History log of /openbmc/linux/arch/x86/kvm/emulate.c (Results 1 – 25 of 2481)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
Revision tags: v6.6.25, v6.6.24, v6.6.23, v6.6.16, v6.6.15, v6.6.14, v6.6.13, v6.6.12, v6.6.11, v6.6.10, v6.6.9, v6.6.8, v6.6.7, v6.6.6, v6.6.5, v6.6.4, v6.6.3, v6.6.2, v6.5.11, v6.6.1, v6.5.10, v6.6, v6.5.9, v6.5.8, v6.5.7, v6.5.6, v6.5.5, v6.5.4, v6.5.3, v6.5.2, v6.1.51, v6.5.1, v6.1.50, v6.5, v6.1.49, v6.1.48, v6.1.46, v6.1.45, v6.1.44
# 765da7fe 07-Aug-2023 Like Xu <likexu@tencent.com>

KVM: x86: Remove break statements that will never be executed

Fix compiler warnings when compiling KVM with [-Wunreachable-code-break].
No functional change intended.

Cc: Vitaly Kuznetsov <vkuznets

KVM: x86: Remove break statements that will never be executed

Fix compiler warnings when compiling KVM with [-Wunreachable-code-break].
No functional change intended.

Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230807094243.32516-1-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>

show more ...


Revision tags: v6.1.43, v6.1.42, v6.1.41, v6.1.40, v6.1.39, v6.1.38, v6.1.37, v6.1.36, v6.4, v6.1.35, v6.1.34, v6.1.33, v6.1.32, v6.1.31, v6.1.30, v6.1.29, v6.1.28, v6.1.27, v6.1.26, v6.3, v6.1.25, v6.1.24, v6.1.23, v6.1.22, v6.1.21, v6.1.20, v6.1.19, v6.1.18, v6.1.17, v6.1.16, v6.1.15, v6.1.14, v6.1.13, v6.2
# 65966aac 16-Feb-2023 Sean Christopherson <seanjc@google.com>

KVM: x86: Assert that the emulator doesn't load CS with garbage in !RM

Yell loudly if KVM attempts to load CS outside of Real Mode without an
accompanying control transfer type, i.e. on X86_TRANSFER

KVM: x86: Assert that the emulator doesn't load CS with garbage in !RM

Yell loudly if KVM attempts to load CS outside of Real Mode without an
accompanying control transfer type, i.e. on X86_TRANSFER_NONE. KVM uses
X86_TRANSFER_NONE when emulating IRET and exceptions/interrupts for Real
Mode, but IRET emulation for Protected Mode is non-existent. WARN instead
of trying to pass in a less-wrong type, e.g. X86_TRANSFER_RET, as
emulating IRET goes even beyond emulating FAR RET (which KVM also doesn't
fully support).

Reported-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/20230216202254.671772-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>

show more ...


Revision tags: v6.1.12, v6.1.11, v6.1.10, v6.1.9
# 096691e0 25-Jan-2023 Michal Luczaj <mhal@rbox.co>

KVM: x86/emulator: Fix comment in __load_segment_descriptor()

The comment refers to the same condition twice. Make it reflect what the
code actually does.

No functional change intended.

Signed-off

KVM: x86/emulator: Fix comment in __load_segment_descriptor()

The comment refers to the same condition twice. Make it reflect what the
code actually does.

No functional change intended.

Signed-off-by: Michal Luczaj <mhal@rbox.co>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20230126013405.2967156-3-mhal@rbox.co
Signed-off-by: Sean Christopherson <seanjc@google.com>

show more ...


# 0735d1c3 25-Jan-2023 Michal Luczaj <mhal@rbox.co>

KVM: x86/emulator: Fix segment load privilege level validation

Intel SDM describes what steps are taken by the CPU to verify if a
memory segment can actually be used at a given privilege level. Load

KVM: x86/emulator: Fix segment load privilege level validation

Intel SDM describes what steps are taken by the CPU to verify if a
memory segment can actually be used at a given privilege level. Loading
DS/ES/FS/GS involves checking segment's type as well as making sure that
neither selector's RPL nor caller's CPL are greater than segment's DPL.

Emulator implements Intel's pseudocode in __load_segment_descriptor(),
even quoting the pseudocode in the comments. Although the pseudocode is
correctly translated, the implementation is incorrect. This is most
likely due to SDM, at the time, being wrong.

Patch fixes emulator's logic and updates the pseudocode in the comment.
Below are historical notes.

Emulator code for handling segment descriptors appears to have been
introduced in March 2010 in commit 38ba30ba51a0 ("KVM: x86 emulator:
Emulate task switch in emulator.c"). Intel SDM Vol 2A: Instruction Set
Reference, A-M (Order Number: 253666-034US, _March 2010_) lists the
steps for loading segment registers in section related to MOV
instruction:

IF DS, ES, FS, or GS is loaded with non-NULL selector
THEN
IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
and (both RPL and CPL > DPL)) <---
THEN #GP(selector); FI;

This is precisely what __load_segment_descriptor() quotes and
implements. But there's a twist; a few SDM revisions later
(253667-044US), in August 2012, the snippet above becomes:

IF DS, ES, FS, or GS is loaded with non-NULL selector
THEN
IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
[note: missing or superfluous parenthesis?]
or ((RPL > DPL) and (CPL > DPL)) <---
THEN #GP(selector); FI;

Many SDMs later (253667-065US), in December 2017, pseudocode reaches
what seems to be its final form:

IF DS, ES, FS, or GS is loaded with non-NULL selector
THEN
IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)
AND ((RPL > DPL) or (CPL > DPL))) <---
THEN #GP(selector); FI;

which also matches the behavior described in AMD's APM, which states that
a #GP occurs if:

The DS, ES, FS, or GS register was loaded and the segment pointed to
was a data or non-conforming code segment, but the RPL or CPL was
greater than the DPL.

Signed-off-by: Michal Luczaj <mhal@rbox.co>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20230126013405.2967156-2-mhal@rbox.co
[sean: add blurb to changelog calling out AMD agrees]
Signed-off-by: Sean Christopherson <seanjc@google.com>

show more ...


Revision tags: v6.1.8, v6.1.7, v6.1.6, v6.1.5, v6.0.19, v6.0.18, v6.1.4, v6.1.3, v6.0.17, v6.1.2, v6.0.16, v6.1.1, v6.0.15
# 828dfc0f 20-Dec-2022 Ricardo Ribalda <ribalda@chromium.org>

scripts/spelling.txt: add `permitted'

Patch series "spelling: Fix some trivial typos".

Seems like permitted has two t's :), Lets add that to spellings to help
others.


This patch (of 3):

Add anot

scripts/spelling.txt: add `permitted'

Patch series "spelling: Fix some trivial typos".

Seems like permitted has two t's :), Lets add that to spellings to help
others.


This patch (of 3):

Add another common typo. Noticed when I sent a patch with the typo and
in kvm and of.

[ribalda@chromium.org: fix trivial typo]
Link: https://lkml.kernel.org/r/20221220-permited-v1-2-52ea9857fa61@chromium.org
Link: https://lkml.kernel.org/r/20221220-permited-v1-1-52ea9857fa61@chromium.org
Signed-off-by: Ricardo Ribalda <ribalda@chromium.org>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>

show more ...


Revision tags: v6.0.14, v6.0.13, v6.1, v6.0.12, v6.0.11
# 32e69f23 29-Nov-2022 Maxim Levitsky <mlevitsk@redhat.com>

KVM: x86: Use emulator callbacks instead of duplicating "host flags"

Instead of re-defining the "host flags" bits, just expose dedicated
helpers for each of the two remaining flags that are consumed

KVM: x86: Use emulator callbacks instead of duplicating "host flags"

Instead of re-defining the "host flags" bits, just expose dedicated
helpers for each of the two remaining flags that are consumed by the
emulator. The emulator never consumes both "is guest" and "is SMM" in
close proximity, so there is no motivation to avoid additional indirect
branches.

Also while at it, garbage collect the recently removed host flags.

No functional change is intended.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Santosh Shukla <Santosh.Shukla@amd.com>
Link: https://lore.kernel.org/r/20221129193717.513824-6-mlevitsk@redhat.com
[sean: fix CONFIG_KVM_SMM=n builds, tweak names of wrappers]
Signed-off-by: Sean Christopherson <seanjc@google.com>

show more ...


# 8d20bd63 30-Nov-2022 Sean Christopherson <seanjc@google.com>

KVM: x86: Unify pr_fmt to use module name for all KVM modules

Define pr_fmt using KBUILD_MODNAME for all KVM x86 code so that printks
use consistent formatting across common x86, Intel, and AMD code

KVM: x86: Unify pr_fmt to use module name for all KVM modules

Define pr_fmt using KBUILD_MODNAME for all KVM x86 code so that printks
use consistent formatting across common x86, Intel, and AMD code. In
addition to providing consistent print formatting, using KBUILD_MODNAME,
e.g. kvm_amd and kvm_intel, allows referencing SVM and VMX (and SEV and
SGX and ...) as technologies without generating weird messages, and
without causing naming conflicts with other kernel code, e.g. "SEV: ",
"tdx: ", "sgx: " etc.. are all used by the kernel for non-KVM subsystems.

Opportunistically move away from printk() for prints that need to be
modified anyways, e.g. to drop a manual "kvm: " prefix.

Opportunistically convert a few SGX WARNs that are similarly modified to
WARN_ONCE; in the very unlikely event that the WARNs fire, odds are good
that they would fire repeatedly and spam the kernel log without providing
unique information in each print.

Note, defining pr_fmt yields undesirable results for code that uses KVM's
printk wrappers, e.g. vcpu_unimpl(). But, that's a pre-existing problem
as SVM/kvm_amd already defines a pr_fmt, and thankfully use of KVM's
wrappers is relatively limited in KVM x86 code.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Message-Id: <20221130230934.1014142-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


Revision tags: v6.0.10, v5.15.80, v6.0.9, v5.15.79, v6.0.8, v5.15.78, v6.0.7, v5.15.77, v5.15.76, v6.0.6
# f1554150 28-Oct-2022 Paolo Bonzini <pbonzini@redhat.com>

KVM: x86: move SMM exit to a new file

Some users of KVM implement the UEFI variable store through a paravirtual
device that does not require the "SMM lockbox" component of edk2, and
would like to co

KVM: x86: move SMM exit to a new file

Some users of KVM implement the UEFI variable store through a paravirtual
device that does not require the "SMM lockbox" component of edk2, and
would like to compile out system management mode. In preparation for
that, move the SMM exit code out of emulate.c and into a new file.

The code is still written as a series of invocations of the emulator
callbacks, but the two exiting_smm and leave_smm callbacks are merged
into one, and all the code from em_rsm is now part of the callback.
This removes all knowledge of the format of the SMM save state area
from the emulator. Further patches will clean up the code and
invoke KVM's own functions to access control registers, descriptor
caches, etc.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-4-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


Revision tags: v6.0.5, v5.15.75, v6.0.4, v6.0.3, v6.0.2, v5.15.74, v5.15.73, v6.0.1, v5.15.72, v6.0
# b0b42197 29-Sep-2022 Paolo Bonzini <pbonzini@redhat.com>

KVM: x86: start moving SMM-related functions to new files

Create a new header and source with code related to system management
mode emulation. Entry and exit will move there too; for now,
opportun

KVM: x86: start moving SMM-related functions to new files

Create a new header and source with code related to system management
mode emulation. Entry and exit will move there too; for now,
opportunistically rename put_smstate to PUT_SMSTATE while moving
it to smm.h, and adjust the SMM state saving code.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-2-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


# 696db303 25-Oct-2022 Maxim Levitsky <mlevitsk@redhat.com>

KVM: x86: smm: number of GPRs in the SMRAM image depends on the image format

On 64 bit host, if the guest doesn't have X86_FEATURE_LM, KVM will
access 16 gprs to 32-bit smram image, causing out-ouf-

KVM: x86: smm: number of GPRs in the SMRAM image depends on the image format

On 64 bit host, if the guest doesn't have X86_FEATURE_LM, KVM will
access 16 gprs to 32-bit smram image, causing out-ouf-bound ram
access.

On 32 bit host, the rsm_load_state_64/enter_smm_save_state_64
is compiled out, thus access overflow can't happen.

Fixes: b443183a25ab61 ("KVM: x86: Reduce the number of emulator GPRs to '8' for 32-bit KVM")

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221025124741.228045-15-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


# ad8f9e69 25-Oct-2022 Maxim Levitsky <mlevitsk@redhat.com>

KVM: x86: emulator: update the emulation mode after CR0 write

Update the emulation mode when handling writes to CR0, because
toggling CR0.PE switches between Real and Protected Mode, and toggling
CR

KVM: x86: emulator: update the emulation mode after CR0 write

Update the emulation mode when handling writes to CR0, because
toggling CR0.PE switches between Real and Protected Mode, and toggling
CR0.PG when EFER.LME=1 switches between Long and Protected Mode.

This is likely a benign bug because there is no writeback of state,
other than the RIP increment, and when toggling CR0.PE, the CPU has
to execute code from a very low memory address.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20221025124741.228045-14-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


# 055f37f8 25-Oct-2022 Maxim Levitsky <mlevitsk@redhat.com>

KVM: x86: emulator: update the emulation mode after rsm

Update the emulation mode after RSM so that RIP will be correctly
written back, because the RSM instruction can switch the CPU mode from
32 bi

KVM: x86: emulator: update the emulation mode after rsm

Update the emulation mode after RSM so that RIP will be correctly
written back, because the RSM instruction can switch the CPU mode from
32 bit (or less) to 64 bit.

This fixes a guest crash in case the #SMI is received while the guest
runs a code from an address > 32 bit.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20221025124741.228045-13-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


# d087e0f7 25-Oct-2022 Maxim Levitsky <mlevitsk@redhat.com>

KVM: x86: emulator: introduce emulator_recalc_and_set_mode

Some instructions update the cpu execution mode, which needs to update the
emulation mode.

Extract this code, and make assign_eip_far use

KVM: x86: emulator: introduce emulator_recalc_and_set_mode

Some instructions update the cpu execution mode, which needs to update the
emulation mode.

Extract this code, and make assign_eip_far use it.

assign_eip_far now reads CS, instead of getting it via a parameter,
which is ok, because callers always assign CS to the same value
before calling this function.

No functional change is intended.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20221025124741.228045-12-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


# 5015bb89 25-Oct-2022 Maxim Levitsky <mlevitsk@redhat.com>

KVM: x86: emulator: em_sysexit should update ctxt->mode

SYSEXIT is one of the instructions that can change the
processor mode, thus ctxt->mode should be updated after it.

Note that this is likely a

KVM: x86: emulator: em_sysexit should update ctxt->mode

SYSEXIT is one of the instructions that can change the
processor mode, thus ctxt->mode should be updated after it.

Note that this is likely a benign bug, because the only problematic
mode change is from 32 bit to 64 bit which can lead to truncation of RIP,
and it is not possible to do with sysexit,
since sysexit running in 32 bit mode will be limited to 32 bit version.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20221025124741.228045-11-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


Revision tags: v5.15.71, v5.15.70, v5.15.69, v5.15.68, v5.15.67, v5.15.66, v5.15.65, v5.15.64
# 0701ec90 30-Aug-2022 Sean Christopherson <seanjc@google.com>

KVM: x86: Use DR7_GD macro instead of open coding check in emulator

Use DR7_GD in the emulator instead of open coding the check, and drop a
comically wrong comment.

Signed-off-by: Sean Christophers

KVM: x86: Use DR7_GD macro instead of open coding check in emulator

Use DR7_GD in the emulator instead of open coding the check, and drop a
comically wrong comment.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-10-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


# 36d546d5 01-Sep-2022 Hou Wenlong <houwenlong.hwl@antgroup.com>

KVM: x86: Return emulator error if RDMSR/WRMSR emulation failed

The return value of emulator_{get|set}_mst_with_filter() is confused,
since msr access error and emulator error are mixed. Although,
K

KVM: x86: Return emulator error if RDMSR/WRMSR emulation failed

The return value of emulator_{get|set}_mst_with_filter() is confused,
since msr access error and emulator error are mixed. Although,
KVM_MSR_RET_* doesn't conflict with X86EMUL_IO_NEEDED at present, it is
better to convert msr access error to emulator error if error value is
needed.

So move "r < 0" handling for wrmsr emulation into the set helper function,
then only X86EMUL_* is returned in the helper functions. Also add "r < 0"
check in the get helper function, although KVM doesn't return -errno
today, but assuming that will always hold true is unnecessarily risking.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/09b2847fc3bcb8937fb11738f0ccf7be7f61d9dd.1661930557.git.houwenlong.hwl@antgroup.com
[sean: wrap changelog less aggressively]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


# e390f4d6 08-Sep-2022 Liam Ni <zhiguangni01@gmail.com>

KVM:x86: Clean up ModR/M "reg" initialization in reg op decoding

Refactor decode_register_operand() to get the ModR/M register if and
only if the instruction uses a ModR/M encoding to make it more o

KVM:x86: Clean up ModR/M "reg" initialization in reg op decoding

Refactor decode_register_operand() to get the ModR/M register if and
only if the instruction uses a ModR/M encoding to make it more obvious
how the register operand is retrieved.

Signed-off-by: Liam Ni <zhiguangni01@gmail.com>
Link: https://lore.kernel.org/r/20220908141210.1375828-1-zhiguangni01@zhaoxin.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


Revision tags: v5.15.63
# 50b2d49b 23-Aug-2022 Sean Christopherson <seanjc@google.com>

KVM: x86: Inject #UD on emulated XSETBV if XSAVES isn't enabled

Inject #UD when emulating XSETBV if CR4.OSXSAVE is not set. This also
covers the "XSAVE not supported" check, as setting CR4.OSXSAVE=

KVM: x86: Inject #UD on emulated XSETBV if XSAVES isn't enabled

Inject #UD when emulating XSETBV if CR4.OSXSAVE is not set. This also
covers the "XSAVE not supported" check, as setting CR4.OSXSAVE=1 #GPs if
XSAVE is not supported (and userspace gets to keep the pieces if it
forces incoherent vCPU state).

Add a comment to kvm_emulate_xsetbv() to call out that the CPU checks
CR4.OSXSAVE before checking for intercepts. AMD'S APM implies that #UD
has priority (says that intercepts are checked before #GP exceptions),
while Intel's SDM says nothing about interception priority. However,
testing on hardware shows that both AMD and Intel CPUs prioritize the #UD
over interception.

Fixes: 02d4160fbd76 ("x86: KVM: add xsetbv to the emulator")
Cc: stable@vger.kernel.org
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220824033057.3576315-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


# 6aa5c47c 21-Aug-2022 Michal Luczaj <mhal@rbox.co>

KVM: x86/emulator: Fix handing of POP SS to correctly set interruptibility

The emulator checks the wrong variable while setting the CPU
interruptibility state, the target segment is embedded in the

KVM: x86/emulator: Fix handing of POP SS to correctly set interruptibility

The emulator checks the wrong variable while setting the CPU
interruptibility state, the target segment is embedded in the instruction
opcode, not the ModR/M register. Fix the condition.

Signed-off-by: Michal Luczaj <mhal@rbox.co>
Fixes: a5457e7bcf9a ("KVM: emulate: POP SS triggers a MOV SS shadow too")
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20220821215900.1419215-1-mhal@rbox.co
Signed-off-by: Sean Christopherson <seanjc@google.com>

show more ...


Revision tags: v5.15.62
# a0a12c3e 19-Aug-2022 Nick Desaulniers <ndesaulniers@google.com>

asm goto: eradicate CC_HAS_ASM_GOTO

GCC has supported asm goto since 4.5, and Clang has since version 9.0.0.
The minimum supported versions of these tools for the build according to
Documentation/pr

asm goto: eradicate CC_HAS_ASM_GOTO

GCC has supported asm goto since 4.5, and Clang has since version 9.0.0.
The minimum supported versions of these tools for the build according to
Documentation/process/changes.rst are 5.1 and 11.0.0 respectively.

Remove the feature detection script, Kconfig option, and clean up some
fallback code that is no longer supported.

The removed script was also testing for a GCC specific bug that was
fixed in the 4.7 release.

Also remove workarounds for bpftrace using clang older than 9.0.0, since
other BPF backend fixes are required at this point.

Link: https://lore.kernel.org/lkml/CAK7LNATSr=BXKfkdW8f-H5VT_w=xBpT2ZQcZ7rm6JfkdE+QnmA@mail.gmail.com/
Link: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=48637
Acked-by: Borislav Petkov <bp@suse.de>
Suggested-by: Masahiro Yamada <masahiroy@kernel.org>
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Reviewed-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

show more ...


# 3d9606b0 18-Aug-2022 Josh Poimboeuf <jpoimboe@kernel.org>

x86/kvm: Fix "missing ENDBR" BUG for fastop functions

The following BUG was reported:

traps: Missing ENDBR: andw_ax_dx+0x0/0x10 [kvm]
------------[ cut here ]------------
kernel BUG at arch/x

x86/kvm: Fix "missing ENDBR" BUG for fastop functions

The following BUG was reported:

traps: Missing ENDBR: andw_ax_dx+0x0/0x10 [kvm]
------------[ cut here ]------------
kernel BUG at arch/x86/kernel/traps.c:253!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
<TASK>
asm_exc_control_protection+0x2b/0x30
RIP: 0010:andw_ax_dx+0x0/0x10 [kvm]
Code: c3 cc cc cc cc 0f 1f 44 00 00 66 0f 1f 00 48 19 d0 c3 cc cc cc
cc 0f 1f 40 00 f3 0f 1e fa 20 d0 c3 cc cc cc cc 0f 1f 44 00 00
<66> 0f 1f 00 66 21 d0 c3 cc cc cc cc 0f 1f 40 00 66 0f 1f 00 21
d0

? andb_al_dl+0x10/0x10 [kvm]
? fastop+0x5d/0xa0 [kvm]
x86_emulate_insn+0x822/0x1060 [kvm]
x86_emulate_instruction+0x46f/0x750 [kvm]
complete_emulated_mmio+0x216/0x2c0 [kvm]
kvm_arch_vcpu_ioctl_run+0x604/0x650 [kvm]
kvm_vcpu_ioctl+0x2f4/0x6b0 [kvm]
? wake_up_q+0xa0/0xa0

The BUG occurred because the ENDBR in the andw_ax_dx() fastop function
had been incorrectly "sealed" (converted to a NOP) by apply_ibt_endbr().

Objtool marked it to be sealed because KVM has no compile-time
references to the function. Instead KVM calculates its address at
runtime.

Prevent objtool from annotating fastop functions as sealable by creating
throwaway dummy compile-time references to the functions.

Fixes: 6649fa876da4 ("x86/ibt,kvm: Add ENDBR to fastops")
Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Debugged-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Message-Id: <0d4116f90e9d0c1b754bb90c585e6f0415a1c508.1660837839.git.jpoimboe@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


# 22472d12 18-Aug-2022 Josh Poimboeuf <jpoimboe@kernel.org>

x86/kvm: Simplify FOP_SETCC()

SETCC_ALIGN and FOP_ALIGN are both 16. Remove the special casing for
FOP_SETCC() and just make it a normal fastop.

Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>

x86/kvm: Simplify FOP_SETCC()

SETCC_ALIGN and FOP_ALIGN are both 16. Remove the special casing for
FOP_SETCC() and just make it a normal fastop.

Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Message-Id: <7c13d94d1a775156f7e36eed30509b274a229140.1660837839.git.jpoimboe@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


Revision tags: v5.15.61, v5.15.60, v5.15.59, v5.19, v5.15.58
# 4ac5b423 29-Jul-2022 Michal Luczaj <mhal@rbox.co>

KVM: x86: emulator: Fix illegal LEA handling

The emulator mishandles LEA with register source operand. Even though such
LEA is illegal, it can be encoded and fed to CPU. In which case real
hardware

KVM: x86: emulator: Fix illegal LEA handling

The emulator mishandles LEA with register source operand. Even though such
LEA is illegal, it can be encoded and fed to CPU. In which case real
hardware throws #UD. The emulator, instead, returns address of
x86_emulate_ctxt._regs. This info leak hurts host's kASLR.

Tell the decoder that illegal LEA is not to be emulated.

Signed-off-by: Michal Luczaj <mhal@rbox.co>
Message-Id: <20220729134801.1120-1-mhal@rbox.co>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


Revision tags: v5.15.57, v5.15.56
# 79629181 15-Jul-2022 Paolo Bonzini <pbonzini@redhat.com>

KVM: emulate: do not adjust size of fastop and setcc subroutines

Instead of doing complicated calculations to find the size of the subroutines
(which are even more complicated because they need to b

KVM: emulate: do not adjust size of fastop and setcc subroutines

Instead of doing complicated calculations to find the size of the subroutines
(which are even more complicated because they need to be stringified into
an asm statement), just hardcode to 16.

It is less dense for a few combinations of IBT/SLS/retbleed, but it has
the advantage of being really simple.

Cc: stable@vger.kernel.org # 5.15.x: 84e7051c0bc1: x86/kvm: fix FASTOP_SIZE when return thunks are enabled
Cc: stable@vger.kernel.org
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


Revision tags: v5.15.55
# 84e7051c 13-Jul-2022 Thadeu Lima de Souza Cascardo <cascardo@canonical.com>

x86/kvm: fix FASTOP_SIZE when return thunks are enabled

The return thunk call makes the fastop functions larger, just like IBT
does. Consider a 16-byte FASTOP_SIZE when CONFIG_RETHUNK is enabled.

O

x86/kvm: fix FASTOP_SIZE when return thunks are enabled

The return thunk call makes the fastop functions larger, just like IBT
does. Consider a 16-byte FASTOP_SIZE when CONFIG_RETHUNK is enabled.

Otherwise, functions will be incorrectly aligned and when computing their
position for differently sized operators, they will executed in the middle
or end of a function, which may as well be an int3, leading to a crash
like:

[ 36.091116] int3: 0000 [#1] SMP NOPTI
[ 36.091119] CPU: 3 PID: 1371 Comm: qemu-system-x86 Not tainted 5.15.0-41-generic #44
[ 36.091120] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
[ 36.091121] RIP: 0010:xaddw_ax_dx+0x9/0x10 [kvm]
[ 36.091185] Code: 00 0f bb d0 c3 cc cc cc cc 48 0f bb d0 c3 cc cc cc cc 0f 1f 80 00 00 00 00 0f c0 d0 c3 cc cc cc cc 66 0f c1 d0 c3 cc cc cc cc <0f> 1f 80 00 00 00 00 0f c1 d0 c3 cc cc cc cc 48 0f c1 d0 c3 cc cc
[ 36.091186] RSP: 0018:ffffb1f541143c98 EFLAGS: 00000202
[ 36.091188] RAX: 0000000089abcdef RBX: 0000000000000001 RCX: 0000000000000000
[ 36.091188] RDX: 0000000076543210 RSI: ffffffffc073c6d0 RDI: 0000000000000200
[ 36.091189] RBP: ffffb1f541143ca0 R08: ffff9f1803350a70 R09: 0000000000000002
[ 36.091190] R10: ffff9f1803350a70 R11: 0000000000000000 R12: ffff9f1803350a70
[ 36.091190] R13: ffffffffc077fee0 R14: 0000000000000000 R15: 0000000000000000
[ 36.091191] FS: 00007efdfce8d640(0000) GS:ffff9f187dd80000(0000) knlGS:0000000000000000
[ 36.091192] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 36.091192] CR2: 0000000000000000 CR3: 0000000009b62002 CR4: 0000000000772ee0
[ 36.091195] PKRU: 55555554
[ 36.091195] Call Trace:
[ 36.091197] <TASK>
[ 36.091198] ? fastop+0x5a/0xa0 [kvm]
[ 36.091222] x86_emulate_insn+0x7b8/0xe90 [kvm]
[ 36.091244] x86_emulate_instruction+0x2f4/0x630 [kvm]
[ 36.091263] ? kvm_arch_vcpu_load+0x7c/0x230 [kvm]
[ 36.091283] ? vmx_prepare_switch_to_host+0xf7/0x190 [kvm_intel]
[ 36.091290] complete_emulated_mmio+0x297/0x320 [kvm]
[ 36.091310] kvm_arch_vcpu_ioctl_run+0x32f/0x550 [kvm]
[ 36.091330] kvm_vcpu_ioctl+0x29e/0x6d0 [kvm]
[ 36.091344] ? kvm_vcpu_ioctl+0x120/0x6d0 [kvm]
[ 36.091357] ? __fget_files+0x86/0xc0
[ 36.091362] ? __fget_files+0x86/0xc0
[ 36.091363] __x64_sys_ioctl+0x92/0xd0
[ 36.091366] do_syscall_64+0x59/0xc0
[ 36.091369] ? syscall_exit_to_user_mode+0x27/0x50
[ 36.091370] ? do_syscall_64+0x69/0xc0
[ 36.091371] ? syscall_exit_to_user_mode+0x27/0x50
[ 36.091372] ? __x64_sys_writev+0x1c/0x30
[ 36.091374] ? do_syscall_64+0x69/0xc0
[ 36.091374] ? exit_to_user_mode_prepare+0x37/0xb0
[ 36.091378] ? syscall_exit_to_user_mode+0x27/0x50
[ 36.091379] ? do_syscall_64+0x69/0xc0
[ 36.091379] ? do_syscall_64+0x69/0xc0
[ 36.091380] ? do_syscall_64+0x69/0xc0
[ 36.091381] ? do_syscall_64+0x69/0xc0
[ 36.091381] entry_SYSCALL_64_after_hwframe+0x61/0xcb
[ 36.091384] RIP: 0033:0x7efdfe6d1aff
[ 36.091390] Code: 00 48 89 44 24 18 31 c0 48 8d 44 24 60 c7 04 24 10 00 00 00 48 89 44 24 08 48 8d 44 24 20 48 89 44 24 10 b8 10 00 00 00 0f 05 <41> 89 c0 3d 00 f0 ff ff 77 1f 48 8b 44 24 18 64 48 2b 04 25 28 00
[ 36.091391] RSP: 002b:00007efdfce8c460 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[ 36.091393] RAX: ffffffffffffffda RBX: 000000000000ae80 RCX: 00007efdfe6d1aff
[ 36.091393] RDX: 0000000000000000 RSI: 000000000000ae80 RDI: 000000000000000c
[ 36.091394] RBP: 0000558f1609e220 R08: 0000558f13fb8190 R09: 00000000ffffffff
[ 36.091394] R10: 0000558f16b5e950 R11: 0000000000000246 R12: 0000000000000000
[ 36.091394] R13: 0000000000000001 R14: 0000000000000000 R15: 0000000000000000
[ 36.091396] </TASK>
[ 36.091397] Modules linked in: isofs nls_iso8859_1 kvm_intel joydev kvm input_leds serio_raw sch_fq_codel dm_multipath scsi_dh_rdac scsi_dh_emc scsi_dh_alua ipmi_devintf ipmi_msghandler drm msr ip_tables x_tables autofs4 btrfs blake2b_generic zstd_compress raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx xor raid6_pq libcrc32c raid1 raid0 multipath linear crct10dif_pclmul crc32_pclmul ghash_clmulni_intel aesni_intel virtio_net net_failover crypto_simd ahci xhci_pci cryptd psmouse virtio_blk libahci xhci_pci_renesas failover
[ 36.123271] ---[ end trace db3c0ab5a48fabcc ]---
[ 36.123272] RIP: 0010:xaddw_ax_dx+0x9/0x10 [kvm]
[ 36.123319] Code: 00 0f bb d0 c3 cc cc cc cc 48 0f bb d0 c3 cc cc cc cc 0f 1f 80 00 00 00 00 0f c0 d0 c3 cc cc cc cc 66 0f c1 d0 c3 cc cc cc cc <0f> 1f 80 00 00 00 00 0f c1 d0 c3 cc cc cc cc 48 0f c1 d0 c3 cc cc
[ 36.123320] RSP: 0018:ffffb1f541143c98 EFLAGS: 00000202
[ 36.123321] RAX: 0000000089abcdef RBX: 0000000000000001 RCX: 0000000000000000
[ 36.123321] RDX: 0000000076543210 RSI: ffffffffc073c6d0 RDI: 0000000000000200
[ 36.123322] RBP: ffffb1f541143ca0 R08: ffff9f1803350a70 R09: 0000000000000002
[ 36.123322] R10: ffff9f1803350a70 R11: 0000000000000000 R12: ffff9f1803350a70
[ 36.123323] R13: ffffffffc077fee0 R14: 0000000000000000 R15: 0000000000000000
[ 36.123323] FS: 00007efdfce8d640(0000) GS:ffff9f187dd80000(0000) knlGS:0000000000000000
[ 36.123324] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 36.123325] CR2: 0000000000000000 CR3: 0000000009b62002 CR4: 0000000000772ee0
[ 36.123327] PKRU: 55555554
[ 36.123328] Kernel panic - not syncing: Fatal exception in interrupt
[ 36.123410] Kernel Offset: 0x1400000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff)
[ 36.135305] ---[ end Kernel panic - not syncing: Fatal exception in interrupt ]---

Fixes: aa3d480315ba ("x86: Use return-thunk in asm code")
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Co-developed-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Reported-by: Linux Kernel Functional Testing <lkft@linaro.org>
Message-Id: <20220713171241.184026-1-cascardo@canonical.com>
Tested-by: Jack Wang <jinpu.wang@ionos.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


12345678910>>...100