_MODE_PROT64) 3375 ctxt->op_bytes = 8; 3376 rc = read_descriptor(ctxt, ctxt->src.addr.mem, 3377 &desc_ptr.size, &desc_ptr.address, 3378 ctxt->op_bytes); 3379 if (rc != X86EMUL_CONTINUE) 3380 return rc; 3381 if (ctxt->mode == X86EMUL_MODE_PROT64 && 3382 is_noncanonical_address(desc_ptr.address)) 3383 return emulate_gp(ctxt, 0); 3384 if (lgdt) 3385 ctxt->ops->set_gdt(ctxt, &desc_ptr); 3386 else 3387 ctxt->ops->set_idt(ctxt, &desc_ptr); 3388 /* Disable writeback. */ 3389 ctxt->dst.type = OP_NONE; 3390 return X86EMUL_CONTINUE; 3391 } 3392 3393 static int em_lgdt(struct x86_emulate_ctxt *ctxt) 3394 { 3395 return em_lgdt_lidt(ctxt, true); 3396 } 3397 3398 static int em_vmmcall(struct x86_emulate_ctxt *ctxt) 3399 { 3400 int rc; 3401 3402 rc = ctxt->ops->fix_hypercall(ctxt); 3403 3404 /* Disable writeback. */ 3405 ctxt->dst.type = OP_NONE; 3406 return rc; 3407 } 3408 3409 static int em_lidt(struct x86_emulate_ctxt *ctxt) 3410 { 3411 return em_lgdt_lidt(ctxt, false); 3412 } 3413 3414 static int em_smsw(struct x86_emulate_ctxt *ctxt) 3415 { 3416 if (ctxt->dst.type == OP_MEM) 3417 ctxt->dst.bytes = 2; 3418 ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0); 3419 return X86EMUL_CONTINUE; 3420 } 3421 3422 static int em_lmsw(struct x86_emulate_ctxt *ctxt) 3423 { 3424 ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul) 3425 | (ctxt->src.val & 0x0f)); 3426 ctxt->dst.type = OP_NONE; 3427 return X86EMUL_CONTINUE; 3428 } 3429 3430 static int em_loop(struct x86_emulate_ctxt *ctxt) 3431 { 3432 int rc = X86EMUL_CONTINUE; 3433 3434 register_address_increment(ctxt, VCPU_REGS_RCX, -1); 3435 if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) && 3436 (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags))) 3437 rc = jmp_rel(ctxt, ctxt->src.val); 3438 3439 return rc; 3440 } 3441 3442 static int em_jcxz(struct x86_emulate_ctxt *ctxt) 3443 { 3444 int rc = X86EMUL_CONTINUE; 3445 3446 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) 3447 rc = jmp_rel(ctxt, ctxt->src.val); 3448 3449 return rc; 3450 } 3451 3452 static int em_in(struct x86_emulate_ctxt *ctxt) 3453 { 3454 if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val, 3455 &ctxt->dst.val)) 3456 return X86EMUL_IO_NEEDED; 3457 3458 return X86EMUL_CONTINUE; 3459 } 3460 3461 static int em_out(struct x86_emulate_ctxt *ctxt) 3462 { 3463 ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val, 3464 &ctxt->src.val, 1); 3465 /* Disable writeback. */ 3466 ctxt->dst.type = OP_NONE; 3467 return X86EMUL_CONTINUE; 3468 } 3469 3470 static int em_cli(struct x86_emulate_ctxt *ctxt) 3471 { 3472 if (emulator_bad_iopl(ctxt)) 3473 return emulate_gp(ctxt, 0); 3474 3475 ctxt->eflags &= ~X86_EFLAGS_IF; 3476 return X86EMUL_CONTINUE; 3477 } 3478 3479 static int em_sti(struct x86_emulate_ctxt *ctxt) 3480 { 3481 if (emulator_bad_iopl(ctxt)) 3482 return emulate_gp(ctxt, 0); 3483 3484 ctxt->interruptibility = KVM_X86_SHADOW_INT_STI; 3485 ctxt->eflags |= X86_EFLAGS_IF; 3486 return X86EMUL_CONTINUE; 3487 } 3488 3489 static int em_cpuid(struct x86_emulate_ctxt *ctxt) 3490 { 3491 u32 eax, ebx, ecx, edx; 3492 3493 eax = reg_read(ctxt, VCPU_REGS_RAX); 3494 ecx = reg_read(ctxt, VCPU_REGS_RCX); 3495 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx); 3496 *reg_write(ctxt, VCPU_REGS_RAX) = eax; 3497 *reg_write(ctxt, VCPU_REGS_RBX) = ebx; 3498 *reg_write(ctxt, VCPU_REGS_RCX) = ecx; 3499 *reg_write(ctxt, VCPU_REGS_RDX) = edx; 3500 return X86EMUL_CONTINUE; 3501 } 3502 3503 static int em_sahf(struct x86_emulate_ctxt *ctxt) 3504 { 3505 u32 flags; 3506 3507 flags = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF; 3508 flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8; 3509 3510 ctxt->eflags &= ~0xffUL; 3511 ctxt->eflags |= flags | X86_EFLAGS_FIXED; 3512 return X86EMUL_CONTINUE; 3513 } 3514 3515 static int em_lahf(struct x86_emulate_ctxt *ctxt) 3516 { 3517 *reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL; 3518 *reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8; 3519 return X86EMUL_CONTINUE; 3520 } 3521 3522 static int em_bswap(struct x86_emulate_ctxt *ctxt) 3523 { 3524 switch (ctxt->op_bytes) { 3525 #ifdef CONFIG_X86_64 3526 case 8: 3527 asm("bswap %0" : "+r"(ctxt->dst.val)); 3528 break; 3529 #endif 3530 default: 3531 asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val)); 3532 break; 3533 } 3534 return X86EMUL_CONTINUE; 3535 } 3536 3537 static int em_clflush(struct x86_emulate_ctxt *ctxt) 3538 { 3539 /* emulating clflush regardless of cpuid */ 3540 return X86EMUL_CONTINUE; 3541 } 3542 3543 static int em_movsxd(struct x86_emulate_ctxt *ctxt) 3544 { 3545 ctxt->dst.val = (s32) ctxt->src.val; 3546 return X86EMUL_CONTINUE; 3547 } 3548 3549 static bool valid_cr(int nr) 3550 { 3551 switch (nr) { 3552 case 0: 3553 case 2 ... 4: 3554 case 8: 3555 return true; 3556 default: 3557 return false; 3558 } 3559 } 3560 3561 static int check_cr_read(struct x86_emulate_ctxt *ctxt) 3562 { 3563 if (!valid_cr(ctxt->modrm_reg)) 3564 return emulate_ud(ctxt); 3565 3566 return X86EMUL_CONTINUE; 3567 } 3568 3569 static int check_cr_write(struct x86_emulate_ctxt *ctxt) 3570 { 3571 u64 new_val = ctxt->src.val64; 3572 int cr = ctxt->modrm_reg; 3573 u64 efer = 0; 3574 3575 static u64 cr_reserved_bits[] = { 3576 0xffffffff00000000ULL, 3577 0, 0, 0, /* CR3 checked later */ 3578 CR4_RESERVED_BITS, 3579 0, 0, 0, 3580 CR8_RESERVED_BITS, 3581 }; 3582 3583 if (!valid_cr(cr)) 3584 return emulate_ud(ctxt); 3585 3586 if (new_val & cr_reserved_bits[cr]) 3587 return emulate_gp(ctxt, 0); 3588 3589 switch (cr) { 3590 case 0: { 3591 u64 cr4; 3592 if (((new_val & X86_CR0_PG) && !(new_val & X86_CR0_PE)) || 3593 ((new_val & X86_CR0_NW) && !(new_val & X86_CR0_CD))) 3594 return emulate_gp(ctxt, 0); 3595 3596 cr4 = ctxt->ops->get_cr(ctxt, 4); 3597 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); 3598 3599 if ((new_val & X86_CR0_PG) && (efer & EFER_LME) && 3600 !(cr4 & X86_CR4_PAE)) 3601 return emulate_gp(ctxt, 0); 3602 3603 break; 3604 } 3605 case 3: { 3606 u64 rsvd = 0; 3607 3608 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); 3609 if (efer & EFER_LMA) 3610 rsvd = CR3_L_MODE_RESERVED_BITS & ~CR3_PCID_INVD; 3611 3612 if (new_val & rsvd) 3613 return emulate_gp(ctxt, 0); 3614 3615 break; 3616 } 3617 case 4: { 3618 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); 3619 3620 if ((efer & EFER_LMA) && !(new_val & X86_CR4_PAE)) 3621 return emulate_gp(ctxt, 0); 3622 3623 break; 3624 } 3625 } 3626 3627 return X86EMUL_CONTINUE; 3628 } 3629 3630 static int check_dr7_gd(struct x86_emulate_ctxt *ctxt) 3631 { 3632 unsigned long dr7; 3633 3634 ctxt->ops->get_dr(ctxt, 7, &dr7); 3635 3636 /* Check if DR7.Global_Enable is set */ 3637 return dr7 & (1 << 13); 3638 } 3639 3640 static int check_dr_read(struct x86_emulate_ctxt *ctxt) 3641 { 3642 int dr = ctxt->modrm_reg; 3643 u64 cr4; 3644 3645 if (dr > 7) 3646 return emulate_ud(ctxt); 3647 3648 cr4 = ctxt->ops->get_cr(ctxt, 4); 3649 if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5)) 3650 return emulate_ud(ctxt); 3651 3652 if (check_dr7_gd(ctxt)) { 3653 ulong dr6; 3654 3655 ctxt->ops->get_dr(ctxt, 6, &dr6); 3656 dr6 &= ~15; 3657 dr6 |= DR6_BD | DR6_RTM; 3658 ctxt->ops->set_dr(ctxt, 6, dr6); 3659 return emulate_db(ctxt); 3660 } 3661 3662 return X86EMUL_CONTINUE; 3663 } 3664 3665 static int check_dr_write(struct x86_emulate_ctxt *ctxt) 3666 { 3667 u64 new_val = ctxt->src.val64; 3668 int dr = ctxt->modrm_reg; 3669 3670 if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL)) 3671 return emulate_gp(ctxt, 0); 3672 3673 return check_dr_read(ctxt); 3674 } 3675 3676 static int check_svme(struct x86_emulate_ctxt *ctxt) 3677 { 3678 u64 efer; 3679 3680 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); 3681 3682 if (!(efer & EFER_SVME)) 3683 return emulate_ud(ctxt); 3684 3685 return X86EMUL_CONTINUE; 3686 } 3687 3688 static int check_svme_pa(struct x86_emulate_ctxt *ctxt) 3689 { 3690 u64 rax = reg_read(ctxt, VCPU_REGS_RAX); 3691 3692 /* Valid physical address? */ 3693 if (rax & 0xffff000000000000ULL) 3694 return emulate_gp(ctxt, 0); 3695 3696 return check_svme(ctxt); 3697 } 3698 3699 static int check_rdtsc(struct x86_emulate_ctxt *ctxt) 3700 { 3701 u64 cr4 = ctxt->ops->get_cr(ctxt, 4); 3702 3703 if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt)) 3704 return emulate_ud(ctxt); 3705 3706 return X86EMUL_CONTINUE; 3707 } 3708 3709 static int check_rdpmc(struct x86_emulate_ctxt *ctxt) 3710 { 3711 u64 cr4 = ctxt->ops->get_cr(ctxt, 4); 3712 u64 rcx = reg_read(ctxt, VCPU_REGS_RCX); 3713 3714 if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) || 3715 ctxt->ops->check_pmc(ctxt, rcx)) 3716 return emulate_gp(ctxt, 0); 3717 3718 return X86EMUL_CONTINUE; 3719 } 3720 3721 static int check_perm_in(struct x86_emulate_ctxt *ctxt) 3722 { 3723 ctxt->dst.bytes = min(ctxt->dst.bytes, 4u); 3724 if (!emulator_io_permited(ctxt, ctxt->src.val, ctxt->dst.bytes)) 3725 return emulate_gp(ctxt, 0); 3726 3727 return X86EMUL_CONTINUE; 3728 } 3729 3730 static int check_perm_out(struct x86_emulate_ctxt *ctxt) 3731 { 3732 ctxt->src.bytes = min(ctxt->src.bytes, 4u); 3733 if (!emulator_io_permited(ctxt, ctxt->dst.val, ctxt->src.bytes)) 3734 return emulate_gp(ctxt, 0); 3735 3736 return X86EMUL_CONTINUE; 3737 } 3738 3739 #define D(_y) { .flags = (_y) } 3740 #define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i } 3741 #define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \ 3742 .intercept = x86_intercept_##_i, .check_perm = (_p) } 3743 #define N D(NotImpl) 3744 #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) } 3745 #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) } 3746 #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) } 3747 #define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) } 3748 #define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) } 3749 #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) } 3750 #define I(_f, _e) { .flags = (_f), .u.execute = (_e) } 3751 #define F(_f, _e) { .flags = (_f) | Fastop, .u.fastop = (_e) } 3752 #define II(_f, _e, _i) \ 3753 { .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i } 3754 #define IIP(_f, _e, _i, _p) \ 3755 { .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \ 3756 .intercept = x86_intercept_##_i, .check_perm = (_p) } 3757 #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) } 3758 3759 #define D2bv(_f) D((_f) | ByteOp), D(_f) 3760 #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p) 3761 #define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e) 3762 #define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e) 3763 #define I2bvIP(_f, _e, _i, _p) \ 3764 IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p) 3765 3766 #define F6ALU(_f, _e) F2bv((_f) | DstMem | SrcReg | ModRM, _e), \ 3767 F2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \ 3768 F2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e) 3769 3770 static const struct opcode group7_rm0[] = { 3771 N, 3772 I(SrcNone | Priv | EmulateOnUD, em_vmcall), 3773 N, N, N, N, N, N, 3774 }; 3775 3776 static const struct opcode group7_rm1[] = { 3777 DI(SrcNone | Priv, monitor), 3778 DI(SrcNone | Priv, mwait), 3779 N, N, N, N, N, N, 3780 }; 3781 3782 static const struct opcode group7_rm3[] = { 3783 DIP(SrcNone | Prot | Priv, vmrun, check_svme_pa), 3784 II(SrcNone | Prot | EmulateOnUD, em_vmmcall, vmmcall), 3785 DIP(SrcNone | Prot | Priv, vmload, check_svme_pa), 3786 DIP(SrcNone | Prot | Priv, vmsave, check_svme_pa), 3787 DIP(SrcNone | Prot | Priv, stgi, check_svme), 3788 DIP(SrcNone | Prot | Priv, clgi, check_svme), 3789 DIP(SrcNone | Prot | Priv, skinit, check_svme), 3790 DIP(SrcNone | Prot | Priv, invlpga, check_svme), 3791 }; 3792 3793 static const struct opcode group7_rm7[] = { 3794 N, 3795 DIP(SrcNone, rdtscp, check_rdtsc), 3796 N, N, N, N, N, N, 3797 }; 3798 3799 static const struct opcode group1[] = { 3800 F(Lock, em_add), 3801 F(Lock | PageTable, em_or), 3802 F(Lock, em_adc), 3803 F(Lock, em_sbb), 3804 F(Lock | PageTable, em_and), 3805 F(Lock, em_sub), 3806 F(Lock, em_xor), 3807 F(NoWrite, em_cmp), 3808 }; 3809 3810 static const struct opcode group1A[] = { 3811 I(DstMem | SrcNone | Mov | Stack | IncSP, em_pop), N, N, N, N, N, N, N, 3812 }; 3813 3814 static const struct opcode group2[] = { 3815 F(DstMem | ModRM, em_rol), 3816 F(DstMem | ModRM, em_ror), 3817 F(DstMem | ModRM, em_rcl), 3818 F(DstMem | ModRM, em_rcr), 3819 F(DstMem | ModRM, em_shl), 3820 F(DstMem | ModRM, em_shr), 3821 F(DstMem | ModRM, em_shl), 3822 F(DstMem | ModRM, em_sar), 3823 }; 3824 3825 static const struct opcode group3[] = { 3826 F(DstMem | SrcImm | NoWrite, em_test), 3827 F(DstMem | SrcImm | NoWrite, em_test), 3828 F(DstMem | SrcNone | Lock, em_not), 3829 F(DstMem | SrcNone | Lock, em_neg), 3830 F(DstXacc | Src2Mem, em_mul_ex), 3831 F(DstXacc | Src2Mem, em_imul_ex), 3832 F(DstXacc | Src2Mem, em_div_ex), 3833 F(DstXacc | Src2Mem, em_idiv_ex), 3834 }; 3835 3836 static const struct opcode group4[] = { 3837 F(ByteOp | DstMem | SrcNone | Lock, em_inc), 3838 F(ByteOp | DstMem | SrcNone | Lock, em_dec), 3839 N, N, N, N, N, N, 3840 }; 3841 3842 static const struct opcode group5[] = { 3843 F(DstMem | SrcNone | Lock, em_inc), 3844 F(DstMem | SrcNone | Lock, em_dec), 3845 I(SrcMem | NearBranch, em_call_near_abs), 3846 I(SrcMemFAddr | ImplicitOps | Stack, em_call_far), 3847 I(SrcMem | NearBranch, em_jmp_abs), 3848 I(SrcMemFAddr | ImplicitOps, em_jmp_far), 3849 I(SrcMem | Stack, em_push), D(Undefined), 3850 }; 3851 3852 static const struct opcode group6[] = { 3853 DI(Prot | DstMem, sldt), 3854 DI(Prot | DstMem, str), 3855 II(Prot | Priv | SrcMem16, em_lldt, lldt), 3856 II(Prot | Priv | SrcMem16, em_ltr, ltr), 3857 N, N, N, N, 3858 }; 3859 3860 static const struct group_dual group7 = { { 3861 II(Mov | DstMem, em_sgdt, sgdt), 3862 II(Mov | DstMem, em_sidt, sidt), 3863 II(SrcMem | Priv, em_lgdt, lgdt), 3864 II(SrcMem | Priv, em_lidt, lidt), 3865 II(SrcNone | DstMem | Mov, em_smsw, smsw), N, 3866 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw), 3867 II(SrcMem | ByteOp | Priv | NoAccess, em_invlpg, invlpg), 3868 }, { 3869 EXT(0, group7_rm0), 3870 EXT(0, group7_rm1), 3871 N, EXT(0, group7_rm3), 3872 II(SrcNone | DstMem | Mov, em_smsw, smsw), N, 3873 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw), 3874 EXT(0, group7_rm7), 3875 } }; 3876 3877 static const struct opcode group8[] = { 3878 N, N, N, N, 3879 F(DstMem | SrcImmByte | NoWrite, em_bt), 3880 F(DstMem | SrcImmByte | Lock | PageTable, em_bts), 3881 F(DstMem | SrcImmByte | Lock, em_btr), 3882 F(DstMem | SrcImmByte | Lock | PageTable, em_btc), 3883 }; 3884 3885 static const struct group_dual group9 = { { 3886 N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N, 3887 }, { 3888 N, N, N, N, N, N, N, N, 3889 } }; 3890 3891 static const struct opcode group11[] = { 3892 I(DstMem | SrcImm | Mov | PageTable, em_mov), 3893 X7(D(Undefined)), 3894 }; 3895 3896 static const struct gprefix pfx_0f_ae_7 = { 3897 I(SrcMem | ByteOp, em_clflush), N, N, N, 3898 }; 3899 3900 static const struct group_dual group15 = { { 3901 N, N, N, N, N, N, N, GP(0, &pfx_0f_ae_7), 3902 }, { 3903 N, N, N, N, N, N, N, N, 3904 } }; 3905 3906 static const struct gprefix pfx_0f_6f_0f_7f = { 3907 I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov), 3908 }; 3909 3910 static const struct instr_dual instr_dual_0f_2b = { 3911 I(0, em_mov), N 3912 }; 3913 3914 static const struct gprefix pfx_0f_2b = { 3915 ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N, 3916 }; 3917 3918 static const struct gprefix pfx_0f_28_0f_29 = { 3919 I(Aligned, em_mov), I(Aligned, em_mov), N, N, 3920 }; 3921 3922 static const struct gprefix pfx_0f_e7 = { 3923 N, I(Sse, em_mov), N, N, 3924 }; 3925 3926 static const struct escape escape_d9 = { { 3927 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw), 3928 }, { 3929 /* 0xC0 - 0xC7 */ 3930 N, N, N, N, N, N, N, N, 3931 /* 0xC8 - 0xCF */ 3932 N, N, N, N, N, N, N, N, 3933 /* 0xD0 - 0xC7 */ 3934 N, N, N, N, N, N, N, N, 3935 /* 0xD8 - 0xDF */ 3936 N, N, N, N, N, N, N, N, 3937 /* 0xE0 - 0xE7 */ 3938 N, N, N, N, N, N, N, N, 3939 /* 0xE8 - 0xEF */ 3940 N, N, N, N, N, N, N, N, 3941 /* 0xF0 - 0xF7 */ 3942 N, N, N, N, N, N, N, N, 3943 /* 0xF8 - 0xFF */ 3944 N, N, N, N, N, N, N, N, 3945 } }; 3946 3947 static const struct escape escape_db = { { 3948 N, N, N, N, N, N, N, N, 3949 }, { 3950 /* 0xC0 - 0xC7 */ 3951 N, N, N, N, N, N, N, N, 3952 /* 0xC8 - 0xCF */ 3953 N, N, N, N, N, N, N, N, 3954 /* 0xD0 - 0xC7 */ 3955 N, N, N, N, N, N, N, N, 3956 /* 0xD8 - 0xDF */ 3957 N, N, N, N, N, N, N, N, 3958 /* 0xE0 - 0xE7 */ 3959 N, N, N, I(ImplicitOps, em_fninit), N, N, N, N, 3960 /* 0xE8 - 0xEF */ 3961 N, N, N, N, N, N, N, N, 3962 /* 0xF0 - 0xF7 */ 3963 N, N, N, N, N, N, N, N, 3964 /* 0xF8 - 0xFF */ 3965 N, N, N, N, N, N, N, N, 3966 } }; 3967 3968 static const struct escape escape_dd = { { 3969 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw), 3970 }, { 3971 /* 0xC0 - 0xC7 */ 3972 N, N, N, N, N, N, N, N, 3973 /* 0xC8 - 0xCF */ 3974 N, N, N, N, N, N, N, N, 3975 /* 0xD0 - 0xC7 */ 3976 N, N, N, N, N, N, N, N, 3977 /* 0xD8 - 0xDF */ 3978 N, N, N, N, N, N, N, N, 3979 /* 0xE0 - 0xE7 */ 3980 N, N, N, N, N, N, N, N, 3981 /* 0xE8 - 0xEF */ 3982 N, N, N, N, N, N, N, N, 3983 /* 0xF0 - 0xF7 */ 3984 N, N, N, N, N, N, N, N, 3985 /* 0xF8 - 0xFF */ 3986 N, N, N, N, N, N, N, N, 3987 } }; 3988 3989 static const struct instr_dual instr_dual_0f_c3 = { 3990 I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N 3991 }; 3992 3993 static const struct mode_dual mode_dual_63 = { 3994 N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd) 3995 }; 3996 3997 static const struct opcode opcode_table[256] = { 3998 /* 0x00 - 0x07 */ 3999 F6ALU(Lock, em_add), 4000 I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg), 4001 I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg), 4002 /* 0x08 - 0x0F */ 4003 F6ALU(Lock | PageTable, em_or), 4004 I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg), 4005 N, 4006 /* 0x10 - 0x17 */ 4007 F6ALU(Lock, em_adc), 4008 I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg), 4009 I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg), 4010 /* 0x18 - 0x1F */ 4011 F6ALU(Lock, em_sbb), 4012 I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg), 4013 I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg), 4014 /* 0x20 - 0x27 */ 4015 F6ALU(Lock | PageTable, em_and), N, N, 4016 /* 0x28 - 0x2F */ 4017 F6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das), 4018 /* 0x30 - 0x37 */ 4019 F6ALU(Lock, em_xor), N, N, 4020 /* 0x38 - 0x3F */ 4021 F6ALU(NoWrite, em_cmp), N, N, 4022 /* 0x40 - 0x4F */ 4023 X8(F(DstReg, em_inc)), X8(F(DstReg, em_dec)), 4024 /* 0x50 - 0x57 */ 4025 X8(I(SrcReg | Stack, em_push)), 4026 /* 0x58 - 0x5F */ 4027 X8(I(DstReg | Stack, em_pop)), 4028 /* 0x60 - 0x67 */ 4029 I(ImplicitOps | Stack | No64, em_pusha), 4030 I(ImplicitOps | Stack | No64, em_popa), 4031 N, MD(ModRM, &mode_dual_63), 4032 N, N, N, N, 4033 /* 0x68 - 0x6F */ 4034 I(SrcImm | Mov | Stack, em_push), 4035 I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op), 4036 I(SrcImmByte | Mov | Stack, em_push), 4037 I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op), 4038 I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */ 4039 I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */ 4040 /* 0x70 - 0x7F */ 4041 X16(D(SrcImmByte | NearBranch)), 4042 /* 0x80 - 0x87 */ 4043 G(ByteOp | DstMem | SrcImm, group1), 4044 G(DstMem | SrcImm, group1), 4045 G(ByteOp | DstMem | SrcImm | No64, group1), 4046 G(DstMem | SrcImmByte, group1), 4047 F2bv(DstMem | SrcReg | ModRM | NoWrite, em_test), 4048 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg), 4049 /* 0x88 - 0x8F */ 4050 I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov), 4051 I2bv(DstReg | SrcMem | ModRM | Mov, em_mov), 4052 I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg), 4053 D(ModRM | SrcMem | NoAccess | DstReg), 4054 I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm), 4055 G(0, group1A), 4056 /* 0x90 - 0x97 */ 4057 DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)), 4058 /* 0x98 - 0x9F */ 4059 D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd), 4060 I(SrcImmFAddr | No64, em_call_far), N, 4061 II(ImplicitOps | Stack, em_pushf, pushf), 4062 II(ImplicitOps | Stack, em_popf, popf), 4063 I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf), 4064 /* 0xA0 - 0xA7 */ 4065 I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov), 4066 I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov), 4067 I2bv(SrcSI | DstDI | Mov | String, em_mov), 4068 F2bv(SrcSI | DstDI | String | NoWrite, em_cmp_r), 4069 /* 0xA8 - 0xAF */ 4070 F2bv(DstAcc | SrcImm | NoWrite, em_test), 4071 I2bv(SrcAcc | DstDI | Mov | String, em_mov), 4072 I2bv(SrcSI | DstAcc | Mov | String, em_mov), 4073 F2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r), 4074 /* 0xB0 - 0xB7 */ 4075 X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)), 4076 /* 0xB8 - 0xBF */ 4077 X8(I(DstReg | SrcImm64 | Mov, em_mov)), 4078 /* 0xC0 - 0xC7 */ 4079 G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2), 4080 I(ImplicitOps | NearBranch | SrcImmU16, em_ret_near_imm), 4081 I(ImplicitOps | NearBranch, em_ret), 4082 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg), 4083 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg), 4084 G(ByteOp, group11), G(0, group11), 4085 /* 0xC8 - 0xCF */ 4086 I(Stack | SrcImmU16 | Src2ImmByte, em_enter), I(Stack, em_leave), 4087 I(ImplicitOps | SrcImmU16, em_ret_far_imm), 4088 I(ImplicitOps, em_ret_far), 4089 D(ImplicitOps), DI(SrcImmByte, intn), 4090 D(ImplicitOps | No64), II(ImplicitOps, em_iret, iret), 4091 /* 0xD0 - 0xD7 */ 4092 G(Src2One | ByteOp, group2), G(Src2One, group2), 4093 G(Src2CL | ByteOp, group2), G(Src2CL, group2), 4094 I(DstAcc | SrcImmUByte | No64, em_aam), 4095 I(DstAcc | SrcImmUByte | No64, em_aad), 4096 F(DstAcc | ByteOp | No64, em_salc), 4097 I(DstAcc | SrcXLat | ByteOp, em_mov), 4098 /* 0xD8 - 0xDF */ 4099 N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N, 4100 /* 0xE0 - 0xE7 */ 4101 X3(I(SrcImmByte | NearBranch, em_loop)), 4102 I(SrcImmByte | NearBranch, em_jcxz), 4103 I2bvIP(SrcImmUByte | DstAcc, em_in, in, check_perm_in), 4104 I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out), 4105 /* 0xE8 - 0xEF */ 4106 I(SrcImm | NearBranch, em_call), D(SrcImm | ImplicitOps | NearBranch), 4107 I(SrcImmFAddr | No64, em_jmp_far), 4108 D(SrcImmByte | ImplicitOps | NearBranch), 4109 I2bvIP(SrcDX | DstAcc, em_in, in, check_perm_in), 4110 I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out), 4111 /* 0xF0 - 0xF7 */ 4112 N, DI(ImplicitOps, icebp), N, N, 4113 DI(ImplicitOps | Priv, hlt), D(ImplicitOps), 4114 G(ByteOp, group3), G(0, group3), 4115 /* 0xF8 - 0xFF */ 4116 D(ImplicitOps), D(ImplicitOps), 4117 I(ImplicitOps, em_cli), I(ImplicitOps, em_sti), 4118 D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5), 4119 }; 4120 4121 static const struct opcode twobyte_table[256] = { 4122 /* 0x00 - 0x0F */ 4123 G(0, group6), GD(0, &group7), N, N, 4124 N, I(ImplicitOps | EmulateOnUD, em_syscall), 4125 II(ImplicitOps | Priv, em_clts, clts), N, 4126 DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N, 4127 N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N, 4128 /* 0x10 - 0x1F */ 4129 N, N, N, N, N, N, N, N, 4130 D(ImplicitOps | ModRM | SrcMem | NoAccess), 4131 N, N, N, N, N, N, D(ImplicitOps | ModRM | SrcMem | NoAccess), 4132 /* 0x20 - 0x2F */ 4133 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_read), 4134 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read), 4135 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write, 4136 check_cr_write), 4137 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write, 4138 check_dr_write), 4139 N, N, N, N, 4140 GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29), 4141 GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29), 4142 N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b), 4143 N, N, N, N, 4144 /* 0x30 - 0x3F */ 4145 II(ImplicitOps | Priv, em_wrmsr, wrmsr), 4146 IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc), 4147 II(ImplicitOps | Priv, em_rdmsr, rdmsr), 4148 IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc), 4149 I(ImplicitOps | EmulateOnUD, em_sysenter), 4150 I(ImplicitOps | Priv | EmulateOnUD, em_sysexit), 4151 N, N, 4152 N, N, N, N, N, N, N, N, 4153 /* 0x40 - 0x4F */ 4154 X16(D(DstReg | SrcMem | ModRM)), 4155 /* 0x50 - 0x5F */ 4156 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, 4157 /* 0x60 - 0x6F */ 4158 N, N, N, N, 4159 N, N, N, N, 4160 N, N, N, N, 4161 N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f), 4162 /* 0x70 - 0x7F */ 4163 N, N, N, N, 4164 N, N, N, N, 4165 N, N, N, N, 4166 N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f), 4167 /* 0x80 - 0x8F */ 4168 X16(D(SrcImm | NearBranch)), 4169 /* 0x90 - 0x9F */ 4170 X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)), 4171 /* 0xA0 - 0xA7 */ 4172 I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg), 4173 II(ImplicitOps, em_cpuid, cpuid), 4174 F(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt), 4175 F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld), 4176 F(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N, 4177 /* 0xA8 - 0xAF */ 4178 I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg), 4179 DI(ImplicitOps, rsm), 4180 F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts), 4181 F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd), 4182 F(DstMem | SrcReg | Src2CL | ModRM, em_shrd), 4183 GD(0, &group15), F(DstReg | SrcMem | ModRM, em_imul), 4184 /* 0xB0 - 0xB7 */ 4185 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg), 4186 I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg), 4187 F(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr), 4188 I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg), 4189 I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg), 4190 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov), 4191 /* 0xB8 - 0xBF */ 4192 N, N, 4193 G(BitOp, group8), 4194 F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc), 4195 F(DstReg | SrcMem | ModRM, em_bsf), F(DstReg | SrcMem | ModRM, em_bsr), 4196 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov), 4197 /* 0xC0 - 0xC7 */ 4198 F2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd), 4199 N, ID(0, &instr_dual_0f_c3), 4200 N, N, N, GD(0, &group9), 4201 /* 0xC8 - 0xCF */ 4202 X8(I(DstReg, em_bswap)), 4203 /* 0xD0 - 0xDF */ 4204 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, 4205 /* 0xE0 - 0xEF */ 4206 N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7), 4207 N, N, N, N, N, N, N, N, 4208 /* 0xF0 - 0xFF */ 4209 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N 4210 }; 4211 4212 static const struct instr_dual instr_dual_0f_38_f0 = { 4213 I(DstReg | SrcMem | Mov, em_movbe), N 4214 }; 4215 4216 static const struct instr_dual instr_dual_0f_38_f1 = { 4217 I(DstMem | SrcReg | Mov, em_movbe), N 4218 }; 4219 4220 static const struct gprefix three_byte_0f_38_f0 = { 4221 ID(0, &instr_dual_0f_38_f0), N, N, N 4222 }; 4223 4224 static const struct gprefix three_byte_0f_38_f1 = { 4225 ID(0, &instr_dual_0f_38_f1), N, N, N 4226 }; 4227 4228 /* 4229 * Insns below are selected by the prefix which indexed by the third opcode 4230 * byte. 4231 */ 4232 static const struct opcode opcode_map_0f_38[256] = { 4233 /* 0x00 - 0x7f */ 4234 X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), 4235 /* 0x80 - 0xef */ 4236 X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), 4237 /* 0xf0 - 0xf1 */ 4238 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0), 4239 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1), 4240 /* 0xf2 - 0xff */ 4241 N, N, X4(N), X8(N) 4242 }; 4243 4244 #undef D 4245 #undef N 4246 #undef G 4247 #undef GD 4248 #undef I 4249 #undef GP 4250 #undef EXT 4251 #undef MD 4252 #undef ID 4253 4254 #undef D2bv 4255 #undef D2bvIP 4256 #undef I2bv 4257 #undef I2bvIP 4258 #undef I6ALU 4259 4260 static unsigned imm_size(struct x86_emulate_ctxt *ctxt) 4261 { 4262 unsigned size; 4263 4264 size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4265 if (size == 8) 4266 size = 4; 4267 return size; 4268 } 4269 4270 static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op, 4271 unsigned size, bool sign_extension) 4272 { 4273 int rc = X86EMUL_CONTINUE; 4274 4275 op->type = OP_IMM; 4276 op->bytes = size; 4277 op->addr.mem.ea = ctxt->_eip; 4278 /* NB. Immediates are sign-extended as necessary. */ 4279 switch (op->bytes) { 4280 case 1: 4281 op->val = insn_fetch(s8, ctxt); 4282 break; 4283 case 2: 4284 op->val = insn_fetch(s16, ctxt); 4285 break; 4286 case 4: 4287 op->val = insn_fetch(s32, ctxt); 4288 break; 4289 case 8: 4290 op->val = insn_fetch(s64, ctxt); 4291 break; 4292 } 4293 if (!sign_extension) { 4294 switch (op->bytes) { 4295 case 1: 4296 op->val &= 0xff; 4297 break; 4298 case 2: 4299 op->val &= 0xffff; 4300 break; 4301 case 4: 4302 op->val &= 0xffffffff; 4303 break; 4304 } 4305 } 4306 done: 4307 return rc; 4308 } 4309 4310 static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op, 4311 unsigned d) 4312 { 4313 int rc = X86EMUL_CONTINUE; 4314 4315 switch (d) { 4316 case OpReg: 4317 decode_register_operand(ctxt, op); 4318 break; 4319 case OpImmUByte: 4320 rc = decode_imm(ctxt, op, 1, false); 4321 break; 4322 case OpMem: 4323 ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4324 mem_common: 4325 *op = ctxt->memop; 4326 ctxt->memopp = op; 4327 if (ctxt->d & BitOp) 4328 fetch_bit_operand(ctxt); 4329 op->orig_val = op->val; 4330 break; 4331 case OpMem64: 4332 ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8; 4333 goto mem_common; 4334 case OpAcc: 4335 op->type = OP_REG; 4336 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4337 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX); 4338 fetch_register_operand(op); 4339 op->orig_val = op->val; 4340 break; 4341 case OpAccLo: 4342 op->type = OP_REG; 4343 op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes; 4344 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX); 4345 fetch_register_operand(op); 4346 op->orig_val = op->val; 4347 break; 4348 case OpAccHi: 4349 if (ctxt->d & ByteOp) { 4350 op->type = OP_NONE; 4351 break; 4352 } 4353 op->type = OP_REG; 4354 op->bytes = ctxt->op_bytes; 4355 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX); 4356 fetch_register_operand(op); 4357 op->orig_val = op->val; 4358 break; 4359 case OpDI: 4360 op->type = OP_MEM; 4361 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4362 op->addr.mem.ea = 4363 register_address(ctxt, VCPU_REGS_RDI); 4364 op->addr.mem.seg = VCPU_SREG_ES; 4365 op->val = 0; 4366 op->count = 1; 4367 break; 4368 case OpDX: 4369 op->type = OP_REG; 4370 op->bytes = 2; 4371 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX); 4372 fetch_register_operand(op); 4373 break; 4374 case OpCL: 4375 op->type = OP_IMM; 4376 op->bytes = 1; 4377 op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff; 4378 break; 4379 case OpImmByte: 4380 rc = decode_imm(ctxt, op, 1, true); 4381 break; 4382 case OpOne: 4383 op->type = OP_IMM; 4384 op->bytes = 1; 4385 op->val = 1; 4386 break; 4387 case OpImm: 4388 rc = decode_imm(ctxt, op, imm_size(ctxt), true); 4389 break; 4390 case OpImm64: 4391 rc = decode_imm(ctxt, op, ctxt->op_bytes, true); 4392 break; 4393 case OpMem8: 4394 ctxt->memop.bytes = 1; 4395 if (ctxt->memop.type == OP_REG) { 4396 ctxt->memop.addr.reg = decode_register(ctxt, 4397 ctxt->modrm_rm, true); 4398 fetch_register_operand(&ctxt->memop); 4399 } 4400 goto mem_common; 4401 case OpMem16: 4402 ctxt->memop.bytes = 2; 4403 goto mem_common; 4404 case OpMem32: 4405 ctxt->memop.bytes = 4; 4406 goto mem_common; 4407 case OpImmU16: 4408 rc = decode_imm(ctxt, op, 2, false); 4409 break; 4410 case OpImmU: 4411 rc = decode_imm(ctxt, op, imm_size(ctxt), false); 4412 break; 4413 case OpSI: 4414 op->type = OP_MEM; 4415 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4416 op->addr.mem.ea = 4417 register_address(ctxt, VCPU_REGS_RSI); 4418 op->addr.mem.seg = ctxt->seg_override; 4419 op->val = 0; 4420 op->count = 1; 4421 break; 4422 case OpXLat: 4423 op->type = OP_MEM; 4424 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; 4425 op->addr.mem.ea = 4426 address_mask(ctxt, 4427 reg_read(ctxt, VCPU_REGS_RBX) + 4428 (reg_read(ctxt, VCPU_REGS_RAX) & 0xff)); 4429 op->addr.mem.seg = ctxt->seg_override; 4430 op->val = 0; 4431 break; 4432 case OpImmFAddr: 4433 op->type = OP_IMM; 4434 op->addr.mem.ea = ctxt->_eip; 4435 op->bytes = ctxt->op_bytes + 2; 4436 insn_fetch_arr(op->valptr, op->bytes, ctxt); 4437 break; 4438 case OpMemFAddr: 4439 ctxt->memop.bytes = ctxt->op_bytes + 2; 4440 goto mem_common; 4441 case OpES: 4442 op->type = OP_IMM; 4443 op->val = VCPU_SREG_ES; 4444 break; 4445 case OpCS: 4446 op->type = OP_IMM; 4447 op->val = VCPU_SREG_CS; 4448 break; 4449 case OpSS: 4450 op->type = OP_IMM; 4451 op->val = VCPU_SREG_SS; 4452 break; 4453 case OpDS: 4454 op->type = OP_IMM; 4455 op->val = VCPU_SREG_DS; 4456 break; 4457 case OpFS: 4458 op->type = OP_IMM; 4459 op->val = VCPU_SREG_FS; 4460 break; 4461 case OpGS: 4462 op->type = OP_IMM; 4463 op->val = VCPU_SREG_GS; 4464 break; 4465 case OpImplicit: 4466 /* Special instructions do their own operand decoding. */ 4467 default: 4468 op->type = OP_NONE; /* Disable writeback. */ 4469 break; 4470 } 4471 4472 done: 4473 return rc; 4474 } 4475 4476 int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len) 4477 { 4478 int rc = X86EMUL_CONTINUE; 4479 int mode = ctxt->mode; 4480 int def_op_bytes, def_ad_bytes, goffset, simd_prefix; 4481 bool op_prefix = false; 4482 bool has_seg_override = false; 4483 struct opcode opcode; 4484 4485 ctxt->memop.type = OP_NONE; 4486 ctxt->memopp = NULL; 4487 ctxt->_eip = ctxt->eip; 4488 ctxt->fetch.ptr = ctxt->fetch.data; 4489 ctxt->fetch.end = ctxt->fetch.data + insn_len; 4490 ctxt->opcode_len = 1; 4491 if (insn_len > 0) 4492 memcpy(ctxt->fetch.data, insn, insn_len); 4493 else { 4494 rc = __do_insn_fetch_bytes(ctxt, 1); 4495 if (rc != X86EMUL_CONTINUE) 4496 return rc; 4497 } 4498 4499 switch (mode) { 4500 case X86EMUL_MODE_REAL: 4501 case X86EMUL_MODE_VM86: 4502 case X86EMUL_MODE_PROT16: 4503 def_op_bytes = def_ad_bytes = 2; 4504 break; 4505 case X86EMUL_MODE_PROT32: 4506 def_op_bytes = def_ad_bytes = 4; 4507 break; 4508 #ifdef CONFIG_X86_64 4509 case X86EMUL_MODE_PROT64: 4510 def_op_bytes = 4; 4511 def_ad_bytes = 8; 4512 break; 4513 #endif 4514 default: 4515 return EMULATION_FAILED; 4516 } 4517 4518 ctxt->op_bytes = def_op_bytes; 4519 ctxt->ad_bytes = def_ad_bytes; 4520 4521 /* Legacy prefixes. */ 4522 for (;;) { 4523 switch (ctxt->b = insn_fetch(u8, ctxt)) { 4524 case 0x66: /* operand-size override */ 4525 op_prefix = true; 4526 /* switch between 2/4 bytes */ 4527 ctxt->op_bytes = def_op_bytes ^ 6; 4528 break; 4529 case 0x67: /* address-size override */ 4530 if (mode == X86EMUL_MODE_PROT64) 4531 /* switch between 4/8 bytes */ 4532 ctxt->ad_bytes = def_ad_bytes ^ 12; 4533 else 4534 /* switch between 2/4 bytes */ 4535 ctxt->ad_bytes = def_ad_bytes ^ 6; 4536 break; 4537 case 0x26: /* ES override */ 4538 case 0x2e: /* CS override */ 4539 case 0x36: /* SS override */ 4540 case 0x3e: /* DS override */ 4541 has_seg_override = true; 4542 ctxt->seg_override = (ctxt->b >> 3) & 3; 4543 break; 4544 case 0x64: /* FS override */ 4545 case 0x65: /* GS override */ 4546 has_seg_override = true; 4547 ctxt->seg_override = ctxt->b & 7; 4548 break; 4549 case 0x40 ... 0x4f: /* REX */ 4550 if (mode != X86EMUL_MODE_PROT64) 4551 goto done_prefixes; 4552 ctxt->rex_prefix = ctxt->b; 4553 continue; 4554 case 0xf0: /* LOCK */ 4555 ctxt->lock_prefix = 1; 4556 break; 4557 case 0xf2: /* REPNE/REPNZ */ 4558 case 0xf3: /* REP/REPE/REPZ */ 4559 ctxt->rep_prefix = ctxt->b; 4560 break; 4561 default: 4562 goto done_prefixes; 4563 } 4564 4565 /* Any legacy prefix after a REX prefix nullifies its effect. */ 4566 4567 ctxt->rex_prefix = 0; 4568 } 4569 4570 done_prefixes: 4571 4572 /* REX prefix. */ 4573 if (ctxt->rex_prefix & 8) 4574 ctxt->op_bytes = 8; /* REX.W */ 4575 4576 /* Opcode byte(s). */ 4577 opcode = opcode_table[ctxt->b]; 4578 /* Two-byte opcode? */ 4579 if (ctxt->b == 0x0f) { 4580 ctxt->opcode_len = 2; 4581 ctxt->b = insn_fetch(u8, ctxt); 4582 opcode = twobyte_table[ctxt->b]; 4583 4584 /* 0F_38 opcode map */ 4585 if (ctxt->b == 0x38) { 4586 ctxt->opcode_len = 3; 4587 ctxt->b = insn_fetch(u8, ctxt); 4588 opcode = opcode_map_0f_38[ctxt->b]; 4589 } 4590 } 4591 ctxt->d = opcode.flags; 4592 4593 if (ctxt->d & ModRM) 4594 ctxt->modrm = insn_fetch(u8, ctxt); 4595 4596 /* vex-prefix instructions are not implemented */ 4597 if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) && 4598 (mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) { 4599 ctxt->d = NotImpl; 4600 } 4601 4602 while (ctxt->d & GroupMask) { 4603 switch (ctxt->d & GroupMask) { 4604 case Group: 4605 goffset = (ctxt->modrm >> 3) & 7; 4606 opcode = opcode.u.group[goffset]; 4607 break; 4608 case GroupDual: 4609 goffset = (ctxt->modrm >> 3) & 7; 4610 if ((ctxt->modrm >> 6) == 3) 4611 opcode = opcode.u.gdual->mod3[goffset]; 4612 else 4613 opcode = opcode.u.gdual->mod012[goffset]; 4614 break; 4615 case RMExt: 4616 goffset = ctxt->modrm & 7; 4617 opcode = opcode.u.group[goffset]; 4618 break; 4619 case Prefix: 4620 if (ctxt->rep_prefix && op_prefix) 4621 return EMULATION_FAILED; 4622 simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix; 4623 switch (simd_prefix) { 4624 case 0x00: opcode = opcode.u.gprefix->pfx_no; break; 4625 case 0x66: opcode = opcode.u.gprefix->pfx_66; break; 4626 case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break; 4627 case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break; 4628 } 4629 break; 4630 case Escape: 4631 if (ctxt->modrm > 0xbf) 4632 opcode = opcode.u.esc->high[ctxt->modrm - 0xc0]; 4633 else 4634 opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7]; 4635 break; 4636 case InstrDual: 4637 if ((ctxt->modrm >> 6) == 3) 4638 opcode = opcode.u.idual->mod3; 4639 else 4640 opcode = opcode.u.idual->mod012; 4641 break; 4642 case ModeDual: 4643 if (ctxt->mode == X86EMUL_MODE_PROT64) 4644 opcode = opcode.u.mdual->mode64; 4645 else 4646 opcode = opcode.u.mdual->mode32; 4647 break; 4648 default: 4649 return EMULATION_FAILED; 4650 } 4651 4652 ctxt->d &= ~(u64)GroupMask; 4653 ctxt->d |= opcode.flags; 4654 } 4655 4656 /* Unrecognised? */ 4657 if (ctxt->d == 0) 4658 return EMULATION_FAILED; 4659 4660 ctxt->execute = opcode.u.execute; 4661 4662 if (unlikely(ctxt->ud) && likely(!(ctxt->d & EmulateOnUD))) 4663 return EMULATION_FAILED; 4664 4665 if (unlikely(ctxt->d & 4666 (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch| 4667 No16))) { 4668 /* 4669 * These are copied unconditionally here, and checked unconditionally 4670 * in x86_emulate_insn. 4671 */ 4672 ctxt->check_perm = opcode.check_perm; 4673 ctxt->intercept = opcode.intercept; 4674 4675 if (ctxt->d & NotImpl) 4676 return EMULATION_FAILED; 4677 4678 if (mode == X86EMUL_MODE_PROT64) { 4679 if (ctxt->op_bytes == 4 && (ctxt->d & Stack)) 4680 ctxt->op_bytes = 8; 4681 else if (ctxt->d & NearBranch) 4682 ctxt->op_bytes = 8; 4683 } 4684 4685 if (ctxt->d & Op3264) { 4686 if (mode == X86EMUL_MODE_PROT64) 4687 ctxt->op_bytes = 8; 4688 else 4689 ctxt->op_bytes = 4; 4690 } 4691 4692 if ((ctxt->d & No16) && ctxt->op_bytes == 2) 4693 ctxt->op_bytes = 4; 4694 4695 if (ctxt->d & Sse) 4696 ctxt->op_bytes = 16; 4697 else if (ctxt->d & Mmx) 4698 ctxt->op_bytes = 8; 4699 } 4700 4701 /* ModRM and SIB bytes. */ 4702 if (ctxt->d & ModRM) { 4703 rc = decode_modrm(ctxt, &ctxt->memop); 4704 if (!has_seg_override) { 4705 has_seg_override = true; 4706 ctxt->seg_override = ctxt->modrm_seg; 4707 } 4708 } else if (ctxt->d & MemAbs) 4709 rc = decode_abs(ctxt, &ctxt->memop); 4710 if (rc != X86EMUL_CONTINUE) 4711 goto done; 4712 4713 if (!has_seg_override) 4714 ctxt->seg_override = VCPU_SREG_DS; 4715 4716 ctxt->memop.addr.mem.seg = ctxt->seg_override; 4717 4718 /* 4719 * Decode and fetch the source operand: register, memory 4720 * or immediate. 4721 */ 4722 rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask); 4723 if (rc != X86EMUL_CONTINUE) 4724 goto done; 4725 4726 /* 4727 * Decode and fetch the second source operand: register, memory 4728 * or immediate. 4729 */ 4730 rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask); 4731 if (rc != X86EMUL_CONTINUE) 4732 goto done; 4733 4734 /* Decode and fetch the destination operand: register or memory. */ 4735 rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask); 4736 4737 if (ctxt->rip_relative) 4738 ctxt->memopp->addr.mem.ea = address_mask(ctxt, 4739 ctxt->memopp->addr.mem.ea + ctxt->_eip); 4740 4741 done: 4742 return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK; 4743 } 4744 4745 bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt) 4746 { 4747 return ctxt->d & PageTable; 4748 } 4749 4750 static bool string_insn_completed(struct x86_emulate_ctxt *ctxt) 4751 { 4752 /* The second termination condition only applies for REPE 4753 * and REPNE. Test if the repeat string operation prefix is 4754 * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the 4755 * corresponding termination condition according to: 4756 * - if REPE/REPZ and ZF = 0 then done 4757 * - if REPNE/REPNZ and ZF = 1 then done 4758 */ 4759 if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) || 4760 (ctxt->b == 0xae) || (ctxt->b == 0xaf)) 4761 && (((ctxt->rep_prefix == REPE_PREFIX) && 4762 ((ctxt->eflags & EFLG_ZF) == 0)) 4763 || ((ctxt->rep_prefix == REPNE_PREFIX) && 4764 ((ctxt->eflags & EFLG_ZF) == EFLG_ZF)))) 4765 return true; 4766 4767 return false; 4768 } 4769 4770 static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt) 4771 { 4772 bool fault = false; 4773 4774 ctxt->ops->get_fpu(ctxt); 4775 asm volatile("1: fwait \n\t" 4776 "2: \n\t" 4777 ".pushsection .fixup,\"ax\" \n\t" 4778 "3: \n\t" 4779 "movb $1, %[fault] \n\t" 4780 "jmp 2b \n\t" 4781 ".popsection \n\t" 4782 _ASM_EXTABLE(1b, 3b) 4783 : [fault]"+qm"(fault)); 4784 ctxt->ops->put_fpu(ctxt); 4785 4786 if (unlikely(fault)) 4787 return emulate_exception(ctxt, MF_VECTOR, 0, false); 4788 4789 return X86EMUL_CONTINUE; 4790 } 4791 4792 static void fetch_possible_mmx_operand(struct x86_emulate_ctxt *ctxt, 4793 struct operand *op) 4794 { 4795 if (op->type == OP_MM) 4796 read_mmx_reg(ctxt, &op->mm_val, op->addr.mm); 4797 } 4798 4799 static int fastop(struct x86_emulate_ctxt *ctxt, void (*fop)(struct fastop *)) 4800 { 4801 ulong flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF; 4802 if (!(ctxt->d & ByteOp)) 4803 fop += __ffs(ctxt->dst.bytes) * FASTOP_SIZE; 4804 asm("push %[flags]; popf; call *%[fastop]; pushf; pop %[flags]\n" 4805 : "+a"(ctxt->dst.val), "+d"(ctxt->src.val), [flags]"+D"(flags), 4806 [fastop]"+S"(fop) 4807 : "c"(ctxt->src2.val)); 4808 ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK); 4809 if (!fop) /* exception is returned in fop variable */ 4810 return emulate_de(ctxt); 4811 return X86EMUL_CONTINUE; 4812 } 4813 4814 void init_decode_cache(struct x86_emulate_ctxt *ctxt) 4815 { 4816 memset(&ctxt->rip_relative, 0, 4817 (void *)&ctxt->modrm - (void *)&ctxt->rip_relative); 4818 4819 ctxt->io_read.pos = 0; 4820 ctxt->io_read.end = 0; 4821 ctxt->mem_read.end = 0; 4822 } 4823 4824 int x86_emulate_insn(struct x86_emulate_ctxt *ctxt) 4825 { 4826 const struct x86_emulate_ops *ops = ctxt->ops; 4827 int rc = X86EMUL_CONTINUE; 4828 int saved_dst_type = ctxt->dst.type; 4829 4830 ctxt->mem_read.pos = 0; 4831 4832 /* LOCK prefix is allowed only with some instructions */ 4833 if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) { 4834 rc = emulate_ud(ctxt); 4835 goto done; 4836 } 4837 4838 if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) { 4839 rc = emulate_ud(ctxt); 4840 goto done; 4841 } 4842 4843 if (unlikely(ctxt->d & 4844 (No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) { 4845 if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) || 4846 (ctxt->d & Undefined)) { 4847 rc = emulate_ud(ctxt); 4848 goto done; 4849 } 4850 4851 if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM))) 4852 || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) { 4853 rc = emulate_ud(ctxt); 4854 goto done; 4855 } 4856 4857 if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) { 4858 rc = emulate_nm(ctxt); 4859 goto done; 4860 } 4861 4862 if (ctxt->d & Mmx) { 4863 rc = flush_pending_x87_faults(ctxt); 4864 if (rc != X86EMUL_CONTINUE) 4865 goto done; 4866 /* 4867 * Now that we know the fpu is exception safe, we can fetch 4868 * operands from it. 4869 */ 4870 fetch_possible_mmx_operand(ctxt, &ctxt->src); 4871 fetch_possible_mmx_operand(ctxt, &ctxt->src2); 4872 if (!(ctxt->d & Mov)) 4873 fetch_possible_mmx_operand(ctxt, &ctxt->dst); 4874 } 4875 4876 if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) { 4877 rc = emulator_check_intercept(ctxt, ctxt->intercept, 4878 X86_ICPT_PRE_EXCEPT); 4879 if (rc != X86EMUL_CONTINUE) 4880 goto done; 4881 } 4882 4883 /* Instruction can only be executed in protected mode */ 4884 if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) { 4885 rc = emulate_ud(ctxt); 4886 goto done; 4887 } 4888 4889 /* Privileged instruction can be executed only in CPL=0 */ 4890 if ((ctxt->d & Priv) && ops->cpl(ctxt)) { 4891 if (ctxt->d & PrivUD) 4892 rc = emulate_ud(ctxt); 4893 else 4894 rc = emulate_gp(ctxt, 0); 4895 goto done; 4896 } 4897 4898 /* Do instruction specific permission checks */ 4899 if (ctxt->d & CheckPerm) { 4900 rc = ctxt->check_perm(ctxt); 4901 if (rc != X86EMUL_CONTINUE) 4902 goto done; 4903 } 4904 4905 if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) { 4906 rc = emulator_check_intercept(ctxt, ctxt->intercept, 4907 X86_ICPT_POST_EXCEPT); 4908 if (rc != X86EMUL_CONTINUE) 4909 goto done; 4910 } 4911 4912 if (ctxt->rep_prefix && (ctxt->d & String)) { 4913 /* All REP prefixes have the same first termination condition */ 4914 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) { 4915 ctxt->eip = ctxt->_eip; 4916 ctxt->eflags &= ~EFLG_RF; 4917 goto done; 4918 } 4919 } 4920 } 4921 4922 if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) { 4923 rc = segmented_read(ctxt, ctxt->src.addr.mem, 4924 ctxt->src.valptr, ctxt->src.bytes); 4925 if (rc != X86EMUL_CONTINUE) 4926 goto done; 4927 ctxt->src.orig_val64 = ctxt->src.val64; 4928 } 4929 4930 if (ctxt->src2.type == OP_MEM) { 4931 rc = segmented_read(ctxt, ctxt->src2.addr.mem, 4932 &ctxt->src2.val, ctxt->src2.bytes); 4933 if (rc != X86EMUL_CONTINUE) 4934 goto done; 4935 } 4936 4937 if ((ctxt->d & DstMask) == ImplicitOps) 4938 goto special_insn; 4939 4940 4941 if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) { 4942 /* optimisation - avoid slow emulated read if Mov */ 4943 rc = segmented_read(ctxt, ctxt->dst.addr.mem, 4944 &ctxt->dst.val, ctxt->dst.bytes); 4945 if (rc != X86EMUL_CONTINUE) { 4946 if (!(ctxt->d & NoWrite) && 4947 rc == X86EMUL_PROPAGATE_FAULT && 4948 ctxt->exception.vector == PF_VECTOR) 4949 ctxt->exception.error_code |= PFERR_WRITE_MASK; 4950 goto done; 4951 } 4952 } 4953 ctxt->dst.orig_val = ctxt->dst.val; 4954 4955 special_insn: 4956 4957 if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) { 4958 rc = emulator_check_intercept(ctxt, ctxt->intercept, 4959 X86_ICPT_POST_MEMACCESS); 4960 if (rc != X86EMUL_CONTINUE) 4961 goto done; 4962 } 4963 4964 if (ctxt->rep_prefix && (ctxt->d & String)) 4965 ctxt->eflags |= EFLG_RF; 4966 else 4967 ctxt->eflags &= ~EFLG_RF; 4968 4969 if (ctxt->execute) { 4970 if (ctxt->d & Fastop) { 4971 void (*fop)(struct fastop *) = (void *)ctxt->execute; 4972 rc = fastop(ctxt, fop); 4973 if (rc != X86EMUL_CONTINUE) 4974 goto done; 4975 goto writeback; 4976 } 4977 rc = ctxt->execute(ctxt); 4978 if (rc != X86EMUL_CONTINUE) 4979 goto done; 4980 goto writeback; 4981 } 4982 4983 if (ctxt->opcode_len == 2) 4984 goto twobyte_insn; 4985 else if (ctxt->opcode_len == 3) 4986 goto threebyte_insn; 4987 4988 switch (ctxt->b) { 4989 case 0x70 ... 0x7f: /* jcc (short) */ 4990 if (test_cc(ctxt->b, ctxt->eflags)) 4991 rc = jmp_rel(ctxt, ctxt->src.val); 4992 break; 4993 case 0x8d: /* lea r16/r32, m */ 4994 ctxt->dst.val = ctxt->src.addr.mem.ea; 4995 break; 4996 case 0x90 ... 0x97: /* nop / xchg reg, rax */ 4997 if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX)) 4998 ctxt->dst.type = OP_NONE; 4999 else 5000 rc = em_xchg(ctxt); 5001 break; 5002 case 0x98: /* cbw/cwde/cdqe */ 5003 switch (ctxt->op_bytes) { 5004 case 2: ctxt->dst.val = (s8)ctxt->dst.val; break; 5005 case 4: ctxt->dst.val = (s16)ctxt->dst.val; break; 5006 case 8: ctxt->dst.val = (s32)ctxt->dst.val; break; 5007 } 5008 break; 5009 case 0xcc: /* int3 */ 5010 rc = emulate_int(ctxt, 3); 5011 break; 5012 case 0xcd: /* int n */ 5013 rc = emulate_int(ctxt, ctxt->src.val); 5014 break; 5015 case 0xce: /* into */ 5016 if (ctxt->eflags & EFLG_OF) 5017 rc = emulate_int(ctxt, 4); 5018 break; 5019 case 0xe9: /* jmp rel */ 5020 case 0xeb: /* jmp rel short */ 5021 rc = jmp_rel(ctxt, ctxt->src.val); 5022 ctxt->dst.type = OP_NONE; /* Disable writeback. */ 5023 break; 5024 case 0xf4: /* hlt */ 5025 ctxt->ops->halt(ctxt); 5026 break; 5027 case 0xf5: /* cmc */ 5028 /* complement carry flag from eflags reg */ 5029 ctxt->eflags ^= EFLG_CF; 5030 break; 5031 case 0xf8: /* clc */ 5032 ctxt->eflags &= ~EFLG_CF; 5033 break; 5034 case 0xf9: /* stc */ 5035 ctxt->eflags |= EFLG_CF; 5036 break; 5037 case 0xfc: /* cld */ 5038 ctxt->eflags &= ~EFLG_DF; 5039 break; 5040 case 0xfd: /* std */ 5041 ctxt->eflags |= EFLG_DF; 5042 break; 5043 default: 5044 goto cannot_emulate; 5045 } 5046 5047 if (rc != X86EMUL_CONTINUE) 5048 goto done; 5049 5050 writeback: 5051 if (ctxt->d & SrcWrite) { 5052 BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR); 5053 rc = writeback(ctxt, &ctxt->src); 5054 if (rc != X86EMUL_CONTINUE) 5055 goto done; 5056 } 5057 if (!(ctxt->d & NoWrite)) { 5058 rc = writeback(ctxt, &ctxt->dst); 5059 if (rc != X86EMUL_CONTINUE) 5060 goto done; 5061 } 5062 5063 /* 5064 * restore dst type in case the decoding will be reused 5065 * (happens for string instruction ) 5066 */ 5067 ctxt->dst.type = saved_dst_type; 5068 5069 if ((ctxt->d & SrcMask) == SrcSI) 5070 string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src); 5071 5072 if ((ctxt->d & DstMask) == DstDI) 5073 string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst); 5074 5075 if (ctxt->rep_prefix && (ctxt->d & String)) { 5076 unsigned int count; 5077 struct read_cache *r = &ctxt->io_read; 5078 if ((ctxt->d & SrcMask) == SrcSI) 5079 count = ctxt->src.count; 5080 else 5081 count = ctxt->dst.count; 5082 register_address_increment(ctxt, VCPU_REGS_RCX, -count); 5083 5084 if (!string_insn_completed(ctxt)) { 5085 /* 5086 * Re-enter guest when pio read ahead buffer is empty 5087 * or, if it is not used, after each 1024 iteration. 5088 */ 5089 if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) && 5090 (r->end == 0 || r->end != r->pos)) { 5091 /* 5092 * Reset read cache. Usually happens before 5093 * decode, but since instruction is restarted 5094 * we have to do it here. 5095 */ 5096 ctxt->mem_read.end = 0; 5097 writeback_registers(ctxt); 5098 return EMULATION_RESTART; 5099 } 5100 goto done; /* skip rip writeback */ 5101 } 5102 ctxt->eflags &= ~EFLG_RF; 5103 } 5104 5105 ctxt->eip = ctxt->_eip; 5106 5107 done: 5108 if (rc == X86EMUL_PROPAGATE_FAULT) { 5109 WARN_ON(ctxt->exception.vector > 0x1f); 5110 ctxt->have_exception = true; 5111 } 5112 if (rc == X86EMUL_INTERCEPTED) 5113 return EMULATION_INTERCEPTED; 5114 5115 if (rc == X86EMUL_CONTINUE) 5116 writeback_registers(ctxt); 5117 5118 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK; 5119 5120 twobyte_insn: 5121 switch (ctxt->b) { 5122 case 0x09: /* wbinvd */ 5123 (ctxt->ops->wbinvd)(ctxt); 5124 break; 5125 case 0x08: /* invd */ 5126 case 0x0d: /* GrpP (prefetch) */ 5127 case 0x18: /* Grp16 (prefetch/nop) */ 5128 case 0x1f: /* nop */ 5129 break; 5130 case 0x20: /* mov cr, reg */ 5131 ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg); 5132 break; 5133 case 0x21: /* mov from dr to reg */ 5134 ops->get_dr(ctxt, ctxt->modrm_reg, &ctxt->dst.val); 5135 break; 5136 case 0x40 ... 0x4f: /* cmov */ 5137 if (test_cc(ctxt->b, ctxt->eflags)) 5138 ctxt->dst.val = ctxt->src.val; 5139 else if (ctxt->mode != X86EMUL_MODE_PROT64 || 5140 ctxt->op_bytes != 4) 5141 ctxt->dst.type = OP_NONE; /* no writeback */ 5142 break; 5143 case 0x80 ... 0x8f: /* jnz rel, etc*/ 5144 if (test_cc(ctxt->b, ctxt->eflags)) 5145 rc = jmp_rel(ctxt, ctxt->src.val); 5146 break; 5147 case 0x90 ... 0x9f: /* setcc r/m8 */ 5148 ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags); 5149 break; 5150 case 0xb6 ... 0xb7: /* movzx */ 5151 ctxt->dst.bytes = ctxt->op_bytes; 5152 ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val 5153 : (u16) ctxt->src.val; 5154 break; 5155 case 0xbe ... 0xbf: /* movsx */ 5156 ctxt->dst.bytes = ctxt->op_bytes; 5157 ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val : 5158 (s16) ctxt->src.val; 5159 break; 5160 default: 5161 goto cannot_emulate; 5162 } 5163 5164 threebyte_insn: 5165 5166 if (rc != X86EMUL_CONTINUE) 5167 goto done; 5168 5169 goto writeback; 5170 5171 cannot_emulate: 5172 return EMULATION_FAILED; 5173 } 5174 5175 void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt) 5176 { 5177 invalidate_registers(ctxt); 5178 } 5179 5180 void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt) 5181 { 5182 writeback_registers(ctxt); 5183 } 5184