xref: /openbmc/linux/arch/x86/kvm/emulate.c (revision 248ed9e227e6cf59acb1aaf3aa30d530a0232c1a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3  * emulate.c
4  *
5  * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
6  *
7  * Copyright (c) 2005 Keir Fraser
8  *
9  * Linux coding style, mod r/m decoder, segment base fixes, real-mode
10  * privileged instructions:
11  *
12  * Copyright (C) 2006 Qumranet
13  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
14  *
15  *   Avi Kivity <avi@qumranet.com>
16  *   Yaniv Kamay <yaniv@qumranet.com>
17  *
18  * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kvm_host.h>
23 #include "kvm_cache_regs.h"
24 #include "kvm_emulate.h"
25 #include <linux/stringify.h>
26 #include <asm/debugreg.h>
27 #include <asm/nospec-branch.h>
28 #include <asm/ibt.h>
29 
30 #include "x86.h"
31 #include "tss.h"
32 #include "mmu.h"
33 #include "pmu.h"
34 
35 /*
36  * Operand types
37  */
38 #define OpNone             0ull
39 #define OpImplicit         1ull  /* No generic decode */
40 #define OpReg              2ull  /* Register */
41 #define OpMem              3ull  /* Memory */
42 #define OpAcc              4ull  /* Accumulator: AL/AX/EAX/RAX */
43 #define OpDI               5ull  /* ES:DI/EDI/RDI */
44 #define OpMem64            6ull  /* Memory, 64-bit */
45 #define OpImmUByte         7ull  /* Zero-extended 8-bit immediate */
46 #define OpDX               8ull  /* DX register */
47 #define OpCL               9ull  /* CL register (for shifts) */
48 #define OpImmByte         10ull  /* 8-bit sign extended immediate */
49 #define OpOne             11ull  /* Implied 1 */
50 #define OpImm             12ull  /* Sign extended up to 32-bit immediate */
51 #define OpMem16           13ull  /* Memory operand (16-bit). */
52 #define OpMem32           14ull  /* Memory operand (32-bit). */
53 #define OpImmU            15ull  /* Immediate operand, zero extended */
54 #define OpSI              16ull  /* SI/ESI/RSI */
55 #define OpImmFAddr        17ull  /* Immediate far address */
56 #define OpMemFAddr        18ull  /* Far address in memory */
57 #define OpImmU16          19ull  /* Immediate operand, 16 bits, zero extended */
58 #define OpES              20ull  /* ES */
59 #define OpCS              21ull  /* CS */
60 #define OpSS              22ull  /* SS */
61 #define OpDS              23ull  /* DS */
62 #define OpFS              24ull  /* FS */
63 #define OpGS              25ull  /* GS */
64 #define OpMem8            26ull  /* 8-bit zero extended memory operand */
65 #define OpImm64           27ull  /* Sign extended 16/32/64-bit immediate */
66 #define OpXLat            28ull  /* memory at BX/EBX/RBX + zero-extended AL */
67 #define OpAccLo           29ull  /* Low part of extended acc (AX/AX/EAX/RAX) */
68 #define OpAccHi           30ull  /* High part of extended acc (-/DX/EDX/RDX) */
69 
70 #define OpBits             5  /* Width of operand field */
71 #define OpMask             ((1ull << OpBits) - 1)
72 
73 /*
74  * Opcode effective-address decode tables.
75  * Note that we only emulate instructions that have at least one memory
76  * operand (excluding implicit stack references). We assume that stack
77  * references and instruction fetches will never occur in special memory
78  * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
79  * not be handled.
80  */
81 
82 /* Operand sizes: 8-bit operands or specified/overridden size. */
83 #define ByteOp      (1<<0)	/* 8-bit operands. */
84 /* Destination operand type. */
85 #define DstShift    1
86 #define ImplicitOps (OpImplicit << DstShift)
87 #define DstReg      (OpReg << DstShift)
88 #define DstMem      (OpMem << DstShift)
89 #define DstAcc      (OpAcc << DstShift)
90 #define DstDI       (OpDI << DstShift)
91 #define DstMem64    (OpMem64 << DstShift)
92 #define DstMem16    (OpMem16 << DstShift)
93 #define DstImmUByte (OpImmUByte << DstShift)
94 #define DstDX       (OpDX << DstShift)
95 #define DstAccLo    (OpAccLo << DstShift)
96 #define DstMask     (OpMask << DstShift)
97 /* Source operand type. */
98 #define SrcShift    6
99 #define SrcNone     (OpNone << SrcShift)
100 #define SrcReg      (OpReg << SrcShift)
101 #define SrcMem      (OpMem << SrcShift)
102 #define SrcMem16    (OpMem16 << SrcShift)
103 #define SrcMem32    (OpMem32 << SrcShift)
104 #define SrcImm      (OpImm << SrcShift)
105 #define SrcImmByte  (OpImmByte << SrcShift)
106 #define SrcOne      (OpOne << SrcShift)
107 #define SrcImmUByte (OpImmUByte << SrcShift)
108 #define SrcImmU     (OpImmU << SrcShift)
109 #define SrcSI       (OpSI << SrcShift)
110 #define SrcXLat     (OpXLat << SrcShift)
111 #define SrcImmFAddr (OpImmFAddr << SrcShift)
112 #define SrcMemFAddr (OpMemFAddr << SrcShift)
113 #define SrcAcc      (OpAcc << SrcShift)
114 #define SrcImmU16   (OpImmU16 << SrcShift)
115 #define SrcImm64    (OpImm64 << SrcShift)
116 #define SrcDX       (OpDX << SrcShift)
117 #define SrcMem8     (OpMem8 << SrcShift)
118 #define SrcAccHi    (OpAccHi << SrcShift)
119 #define SrcMask     (OpMask << SrcShift)
120 #define BitOp       (1<<11)
121 #define MemAbs      (1<<12)      /* Memory operand is absolute displacement */
122 #define String      (1<<13)     /* String instruction (rep capable) */
123 #define Stack       (1<<14)     /* Stack instruction (push/pop) */
124 #define GroupMask   (7<<15)     /* Opcode uses one of the group mechanisms */
125 #define Group       (1<<15)     /* Bits 3:5 of modrm byte extend opcode */
126 #define GroupDual   (2<<15)     /* Alternate decoding of mod == 3 */
127 #define Prefix      (3<<15)     /* Instruction varies with 66/f2/f3 prefix */
128 #define RMExt       (4<<15)     /* Opcode extension in ModRM r/m if mod == 3 */
129 #define Escape      (5<<15)     /* Escape to coprocessor instruction */
130 #define InstrDual   (6<<15)     /* Alternate instruction decoding of mod == 3 */
131 #define ModeDual    (7<<15)     /* Different instruction for 32/64 bit */
132 #define Sse         (1<<18)     /* SSE Vector instruction */
133 /* Generic ModRM decode. */
134 #define ModRM       (1<<19)
135 /* Destination is only written; never read. */
136 #define Mov         (1<<20)
137 /* Misc flags */
138 #define Prot        (1<<21) /* instruction generates #UD if not in prot-mode */
139 #define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */
140 #define NoAccess    (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
141 #define Op3264      (1<<24) /* Operand is 64b in long mode, 32b otherwise */
142 #define Undefined   (1<<25) /* No Such Instruction */
143 #define Lock        (1<<26) /* lock prefix is allowed for the instruction */
144 #define Priv        (1<<27) /* instruction generates #GP if current CPL != 0 */
145 #define No64	    (1<<28)
146 #define PageTable   (1 << 29)   /* instruction used to write page table */
147 #define NotImpl     (1 << 30)   /* instruction is not implemented */
148 /* Source 2 operand type */
149 #define Src2Shift   (31)
150 #define Src2None    (OpNone << Src2Shift)
151 #define Src2Mem     (OpMem << Src2Shift)
152 #define Src2CL      (OpCL << Src2Shift)
153 #define Src2ImmByte (OpImmByte << Src2Shift)
154 #define Src2One     (OpOne << Src2Shift)
155 #define Src2Imm     (OpImm << Src2Shift)
156 #define Src2ES      (OpES << Src2Shift)
157 #define Src2CS      (OpCS << Src2Shift)
158 #define Src2SS      (OpSS << Src2Shift)
159 #define Src2DS      (OpDS << Src2Shift)
160 #define Src2FS      (OpFS << Src2Shift)
161 #define Src2GS      (OpGS << Src2Shift)
162 #define Src2Mask    (OpMask << Src2Shift)
163 #define Mmx         ((u64)1 << 40)  /* MMX Vector instruction */
164 #define AlignMask   ((u64)7 << 41)
165 #define Aligned     ((u64)1 << 41)  /* Explicitly aligned (e.g. MOVDQA) */
166 #define Unaligned   ((u64)2 << 41)  /* Explicitly unaligned (e.g. MOVDQU) */
167 #define Avx         ((u64)3 << 41)  /* Advanced Vector Extensions */
168 #define Aligned16   ((u64)4 << 41)  /* Aligned to 16 byte boundary (e.g. FXSAVE) */
169 #define Fastop      ((u64)1 << 44)  /* Use opcode::u.fastop */
170 #define NoWrite     ((u64)1 << 45)  /* No writeback */
171 #define SrcWrite    ((u64)1 << 46)  /* Write back src operand */
172 #define NoMod	    ((u64)1 << 47)  /* Mod field is ignored */
173 #define Intercept   ((u64)1 << 48)  /* Has valid intercept field */
174 #define CheckPerm   ((u64)1 << 49)  /* Has valid check_perm field */
175 #define PrivUD      ((u64)1 << 51)  /* #UD instead of #GP on CPL > 0 */
176 #define NearBranch  ((u64)1 << 52)  /* Near branches */
177 #define No16	    ((u64)1 << 53)  /* No 16 bit operand */
178 #define IncSP       ((u64)1 << 54)  /* SP is incremented before ModRM calc */
179 #define TwoMemOp    ((u64)1 << 55)  /* Instruction has two memory operand */
180 #define IsBranch    ((u64)1 << 56)  /* Instruction is considered a branch. */
181 
182 #define DstXacc     (DstAccLo | SrcAccHi | SrcWrite)
183 
184 #define X2(x...) x, x
185 #define X3(x...) X2(x), x
186 #define X4(x...) X2(x), X2(x)
187 #define X5(x...) X4(x), x
188 #define X6(x...) X4(x), X2(x)
189 #define X7(x...) X4(x), X3(x)
190 #define X8(x...) X4(x), X4(x)
191 #define X16(x...) X8(x), X8(x)
192 
193 struct opcode {
194 	u64 flags;
195 	u8 intercept;
196 	u8 pad[7];
197 	union {
198 		int (*execute)(struct x86_emulate_ctxt *ctxt);
199 		const struct opcode *group;
200 		const struct group_dual *gdual;
201 		const struct gprefix *gprefix;
202 		const struct escape *esc;
203 		const struct instr_dual *idual;
204 		const struct mode_dual *mdual;
205 		void (*fastop)(struct fastop *fake);
206 	} u;
207 	int (*check_perm)(struct x86_emulate_ctxt *ctxt);
208 };
209 
210 struct group_dual {
211 	struct opcode mod012[8];
212 	struct opcode mod3[8];
213 };
214 
215 struct gprefix {
216 	struct opcode pfx_no;
217 	struct opcode pfx_66;
218 	struct opcode pfx_f2;
219 	struct opcode pfx_f3;
220 };
221 
222 struct escape {
223 	struct opcode op[8];
224 	struct opcode high[64];
225 };
226 
227 struct instr_dual {
228 	struct opcode mod012;
229 	struct opcode mod3;
230 };
231 
232 struct mode_dual {
233 	struct opcode mode32;
234 	struct opcode mode64;
235 };
236 
237 #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
238 
239 enum x86_transfer_type {
240 	X86_TRANSFER_NONE,
241 	X86_TRANSFER_CALL_JMP,
242 	X86_TRANSFER_RET,
243 	X86_TRANSFER_TASK_SWITCH,
244 };
245 
246 static void writeback_registers(struct x86_emulate_ctxt *ctxt)
247 {
248 	unsigned long dirty = ctxt->regs_dirty;
249 	unsigned reg;
250 
251 	for_each_set_bit(reg, &dirty, NR_EMULATOR_GPRS)
252 		ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]);
253 }
254 
255 static void invalidate_registers(struct x86_emulate_ctxt *ctxt)
256 {
257 	ctxt->regs_dirty = 0;
258 	ctxt->regs_valid = 0;
259 }
260 
261 /*
262  * These EFLAGS bits are restored from saved value during emulation, and
263  * any changes are written back to the saved value after emulation.
264  */
265 #define EFLAGS_MASK (X86_EFLAGS_OF|X86_EFLAGS_SF|X86_EFLAGS_ZF|X86_EFLAGS_AF|\
266 		     X86_EFLAGS_PF|X86_EFLAGS_CF)
267 
268 #ifdef CONFIG_X86_64
269 #define ON64(x) x
270 #else
271 #define ON64(x)
272 #endif
273 
274 /*
275  * fastop functions have a special calling convention:
276  *
277  * dst:    rax        (in/out)
278  * src:    rdx        (in/out)
279  * src2:   rcx        (in)
280  * flags:  rflags     (in/out)
281  * ex:     rsi        (in:fastop pointer, out:zero if exception)
282  *
283  * Moreover, they are all exactly FASTOP_SIZE bytes long, so functions for
284  * different operand sizes can be reached by calculation, rather than a jump
285  * table (which would be bigger than the code).
286  *
287  * The 16 byte alignment, considering 5 bytes for the RET thunk, 3 for ENDBR
288  * and 1 for the straight line speculation INT3, leaves 7 bytes for the
289  * body of the function.  Currently none is larger than 4.
290  */
291 static int fastop(struct x86_emulate_ctxt *ctxt, fastop_t fop);
292 
293 #define FASTOP_SIZE	16
294 
295 #define __FOP_FUNC(name) \
296 	".align " __stringify(FASTOP_SIZE) " \n\t" \
297 	".type " name ", @function \n\t" \
298 	name ":\n\t" \
299 	ASM_ENDBR \
300 	IBT_NOSEAL(name)
301 
302 #define FOP_FUNC(name) \
303 	__FOP_FUNC(#name)
304 
305 #define __FOP_RET(name) \
306 	"11: " ASM_RET \
307 	".size " name ", .-" name "\n\t"
308 
309 #define FOP_RET(name) \
310 	__FOP_RET(#name)
311 
312 #define __FOP_START(op, align) \
313 	extern void em_##op(struct fastop *fake); \
314 	asm(".pushsection .text, \"ax\" \n\t" \
315 	    ".global em_" #op " \n\t" \
316 	    ".align " __stringify(align) " \n\t" \
317 	    "em_" #op ":\n\t"
318 
319 #define FOP_START(op) __FOP_START(op, FASTOP_SIZE)
320 
321 #define FOP_END \
322 	    ".popsection")
323 
324 #define __FOPNOP(name) \
325 	__FOP_FUNC(name) \
326 	__FOP_RET(name)
327 
328 #define FOPNOP() \
329 	__FOPNOP(__stringify(__UNIQUE_ID(nop)))
330 
331 #define FOP1E(op,  dst) \
332 	__FOP_FUNC(#op "_" #dst) \
333 	"10: " #op " %" #dst " \n\t" \
334 	__FOP_RET(#op "_" #dst)
335 
336 #define FOP1EEX(op,  dst) \
337 	FOP1E(op, dst) _ASM_EXTABLE_TYPE_REG(10b, 11b, EX_TYPE_ZERO_REG, %%esi)
338 
339 #define FASTOP1(op) \
340 	FOP_START(op) \
341 	FOP1E(op##b, al) \
342 	FOP1E(op##w, ax) \
343 	FOP1E(op##l, eax) \
344 	ON64(FOP1E(op##q, rax))	\
345 	FOP_END
346 
347 /* 1-operand, using src2 (for MUL/DIV r/m) */
348 #define FASTOP1SRC2(op, name) \
349 	FOP_START(name) \
350 	FOP1E(op, cl) \
351 	FOP1E(op, cx) \
352 	FOP1E(op, ecx) \
353 	ON64(FOP1E(op, rcx)) \
354 	FOP_END
355 
356 /* 1-operand, using src2 (for MUL/DIV r/m), with exceptions */
357 #define FASTOP1SRC2EX(op, name) \
358 	FOP_START(name) \
359 	FOP1EEX(op, cl) \
360 	FOP1EEX(op, cx) \
361 	FOP1EEX(op, ecx) \
362 	ON64(FOP1EEX(op, rcx)) \
363 	FOP_END
364 
365 #define FOP2E(op,  dst, src)	   \
366 	__FOP_FUNC(#op "_" #dst "_" #src) \
367 	#op " %" #src ", %" #dst " \n\t" \
368 	__FOP_RET(#op "_" #dst "_" #src)
369 
370 #define FASTOP2(op) \
371 	FOP_START(op) \
372 	FOP2E(op##b, al, dl) \
373 	FOP2E(op##w, ax, dx) \
374 	FOP2E(op##l, eax, edx) \
375 	ON64(FOP2E(op##q, rax, rdx)) \
376 	FOP_END
377 
378 /* 2 operand, word only */
379 #define FASTOP2W(op) \
380 	FOP_START(op) \
381 	FOPNOP() \
382 	FOP2E(op##w, ax, dx) \
383 	FOP2E(op##l, eax, edx) \
384 	ON64(FOP2E(op##q, rax, rdx)) \
385 	FOP_END
386 
387 /* 2 operand, src is CL */
388 #define FASTOP2CL(op) \
389 	FOP_START(op) \
390 	FOP2E(op##b, al, cl) \
391 	FOP2E(op##w, ax, cl) \
392 	FOP2E(op##l, eax, cl) \
393 	ON64(FOP2E(op##q, rax, cl)) \
394 	FOP_END
395 
396 /* 2 operand, src and dest are reversed */
397 #define FASTOP2R(op, name) \
398 	FOP_START(name) \
399 	FOP2E(op##b, dl, al) \
400 	FOP2E(op##w, dx, ax) \
401 	FOP2E(op##l, edx, eax) \
402 	ON64(FOP2E(op##q, rdx, rax)) \
403 	FOP_END
404 
405 #define FOP3E(op,  dst, src, src2) \
406 	__FOP_FUNC(#op "_" #dst "_" #src "_" #src2) \
407 	#op " %" #src2 ", %" #src ", %" #dst " \n\t"\
408 	__FOP_RET(#op "_" #dst "_" #src "_" #src2)
409 
410 /* 3-operand, word-only, src2=cl */
411 #define FASTOP3WCL(op) \
412 	FOP_START(op) \
413 	FOPNOP() \
414 	FOP3E(op##w, ax, dx, cl) \
415 	FOP3E(op##l, eax, edx, cl) \
416 	ON64(FOP3E(op##q, rax, rdx, cl)) \
417 	FOP_END
418 
419 /* Special case for SETcc - 1 instruction per cc */
420 #define FOP_SETCC(op) \
421 	FOP_FUNC(op) \
422 	#op " %al \n\t" \
423 	FOP_RET(op)
424 
425 FOP_START(setcc)
426 FOP_SETCC(seto)
427 FOP_SETCC(setno)
428 FOP_SETCC(setc)
429 FOP_SETCC(setnc)
430 FOP_SETCC(setz)
431 FOP_SETCC(setnz)
432 FOP_SETCC(setbe)
433 FOP_SETCC(setnbe)
434 FOP_SETCC(sets)
435 FOP_SETCC(setns)
436 FOP_SETCC(setp)
437 FOP_SETCC(setnp)
438 FOP_SETCC(setl)
439 FOP_SETCC(setnl)
440 FOP_SETCC(setle)
441 FOP_SETCC(setnle)
442 FOP_END;
443 
444 FOP_START(salc)
445 FOP_FUNC(salc)
446 "pushf; sbb %al, %al; popf \n\t"
447 FOP_RET(salc)
448 FOP_END;
449 
450 /*
451  * XXX: inoutclob user must know where the argument is being expanded.
452  *      Using asm goto would allow us to remove _fault.
453  */
454 #define asm_safe(insn, inoutclob...) \
455 ({ \
456 	int _fault = 0; \
457  \
458 	asm volatile("1:" insn "\n" \
459 	             "2:\n" \
460 		     _ASM_EXTABLE_TYPE_REG(1b, 2b, EX_TYPE_ONE_REG, %[_fault]) \
461 	             : [_fault] "+r"(_fault) inoutclob ); \
462  \
463 	_fault ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; \
464 })
465 
466 static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
467 				    enum x86_intercept intercept,
468 				    enum x86_intercept_stage stage)
469 {
470 	struct x86_instruction_info info = {
471 		.intercept  = intercept,
472 		.rep_prefix = ctxt->rep_prefix,
473 		.modrm_mod  = ctxt->modrm_mod,
474 		.modrm_reg  = ctxt->modrm_reg,
475 		.modrm_rm   = ctxt->modrm_rm,
476 		.src_val    = ctxt->src.val64,
477 		.dst_val    = ctxt->dst.val64,
478 		.src_bytes  = ctxt->src.bytes,
479 		.dst_bytes  = ctxt->dst.bytes,
480 		.ad_bytes   = ctxt->ad_bytes,
481 		.next_rip   = ctxt->eip,
482 	};
483 
484 	return ctxt->ops->intercept(ctxt, &info, stage);
485 }
486 
487 static void assign_masked(ulong *dest, ulong src, ulong mask)
488 {
489 	*dest = (*dest & ~mask) | (src & mask);
490 }
491 
492 static void assign_register(unsigned long *reg, u64 val, int bytes)
493 {
494 	/* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
495 	switch (bytes) {
496 	case 1:
497 		*(u8 *)reg = (u8)val;
498 		break;
499 	case 2:
500 		*(u16 *)reg = (u16)val;
501 		break;
502 	case 4:
503 		*reg = (u32)val;
504 		break;	/* 64b: zero-extend */
505 	case 8:
506 		*reg = val;
507 		break;
508 	}
509 }
510 
511 static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt)
512 {
513 	return (1UL << (ctxt->ad_bytes << 3)) - 1;
514 }
515 
516 static ulong stack_mask(struct x86_emulate_ctxt *ctxt)
517 {
518 	u16 sel;
519 	struct desc_struct ss;
520 
521 	if (ctxt->mode == X86EMUL_MODE_PROT64)
522 		return ~0UL;
523 	ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS);
524 	return ~0U >> ((ss.d ^ 1) * 16);  /* d=0: 0xffff; d=1: 0xffffffff */
525 }
526 
527 static int stack_size(struct x86_emulate_ctxt *ctxt)
528 {
529 	return (__fls(stack_mask(ctxt)) + 1) >> 3;
530 }
531 
532 /* Access/update address held in a register, based on addressing mode. */
533 static inline unsigned long
534 address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg)
535 {
536 	if (ctxt->ad_bytes == sizeof(unsigned long))
537 		return reg;
538 	else
539 		return reg & ad_mask(ctxt);
540 }
541 
542 static inline unsigned long
543 register_address(struct x86_emulate_ctxt *ctxt, int reg)
544 {
545 	return address_mask(ctxt, reg_read(ctxt, reg));
546 }
547 
548 static void masked_increment(ulong *reg, ulong mask, int inc)
549 {
550 	assign_masked(reg, *reg + inc, mask);
551 }
552 
553 static inline void
554 register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc)
555 {
556 	ulong *preg = reg_rmw(ctxt, reg);
557 
558 	assign_register(preg, *preg + inc, ctxt->ad_bytes);
559 }
560 
561 static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc)
562 {
563 	masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc);
564 }
565 
566 static u32 desc_limit_scaled(struct desc_struct *desc)
567 {
568 	u32 limit = get_desc_limit(desc);
569 
570 	return desc->g ? (limit << 12) | 0xfff : limit;
571 }
572 
573 static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
574 {
575 	if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
576 		return 0;
577 
578 	return ctxt->ops->get_cached_segment_base(ctxt, seg);
579 }
580 
581 static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
582 			     u32 error, bool valid)
583 {
584 	if (KVM_EMULATOR_BUG_ON(vec > 0x1f, ctxt))
585 		return X86EMUL_UNHANDLEABLE;
586 
587 	ctxt->exception.vector = vec;
588 	ctxt->exception.error_code = error;
589 	ctxt->exception.error_code_valid = valid;
590 	return X86EMUL_PROPAGATE_FAULT;
591 }
592 
593 static int emulate_db(struct x86_emulate_ctxt *ctxt)
594 {
595 	return emulate_exception(ctxt, DB_VECTOR, 0, false);
596 }
597 
598 static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err)
599 {
600 	return emulate_exception(ctxt, GP_VECTOR, err, true);
601 }
602 
603 static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err)
604 {
605 	return emulate_exception(ctxt, SS_VECTOR, err, true);
606 }
607 
608 static int emulate_ud(struct x86_emulate_ctxt *ctxt)
609 {
610 	return emulate_exception(ctxt, UD_VECTOR, 0, false);
611 }
612 
613 static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err)
614 {
615 	return emulate_exception(ctxt, TS_VECTOR, err, true);
616 }
617 
618 static int emulate_de(struct x86_emulate_ctxt *ctxt)
619 {
620 	return emulate_exception(ctxt, DE_VECTOR, 0, false);
621 }
622 
623 static int emulate_nm(struct x86_emulate_ctxt *ctxt)
624 {
625 	return emulate_exception(ctxt, NM_VECTOR, 0, false);
626 }
627 
628 static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg)
629 {
630 	u16 selector;
631 	struct desc_struct desc;
632 
633 	ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg);
634 	return selector;
635 }
636 
637 static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector,
638 				 unsigned seg)
639 {
640 	u16 dummy;
641 	u32 base3;
642 	struct desc_struct desc;
643 
644 	ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg);
645 	ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg);
646 }
647 
648 static inline u8 ctxt_virt_addr_bits(struct x86_emulate_ctxt *ctxt)
649 {
650 	return (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_LA57) ? 57 : 48;
651 }
652 
653 static inline bool emul_is_noncanonical_address(u64 la,
654 						struct x86_emulate_ctxt *ctxt)
655 {
656 	return !__is_canonical_address(la, ctxt_virt_addr_bits(ctxt));
657 }
658 
659 /*
660  * x86 defines three classes of vector instructions: explicitly
661  * aligned, explicitly unaligned, and the rest, which change behaviour
662  * depending on whether they're AVX encoded or not.
663  *
664  * Also included is CMPXCHG16B which is not a vector instruction, yet it is
665  * subject to the same check.  FXSAVE and FXRSTOR are checked here too as their
666  * 512 bytes of data must be aligned to a 16 byte boundary.
667  */
668 static unsigned insn_alignment(struct x86_emulate_ctxt *ctxt, unsigned size)
669 {
670 	u64 alignment = ctxt->d & AlignMask;
671 
672 	if (likely(size < 16))
673 		return 1;
674 
675 	switch (alignment) {
676 	case Unaligned:
677 	case Avx:
678 		return 1;
679 	case Aligned16:
680 		return 16;
681 	case Aligned:
682 	default:
683 		return size;
684 	}
685 }
686 
687 static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt,
688 				       struct segmented_address addr,
689 				       unsigned *max_size, unsigned size,
690 				       bool write, bool fetch,
691 				       enum x86emul_mode mode, ulong *linear)
692 {
693 	struct desc_struct desc;
694 	bool usable;
695 	ulong la;
696 	u32 lim;
697 	u16 sel;
698 	u8  va_bits;
699 
700 	la = seg_base(ctxt, addr.seg) + addr.ea;
701 	*max_size = 0;
702 	switch (mode) {
703 	case X86EMUL_MODE_PROT64:
704 		*linear = la;
705 		va_bits = ctxt_virt_addr_bits(ctxt);
706 		if (!__is_canonical_address(la, va_bits))
707 			goto bad;
708 
709 		*max_size = min_t(u64, ~0u, (1ull << va_bits) - la);
710 		if (size > *max_size)
711 			goto bad;
712 		break;
713 	default:
714 		*linear = la = (u32)la;
715 		usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL,
716 						addr.seg);
717 		if (!usable)
718 			goto bad;
719 		/* code segment in protected mode or read-only data segment */
720 		if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8))
721 					|| !(desc.type & 2)) && write)
722 			goto bad;
723 		/* unreadable code segment */
724 		if (!fetch && (desc.type & 8) && !(desc.type & 2))
725 			goto bad;
726 		lim = desc_limit_scaled(&desc);
727 		if (!(desc.type & 8) && (desc.type & 4)) {
728 			/* expand-down segment */
729 			if (addr.ea <= lim)
730 				goto bad;
731 			lim = desc.d ? 0xffffffff : 0xffff;
732 		}
733 		if (addr.ea > lim)
734 			goto bad;
735 		if (lim == 0xffffffff)
736 			*max_size = ~0u;
737 		else {
738 			*max_size = (u64)lim + 1 - addr.ea;
739 			if (size > *max_size)
740 				goto bad;
741 		}
742 		break;
743 	}
744 	if (la & (insn_alignment(ctxt, size) - 1))
745 		return emulate_gp(ctxt, 0);
746 	return X86EMUL_CONTINUE;
747 bad:
748 	if (addr.seg == VCPU_SREG_SS)
749 		return emulate_ss(ctxt, 0);
750 	else
751 		return emulate_gp(ctxt, 0);
752 }
753 
754 static int linearize(struct x86_emulate_ctxt *ctxt,
755 		     struct segmented_address addr,
756 		     unsigned size, bool write,
757 		     ulong *linear)
758 {
759 	unsigned max_size;
760 	return __linearize(ctxt, addr, &max_size, size, write, false,
761 			   ctxt->mode, linear);
762 }
763 
764 static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst)
765 {
766 	ulong linear;
767 	int rc;
768 	unsigned max_size;
769 	struct segmented_address addr = { .seg = VCPU_SREG_CS,
770 					   .ea = dst };
771 
772 	if (ctxt->op_bytes != sizeof(unsigned long))
773 		addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1);
774 	rc = __linearize(ctxt, addr, &max_size, 1, false, true, ctxt->mode, &linear);
775 	if (rc == X86EMUL_CONTINUE)
776 		ctxt->_eip = addr.ea;
777 	return rc;
778 }
779 
780 static inline int emulator_recalc_and_set_mode(struct x86_emulate_ctxt *ctxt)
781 {
782 	u64 efer;
783 	struct desc_struct cs;
784 	u16 selector;
785 	u32 base3;
786 
787 	ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
788 
789 	if (!(ctxt->ops->get_cr(ctxt, 0) & X86_CR0_PE)) {
790 		/* Real mode. cpu must not have long mode active */
791 		if (efer & EFER_LMA)
792 			return X86EMUL_UNHANDLEABLE;
793 		ctxt->mode = X86EMUL_MODE_REAL;
794 		return X86EMUL_CONTINUE;
795 	}
796 
797 	if (ctxt->eflags & X86_EFLAGS_VM) {
798 		/* Protected/VM86 mode. cpu must not have long mode active */
799 		if (efer & EFER_LMA)
800 			return X86EMUL_UNHANDLEABLE;
801 		ctxt->mode = X86EMUL_MODE_VM86;
802 		return X86EMUL_CONTINUE;
803 	}
804 
805 	if (!ctxt->ops->get_segment(ctxt, &selector, &cs, &base3, VCPU_SREG_CS))
806 		return X86EMUL_UNHANDLEABLE;
807 
808 	if (efer & EFER_LMA) {
809 		if (cs.l) {
810 			/* Proper long mode */
811 			ctxt->mode = X86EMUL_MODE_PROT64;
812 		} else if (cs.d) {
813 			/* 32 bit compatibility mode*/
814 			ctxt->mode = X86EMUL_MODE_PROT32;
815 		} else {
816 			ctxt->mode = X86EMUL_MODE_PROT16;
817 		}
818 	} else {
819 		/* Legacy 32 bit / 16 bit mode */
820 		ctxt->mode = cs.d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
821 	}
822 
823 	return X86EMUL_CONTINUE;
824 }
825 
826 static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst)
827 {
828 	return assign_eip(ctxt, dst);
829 }
830 
831 static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst)
832 {
833 	int rc = emulator_recalc_and_set_mode(ctxt);
834 
835 	if (rc != X86EMUL_CONTINUE)
836 		return rc;
837 
838 	return assign_eip(ctxt, dst);
839 }
840 
841 static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel)
842 {
843 	return assign_eip_near(ctxt, ctxt->_eip + rel);
844 }
845 
846 static int linear_read_system(struct x86_emulate_ctxt *ctxt, ulong linear,
847 			      void *data, unsigned size)
848 {
849 	return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, true);
850 }
851 
852 static int linear_write_system(struct x86_emulate_ctxt *ctxt,
853 			       ulong linear, void *data,
854 			       unsigned int size)
855 {
856 	return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, true);
857 }
858 
859 static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
860 			      struct segmented_address addr,
861 			      void *data,
862 			      unsigned size)
863 {
864 	int rc;
865 	ulong linear;
866 
867 	rc = linearize(ctxt, addr, size, false, &linear);
868 	if (rc != X86EMUL_CONTINUE)
869 		return rc;
870 	return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, false);
871 }
872 
873 static int segmented_write_std(struct x86_emulate_ctxt *ctxt,
874 			       struct segmented_address addr,
875 			       void *data,
876 			       unsigned int size)
877 {
878 	int rc;
879 	ulong linear;
880 
881 	rc = linearize(ctxt, addr, size, true, &linear);
882 	if (rc != X86EMUL_CONTINUE)
883 		return rc;
884 	return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, false);
885 }
886 
887 /*
888  * Prefetch the remaining bytes of the instruction without crossing page
889  * boundary if they are not in fetch_cache yet.
890  */
891 static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size)
892 {
893 	int rc;
894 	unsigned size, max_size;
895 	unsigned long linear;
896 	int cur_size = ctxt->fetch.end - ctxt->fetch.data;
897 	struct segmented_address addr = { .seg = VCPU_SREG_CS,
898 					   .ea = ctxt->eip + cur_size };
899 
900 	/*
901 	 * We do not know exactly how many bytes will be needed, and
902 	 * __linearize is expensive, so fetch as much as possible.  We
903 	 * just have to avoid going beyond the 15 byte limit, the end
904 	 * of the segment, or the end of the page.
905 	 *
906 	 * __linearize is called with size 0 so that it does not do any
907 	 * boundary check itself.  Instead, we use max_size to check
908 	 * against op_size.
909 	 */
910 	rc = __linearize(ctxt, addr, &max_size, 0, false, true, ctxt->mode,
911 			 &linear);
912 	if (unlikely(rc != X86EMUL_CONTINUE))
913 		return rc;
914 
915 	size = min_t(unsigned, 15UL ^ cur_size, max_size);
916 	size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear));
917 
918 	/*
919 	 * One instruction can only straddle two pages,
920 	 * and one has been loaded at the beginning of
921 	 * x86_decode_insn.  So, if not enough bytes
922 	 * still, we must have hit the 15-byte boundary.
923 	 */
924 	if (unlikely(size < op_size))
925 		return emulate_gp(ctxt, 0);
926 
927 	rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end,
928 			      size, &ctxt->exception);
929 	if (unlikely(rc != X86EMUL_CONTINUE))
930 		return rc;
931 	ctxt->fetch.end += size;
932 	return X86EMUL_CONTINUE;
933 }
934 
935 static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt,
936 					       unsigned size)
937 {
938 	unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr;
939 
940 	if (unlikely(done_size < size))
941 		return __do_insn_fetch_bytes(ctxt, size - done_size);
942 	else
943 		return X86EMUL_CONTINUE;
944 }
945 
946 /* Fetch next part of the instruction being emulated. */
947 #define insn_fetch(_type, _ctxt)					\
948 ({	_type _x;							\
949 									\
950 	rc = do_insn_fetch_bytes(_ctxt, sizeof(_type));			\
951 	if (rc != X86EMUL_CONTINUE)					\
952 		goto done;						\
953 	ctxt->_eip += sizeof(_type);					\
954 	memcpy(&_x, ctxt->fetch.ptr, sizeof(_type));			\
955 	ctxt->fetch.ptr += sizeof(_type);				\
956 	_x;								\
957 })
958 
959 #define insn_fetch_arr(_arr, _size, _ctxt)				\
960 ({									\
961 	rc = do_insn_fetch_bytes(_ctxt, _size);				\
962 	if (rc != X86EMUL_CONTINUE)					\
963 		goto done;						\
964 	ctxt->_eip += (_size);						\
965 	memcpy(_arr, ctxt->fetch.ptr, _size);				\
966 	ctxt->fetch.ptr += (_size);					\
967 })
968 
969 /*
970  * Given the 'reg' portion of a ModRM byte, and a register block, return a
971  * pointer into the block that addresses the relevant register.
972  * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
973  */
974 static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg,
975 			     int byteop)
976 {
977 	void *p;
978 	int highbyte_regs = (ctxt->rex_prefix == 0) && byteop;
979 
980 	if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
981 		p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1;
982 	else
983 		p = reg_rmw(ctxt, modrm_reg);
984 	return p;
985 }
986 
987 static int read_descriptor(struct x86_emulate_ctxt *ctxt,
988 			   struct segmented_address addr,
989 			   u16 *size, unsigned long *address, int op_bytes)
990 {
991 	int rc;
992 
993 	if (op_bytes == 2)
994 		op_bytes = 3;
995 	*address = 0;
996 	rc = segmented_read_std(ctxt, addr, size, 2);
997 	if (rc != X86EMUL_CONTINUE)
998 		return rc;
999 	addr.ea += 2;
1000 	rc = segmented_read_std(ctxt, addr, address, op_bytes);
1001 	return rc;
1002 }
1003 
1004 FASTOP2(add);
1005 FASTOP2(or);
1006 FASTOP2(adc);
1007 FASTOP2(sbb);
1008 FASTOP2(and);
1009 FASTOP2(sub);
1010 FASTOP2(xor);
1011 FASTOP2(cmp);
1012 FASTOP2(test);
1013 
1014 FASTOP1SRC2(mul, mul_ex);
1015 FASTOP1SRC2(imul, imul_ex);
1016 FASTOP1SRC2EX(div, div_ex);
1017 FASTOP1SRC2EX(idiv, idiv_ex);
1018 
1019 FASTOP3WCL(shld);
1020 FASTOP3WCL(shrd);
1021 
1022 FASTOP2W(imul);
1023 
1024 FASTOP1(not);
1025 FASTOP1(neg);
1026 FASTOP1(inc);
1027 FASTOP1(dec);
1028 
1029 FASTOP2CL(rol);
1030 FASTOP2CL(ror);
1031 FASTOP2CL(rcl);
1032 FASTOP2CL(rcr);
1033 FASTOP2CL(shl);
1034 FASTOP2CL(shr);
1035 FASTOP2CL(sar);
1036 
1037 FASTOP2W(bsf);
1038 FASTOP2W(bsr);
1039 FASTOP2W(bt);
1040 FASTOP2W(bts);
1041 FASTOP2W(btr);
1042 FASTOP2W(btc);
1043 
1044 FASTOP2(xadd);
1045 
1046 FASTOP2R(cmp, cmp_r);
1047 
1048 static int em_bsf_c(struct x86_emulate_ctxt *ctxt)
1049 {
1050 	/* If src is zero, do not writeback, but update flags */
1051 	if (ctxt->src.val == 0)
1052 		ctxt->dst.type = OP_NONE;
1053 	return fastop(ctxt, em_bsf);
1054 }
1055 
1056 static int em_bsr_c(struct x86_emulate_ctxt *ctxt)
1057 {
1058 	/* If src is zero, do not writeback, but update flags */
1059 	if (ctxt->src.val == 0)
1060 		ctxt->dst.type = OP_NONE;
1061 	return fastop(ctxt, em_bsr);
1062 }
1063 
1064 static __always_inline u8 test_cc(unsigned int condition, unsigned long flags)
1065 {
1066 	u8 rc;
1067 	void (*fop)(void) = (void *)em_setcc + FASTOP_SIZE * (condition & 0xf);
1068 
1069 	flags = (flags & EFLAGS_MASK) | X86_EFLAGS_IF;
1070 	asm("push %[flags]; popf; " CALL_NOSPEC
1071 	    : "=a"(rc) : [thunk_target]"r"(fop), [flags]"r"(flags));
1072 	return rc;
1073 }
1074 
1075 static void fetch_register_operand(struct operand *op)
1076 {
1077 	switch (op->bytes) {
1078 	case 1:
1079 		op->val = *(u8 *)op->addr.reg;
1080 		break;
1081 	case 2:
1082 		op->val = *(u16 *)op->addr.reg;
1083 		break;
1084 	case 4:
1085 		op->val = *(u32 *)op->addr.reg;
1086 		break;
1087 	case 8:
1088 		op->val = *(u64 *)op->addr.reg;
1089 		break;
1090 	}
1091 }
1092 
1093 static int em_fninit(struct x86_emulate_ctxt *ctxt)
1094 {
1095 	if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1096 		return emulate_nm(ctxt);
1097 
1098 	kvm_fpu_get();
1099 	asm volatile("fninit");
1100 	kvm_fpu_put();
1101 	return X86EMUL_CONTINUE;
1102 }
1103 
1104 static int em_fnstcw(struct x86_emulate_ctxt *ctxt)
1105 {
1106 	u16 fcw;
1107 
1108 	if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1109 		return emulate_nm(ctxt);
1110 
1111 	kvm_fpu_get();
1112 	asm volatile("fnstcw %0": "+m"(fcw));
1113 	kvm_fpu_put();
1114 
1115 	ctxt->dst.val = fcw;
1116 
1117 	return X86EMUL_CONTINUE;
1118 }
1119 
1120 static int em_fnstsw(struct x86_emulate_ctxt *ctxt)
1121 {
1122 	u16 fsw;
1123 
1124 	if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1125 		return emulate_nm(ctxt);
1126 
1127 	kvm_fpu_get();
1128 	asm volatile("fnstsw %0": "+m"(fsw));
1129 	kvm_fpu_put();
1130 
1131 	ctxt->dst.val = fsw;
1132 
1133 	return X86EMUL_CONTINUE;
1134 }
1135 
1136 static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
1137 				    struct operand *op)
1138 {
1139 	unsigned int reg;
1140 
1141 	if (ctxt->d & ModRM)
1142 		reg = ctxt->modrm_reg;
1143 	else
1144 		reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3);
1145 
1146 	if (ctxt->d & Sse) {
1147 		op->type = OP_XMM;
1148 		op->bytes = 16;
1149 		op->addr.xmm = reg;
1150 		kvm_read_sse_reg(reg, &op->vec_val);
1151 		return;
1152 	}
1153 	if (ctxt->d & Mmx) {
1154 		reg &= 7;
1155 		op->type = OP_MM;
1156 		op->bytes = 8;
1157 		op->addr.mm = reg;
1158 		return;
1159 	}
1160 
1161 	op->type = OP_REG;
1162 	op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1163 	op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp);
1164 
1165 	fetch_register_operand(op);
1166 	op->orig_val = op->val;
1167 }
1168 
1169 static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg)
1170 {
1171 	if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP)
1172 		ctxt->modrm_seg = VCPU_SREG_SS;
1173 }
1174 
1175 static int decode_modrm(struct x86_emulate_ctxt *ctxt,
1176 			struct operand *op)
1177 {
1178 	u8 sib;
1179 	int index_reg, base_reg, scale;
1180 	int rc = X86EMUL_CONTINUE;
1181 	ulong modrm_ea = 0;
1182 
1183 	ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */
1184 	index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */
1185 	base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */
1186 
1187 	ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6;
1188 	ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
1189 	ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07);
1190 	ctxt->modrm_seg = VCPU_SREG_DS;
1191 
1192 	if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) {
1193 		op->type = OP_REG;
1194 		op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1195 		op->addr.reg = decode_register(ctxt, ctxt->modrm_rm,
1196 				ctxt->d & ByteOp);
1197 		if (ctxt->d & Sse) {
1198 			op->type = OP_XMM;
1199 			op->bytes = 16;
1200 			op->addr.xmm = ctxt->modrm_rm;
1201 			kvm_read_sse_reg(ctxt->modrm_rm, &op->vec_val);
1202 			return rc;
1203 		}
1204 		if (ctxt->d & Mmx) {
1205 			op->type = OP_MM;
1206 			op->bytes = 8;
1207 			op->addr.mm = ctxt->modrm_rm & 7;
1208 			return rc;
1209 		}
1210 		fetch_register_operand(op);
1211 		return rc;
1212 	}
1213 
1214 	op->type = OP_MEM;
1215 
1216 	if (ctxt->ad_bytes == 2) {
1217 		unsigned bx = reg_read(ctxt, VCPU_REGS_RBX);
1218 		unsigned bp = reg_read(ctxt, VCPU_REGS_RBP);
1219 		unsigned si = reg_read(ctxt, VCPU_REGS_RSI);
1220 		unsigned di = reg_read(ctxt, VCPU_REGS_RDI);
1221 
1222 		/* 16-bit ModR/M decode. */
1223 		switch (ctxt->modrm_mod) {
1224 		case 0:
1225 			if (ctxt->modrm_rm == 6)
1226 				modrm_ea += insn_fetch(u16, ctxt);
1227 			break;
1228 		case 1:
1229 			modrm_ea += insn_fetch(s8, ctxt);
1230 			break;
1231 		case 2:
1232 			modrm_ea += insn_fetch(u16, ctxt);
1233 			break;
1234 		}
1235 		switch (ctxt->modrm_rm) {
1236 		case 0:
1237 			modrm_ea += bx + si;
1238 			break;
1239 		case 1:
1240 			modrm_ea += bx + di;
1241 			break;
1242 		case 2:
1243 			modrm_ea += bp + si;
1244 			break;
1245 		case 3:
1246 			modrm_ea += bp + di;
1247 			break;
1248 		case 4:
1249 			modrm_ea += si;
1250 			break;
1251 		case 5:
1252 			modrm_ea += di;
1253 			break;
1254 		case 6:
1255 			if (ctxt->modrm_mod != 0)
1256 				modrm_ea += bp;
1257 			break;
1258 		case 7:
1259 			modrm_ea += bx;
1260 			break;
1261 		}
1262 		if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 ||
1263 		    (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0))
1264 			ctxt->modrm_seg = VCPU_SREG_SS;
1265 		modrm_ea = (u16)modrm_ea;
1266 	} else {
1267 		/* 32/64-bit ModR/M decode. */
1268 		if ((ctxt->modrm_rm & 7) == 4) {
1269 			sib = insn_fetch(u8, ctxt);
1270 			index_reg |= (sib >> 3) & 7;
1271 			base_reg |= sib & 7;
1272 			scale = sib >> 6;
1273 
1274 			if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0)
1275 				modrm_ea += insn_fetch(s32, ctxt);
1276 			else {
1277 				modrm_ea += reg_read(ctxt, base_reg);
1278 				adjust_modrm_seg(ctxt, base_reg);
1279 				/* Increment ESP on POP [ESP] */
1280 				if ((ctxt->d & IncSP) &&
1281 				    base_reg == VCPU_REGS_RSP)
1282 					modrm_ea += ctxt->op_bytes;
1283 			}
1284 			if (index_reg != 4)
1285 				modrm_ea += reg_read(ctxt, index_reg) << scale;
1286 		} else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) {
1287 			modrm_ea += insn_fetch(s32, ctxt);
1288 			if (ctxt->mode == X86EMUL_MODE_PROT64)
1289 				ctxt->rip_relative = 1;
1290 		} else {
1291 			base_reg = ctxt->modrm_rm;
1292 			modrm_ea += reg_read(ctxt, base_reg);
1293 			adjust_modrm_seg(ctxt, base_reg);
1294 		}
1295 		switch (ctxt->modrm_mod) {
1296 		case 1:
1297 			modrm_ea += insn_fetch(s8, ctxt);
1298 			break;
1299 		case 2:
1300 			modrm_ea += insn_fetch(s32, ctxt);
1301 			break;
1302 		}
1303 	}
1304 	op->addr.mem.ea = modrm_ea;
1305 	if (ctxt->ad_bytes != 8)
1306 		ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea;
1307 
1308 done:
1309 	return rc;
1310 }
1311 
1312 static int decode_abs(struct x86_emulate_ctxt *ctxt,
1313 		      struct operand *op)
1314 {
1315 	int rc = X86EMUL_CONTINUE;
1316 
1317 	op->type = OP_MEM;
1318 	switch (ctxt->ad_bytes) {
1319 	case 2:
1320 		op->addr.mem.ea = insn_fetch(u16, ctxt);
1321 		break;
1322 	case 4:
1323 		op->addr.mem.ea = insn_fetch(u32, ctxt);
1324 		break;
1325 	case 8:
1326 		op->addr.mem.ea = insn_fetch(u64, ctxt);
1327 		break;
1328 	}
1329 done:
1330 	return rc;
1331 }
1332 
1333 static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt)
1334 {
1335 	long sv = 0, mask;
1336 
1337 	if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) {
1338 		mask = ~((long)ctxt->dst.bytes * 8 - 1);
1339 
1340 		if (ctxt->src.bytes == 2)
1341 			sv = (s16)ctxt->src.val & (s16)mask;
1342 		else if (ctxt->src.bytes == 4)
1343 			sv = (s32)ctxt->src.val & (s32)mask;
1344 		else
1345 			sv = (s64)ctxt->src.val & (s64)mask;
1346 
1347 		ctxt->dst.addr.mem.ea = address_mask(ctxt,
1348 					   ctxt->dst.addr.mem.ea + (sv >> 3));
1349 	}
1350 
1351 	/* only subword offset */
1352 	ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
1353 }
1354 
1355 static int read_emulated(struct x86_emulate_ctxt *ctxt,
1356 			 unsigned long addr, void *dest, unsigned size)
1357 {
1358 	int rc;
1359 	struct read_cache *mc = &ctxt->mem_read;
1360 
1361 	if (mc->pos < mc->end)
1362 		goto read_cached;
1363 
1364 	if (KVM_EMULATOR_BUG_ON((mc->end + size) >= sizeof(mc->data), ctxt))
1365 		return X86EMUL_UNHANDLEABLE;
1366 
1367 	rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size,
1368 				      &ctxt->exception);
1369 	if (rc != X86EMUL_CONTINUE)
1370 		return rc;
1371 
1372 	mc->end += size;
1373 
1374 read_cached:
1375 	memcpy(dest, mc->data + mc->pos, size);
1376 	mc->pos += size;
1377 	return X86EMUL_CONTINUE;
1378 }
1379 
1380 static int segmented_read(struct x86_emulate_ctxt *ctxt,
1381 			  struct segmented_address addr,
1382 			  void *data,
1383 			  unsigned size)
1384 {
1385 	int rc;
1386 	ulong linear;
1387 
1388 	rc = linearize(ctxt, addr, size, false, &linear);
1389 	if (rc != X86EMUL_CONTINUE)
1390 		return rc;
1391 	return read_emulated(ctxt, linear, data, size);
1392 }
1393 
1394 static int segmented_write(struct x86_emulate_ctxt *ctxt,
1395 			   struct segmented_address addr,
1396 			   const void *data,
1397 			   unsigned size)
1398 {
1399 	int rc;
1400 	ulong linear;
1401 
1402 	rc = linearize(ctxt, addr, size, true, &linear);
1403 	if (rc != X86EMUL_CONTINUE)
1404 		return rc;
1405 	return ctxt->ops->write_emulated(ctxt, linear, data, size,
1406 					 &ctxt->exception);
1407 }
1408 
1409 static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
1410 			     struct segmented_address addr,
1411 			     const void *orig_data, const void *data,
1412 			     unsigned size)
1413 {
1414 	int rc;
1415 	ulong linear;
1416 
1417 	rc = linearize(ctxt, addr, size, true, &linear);
1418 	if (rc != X86EMUL_CONTINUE)
1419 		return rc;
1420 	return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data,
1421 					   size, &ctxt->exception);
1422 }
1423 
1424 static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
1425 			   unsigned int size, unsigned short port,
1426 			   void *dest)
1427 {
1428 	struct read_cache *rc = &ctxt->io_read;
1429 
1430 	if (rc->pos == rc->end) { /* refill pio read ahead */
1431 		unsigned int in_page, n;
1432 		unsigned int count = ctxt->rep_prefix ?
1433 			address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1;
1434 		in_page = (ctxt->eflags & X86_EFLAGS_DF) ?
1435 			offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) :
1436 			PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI));
1437 		n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count);
1438 		if (n == 0)
1439 			n = 1;
1440 		rc->pos = rc->end = 0;
1441 		if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n))
1442 			return 0;
1443 		rc->end = n * size;
1444 	}
1445 
1446 	if (ctxt->rep_prefix && (ctxt->d & String) &&
1447 	    !(ctxt->eflags & X86_EFLAGS_DF)) {
1448 		ctxt->dst.data = rc->data + rc->pos;
1449 		ctxt->dst.type = OP_MEM_STR;
1450 		ctxt->dst.count = (rc->end - rc->pos) / size;
1451 		rc->pos = rc->end;
1452 	} else {
1453 		memcpy(dest, rc->data + rc->pos, size);
1454 		rc->pos += size;
1455 	}
1456 	return 1;
1457 }
1458 
1459 static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt,
1460 				     u16 index, struct desc_struct *desc)
1461 {
1462 	struct desc_ptr dt;
1463 	ulong addr;
1464 
1465 	ctxt->ops->get_idt(ctxt, &dt);
1466 
1467 	if (dt.size < index * 8 + 7)
1468 		return emulate_gp(ctxt, index << 3 | 0x2);
1469 
1470 	addr = dt.address + index * 8;
1471 	return linear_read_system(ctxt, addr, desc, sizeof(*desc));
1472 }
1473 
1474 static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
1475 				     u16 selector, struct desc_ptr *dt)
1476 {
1477 	const struct x86_emulate_ops *ops = ctxt->ops;
1478 	u32 base3 = 0;
1479 
1480 	if (selector & 1 << 2) {
1481 		struct desc_struct desc;
1482 		u16 sel;
1483 
1484 		memset(dt, 0, sizeof(*dt));
1485 		if (!ops->get_segment(ctxt, &sel, &desc, &base3,
1486 				      VCPU_SREG_LDTR))
1487 			return;
1488 
1489 		dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
1490 		dt->address = get_desc_base(&desc) | ((u64)base3 << 32);
1491 	} else
1492 		ops->get_gdt(ctxt, dt);
1493 }
1494 
1495 static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt,
1496 			      u16 selector, ulong *desc_addr_p)
1497 {
1498 	struct desc_ptr dt;
1499 	u16 index = selector >> 3;
1500 	ulong addr;
1501 
1502 	get_descriptor_table_ptr(ctxt, selector, &dt);
1503 
1504 	if (dt.size < index * 8 + 7)
1505 		return emulate_gp(ctxt, selector & 0xfffc);
1506 
1507 	addr = dt.address + index * 8;
1508 
1509 #ifdef CONFIG_X86_64
1510 	if (addr >> 32 != 0) {
1511 		u64 efer = 0;
1512 
1513 		ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1514 		if (!(efer & EFER_LMA))
1515 			addr &= (u32)-1;
1516 	}
1517 #endif
1518 
1519 	*desc_addr_p = addr;
1520 	return X86EMUL_CONTINUE;
1521 }
1522 
1523 /* allowed just for 8 bytes segments */
1524 static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1525 				   u16 selector, struct desc_struct *desc,
1526 				   ulong *desc_addr_p)
1527 {
1528 	int rc;
1529 
1530 	rc = get_descriptor_ptr(ctxt, selector, desc_addr_p);
1531 	if (rc != X86EMUL_CONTINUE)
1532 		return rc;
1533 
1534 	return linear_read_system(ctxt, *desc_addr_p, desc, sizeof(*desc));
1535 }
1536 
1537 /* allowed just for 8 bytes segments */
1538 static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1539 				    u16 selector, struct desc_struct *desc)
1540 {
1541 	int rc;
1542 	ulong addr;
1543 
1544 	rc = get_descriptor_ptr(ctxt, selector, &addr);
1545 	if (rc != X86EMUL_CONTINUE)
1546 		return rc;
1547 
1548 	return linear_write_system(ctxt, addr, desc, sizeof(*desc));
1549 }
1550 
1551 static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1552 				     u16 selector, int seg, u8 cpl,
1553 				     enum x86_transfer_type transfer,
1554 				     struct desc_struct *desc)
1555 {
1556 	struct desc_struct seg_desc, old_desc;
1557 	u8 dpl, rpl;
1558 	unsigned err_vec = GP_VECTOR;
1559 	u32 err_code = 0;
1560 	bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
1561 	ulong desc_addr;
1562 	int ret;
1563 	u16 dummy;
1564 	u32 base3 = 0;
1565 
1566 	memset(&seg_desc, 0, sizeof(seg_desc));
1567 
1568 	if (ctxt->mode == X86EMUL_MODE_REAL) {
1569 		/* set real mode segment descriptor (keep limit etc. for
1570 		 * unreal mode) */
1571 		ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg);
1572 		set_desc_base(&seg_desc, selector << 4);
1573 		goto load;
1574 	} else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) {
1575 		/* VM86 needs a clean new segment descriptor */
1576 		set_desc_base(&seg_desc, selector << 4);
1577 		set_desc_limit(&seg_desc, 0xffff);
1578 		seg_desc.type = 3;
1579 		seg_desc.p = 1;
1580 		seg_desc.s = 1;
1581 		seg_desc.dpl = 3;
1582 		goto load;
1583 	}
1584 
1585 	rpl = selector & 3;
1586 
1587 	/* TR should be in GDT only */
1588 	if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
1589 		goto exception;
1590 
1591 	/* NULL selector is not valid for TR, CS and (except for long mode) SS */
1592 	if (null_selector) {
1593 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_TR)
1594 			goto exception;
1595 
1596 		if (seg == VCPU_SREG_SS) {
1597 			if (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl)
1598 				goto exception;
1599 
1600 			/*
1601 			 * ctxt->ops->set_segment expects the CPL to be in
1602 			 * SS.DPL, so fake an expand-up 32-bit data segment.
1603 			 */
1604 			seg_desc.type = 3;
1605 			seg_desc.p = 1;
1606 			seg_desc.s = 1;
1607 			seg_desc.dpl = cpl;
1608 			seg_desc.d = 1;
1609 			seg_desc.g = 1;
1610 		}
1611 
1612 		/* Skip all following checks */
1613 		goto load;
1614 	}
1615 
1616 	ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr);
1617 	if (ret != X86EMUL_CONTINUE)
1618 		return ret;
1619 
1620 	err_code = selector & 0xfffc;
1621 	err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR :
1622 							   GP_VECTOR;
1623 
1624 	/* can't load system descriptor into segment selector */
1625 	if (seg <= VCPU_SREG_GS && !seg_desc.s) {
1626 		if (transfer == X86_TRANSFER_CALL_JMP)
1627 			return X86EMUL_UNHANDLEABLE;
1628 		goto exception;
1629 	}
1630 
1631 	dpl = seg_desc.dpl;
1632 
1633 	switch (seg) {
1634 	case VCPU_SREG_SS:
1635 		/*
1636 		 * segment is not a writable data segment or segment
1637 		 * selector's RPL != CPL or DPL != CPL
1638 		 */
1639 		if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
1640 			goto exception;
1641 		break;
1642 	case VCPU_SREG_CS:
1643 		if (!(seg_desc.type & 8))
1644 			goto exception;
1645 
1646 		if (transfer == X86_TRANSFER_RET) {
1647 			/* RET can never return to an inner privilege level. */
1648 			if (rpl < cpl)
1649 				goto exception;
1650 			/* Outer-privilege level return is not implemented */
1651 			if (rpl > cpl)
1652 				return X86EMUL_UNHANDLEABLE;
1653 		}
1654 		if (transfer == X86_TRANSFER_RET || transfer == X86_TRANSFER_TASK_SWITCH) {
1655 			if (seg_desc.type & 4) {
1656 				/* conforming */
1657 				if (dpl > rpl)
1658 					goto exception;
1659 			} else {
1660 				/* nonconforming */
1661 				if (dpl != rpl)
1662 					goto exception;
1663 			}
1664 		} else { /* X86_TRANSFER_CALL_JMP */
1665 			if (seg_desc.type & 4) {
1666 				/* conforming */
1667 				if (dpl > cpl)
1668 					goto exception;
1669 			} else {
1670 				/* nonconforming */
1671 				if (rpl > cpl || dpl != cpl)
1672 					goto exception;
1673 			}
1674 		}
1675 		/* in long-mode d/b must be clear if l is set */
1676 		if (seg_desc.d && seg_desc.l) {
1677 			u64 efer = 0;
1678 
1679 			ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1680 			if (efer & EFER_LMA)
1681 				goto exception;
1682 		}
1683 
1684 		/* CS(RPL) <- CPL */
1685 		selector = (selector & 0xfffc) | cpl;
1686 		break;
1687 	case VCPU_SREG_TR:
1688 		if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
1689 			goto exception;
1690 		break;
1691 	case VCPU_SREG_LDTR:
1692 		if (seg_desc.s || seg_desc.type != 2)
1693 			goto exception;
1694 		break;
1695 	default: /*  DS, ES, FS, or GS */
1696 		/*
1697 		 * segment is not a data or readable code segment or
1698 		 * ((segment is a data or nonconforming code segment)
1699 		 * and ((RPL > DPL) or (CPL > DPL)))
1700 		 */
1701 		if ((seg_desc.type & 0xa) == 0x8 ||
1702 		    (((seg_desc.type & 0xc) != 0xc) &&
1703 		     (rpl > dpl || cpl > dpl)))
1704 			goto exception;
1705 		break;
1706 	}
1707 
1708 	if (!seg_desc.p) {
1709 		err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
1710 		goto exception;
1711 	}
1712 
1713 	if (seg_desc.s) {
1714 		/* mark segment as accessed */
1715 		if (!(seg_desc.type & 1)) {
1716 			seg_desc.type |= 1;
1717 			ret = write_segment_descriptor(ctxt, selector,
1718 						       &seg_desc);
1719 			if (ret != X86EMUL_CONTINUE)
1720 				return ret;
1721 		}
1722 	} else if (ctxt->mode == X86EMUL_MODE_PROT64) {
1723 		ret = linear_read_system(ctxt, desc_addr+8, &base3, sizeof(base3));
1724 		if (ret != X86EMUL_CONTINUE)
1725 			return ret;
1726 		if (emul_is_noncanonical_address(get_desc_base(&seg_desc) |
1727 						 ((u64)base3 << 32), ctxt))
1728 			return emulate_gp(ctxt, err_code);
1729 	}
1730 
1731 	if (seg == VCPU_SREG_TR) {
1732 		old_desc = seg_desc;
1733 		seg_desc.type |= 2; /* busy */
1734 		ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc,
1735 						  sizeof(seg_desc), &ctxt->exception);
1736 		if (ret != X86EMUL_CONTINUE)
1737 			return ret;
1738 	}
1739 load:
1740 	ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg);
1741 	if (desc)
1742 		*desc = seg_desc;
1743 	return X86EMUL_CONTINUE;
1744 exception:
1745 	return emulate_exception(ctxt, err_vec, err_code, true);
1746 }
1747 
1748 static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1749 				   u16 selector, int seg)
1750 {
1751 	u8 cpl = ctxt->ops->cpl(ctxt);
1752 
1753 	/*
1754 	 * None of MOV, POP and LSS can load a NULL selector in CPL=3, but
1755 	 * they can load it at CPL<3 (Intel's manual says only LSS can,
1756 	 * but it's wrong).
1757 	 *
1758 	 * However, the Intel manual says that putting IST=1/DPL=3 in
1759 	 * an interrupt gate will result in SS=3 (the AMD manual instead
1760 	 * says it doesn't), so allow SS=3 in __load_segment_descriptor
1761 	 * and only forbid it here.
1762 	 */
1763 	if (seg == VCPU_SREG_SS && selector == 3 &&
1764 	    ctxt->mode == X86EMUL_MODE_PROT64)
1765 		return emulate_exception(ctxt, GP_VECTOR, 0, true);
1766 
1767 	return __load_segment_descriptor(ctxt, selector, seg, cpl,
1768 					 X86_TRANSFER_NONE, NULL);
1769 }
1770 
1771 static void write_register_operand(struct operand *op)
1772 {
1773 	return assign_register(op->addr.reg, op->val, op->bytes);
1774 }
1775 
1776 static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op)
1777 {
1778 	switch (op->type) {
1779 	case OP_REG:
1780 		write_register_operand(op);
1781 		break;
1782 	case OP_MEM:
1783 		if (ctxt->lock_prefix)
1784 			return segmented_cmpxchg(ctxt,
1785 						 op->addr.mem,
1786 						 &op->orig_val,
1787 						 &op->val,
1788 						 op->bytes);
1789 		else
1790 			return segmented_write(ctxt,
1791 					       op->addr.mem,
1792 					       &op->val,
1793 					       op->bytes);
1794 		break;
1795 	case OP_MEM_STR:
1796 		return segmented_write(ctxt,
1797 				       op->addr.mem,
1798 				       op->data,
1799 				       op->bytes * op->count);
1800 		break;
1801 	case OP_XMM:
1802 		kvm_write_sse_reg(op->addr.xmm, &op->vec_val);
1803 		break;
1804 	case OP_MM:
1805 		kvm_write_mmx_reg(op->addr.mm, &op->mm_val);
1806 		break;
1807 	case OP_NONE:
1808 		/* no writeback */
1809 		break;
1810 	default:
1811 		break;
1812 	}
1813 	return X86EMUL_CONTINUE;
1814 }
1815 
1816 static int push(struct x86_emulate_ctxt *ctxt, void *data, int bytes)
1817 {
1818 	struct segmented_address addr;
1819 
1820 	rsp_increment(ctxt, -bytes);
1821 	addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1822 	addr.seg = VCPU_SREG_SS;
1823 
1824 	return segmented_write(ctxt, addr, data, bytes);
1825 }
1826 
1827 static int em_push(struct x86_emulate_ctxt *ctxt)
1828 {
1829 	/* Disable writeback. */
1830 	ctxt->dst.type = OP_NONE;
1831 	return push(ctxt, &ctxt->src.val, ctxt->op_bytes);
1832 }
1833 
1834 static int emulate_pop(struct x86_emulate_ctxt *ctxt,
1835 		       void *dest, int len)
1836 {
1837 	int rc;
1838 	struct segmented_address addr;
1839 
1840 	addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1841 	addr.seg = VCPU_SREG_SS;
1842 	rc = segmented_read(ctxt, addr, dest, len);
1843 	if (rc != X86EMUL_CONTINUE)
1844 		return rc;
1845 
1846 	rsp_increment(ctxt, len);
1847 	return rc;
1848 }
1849 
1850 static int em_pop(struct x86_emulate_ctxt *ctxt)
1851 {
1852 	return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1853 }
1854 
1855 static int emulate_popf(struct x86_emulate_ctxt *ctxt,
1856 			void *dest, int len)
1857 {
1858 	int rc;
1859 	unsigned long val, change_mask;
1860 	int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
1861 	int cpl = ctxt->ops->cpl(ctxt);
1862 
1863 	rc = emulate_pop(ctxt, &val, len);
1864 	if (rc != X86EMUL_CONTINUE)
1865 		return rc;
1866 
1867 	change_mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
1868 		      X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF |
1869 		      X86_EFLAGS_TF | X86_EFLAGS_DF | X86_EFLAGS_NT |
1870 		      X86_EFLAGS_AC | X86_EFLAGS_ID;
1871 
1872 	switch(ctxt->mode) {
1873 	case X86EMUL_MODE_PROT64:
1874 	case X86EMUL_MODE_PROT32:
1875 	case X86EMUL_MODE_PROT16:
1876 		if (cpl == 0)
1877 			change_mask |= X86_EFLAGS_IOPL;
1878 		if (cpl <= iopl)
1879 			change_mask |= X86_EFLAGS_IF;
1880 		break;
1881 	case X86EMUL_MODE_VM86:
1882 		if (iopl < 3)
1883 			return emulate_gp(ctxt, 0);
1884 		change_mask |= X86_EFLAGS_IF;
1885 		break;
1886 	default: /* real mode */
1887 		change_mask |= (X86_EFLAGS_IOPL | X86_EFLAGS_IF);
1888 		break;
1889 	}
1890 
1891 	*(unsigned long *)dest =
1892 		(ctxt->eflags & ~change_mask) | (val & change_mask);
1893 
1894 	return rc;
1895 }
1896 
1897 static int em_popf(struct x86_emulate_ctxt *ctxt)
1898 {
1899 	ctxt->dst.type = OP_REG;
1900 	ctxt->dst.addr.reg = &ctxt->eflags;
1901 	ctxt->dst.bytes = ctxt->op_bytes;
1902 	return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1903 }
1904 
1905 static int em_enter(struct x86_emulate_ctxt *ctxt)
1906 {
1907 	int rc;
1908 	unsigned frame_size = ctxt->src.val;
1909 	unsigned nesting_level = ctxt->src2.val & 31;
1910 	ulong rbp;
1911 
1912 	if (nesting_level)
1913 		return X86EMUL_UNHANDLEABLE;
1914 
1915 	rbp = reg_read(ctxt, VCPU_REGS_RBP);
1916 	rc = push(ctxt, &rbp, stack_size(ctxt));
1917 	if (rc != X86EMUL_CONTINUE)
1918 		return rc;
1919 	assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP),
1920 		      stack_mask(ctxt));
1921 	assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP),
1922 		      reg_read(ctxt, VCPU_REGS_RSP) - frame_size,
1923 		      stack_mask(ctxt));
1924 	return X86EMUL_CONTINUE;
1925 }
1926 
1927 static int em_leave(struct x86_emulate_ctxt *ctxt)
1928 {
1929 	assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP),
1930 		      stack_mask(ctxt));
1931 	return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes);
1932 }
1933 
1934 static int em_push_sreg(struct x86_emulate_ctxt *ctxt)
1935 {
1936 	int seg = ctxt->src2.val;
1937 
1938 	ctxt->src.val = get_segment_selector(ctxt, seg);
1939 	if (ctxt->op_bytes == 4) {
1940 		rsp_increment(ctxt, -2);
1941 		ctxt->op_bytes = 2;
1942 	}
1943 
1944 	return em_push(ctxt);
1945 }
1946 
1947 static int em_pop_sreg(struct x86_emulate_ctxt *ctxt)
1948 {
1949 	int seg = ctxt->src2.val;
1950 	unsigned long selector;
1951 	int rc;
1952 
1953 	rc = emulate_pop(ctxt, &selector, 2);
1954 	if (rc != X86EMUL_CONTINUE)
1955 		return rc;
1956 
1957 	if (seg == VCPU_SREG_SS)
1958 		ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
1959 	if (ctxt->op_bytes > 2)
1960 		rsp_increment(ctxt, ctxt->op_bytes - 2);
1961 
1962 	rc = load_segment_descriptor(ctxt, (u16)selector, seg);
1963 	return rc;
1964 }
1965 
1966 static int em_pusha(struct x86_emulate_ctxt *ctxt)
1967 {
1968 	unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP);
1969 	int rc = X86EMUL_CONTINUE;
1970 	int reg = VCPU_REGS_RAX;
1971 
1972 	while (reg <= VCPU_REGS_RDI) {
1973 		(reg == VCPU_REGS_RSP) ?
1974 		(ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg));
1975 
1976 		rc = em_push(ctxt);
1977 		if (rc != X86EMUL_CONTINUE)
1978 			return rc;
1979 
1980 		++reg;
1981 	}
1982 
1983 	return rc;
1984 }
1985 
1986 static int em_pushf(struct x86_emulate_ctxt *ctxt)
1987 {
1988 	ctxt->src.val = (unsigned long)ctxt->eflags & ~X86_EFLAGS_VM;
1989 	return em_push(ctxt);
1990 }
1991 
1992 static int em_popa(struct x86_emulate_ctxt *ctxt)
1993 {
1994 	int rc = X86EMUL_CONTINUE;
1995 	int reg = VCPU_REGS_RDI;
1996 	u32 val;
1997 
1998 	while (reg >= VCPU_REGS_RAX) {
1999 		if (reg == VCPU_REGS_RSP) {
2000 			rsp_increment(ctxt, ctxt->op_bytes);
2001 			--reg;
2002 		}
2003 
2004 		rc = emulate_pop(ctxt, &val, ctxt->op_bytes);
2005 		if (rc != X86EMUL_CONTINUE)
2006 			break;
2007 		assign_register(reg_rmw(ctxt, reg), val, ctxt->op_bytes);
2008 		--reg;
2009 	}
2010 	return rc;
2011 }
2012 
2013 static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
2014 {
2015 	const struct x86_emulate_ops *ops = ctxt->ops;
2016 	int rc;
2017 	struct desc_ptr dt;
2018 	gva_t cs_addr;
2019 	gva_t eip_addr;
2020 	u16 cs, eip;
2021 
2022 	/* TODO: Add limit checks */
2023 	ctxt->src.val = ctxt->eflags;
2024 	rc = em_push(ctxt);
2025 	if (rc != X86EMUL_CONTINUE)
2026 		return rc;
2027 
2028 	ctxt->eflags &= ~(X86_EFLAGS_IF | X86_EFLAGS_TF | X86_EFLAGS_AC);
2029 
2030 	ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
2031 	rc = em_push(ctxt);
2032 	if (rc != X86EMUL_CONTINUE)
2033 		return rc;
2034 
2035 	ctxt->src.val = ctxt->_eip;
2036 	rc = em_push(ctxt);
2037 	if (rc != X86EMUL_CONTINUE)
2038 		return rc;
2039 
2040 	ops->get_idt(ctxt, &dt);
2041 
2042 	eip_addr = dt.address + (irq << 2);
2043 	cs_addr = dt.address + (irq << 2) + 2;
2044 
2045 	rc = linear_read_system(ctxt, cs_addr, &cs, 2);
2046 	if (rc != X86EMUL_CONTINUE)
2047 		return rc;
2048 
2049 	rc = linear_read_system(ctxt, eip_addr, &eip, 2);
2050 	if (rc != X86EMUL_CONTINUE)
2051 		return rc;
2052 
2053 	rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS);
2054 	if (rc != X86EMUL_CONTINUE)
2055 		return rc;
2056 
2057 	ctxt->_eip = eip;
2058 
2059 	return rc;
2060 }
2061 
2062 int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
2063 {
2064 	int rc;
2065 
2066 	invalidate_registers(ctxt);
2067 	rc = __emulate_int_real(ctxt, irq);
2068 	if (rc == X86EMUL_CONTINUE)
2069 		writeback_registers(ctxt);
2070 	return rc;
2071 }
2072 
2073 static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq)
2074 {
2075 	switch(ctxt->mode) {
2076 	case X86EMUL_MODE_REAL:
2077 		return __emulate_int_real(ctxt, irq);
2078 	case X86EMUL_MODE_VM86:
2079 	case X86EMUL_MODE_PROT16:
2080 	case X86EMUL_MODE_PROT32:
2081 	case X86EMUL_MODE_PROT64:
2082 	default:
2083 		/* Protected mode interrupts unimplemented yet */
2084 		return X86EMUL_UNHANDLEABLE;
2085 	}
2086 }
2087 
2088 static int emulate_iret_real(struct x86_emulate_ctxt *ctxt)
2089 {
2090 	int rc = X86EMUL_CONTINUE;
2091 	unsigned long temp_eip = 0;
2092 	unsigned long temp_eflags = 0;
2093 	unsigned long cs = 0;
2094 	unsigned long mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
2095 			     X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_TF |
2096 			     X86_EFLAGS_IF | X86_EFLAGS_DF | X86_EFLAGS_OF |
2097 			     X86_EFLAGS_IOPL | X86_EFLAGS_NT | X86_EFLAGS_RF |
2098 			     X86_EFLAGS_AC | X86_EFLAGS_ID |
2099 			     X86_EFLAGS_FIXED;
2100 	unsigned long vm86_mask = X86_EFLAGS_VM | X86_EFLAGS_VIF |
2101 				  X86_EFLAGS_VIP;
2102 
2103 	/* TODO: Add stack limit check */
2104 
2105 	rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes);
2106 
2107 	if (rc != X86EMUL_CONTINUE)
2108 		return rc;
2109 
2110 	if (temp_eip & ~0xffff)
2111 		return emulate_gp(ctxt, 0);
2112 
2113 	rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2114 
2115 	if (rc != X86EMUL_CONTINUE)
2116 		return rc;
2117 
2118 	rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes);
2119 
2120 	if (rc != X86EMUL_CONTINUE)
2121 		return rc;
2122 
2123 	rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
2124 
2125 	if (rc != X86EMUL_CONTINUE)
2126 		return rc;
2127 
2128 	ctxt->_eip = temp_eip;
2129 
2130 	if (ctxt->op_bytes == 4)
2131 		ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
2132 	else if (ctxt->op_bytes == 2) {
2133 		ctxt->eflags &= ~0xffff;
2134 		ctxt->eflags |= temp_eflags;
2135 	}
2136 
2137 	ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */
2138 	ctxt->eflags |= X86_EFLAGS_FIXED;
2139 	ctxt->ops->set_nmi_mask(ctxt, false);
2140 
2141 	return rc;
2142 }
2143 
2144 static int em_iret(struct x86_emulate_ctxt *ctxt)
2145 {
2146 	switch(ctxt->mode) {
2147 	case X86EMUL_MODE_REAL:
2148 		return emulate_iret_real(ctxt);
2149 	case X86EMUL_MODE_VM86:
2150 	case X86EMUL_MODE_PROT16:
2151 	case X86EMUL_MODE_PROT32:
2152 	case X86EMUL_MODE_PROT64:
2153 	default:
2154 		/* iret from protected mode unimplemented yet */
2155 		return X86EMUL_UNHANDLEABLE;
2156 	}
2157 }
2158 
2159 static int em_jmp_far(struct x86_emulate_ctxt *ctxt)
2160 {
2161 	int rc;
2162 	unsigned short sel;
2163 	struct desc_struct new_desc;
2164 	u8 cpl = ctxt->ops->cpl(ctxt);
2165 
2166 	memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2167 
2168 	rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
2169 				       X86_TRANSFER_CALL_JMP,
2170 				       &new_desc);
2171 	if (rc != X86EMUL_CONTINUE)
2172 		return rc;
2173 
2174 	rc = assign_eip_far(ctxt, ctxt->src.val);
2175 	/* Error handling is not implemented. */
2176 	if (rc != X86EMUL_CONTINUE)
2177 		return X86EMUL_UNHANDLEABLE;
2178 
2179 	return rc;
2180 }
2181 
2182 static int em_jmp_abs(struct x86_emulate_ctxt *ctxt)
2183 {
2184 	return assign_eip_near(ctxt, ctxt->src.val);
2185 }
2186 
2187 static int em_call_near_abs(struct x86_emulate_ctxt *ctxt)
2188 {
2189 	int rc;
2190 	long int old_eip;
2191 
2192 	old_eip = ctxt->_eip;
2193 	rc = assign_eip_near(ctxt, ctxt->src.val);
2194 	if (rc != X86EMUL_CONTINUE)
2195 		return rc;
2196 	ctxt->src.val = old_eip;
2197 	rc = em_push(ctxt);
2198 	return rc;
2199 }
2200 
2201 static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt)
2202 {
2203 	u64 old = ctxt->dst.orig_val64;
2204 
2205 	if (ctxt->dst.bytes == 16)
2206 		return X86EMUL_UNHANDLEABLE;
2207 
2208 	if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) ||
2209 	    ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) {
2210 		*reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0);
2211 		*reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32);
2212 		ctxt->eflags &= ~X86_EFLAGS_ZF;
2213 	} else {
2214 		ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) |
2215 			(u32) reg_read(ctxt, VCPU_REGS_RBX);
2216 
2217 		ctxt->eflags |= X86_EFLAGS_ZF;
2218 	}
2219 	return X86EMUL_CONTINUE;
2220 }
2221 
2222 static int em_ret(struct x86_emulate_ctxt *ctxt)
2223 {
2224 	int rc;
2225 	unsigned long eip;
2226 
2227 	rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2228 	if (rc != X86EMUL_CONTINUE)
2229 		return rc;
2230 
2231 	return assign_eip_near(ctxt, eip);
2232 }
2233 
2234 static int em_ret_far(struct x86_emulate_ctxt *ctxt)
2235 {
2236 	int rc;
2237 	unsigned long eip, cs;
2238 	int cpl = ctxt->ops->cpl(ctxt);
2239 	struct desc_struct new_desc;
2240 
2241 	rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2242 	if (rc != X86EMUL_CONTINUE)
2243 		return rc;
2244 	rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2245 	if (rc != X86EMUL_CONTINUE)
2246 		return rc;
2247 	rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl,
2248 				       X86_TRANSFER_RET,
2249 				       &new_desc);
2250 	if (rc != X86EMUL_CONTINUE)
2251 		return rc;
2252 	rc = assign_eip_far(ctxt, eip);
2253 	/* Error handling is not implemented. */
2254 	if (rc != X86EMUL_CONTINUE)
2255 		return X86EMUL_UNHANDLEABLE;
2256 
2257 	return rc;
2258 }
2259 
2260 static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt)
2261 {
2262         int rc;
2263 
2264         rc = em_ret_far(ctxt);
2265         if (rc != X86EMUL_CONTINUE)
2266                 return rc;
2267         rsp_increment(ctxt, ctxt->src.val);
2268         return X86EMUL_CONTINUE;
2269 }
2270 
2271 static int em_cmpxchg(struct x86_emulate_ctxt *ctxt)
2272 {
2273 	/* Save real source value, then compare EAX against destination. */
2274 	ctxt->dst.orig_val = ctxt->dst.val;
2275 	ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX);
2276 	ctxt->src.orig_val = ctxt->src.val;
2277 	ctxt->src.val = ctxt->dst.orig_val;
2278 	fastop(ctxt, em_cmp);
2279 
2280 	if (ctxt->eflags & X86_EFLAGS_ZF) {
2281 		/* Success: write back to memory; no update of EAX */
2282 		ctxt->src.type = OP_NONE;
2283 		ctxt->dst.val = ctxt->src.orig_val;
2284 	} else {
2285 		/* Failure: write the value we saw to EAX. */
2286 		ctxt->src.type = OP_REG;
2287 		ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
2288 		ctxt->src.val = ctxt->dst.orig_val;
2289 		/* Create write-cycle to dest by writing the same value */
2290 		ctxt->dst.val = ctxt->dst.orig_val;
2291 	}
2292 	return X86EMUL_CONTINUE;
2293 }
2294 
2295 static int em_lseg(struct x86_emulate_ctxt *ctxt)
2296 {
2297 	int seg = ctxt->src2.val;
2298 	unsigned short sel;
2299 	int rc;
2300 
2301 	memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2302 
2303 	rc = load_segment_descriptor(ctxt, sel, seg);
2304 	if (rc != X86EMUL_CONTINUE)
2305 		return rc;
2306 
2307 	ctxt->dst.val = ctxt->src.val;
2308 	return rc;
2309 }
2310 
2311 static int em_rsm(struct x86_emulate_ctxt *ctxt)
2312 {
2313 	if (!ctxt->ops->is_smm(ctxt))
2314 		return emulate_ud(ctxt);
2315 
2316 	if (ctxt->ops->leave_smm(ctxt))
2317 		ctxt->ops->triple_fault(ctxt);
2318 
2319 	return emulator_recalc_and_set_mode(ctxt);
2320 }
2321 
2322 static void
2323 setup_syscalls_segments(struct desc_struct *cs, struct desc_struct *ss)
2324 {
2325 	cs->l = 0;		/* will be adjusted later */
2326 	set_desc_base(cs, 0);	/* flat segment */
2327 	cs->g = 1;		/* 4kb granularity */
2328 	set_desc_limit(cs, 0xfffff);	/* 4GB limit */
2329 	cs->type = 0x0b;	/* Read, Execute, Accessed */
2330 	cs->s = 1;
2331 	cs->dpl = 0;		/* will be adjusted later */
2332 	cs->p = 1;
2333 	cs->d = 1;
2334 	cs->avl = 0;
2335 
2336 	set_desc_base(ss, 0);	/* flat segment */
2337 	set_desc_limit(ss, 0xfffff);	/* 4GB limit */
2338 	ss->g = 1;		/* 4kb granularity */
2339 	ss->s = 1;
2340 	ss->type = 0x03;	/* Read/Write, Accessed */
2341 	ss->d = 1;		/* 32bit stack segment */
2342 	ss->dpl = 0;
2343 	ss->p = 1;
2344 	ss->l = 0;
2345 	ss->avl = 0;
2346 }
2347 
2348 static bool vendor_intel(struct x86_emulate_ctxt *ctxt)
2349 {
2350 	u32 eax, ebx, ecx, edx;
2351 
2352 	eax = ecx = 0;
2353 	ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true);
2354 	return is_guest_vendor_intel(ebx, ecx, edx);
2355 }
2356 
2357 static bool em_syscall_is_enabled(struct x86_emulate_ctxt *ctxt)
2358 {
2359 	const struct x86_emulate_ops *ops = ctxt->ops;
2360 	u32 eax, ebx, ecx, edx;
2361 
2362 	/*
2363 	 * syscall should always be enabled in longmode - so only become
2364 	 * vendor specific (cpuid) if other modes are active...
2365 	 */
2366 	if (ctxt->mode == X86EMUL_MODE_PROT64)
2367 		return true;
2368 
2369 	eax = 0x00000000;
2370 	ecx = 0x00000000;
2371 	ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true);
2372 	/*
2373 	 * remark: Intel CPUs only support "syscall" in 64bit longmode. Also a
2374 	 * 64bit guest with a 32bit compat-app running will #UD !! While this
2375 	 * behaviour can be fixed (by emulating) into AMD response - CPUs of
2376 	 * AMD can't behave like Intel.
2377 	 */
2378 	if (is_guest_vendor_intel(ebx, ecx, edx))
2379 		return false;
2380 
2381 	if (is_guest_vendor_amd(ebx, ecx, edx) ||
2382 	    is_guest_vendor_hygon(ebx, ecx, edx))
2383 		return true;
2384 
2385 	/*
2386 	 * default: (not Intel, not AMD, not Hygon), apply Intel's
2387 	 * stricter rules...
2388 	 */
2389 	return false;
2390 }
2391 
2392 static int em_syscall(struct x86_emulate_ctxt *ctxt)
2393 {
2394 	const struct x86_emulate_ops *ops = ctxt->ops;
2395 	struct desc_struct cs, ss;
2396 	u64 msr_data;
2397 	u16 cs_sel, ss_sel;
2398 	u64 efer = 0;
2399 
2400 	/* syscall is not available in real mode */
2401 	if (ctxt->mode == X86EMUL_MODE_REAL ||
2402 	    ctxt->mode == X86EMUL_MODE_VM86)
2403 		return emulate_ud(ctxt);
2404 
2405 	if (!(em_syscall_is_enabled(ctxt)))
2406 		return emulate_ud(ctxt);
2407 
2408 	ops->get_msr(ctxt, MSR_EFER, &efer);
2409 	if (!(efer & EFER_SCE))
2410 		return emulate_ud(ctxt);
2411 
2412 	setup_syscalls_segments(&cs, &ss);
2413 	ops->get_msr(ctxt, MSR_STAR, &msr_data);
2414 	msr_data >>= 32;
2415 	cs_sel = (u16)(msr_data & 0xfffc);
2416 	ss_sel = (u16)(msr_data + 8);
2417 
2418 	if (efer & EFER_LMA) {
2419 		cs.d = 0;
2420 		cs.l = 1;
2421 	}
2422 	ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2423 	ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2424 
2425 	*reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip;
2426 	if (efer & EFER_LMA) {
2427 #ifdef CONFIG_X86_64
2428 		*reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags;
2429 
2430 		ops->get_msr(ctxt,
2431 			     ctxt->mode == X86EMUL_MODE_PROT64 ?
2432 			     MSR_LSTAR : MSR_CSTAR, &msr_data);
2433 		ctxt->_eip = msr_data;
2434 
2435 		ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data);
2436 		ctxt->eflags &= ~msr_data;
2437 		ctxt->eflags |= X86_EFLAGS_FIXED;
2438 #endif
2439 	} else {
2440 		/* legacy mode */
2441 		ops->get_msr(ctxt, MSR_STAR, &msr_data);
2442 		ctxt->_eip = (u32)msr_data;
2443 
2444 		ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2445 	}
2446 
2447 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
2448 	return X86EMUL_CONTINUE;
2449 }
2450 
2451 static int em_sysenter(struct x86_emulate_ctxt *ctxt)
2452 {
2453 	const struct x86_emulate_ops *ops = ctxt->ops;
2454 	struct desc_struct cs, ss;
2455 	u64 msr_data;
2456 	u16 cs_sel, ss_sel;
2457 	u64 efer = 0;
2458 
2459 	ops->get_msr(ctxt, MSR_EFER, &efer);
2460 	/* inject #GP if in real mode */
2461 	if (ctxt->mode == X86EMUL_MODE_REAL)
2462 		return emulate_gp(ctxt, 0);
2463 
2464 	/*
2465 	 * Not recognized on AMD in compat mode (but is recognized in legacy
2466 	 * mode).
2467 	 */
2468 	if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA)
2469 	    && !vendor_intel(ctxt))
2470 		return emulate_ud(ctxt);
2471 
2472 	/* sysenter/sysexit have not been tested in 64bit mode. */
2473 	if (ctxt->mode == X86EMUL_MODE_PROT64)
2474 		return X86EMUL_UNHANDLEABLE;
2475 
2476 	ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2477 	if ((msr_data & 0xfffc) == 0x0)
2478 		return emulate_gp(ctxt, 0);
2479 
2480 	setup_syscalls_segments(&cs, &ss);
2481 	ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2482 	cs_sel = (u16)msr_data & ~SEGMENT_RPL_MASK;
2483 	ss_sel = cs_sel + 8;
2484 	if (efer & EFER_LMA) {
2485 		cs.d = 0;
2486 		cs.l = 1;
2487 	}
2488 
2489 	ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2490 	ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2491 
2492 	ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data);
2493 	ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data;
2494 
2495 	ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data);
2496 	*reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data :
2497 							      (u32)msr_data;
2498 	if (efer & EFER_LMA)
2499 		ctxt->mode = X86EMUL_MODE_PROT64;
2500 
2501 	return X86EMUL_CONTINUE;
2502 }
2503 
2504 static int em_sysexit(struct x86_emulate_ctxt *ctxt)
2505 {
2506 	const struct x86_emulate_ops *ops = ctxt->ops;
2507 	struct desc_struct cs, ss;
2508 	u64 msr_data, rcx, rdx;
2509 	int usermode;
2510 	u16 cs_sel = 0, ss_sel = 0;
2511 
2512 	/* inject #GP if in real mode or Virtual 8086 mode */
2513 	if (ctxt->mode == X86EMUL_MODE_REAL ||
2514 	    ctxt->mode == X86EMUL_MODE_VM86)
2515 		return emulate_gp(ctxt, 0);
2516 
2517 	setup_syscalls_segments(&cs, &ss);
2518 
2519 	if ((ctxt->rex_prefix & 0x8) != 0x0)
2520 		usermode = X86EMUL_MODE_PROT64;
2521 	else
2522 		usermode = X86EMUL_MODE_PROT32;
2523 
2524 	rcx = reg_read(ctxt, VCPU_REGS_RCX);
2525 	rdx = reg_read(ctxt, VCPU_REGS_RDX);
2526 
2527 	cs.dpl = 3;
2528 	ss.dpl = 3;
2529 	ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2530 	switch (usermode) {
2531 	case X86EMUL_MODE_PROT32:
2532 		cs_sel = (u16)(msr_data + 16);
2533 		if ((msr_data & 0xfffc) == 0x0)
2534 			return emulate_gp(ctxt, 0);
2535 		ss_sel = (u16)(msr_data + 24);
2536 		rcx = (u32)rcx;
2537 		rdx = (u32)rdx;
2538 		break;
2539 	case X86EMUL_MODE_PROT64:
2540 		cs_sel = (u16)(msr_data + 32);
2541 		if (msr_data == 0x0)
2542 			return emulate_gp(ctxt, 0);
2543 		ss_sel = cs_sel + 8;
2544 		cs.d = 0;
2545 		cs.l = 1;
2546 		if (emul_is_noncanonical_address(rcx, ctxt) ||
2547 		    emul_is_noncanonical_address(rdx, ctxt))
2548 			return emulate_gp(ctxt, 0);
2549 		break;
2550 	}
2551 	cs_sel |= SEGMENT_RPL_MASK;
2552 	ss_sel |= SEGMENT_RPL_MASK;
2553 
2554 	ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2555 	ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2556 
2557 	ctxt->_eip = rdx;
2558 	ctxt->mode = usermode;
2559 	*reg_write(ctxt, VCPU_REGS_RSP) = rcx;
2560 
2561 	return X86EMUL_CONTINUE;
2562 }
2563 
2564 static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt)
2565 {
2566 	int iopl;
2567 	if (ctxt->mode == X86EMUL_MODE_REAL)
2568 		return false;
2569 	if (ctxt->mode == X86EMUL_MODE_VM86)
2570 		return true;
2571 	iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
2572 	return ctxt->ops->cpl(ctxt) > iopl;
2573 }
2574 
2575 #define VMWARE_PORT_VMPORT	(0x5658)
2576 #define VMWARE_PORT_VMRPC	(0x5659)
2577 
2578 static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
2579 					    u16 port, u16 len)
2580 {
2581 	const struct x86_emulate_ops *ops = ctxt->ops;
2582 	struct desc_struct tr_seg;
2583 	u32 base3;
2584 	int r;
2585 	u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7;
2586 	unsigned mask = (1 << len) - 1;
2587 	unsigned long base;
2588 
2589 	/*
2590 	 * VMware allows access to these ports even if denied
2591 	 * by TSS I/O permission bitmap. Mimic behavior.
2592 	 */
2593 	if (enable_vmware_backdoor &&
2594 	    ((port == VMWARE_PORT_VMPORT) || (port == VMWARE_PORT_VMRPC)))
2595 		return true;
2596 
2597 	ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR);
2598 	if (!tr_seg.p)
2599 		return false;
2600 	if (desc_limit_scaled(&tr_seg) < 103)
2601 		return false;
2602 	base = get_desc_base(&tr_seg);
2603 #ifdef CONFIG_X86_64
2604 	base |= ((u64)base3) << 32;
2605 #endif
2606 	r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL, true);
2607 	if (r != X86EMUL_CONTINUE)
2608 		return false;
2609 	if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg))
2610 		return false;
2611 	r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL, true);
2612 	if (r != X86EMUL_CONTINUE)
2613 		return false;
2614 	if ((perm >> bit_idx) & mask)
2615 		return false;
2616 	return true;
2617 }
2618 
2619 static bool emulator_io_permitted(struct x86_emulate_ctxt *ctxt,
2620 				  u16 port, u16 len)
2621 {
2622 	if (ctxt->perm_ok)
2623 		return true;
2624 
2625 	if (emulator_bad_iopl(ctxt))
2626 		if (!emulator_io_port_access_allowed(ctxt, port, len))
2627 			return false;
2628 
2629 	ctxt->perm_ok = true;
2630 
2631 	return true;
2632 }
2633 
2634 static void string_registers_quirk(struct x86_emulate_ctxt *ctxt)
2635 {
2636 	/*
2637 	 * Intel CPUs mask the counter and pointers in quite strange
2638 	 * manner when ECX is zero due to REP-string optimizations.
2639 	 */
2640 #ifdef CONFIG_X86_64
2641 	if (ctxt->ad_bytes != 4 || !vendor_intel(ctxt))
2642 		return;
2643 
2644 	*reg_write(ctxt, VCPU_REGS_RCX) = 0;
2645 
2646 	switch (ctxt->b) {
2647 	case 0xa4:	/* movsb */
2648 	case 0xa5:	/* movsd/w */
2649 		*reg_rmw(ctxt, VCPU_REGS_RSI) &= (u32)-1;
2650 		fallthrough;
2651 	case 0xaa:	/* stosb */
2652 	case 0xab:	/* stosd/w */
2653 		*reg_rmw(ctxt, VCPU_REGS_RDI) &= (u32)-1;
2654 	}
2655 #endif
2656 }
2657 
2658 static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
2659 				struct tss_segment_16 *tss)
2660 {
2661 	tss->ip = ctxt->_eip;
2662 	tss->flag = ctxt->eflags;
2663 	tss->ax = reg_read(ctxt, VCPU_REGS_RAX);
2664 	tss->cx = reg_read(ctxt, VCPU_REGS_RCX);
2665 	tss->dx = reg_read(ctxt, VCPU_REGS_RDX);
2666 	tss->bx = reg_read(ctxt, VCPU_REGS_RBX);
2667 	tss->sp = reg_read(ctxt, VCPU_REGS_RSP);
2668 	tss->bp = reg_read(ctxt, VCPU_REGS_RBP);
2669 	tss->si = reg_read(ctxt, VCPU_REGS_RSI);
2670 	tss->di = reg_read(ctxt, VCPU_REGS_RDI);
2671 
2672 	tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2673 	tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2674 	tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2675 	tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2676 	tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR);
2677 }
2678 
2679 static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
2680 				 struct tss_segment_16 *tss)
2681 {
2682 	int ret;
2683 	u8 cpl;
2684 
2685 	ctxt->_eip = tss->ip;
2686 	ctxt->eflags = tss->flag | 2;
2687 	*reg_write(ctxt, VCPU_REGS_RAX) = tss->ax;
2688 	*reg_write(ctxt, VCPU_REGS_RCX) = tss->cx;
2689 	*reg_write(ctxt, VCPU_REGS_RDX) = tss->dx;
2690 	*reg_write(ctxt, VCPU_REGS_RBX) = tss->bx;
2691 	*reg_write(ctxt, VCPU_REGS_RSP) = tss->sp;
2692 	*reg_write(ctxt, VCPU_REGS_RBP) = tss->bp;
2693 	*reg_write(ctxt, VCPU_REGS_RSI) = tss->si;
2694 	*reg_write(ctxt, VCPU_REGS_RDI) = tss->di;
2695 
2696 	/*
2697 	 * SDM says that segment selectors are loaded before segment
2698 	 * descriptors
2699 	 */
2700 	set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR);
2701 	set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2702 	set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2703 	set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2704 	set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2705 
2706 	cpl = tss->cs & 3;
2707 
2708 	/*
2709 	 * Now load segment descriptors. If fault happens at this stage
2710 	 * it is handled in a context of new task
2711 	 */
2712 	ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl,
2713 					X86_TRANSFER_TASK_SWITCH, NULL);
2714 	if (ret != X86EMUL_CONTINUE)
2715 		return ret;
2716 	ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
2717 					X86_TRANSFER_TASK_SWITCH, NULL);
2718 	if (ret != X86EMUL_CONTINUE)
2719 		return ret;
2720 	ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
2721 					X86_TRANSFER_TASK_SWITCH, NULL);
2722 	if (ret != X86EMUL_CONTINUE)
2723 		return ret;
2724 	ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
2725 					X86_TRANSFER_TASK_SWITCH, NULL);
2726 	if (ret != X86EMUL_CONTINUE)
2727 		return ret;
2728 	ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
2729 					X86_TRANSFER_TASK_SWITCH, NULL);
2730 	if (ret != X86EMUL_CONTINUE)
2731 		return ret;
2732 
2733 	return X86EMUL_CONTINUE;
2734 }
2735 
2736 static int task_switch_16(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel,
2737 			  ulong old_tss_base, struct desc_struct *new_desc)
2738 {
2739 	struct tss_segment_16 tss_seg;
2740 	int ret;
2741 	u32 new_tss_base = get_desc_base(new_desc);
2742 
2743 	ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2744 	if (ret != X86EMUL_CONTINUE)
2745 		return ret;
2746 
2747 	save_state_to_tss16(ctxt, &tss_seg);
2748 
2749 	ret = linear_write_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2750 	if (ret != X86EMUL_CONTINUE)
2751 		return ret;
2752 
2753 	ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg));
2754 	if (ret != X86EMUL_CONTINUE)
2755 		return ret;
2756 
2757 	if (old_tss_sel != 0xffff) {
2758 		tss_seg.prev_task_link = old_tss_sel;
2759 
2760 		ret = linear_write_system(ctxt, new_tss_base,
2761 					  &tss_seg.prev_task_link,
2762 					  sizeof(tss_seg.prev_task_link));
2763 		if (ret != X86EMUL_CONTINUE)
2764 			return ret;
2765 	}
2766 
2767 	return load_state_from_tss16(ctxt, &tss_seg);
2768 }
2769 
2770 static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
2771 				struct tss_segment_32 *tss)
2772 {
2773 	/* CR3 and ldt selector are not saved intentionally */
2774 	tss->eip = ctxt->_eip;
2775 	tss->eflags = ctxt->eflags;
2776 	tss->eax = reg_read(ctxt, VCPU_REGS_RAX);
2777 	tss->ecx = reg_read(ctxt, VCPU_REGS_RCX);
2778 	tss->edx = reg_read(ctxt, VCPU_REGS_RDX);
2779 	tss->ebx = reg_read(ctxt, VCPU_REGS_RBX);
2780 	tss->esp = reg_read(ctxt, VCPU_REGS_RSP);
2781 	tss->ebp = reg_read(ctxt, VCPU_REGS_RBP);
2782 	tss->esi = reg_read(ctxt, VCPU_REGS_RSI);
2783 	tss->edi = reg_read(ctxt, VCPU_REGS_RDI);
2784 
2785 	tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2786 	tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2787 	tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2788 	tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2789 	tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS);
2790 	tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS);
2791 }
2792 
2793 static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
2794 				 struct tss_segment_32 *tss)
2795 {
2796 	int ret;
2797 	u8 cpl;
2798 
2799 	if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
2800 		return emulate_gp(ctxt, 0);
2801 	ctxt->_eip = tss->eip;
2802 	ctxt->eflags = tss->eflags | 2;
2803 
2804 	/* General purpose registers */
2805 	*reg_write(ctxt, VCPU_REGS_RAX) = tss->eax;
2806 	*reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx;
2807 	*reg_write(ctxt, VCPU_REGS_RDX) = tss->edx;
2808 	*reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx;
2809 	*reg_write(ctxt, VCPU_REGS_RSP) = tss->esp;
2810 	*reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp;
2811 	*reg_write(ctxt, VCPU_REGS_RSI) = tss->esi;
2812 	*reg_write(ctxt, VCPU_REGS_RDI) = tss->edi;
2813 
2814 	/*
2815 	 * SDM says that segment selectors are loaded before segment
2816 	 * descriptors.  This is important because CPL checks will
2817 	 * use CS.RPL.
2818 	 */
2819 	set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
2820 	set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2821 	set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2822 	set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2823 	set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2824 	set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS);
2825 	set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS);
2826 
2827 	/*
2828 	 * If we're switching between Protected Mode and VM86, we need to make
2829 	 * sure to update the mode before loading the segment descriptors so
2830 	 * that the selectors are interpreted correctly.
2831 	 */
2832 	if (ctxt->eflags & X86_EFLAGS_VM) {
2833 		ctxt->mode = X86EMUL_MODE_VM86;
2834 		cpl = 3;
2835 	} else {
2836 		ctxt->mode = X86EMUL_MODE_PROT32;
2837 		cpl = tss->cs & 3;
2838 	}
2839 
2840 	/*
2841 	 * Now load segment descriptors. If fault happens at this stage
2842 	 * it is handled in a context of new task
2843 	 */
2844 	ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR,
2845 					cpl, X86_TRANSFER_TASK_SWITCH, NULL);
2846 	if (ret != X86EMUL_CONTINUE)
2847 		return ret;
2848 	ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
2849 					X86_TRANSFER_TASK_SWITCH, NULL);
2850 	if (ret != X86EMUL_CONTINUE)
2851 		return ret;
2852 	ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
2853 					X86_TRANSFER_TASK_SWITCH, NULL);
2854 	if (ret != X86EMUL_CONTINUE)
2855 		return ret;
2856 	ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
2857 					X86_TRANSFER_TASK_SWITCH, NULL);
2858 	if (ret != X86EMUL_CONTINUE)
2859 		return ret;
2860 	ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
2861 					X86_TRANSFER_TASK_SWITCH, NULL);
2862 	if (ret != X86EMUL_CONTINUE)
2863 		return ret;
2864 	ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl,
2865 					X86_TRANSFER_TASK_SWITCH, NULL);
2866 	if (ret != X86EMUL_CONTINUE)
2867 		return ret;
2868 	ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl,
2869 					X86_TRANSFER_TASK_SWITCH, NULL);
2870 
2871 	return ret;
2872 }
2873 
2874 static int task_switch_32(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel,
2875 			  ulong old_tss_base, struct desc_struct *new_desc)
2876 {
2877 	struct tss_segment_32 tss_seg;
2878 	int ret;
2879 	u32 new_tss_base = get_desc_base(new_desc);
2880 	u32 eip_offset = offsetof(struct tss_segment_32, eip);
2881 	u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector);
2882 
2883 	ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2884 	if (ret != X86EMUL_CONTINUE)
2885 		return ret;
2886 
2887 	save_state_to_tss32(ctxt, &tss_seg);
2888 
2889 	/* Only GP registers and segment selectors are saved */
2890 	ret = linear_write_system(ctxt, old_tss_base + eip_offset, &tss_seg.eip,
2891 				  ldt_sel_offset - eip_offset);
2892 	if (ret != X86EMUL_CONTINUE)
2893 		return ret;
2894 
2895 	ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg));
2896 	if (ret != X86EMUL_CONTINUE)
2897 		return ret;
2898 
2899 	if (old_tss_sel != 0xffff) {
2900 		tss_seg.prev_task_link = old_tss_sel;
2901 
2902 		ret = linear_write_system(ctxt, new_tss_base,
2903 					  &tss_seg.prev_task_link,
2904 					  sizeof(tss_seg.prev_task_link));
2905 		if (ret != X86EMUL_CONTINUE)
2906 			return ret;
2907 	}
2908 
2909 	return load_state_from_tss32(ctxt, &tss_seg);
2910 }
2911 
2912 static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
2913 				   u16 tss_selector, int idt_index, int reason,
2914 				   bool has_error_code, u32 error_code)
2915 {
2916 	const struct x86_emulate_ops *ops = ctxt->ops;
2917 	struct desc_struct curr_tss_desc, next_tss_desc;
2918 	int ret;
2919 	u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR);
2920 	ulong old_tss_base =
2921 		ops->get_cached_segment_base(ctxt, VCPU_SREG_TR);
2922 	u32 desc_limit;
2923 	ulong desc_addr, dr7;
2924 
2925 	/* FIXME: old_tss_base == ~0 ? */
2926 
2927 	ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr);
2928 	if (ret != X86EMUL_CONTINUE)
2929 		return ret;
2930 	ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr);
2931 	if (ret != X86EMUL_CONTINUE)
2932 		return ret;
2933 
2934 	/* FIXME: check that next_tss_desc is tss */
2935 
2936 	/*
2937 	 * Check privileges. The three cases are task switch caused by...
2938 	 *
2939 	 * 1. jmp/call/int to task gate: Check against DPL of the task gate
2940 	 * 2. Exception/IRQ/iret: No check is performed
2941 	 * 3. jmp/call to TSS/task-gate: No check is performed since the
2942 	 *    hardware checks it before exiting.
2943 	 */
2944 	if (reason == TASK_SWITCH_GATE) {
2945 		if (idt_index != -1) {
2946 			/* Software interrupts */
2947 			struct desc_struct task_gate_desc;
2948 			int dpl;
2949 
2950 			ret = read_interrupt_descriptor(ctxt, idt_index,
2951 							&task_gate_desc);
2952 			if (ret != X86EMUL_CONTINUE)
2953 				return ret;
2954 
2955 			dpl = task_gate_desc.dpl;
2956 			if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
2957 				return emulate_gp(ctxt, (idt_index << 3) | 0x2);
2958 		}
2959 	}
2960 
2961 	desc_limit = desc_limit_scaled(&next_tss_desc);
2962 	if (!next_tss_desc.p ||
2963 	    ((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
2964 	     desc_limit < 0x2b)) {
2965 		return emulate_ts(ctxt, tss_selector & 0xfffc);
2966 	}
2967 
2968 	if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
2969 		curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
2970 		write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
2971 	}
2972 
2973 	if (reason == TASK_SWITCH_IRET)
2974 		ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
2975 
2976 	/* set back link to prev task only if NT bit is set in eflags
2977 	   note that old_tss_sel is not used after this point */
2978 	if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
2979 		old_tss_sel = 0xffff;
2980 
2981 	if (next_tss_desc.type & 8)
2982 		ret = task_switch_32(ctxt, old_tss_sel, old_tss_base, &next_tss_desc);
2983 	else
2984 		ret = task_switch_16(ctxt, old_tss_sel,
2985 				     old_tss_base, &next_tss_desc);
2986 	if (ret != X86EMUL_CONTINUE)
2987 		return ret;
2988 
2989 	if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
2990 		ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
2991 
2992 	if (reason != TASK_SWITCH_IRET) {
2993 		next_tss_desc.type |= (1 << 1); /* set busy flag */
2994 		write_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
2995 	}
2996 
2997 	ops->set_cr(ctxt, 0,  ops->get_cr(ctxt, 0) | X86_CR0_TS);
2998 	ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR);
2999 
3000 	if (has_error_code) {
3001 		ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
3002 		ctxt->lock_prefix = 0;
3003 		ctxt->src.val = (unsigned long) error_code;
3004 		ret = em_push(ctxt);
3005 	}
3006 
3007 	ops->get_dr(ctxt, 7, &dr7);
3008 	ops->set_dr(ctxt, 7, dr7 & ~(DR_LOCAL_ENABLE_MASK | DR_LOCAL_SLOWDOWN));
3009 
3010 	return ret;
3011 }
3012 
3013 int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
3014 			 u16 tss_selector, int idt_index, int reason,
3015 			 bool has_error_code, u32 error_code)
3016 {
3017 	int rc;
3018 
3019 	invalidate_registers(ctxt);
3020 	ctxt->_eip = ctxt->eip;
3021 	ctxt->dst.type = OP_NONE;
3022 
3023 	rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason,
3024 				     has_error_code, error_code);
3025 
3026 	if (rc == X86EMUL_CONTINUE) {
3027 		ctxt->eip = ctxt->_eip;
3028 		writeback_registers(ctxt);
3029 	}
3030 
3031 	return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
3032 }
3033 
3034 static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg,
3035 		struct operand *op)
3036 {
3037 	int df = (ctxt->eflags & X86_EFLAGS_DF) ? -op->count : op->count;
3038 
3039 	register_address_increment(ctxt, reg, df * op->bytes);
3040 	op->addr.mem.ea = register_address(ctxt, reg);
3041 }
3042 
3043 static int em_das(struct x86_emulate_ctxt *ctxt)
3044 {
3045 	u8 al, old_al;
3046 	bool af, cf, old_cf;
3047 
3048 	cf = ctxt->eflags & X86_EFLAGS_CF;
3049 	al = ctxt->dst.val;
3050 
3051 	old_al = al;
3052 	old_cf = cf;
3053 	cf = false;
3054 	af = ctxt->eflags & X86_EFLAGS_AF;
3055 	if ((al & 0x0f) > 9 || af) {
3056 		al -= 6;
3057 		cf = old_cf | (al >= 250);
3058 		af = true;
3059 	} else {
3060 		af = false;
3061 	}
3062 	if (old_al > 0x99 || old_cf) {
3063 		al -= 0x60;
3064 		cf = true;
3065 	}
3066 
3067 	ctxt->dst.val = al;
3068 	/* Set PF, ZF, SF */
3069 	ctxt->src.type = OP_IMM;
3070 	ctxt->src.val = 0;
3071 	ctxt->src.bytes = 1;
3072 	fastop(ctxt, em_or);
3073 	ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
3074 	if (cf)
3075 		ctxt->eflags |= X86_EFLAGS_CF;
3076 	if (af)
3077 		ctxt->eflags |= X86_EFLAGS_AF;
3078 	return X86EMUL_CONTINUE;
3079 }
3080 
3081 static int em_aam(struct x86_emulate_ctxt *ctxt)
3082 {
3083 	u8 al, ah;
3084 
3085 	if (ctxt->src.val == 0)
3086 		return emulate_de(ctxt);
3087 
3088 	al = ctxt->dst.val & 0xff;
3089 	ah = al / ctxt->src.val;
3090 	al %= ctxt->src.val;
3091 
3092 	ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8);
3093 
3094 	/* Set PF, ZF, SF */
3095 	ctxt->src.type = OP_IMM;
3096 	ctxt->src.val = 0;
3097 	ctxt->src.bytes = 1;
3098 	fastop(ctxt, em_or);
3099 
3100 	return X86EMUL_CONTINUE;
3101 }
3102 
3103 static int em_aad(struct x86_emulate_ctxt *ctxt)
3104 {
3105 	u8 al = ctxt->dst.val & 0xff;
3106 	u8 ah = (ctxt->dst.val >> 8) & 0xff;
3107 
3108 	al = (al + (ah * ctxt->src.val)) & 0xff;
3109 
3110 	ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al;
3111 
3112 	/* Set PF, ZF, SF */
3113 	ctxt->src.type = OP_IMM;
3114 	ctxt->src.val = 0;
3115 	ctxt->src.bytes = 1;
3116 	fastop(ctxt, em_or);
3117 
3118 	return X86EMUL_CONTINUE;
3119 }
3120 
3121 static int em_call(struct x86_emulate_ctxt *ctxt)
3122 {
3123 	int rc;
3124 	long rel = ctxt->src.val;
3125 
3126 	ctxt->src.val = (unsigned long)ctxt->_eip;
3127 	rc = jmp_rel(ctxt, rel);
3128 	if (rc != X86EMUL_CONTINUE)
3129 		return rc;
3130 	return em_push(ctxt);
3131 }
3132 
3133 static int em_call_far(struct x86_emulate_ctxt *ctxt)
3134 {
3135 	u16 sel, old_cs;
3136 	ulong old_eip;
3137 	int rc;
3138 	struct desc_struct old_desc, new_desc;
3139 	const struct x86_emulate_ops *ops = ctxt->ops;
3140 	int cpl = ctxt->ops->cpl(ctxt);
3141 	enum x86emul_mode prev_mode = ctxt->mode;
3142 
3143 	old_eip = ctxt->_eip;
3144 	ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS);
3145 
3146 	memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
3147 	rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
3148 				       X86_TRANSFER_CALL_JMP, &new_desc);
3149 	if (rc != X86EMUL_CONTINUE)
3150 		return rc;
3151 
3152 	rc = assign_eip_far(ctxt, ctxt->src.val);
3153 	if (rc != X86EMUL_CONTINUE)
3154 		goto fail;
3155 
3156 	ctxt->src.val = old_cs;
3157 	rc = em_push(ctxt);
3158 	if (rc != X86EMUL_CONTINUE)
3159 		goto fail;
3160 
3161 	ctxt->src.val = old_eip;
3162 	rc = em_push(ctxt);
3163 	/* If we failed, we tainted the memory, but the very least we should
3164 	   restore cs */
3165 	if (rc != X86EMUL_CONTINUE) {
3166 		pr_warn_once("faulting far call emulation tainted memory\n");
3167 		goto fail;
3168 	}
3169 	return rc;
3170 fail:
3171 	ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
3172 	ctxt->mode = prev_mode;
3173 	return rc;
3174 
3175 }
3176 
3177 static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
3178 {
3179 	int rc;
3180 	unsigned long eip;
3181 
3182 	rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
3183 	if (rc != X86EMUL_CONTINUE)
3184 		return rc;
3185 	rc = assign_eip_near(ctxt, eip);
3186 	if (rc != X86EMUL_CONTINUE)
3187 		return rc;
3188 	rsp_increment(ctxt, ctxt->src.val);
3189 	return X86EMUL_CONTINUE;
3190 }
3191 
3192 static int em_xchg(struct x86_emulate_ctxt *ctxt)
3193 {
3194 	/* Write back the register source. */
3195 	ctxt->src.val = ctxt->dst.val;
3196 	write_register_operand(&ctxt->src);
3197 
3198 	/* Write back the memory destination with implicit LOCK prefix. */
3199 	ctxt->dst.val = ctxt->src.orig_val;
3200 	ctxt->lock_prefix = 1;
3201 	return X86EMUL_CONTINUE;
3202 }
3203 
3204 static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
3205 {
3206 	ctxt->dst.val = ctxt->src2.val;
3207 	return fastop(ctxt, em_imul);
3208 }
3209 
3210 static int em_cwd(struct x86_emulate_ctxt *ctxt)
3211 {
3212 	ctxt->dst.type = OP_REG;
3213 	ctxt->dst.bytes = ctxt->src.bytes;
3214 	ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
3215 	ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1);
3216 
3217 	return X86EMUL_CONTINUE;
3218 }
3219 
3220 static int em_rdpid(struct x86_emulate_ctxt *ctxt)
3221 {
3222 	u64 tsc_aux = 0;
3223 
3224 	if (!ctxt->ops->guest_has_rdpid(ctxt))
3225 		return emulate_ud(ctxt);
3226 
3227 	ctxt->ops->get_msr(ctxt, MSR_TSC_AUX, &tsc_aux);
3228 	ctxt->dst.val = tsc_aux;
3229 	return X86EMUL_CONTINUE;
3230 }
3231 
3232 static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
3233 {
3234 	u64 tsc = 0;
3235 
3236 	ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc);
3237 	*reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc;
3238 	*reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32;
3239 	return X86EMUL_CONTINUE;
3240 }
3241 
3242 static int em_rdpmc(struct x86_emulate_ctxt *ctxt)
3243 {
3244 	u64 pmc;
3245 
3246 	if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc))
3247 		return emulate_gp(ctxt, 0);
3248 	*reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc;
3249 	*reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32;
3250 	return X86EMUL_CONTINUE;
3251 }
3252 
3253 static int em_mov(struct x86_emulate_ctxt *ctxt)
3254 {
3255 	memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr));
3256 	return X86EMUL_CONTINUE;
3257 }
3258 
3259 static int em_movbe(struct x86_emulate_ctxt *ctxt)
3260 {
3261 	u16 tmp;
3262 
3263 	if (!ctxt->ops->guest_has_movbe(ctxt))
3264 		return emulate_ud(ctxt);
3265 
3266 	switch (ctxt->op_bytes) {
3267 	case 2:
3268 		/*
3269 		 * From MOVBE definition: "...When the operand size is 16 bits,
3270 		 * the upper word of the destination register remains unchanged
3271 		 * ..."
3272 		 *
3273 		 * Both casting ->valptr and ->val to u16 breaks strict aliasing
3274 		 * rules so we have to do the operation almost per hand.
3275 		 */
3276 		tmp = (u16)ctxt->src.val;
3277 		ctxt->dst.val &= ~0xffffUL;
3278 		ctxt->dst.val |= (unsigned long)swab16(tmp);
3279 		break;
3280 	case 4:
3281 		ctxt->dst.val = swab32((u32)ctxt->src.val);
3282 		break;
3283 	case 8:
3284 		ctxt->dst.val = swab64(ctxt->src.val);
3285 		break;
3286 	default:
3287 		BUG();
3288 	}
3289 	return X86EMUL_CONTINUE;
3290 }
3291 
3292 static int em_cr_write(struct x86_emulate_ctxt *ctxt)
3293 {
3294 	int cr_num = ctxt->modrm_reg;
3295 	int r;
3296 
3297 	if (ctxt->ops->set_cr(ctxt, cr_num, ctxt->src.val))
3298 		return emulate_gp(ctxt, 0);
3299 
3300 	/* Disable writeback. */
3301 	ctxt->dst.type = OP_NONE;
3302 
3303 	if (cr_num == 0) {
3304 		/*
3305 		 * CR0 write might have updated CR0.PE and/or CR0.PG
3306 		 * which can affect the cpu's execution mode.
3307 		 */
3308 		r = emulator_recalc_and_set_mode(ctxt);
3309 		if (r != X86EMUL_CONTINUE)
3310 			return r;
3311 	}
3312 
3313 	return X86EMUL_CONTINUE;
3314 }
3315 
3316 static int em_dr_write(struct x86_emulate_ctxt *ctxt)
3317 {
3318 	unsigned long val;
3319 
3320 	if (ctxt->mode == X86EMUL_MODE_PROT64)
3321 		val = ctxt->src.val & ~0ULL;
3322 	else
3323 		val = ctxt->src.val & ~0U;
3324 
3325 	/* #UD condition is already handled. */
3326 	if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0)
3327 		return emulate_gp(ctxt, 0);
3328 
3329 	/* Disable writeback. */
3330 	ctxt->dst.type = OP_NONE;
3331 	return X86EMUL_CONTINUE;
3332 }
3333 
3334 static int em_wrmsr(struct x86_emulate_ctxt *ctxt)
3335 {
3336 	u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
3337 	u64 msr_data;
3338 	int r;
3339 
3340 	msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX)
3341 		| ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32);
3342 	r = ctxt->ops->set_msr_with_filter(ctxt, msr_index, msr_data);
3343 
3344 	if (r == X86EMUL_PROPAGATE_FAULT)
3345 		return emulate_gp(ctxt, 0);
3346 
3347 	return r;
3348 }
3349 
3350 static int em_rdmsr(struct x86_emulate_ctxt *ctxt)
3351 {
3352 	u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
3353 	u64 msr_data;
3354 	int r;
3355 
3356 	r = ctxt->ops->get_msr_with_filter(ctxt, msr_index, &msr_data);
3357 
3358 	if (r == X86EMUL_PROPAGATE_FAULT)
3359 		return emulate_gp(ctxt, 0);
3360 
3361 	if (r == X86EMUL_CONTINUE) {
3362 		*reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data;
3363 		*reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32;
3364 	}
3365 	return r;
3366 }
3367 
3368 static int em_store_sreg(struct x86_emulate_ctxt *ctxt, int segment)
3369 {
3370 	if (segment > VCPU_SREG_GS &&
3371 	    (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3372 	    ctxt->ops->cpl(ctxt) > 0)
3373 		return emulate_gp(ctxt, 0);
3374 
3375 	ctxt->dst.val = get_segment_selector(ctxt, segment);
3376 	if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM)
3377 		ctxt->dst.bytes = 2;
3378 	return X86EMUL_CONTINUE;
3379 }
3380 
3381 static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt)
3382 {
3383 	if (ctxt->modrm_reg > VCPU_SREG_GS)
3384 		return emulate_ud(ctxt);
3385 
3386 	return em_store_sreg(ctxt, ctxt->modrm_reg);
3387 }
3388 
3389 static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt)
3390 {
3391 	u16 sel = ctxt->src.val;
3392 
3393 	if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS)
3394 		return emulate_ud(ctxt);
3395 
3396 	if (ctxt->modrm_reg == VCPU_SREG_SS)
3397 		ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
3398 
3399 	/* Disable writeback. */
3400 	ctxt->dst.type = OP_NONE;
3401 	return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg);
3402 }
3403 
3404 static int em_sldt(struct x86_emulate_ctxt *ctxt)
3405 {
3406 	return em_store_sreg(ctxt, VCPU_SREG_LDTR);
3407 }
3408 
3409 static int em_lldt(struct x86_emulate_ctxt *ctxt)
3410 {
3411 	u16 sel = ctxt->src.val;
3412 
3413 	/* Disable writeback. */
3414 	ctxt->dst.type = OP_NONE;
3415 	return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR);
3416 }
3417 
3418 static int em_str(struct x86_emulate_ctxt *ctxt)
3419 {
3420 	return em_store_sreg(ctxt, VCPU_SREG_TR);
3421 }
3422 
3423 static int em_ltr(struct x86_emulate_ctxt *ctxt)
3424 {
3425 	u16 sel = ctxt->src.val;
3426 
3427 	/* Disable writeback. */
3428 	ctxt->dst.type = OP_NONE;
3429 	return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR);
3430 }
3431 
3432 static int em_invlpg(struct x86_emulate_ctxt *ctxt)
3433 {
3434 	int rc;
3435 	ulong linear;
3436 
3437 	rc = linearize(ctxt, ctxt->src.addr.mem, 1, false, &linear);
3438 	if (rc == X86EMUL_CONTINUE)
3439 		ctxt->ops->invlpg(ctxt, linear);
3440 	/* Disable writeback. */
3441 	ctxt->dst.type = OP_NONE;
3442 	return X86EMUL_CONTINUE;
3443 }
3444 
3445 static int em_clts(struct x86_emulate_ctxt *ctxt)
3446 {
3447 	ulong cr0;
3448 
3449 	cr0 = ctxt->ops->get_cr(ctxt, 0);
3450 	cr0 &= ~X86_CR0_TS;
3451 	ctxt->ops->set_cr(ctxt, 0, cr0);
3452 	return X86EMUL_CONTINUE;
3453 }
3454 
3455 static int em_hypercall(struct x86_emulate_ctxt *ctxt)
3456 {
3457 	int rc = ctxt->ops->fix_hypercall(ctxt);
3458 
3459 	if (rc != X86EMUL_CONTINUE)
3460 		return rc;
3461 
3462 	/* Let the processor re-execute the fixed hypercall */
3463 	ctxt->_eip = ctxt->eip;
3464 	/* Disable writeback. */
3465 	ctxt->dst.type = OP_NONE;
3466 	return X86EMUL_CONTINUE;
3467 }
3468 
3469 static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt,
3470 				  void (*get)(struct x86_emulate_ctxt *ctxt,
3471 					      struct desc_ptr *ptr))
3472 {
3473 	struct desc_ptr desc_ptr;
3474 
3475 	if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3476 	    ctxt->ops->cpl(ctxt) > 0)
3477 		return emulate_gp(ctxt, 0);
3478 
3479 	if (ctxt->mode == X86EMUL_MODE_PROT64)
3480 		ctxt->op_bytes = 8;
3481 	get(ctxt, &desc_ptr);
3482 	if (ctxt->op_bytes == 2) {
3483 		ctxt->op_bytes = 4;
3484 		desc_ptr.address &= 0x00ffffff;
3485 	}
3486 	/* Disable writeback. */
3487 	ctxt->dst.type = OP_NONE;
3488 	return segmented_write_std(ctxt, ctxt->dst.addr.mem,
3489 				   &desc_ptr, 2 + ctxt->op_bytes);
3490 }
3491 
3492 static int em_sgdt(struct x86_emulate_ctxt *ctxt)
3493 {
3494 	return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt);
3495 }
3496 
3497 static int em_sidt(struct x86_emulate_ctxt *ctxt)
3498 {
3499 	return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt);
3500 }
3501 
3502 static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt)
3503 {
3504 	struct desc_ptr desc_ptr;
3505 	int rc;
3506 
3507 	if (ctxt->mode == X86EMUL_MODE_PROT64)
3508 		ctxt->op_bytes = 8;
3509 	rc = read_descriptor(ctxt, ctxt->src.addr.mem,
3510 			     &desc_ptr.size, &desc_ptr.address,
3511 			     ctxt->op_bytes);
3512 	if (rc != X86EMUL_CONTINUE)
3513 		return rc;
3514 	if (ctxt->mode == X86EMUL_MODE_PROT64 &&
3515 	    emul_is_noncanonical_address(desc_ptr.address, ctxt))
3516 		return emulate_gp(ctxt, 0);
3517 	if (lgdt)
3518 		ctxt->ops->set_gdt(ctxt, &desc_ptr);
3519 	else
3520 		ctxt->ops->set_idt(ctxt, &desc_ptr);
3521 	/* Disable writeback. */
3522 	ctxt->dst.type = OP_NONE;
3523 	return X86EMUL_CONTINUE;
3524 }
3525 
3526 static int em_lgdt(struct x86_emulate_ctxt *ctxt)
3527 {
3528 	return em_lgdt_lidt(ctxt, true);
3529 }
3530 
3531 static int em_lidt(struct x86_emulate_ctxt *ctxt)
3532 {
3533 	return em_lgdt_lidt(ctxt, false);
3534 }
3535 
3536 static int em_smsw(struct x86_emulate_ctxt *ctxt)
3537 {
3538 	if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3539 	    ctxt->ops->cpl(ctxt) > 0)
3540 		return emulate_gp(ctxt, 0);
3541 
3542 	if (ctxt->dst.type == OP_MEM)
3543 		ctxt->dst.bytes = 2;
3544 	ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0);
3545 	return X86EMUL_CONTINUE;
3546 }
3547 
3548 static int em_lmsw(struct x86_emulate_ctxt *ctxt)
3549 {
3550 	ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul)
3551 			  | (ctxt->src.val & 0x0f));
3552 	ctxt->dst.type = OP_NONE;
3553 	return X86EMUL_CONTINUE;
3554 }
3555 
3556 static int em_loop(struct x86_emulate_ctxt *ctxt)
3557 {
3558 	int rc = X86EMUL_CONTINUE;
3559 
3560 	register_address_increment(ctxt, VCPU_REGS_RCX, -1);
3561 	if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) &&
3562 	    (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags)))
3563 		rc = jmp_rel(ctxt, ctxt->src.val);
3564 
3565 	return rc;
3566 }
3567 
3568 static int em_jcxz(struct x86_emulate_ctxt *ctxt)
3569 {
3570 	int rc = X86EMUL_CONTINUE;
3571 
3572 	if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0)
3573 		rc = jmp_rel(ctxt, ctxt->src.val);
3574 
3575 	return rc;
3576 }
3577 
3578 static int em_in(struct x86_emulate_ctxt *ctxt)
3579 {
3580 	if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val,
3581 			     &ctxt->dst.val))
3582 		return X86EMUL_IO_NEEDED;
3583 
3584 	return X86EMUL_CONTINUE;
3585 }
3586 
3587 static int em_out(struct x86_emulate_ctxt *ctxt)
3588 {
3589 	ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val,
3590 				    &ctxt->src.val, 1);
3591 	/* Disable writeback. */
3592 	ctxt->dst.type = OP_NONE;
3593 	return X86EMUL_CONTINUE;
3594 }
3595 
3596 static int em_cli(struct x86_emulate_ctxt *ctxt)
3597 {
3598 	if (emulator_bad_iopl(ctxt))
3599 		return emulate_gp(ctxt, 0);
3600 
3601 	ctxt->eflags &= ~X86_EFLAGS_IF;
3602 	return X86EMUL_CONTINUE;
3603 }
3604 
3605 static int em_sti(struct x86_emulate_ctxt *ctxt)
3606 {
3607 	if (emulator_bad_iopl(ctxt))
3608 		return emulate_gp(ctxt, 0);
3609 
3610 	ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
3611 	ctxt->eflags |= X86_EFLAGS_IF;
3612 	return X86EMUL_CONTINUE;
3613 }
3614 
3615 static int em_cpuid(struct x86_emulate_ctxt *ctxt)
3616 {
3617 	u32 eax, ebx, ecx, edx;
3618 	u64 msr = 0;
3619 
3620 	ctxt->ops->get_msr(ctxt, MSR_MISC_FEATURES_ENABLES, &msr);
3621 	if (msr & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3622 	    ctxt->ops->cpl(ctxt)) {
3623 		return emulate_gp(ctxt, 0);
3624 	}
3625 
3626 	eax = reg_read(ctxt, VCPU_REGS_RAX);
3627 	ecx = reg_read(ctxt, VCPU_REGS_RCX);
3628 	ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false);
3629 	*reg_write(ctxt, VCPU_REGS_RAX) = eax;
3630 	*reg_write(ctxt, VCPU_REGS_RBX) = ebx;
3631 	*reg_write(ctxt, VCPU_REGS_RCX) = ecx;
3632 	*reg_write(ctxt, VCPU_REGS_RDX) = edx;
3633 	return X86EMUL_CONTINUE;
3634 }
3635 
3636 static int em_sahf(struct x86_emulate_ctxt *ctxt)
3637 {
3638 	u32 flags;
3639 
3640 	flags = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
3641 		X86_EFLAGS_SF;
3642 	flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8;
3643 
3644 	ctxt->eflags &= ~0xffUL;
3645 	ctxt->eflags |= flags | X86_EFLAGS_FIXED;
3646 	return X86EMUL_CONTINUE;
3647 }
3648 
3649 static int em_lahf(struct x86_emulate_ctxt *ctxt)
3650 {
3651 	*reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL;
3652 	*reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8;
3653 	return X86EMUL_CONTINUE;
3654 }
3655 
3656 static int em_bswap(struct x86_emulate_ctxt *ctxt)
3657 {
3658 	switch (ctxt->op_bytes) {
3659 #ifdef CONFIG_X86_64
3660 	case 8:
3661 		asm("bswap %0" : "+r"(ctxt->dst.val));
3662 		break;
3663 #endif
3664 	default:
3665 		asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val));
3666 		break;
3667 	}
3668 	return X86EMUL_CONTINUE;
3669 }
3670 
3671 static int em_clflush(struct x86_emulate_ctxt *ctxt)
3672 {
3673 	/* emulating clflush regardless of cpuid */
3674 	return X86EMUL_CONTINUE;
3675 }
3676 
3677 static int em_clflushopt(struct x86_emulate_ctxt *ctxt)
3678 {
3679 	/* emulating clflushopt regardless of cpuid */
3680 	return X86EMUL_CONTINUE;
3681 }
3682 
3683 static int em_movsxd(struct x86_emulate_ctxt *ctxt)
3684 {
3685 	ctxt->dst.val = (s32) ctxt->src.val;
3686 	return X86EMUL_CONTINUE;
3687 }
3688 
3689 static int check_fxsr(struct x86_emulate_ctxt *ctxt)
3690 {
3691 	if (!ctxt->ops->guest_has_fxsr(ctxt))
3692 		return emulate_ud(ctxt);
3693 
3694 	if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
3695 		return emulate_nm(ctxt);
3696 
3697 	/*
3698 	 * Don't emulate a case that should never be hit, instead of working
3699 	 * around a lack of fxsave64/fxrstor64 on old compilers.
3700 	 */
3701 	if (ctxt->mode >= X86EMUL_MODE_PROT64)
3702 		return X86EMUL_UNHANDLEABLE;
3703 
3704 	return X86EMUL_CONTINUE;
3705 }
3706 
3707 /*
3708  * Hardware doesn't save and restore XMM 0-7 without CR4.OSFXSR, but does save
3709  * and restore MXCSR.
3710  */
3711 static size_t __fxstate_size(int nregs)
3712 {
3713 	return offsetof(struct fxregs_state, xmm_space[0]) + nregs * 16;
3714 }
3715 
3716 static inline size_t fxstate_size(struct x86_emulate_ctxt *ctxt)
3717 {
3718 	bool cr4_osfxsr;
3719 	if (ctxt->mode == X86EMUL_MODE_PROT64)
3720 		return __fxstate_size(16);
3721 
3722 	cr4_osfxsr = ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR;
3723 	return __fxstate_size(cr4_osfxsr ? 8 : 0);
3724 }
3725 
3726 /*
3727  * FXSAVE and FXRSTOR have 4 different formats depending on execution mode,
3728  *  1) 16 bit mode
3729  *  2) 32 bit mode
3730  *     - like (1), but FIP and FDP (foo) are only 16 bit.  At least Intel CPUs
3731  *       preserve whole 32 bit values, though, so (1) and (2) are the same wrt.
3732  *       save and restore
3733  *  3) 64-bit mode with REX.W prefix
3734  *     - like (2), but XMM 8-15 are being saved and restored
3735  *  4) 64-bit mode without REX.W prefix
3736  *     - like (3), but FIP and FDP are 64 bit
3737  *
3738  * Emulation uses (3) for (1) and (2) and preserves XMM 8-15 to reach the
3739  * desired result.  (4) is not emulated.
3740  *
3741  * Note: Guest and host CPUID.(EAX=07H,ECX=0H):EBX[bit 13] (deprecate FPU CS
3742  * and FPU DS) should match.
3743  */
3744 static int em_fxsave(struct x86_emulate_ctxt *ctxt)
3745 {
3746 	struct fxregs_state fx_state;
3747 	int rc;
3748 
3749 	rc = check_fxsr(ctxt);
3750 	if (rc != X86EMUL_CONTINUE)
3751 		return rc;
3752 
3753 	kvm_fpu_get();
3754 
3755 	rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_state));
3756 
3757 	kvm_fpu_put();
3758 
3759 	if (rc != X86EMUL_CONTINUE)
3760 		return rc;
3761 
3762 	return segmented_write_std(ctxt, ctxt->memop.addr.mem, &fx_state,
3763 		                   fxstate_size(ctxt));
3764 }
3765 
3766 /*
3767  * FXRSTOR might restore XMM registers not provided by the guest. Fill
3768  * in the host registers (via FXSAVE) instead, so they won't be modified.
3769  * (preemption has to stay disabled until FXRSTOR).
3770  *
3771  * Use noinline to keep the stack for other functions called by callers small.
3772  */
3773 static noinline int fxregs_fixup(struct fxregs_state *fx_state,
3774 				 const size_t used_size)
3775 {
3776 	struct fxregs_state fx_tmp;
3777 	int rc;
3778 
3779 	rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_tmp));
3780 	memcpy((void *)fx_state + used_size, (void *)&fx_tmp + used_size,
3781 	       __fxstate_size(16) - used_size);
3782 
3783 	return rc;
3784 }
3785 
3786 static int em_fxrstor(struct x86_emulate_ctxt *ctxt)
3787 {
3788 	struct fxregs_state fx_state;
3789 	int rc;
3790 	size_t size;
3791 
3792 	rc = check_fxsr(ctxt);
3793 	if (rc != X86EMUL_CONTINUE)
3794 		return rc;
3795 
3796 	size = fxstate_size(ctxt);
3797 	rc = segmented_read_std(ctxt, ctxt->memop.addr.mem, &fx_state, size);
3798 	if (rc != X86EMUL_CONTINUE)
3799 		return rc;
3800 
3801 	kvm_fpu_get();
3802 
3803 	if (size < __fxstate_size(16)) {
3804 		rc = fxregs_fixup(&fx_state, size);
3805 		if (rc != X86EMUL_CONTINUE)
3806 			goto out;
3807 	}
3808 
3809 	if (fx_state.mxcsr >> 16) {
3810 		rc = emulate_gp(ctxt, 0);
3811 		goto out;
3812 	}
3813 
3814 	if (rc == X86EMUL_CONTINUE)
3815 		rc = asm_safe("fxrstor %[fx]", : [fx] "m"(fx_state));
3816 
3817 out:
3818 	kvm_fpu_put();
3819 
3820 	return rc;
3821 }
3822 
3823 static int em_xsetbv(struct x86_emulate_ctxt *ctxt)
3824 {
3825 	u32 eax, ecx, edx;
3826 
3827 	if (!(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSXSAVE))
3828 		return emulate_ud(ctxt);
3829 
3830 	eax = reg_read(ctxt, VCPU_REGS_RAX);
3831 	edx = reg_read(ctxt, VCPU_REGS_RDX);
3832 	ecx = reg_read(ctxt, VCPU_REGS_RCX);
3833 
3834 	if (ctxt->ops->set_xcr(ctxt, ecx, ((u64)edx << 32) | eax))
3835 		return emulate_gp(ctxt, 0);
3836 
3837 	return X86EMUL_CONTINUE;
3838 }
3839 
3840 static bool valid_cr(int nr)
3841 {
3842 	switch (nr) {
3843 	case 0:
3844 	case 2 ... 4:
3845 	case 8:
3846 		return true;
3847 	default:
3848 		return false;
3849 	}
3850 }
3851 
3852 static int check_cr_access(struct x86_emulate_ctxt *ctxt)
3853 {
3854 	if (!valid_cr(ctxt->modrm_reg))
3855 		return emulate_ud(ctxt);
3856 
3857 	return X86EMUL_CONTINUE;
3858 }
3859 
3860 static int check_dr7_gd(struct x86_emulate_ctxt *ctxt)
3861 {
3862 	unsigned long dr7;
3863 
3864 	ctxt->ops->get_dr(ctxt, 7, &dr7);
3865 
3866 	return dr7 & DR7_GD;
3867 }
3868 
3869 static int check_dr_read(struct x86_emulate_ctxt *ctxt)
3870 {
3871 	int dr = ctxt->modrm_reg;
3872 	u64 cr4;
3873 
3874 	if (dr > 7)
3875 		return emulate_ud(ctxt);
3876 
3877 	cr4 = ctxt->ops->get_cr(ctxt, 4);
3878 	if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5))
3879 		return emulate_ud(ctxt);
3880 
3881 	if (check_dr7_gd(ctxt)) {
3882 		ulong dr6;
3883 
3884 		ctxt->ops->get_dr(ctxt, 6, &dr6);
3885 		dr6 &= ~DR_TRAP_BITS;
3886 		dr6 |= DR6_BD | DR6_ACTIVE_LOW;
3887 		ctxt->ops->set_dr(ctxt, 6, dr6);
3888 		return emulate_db(ctxt);
3889 	}
3890 
3891 	return X86EMUL_CONTINUE;
3892 }
3893 
3894 static int check_dr_write(struct x86_emulate_ctxt *ctxt)
3895 {
3896 	u64 new_val = ctxt->src.val64;
3897 	int dr = ctxt->modrm_reg;
3898 
3899 	if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL))
3900 		return emulate_gp(ctxt, 0);
3901 
3902 	return check_dr_read(ctxt);
3903 }
3904 
3905 static int check_svme(struct x86_emulate_ctxt *ctxt)
3906 {
3907 	u64 efer = 0;
3908 
3909 	ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
3910 
3911 	if (!(efer & EFER_SVME))
3912 		return emulate_ud(ctxt);
3913 
3914 	return X86EMUL_CONTINUE;
3915 }
3916 
3917 static int check_svme_pa(struct x86_emulate_ctxt *ctxt)
3918 {
3919 	u64 rax = reg_read(ctxt, VCPU_REGS_RAX);
3920 
3921 	/* Valid physical address? */
3922 	if (rax & 0xffff000000000000ULL)
3923 		return emulate_gp(ctxt, 0);
3924 
3925 	return check_svme(ctxt);
3926 }
3927 
3928 static int check_rdtsc(struct x86_emulate_ctxt *ctxt)
3929 {
3930 	u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
3931 
3932 	if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt))
3933 		return emulate_gp(ctxt, 0);
3934 
3935 	return X86EMUL_CONTINUE;
3936 }
3937 
3938 static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
3939 {
3940 	u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
3941 	u64 rcx = reg_read(ctxt, VCPU_REGS_RCX);
3942 
3943 	/*
3944 	 * VMware allows access to these Pseduo-PMCs even when read via RDPMC
3945 	 * in Ring3 when CR4.PCE=0.
3946 	 */
3947 	if (enable_vmware_backdoor && is_vmware_backdoor_pmc(rcx))
3948 		return X86EMUL_CONTINUE;
3949 
3950 	/*
3951 	 * If CR4.PCE is set, the SDM requires CPL=0 or CR0.PE=0.  The CR0.PE
3952 	 * check however is unnecessary because CPL is always 0 outside
3953 	 * protected mode.
3954 	 */
3955 	if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) ||
3956 	    ctxt->ops->check_pmc(ctxt, rcx))
3957 		return emulate_gp(ctxt, 0);
3958 
3959 	return X86EMUL_CONTINUE;
3960 }
3961 
3962 static int check_perm_in(struct x86_emulate_ctxt *ctxt)
3963 {
3964 	ctxt->dst.bytes = min(ctxt->dst.bytes, 4u);
3965 	if (!emulator_io_permitted(ctxt, ctxt->src.val, ctxt->dst.bytes))
3966 		return emulate_gp(ctxt, 0);
3967 
3968 	return X86EMUL_CONTINUE;
3969 }
3970 
3971 static int check_perm_out(struct x86_emulate_ctxt *ctxt)
3972 {
3973 	ctxt->src.bytes = min(ctxt->src.bytes, 4u);
3974 	if (!emulator_io_permitted(ctxt, ctxt->dst.val, ctxt->src.bytes))
3975 		return emulate_gp(ctxt, 0);
3976 
3977 	return X86EMUL_CONTINUE;
3978 }
3979 
3980 #define D(_y) { .flags = (_y) }
3981 #define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i }
3982 #define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \
3983 		      .intercept = x86_intercept_##_i, .check_perm = (_p) }
3984 #define N    D(NotImpl)
3985 #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) }
3986 #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) }
3987 #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) }
3988 #define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) }
3989 #define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) }
3990 #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) }
3991 #define I(_f, _e) { .flags = (_f), .u.execute = (_e) }
3992 #define F(_f, _e) { .flags = (_f) | Fastop, .u.fastop = (_e) }
3993 #define II(_f, _e, _i) \
3994 	{ .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i }
3995 #define IIP(_f, _e, _i, _p) \
3996 	{ .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \
3997 	  .intercept = x86_intercept_##_i, .check_perm = (_p) }
3998 #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) }
3999 
4000 #define D2bv(_f)      D((_f) | ByteOp), D(_f)
4001 #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p)
4002 #define I2bv(_f, _e)  I((_f) | ByteOp, _e), I(_f, _e)
4003 #define F2bv(_f, _e)  F((_f) | ByteOp, _e), F(_f, _e)
4004 #define I2bvIP(_f, _e, _i, _p) \
4005 	IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p)
4006 
4007 #define F6ALU(_f, _e) F2bv((_f) | DstMem | SrcReg | ModRM, _e),		\
4008 		F2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e),	\
4009 		F2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e)
4010 
4011 static const struct opcode group7_rm0[] = {
4012 	N,
4013 	I(SrcNone | Priv | EmulateOnUD,	em_hypercall),
4014 	N, N, N, N, N, N,
4015 };
4016 
4017 static const struct opcode group7_rm1[] = {
4018 	DI(SrcNone | Priv, monitor),
4019 	DI(SrcNone | Priv, mwait),
4020 	N, N, N, N, N, N,
4021 };
4022 
4023 static const struct opcode group7_rm2[] = {
4024 	N,
4025 	II(ImplicitOps | Priv,			em_xsetbv,	xsetbv),
4026 	N, N, N, N, N, N,
4027 };
4028 
4029 static const struct opcode group7_rm3[] = {
4030 	DIP(SrcNone | Prot | Priv,		vmrun,		check_svme_pa),
4031 	II(SrcNone  | Prot | EmulateOnUD,	em_hypercall,	vmmcall),
4032 	DIP(SrcNone | Prot | Priv,		vmload,		check_svme_pa),
4033 	DIP(SrcNone | Prot | Priv,		vmsave,		check_svme_pa),
4034 	DIP(SrcNone | Prot | Priv,		stgi,		check_svme),
4035 	DIP(SrcNone | Prot | Priv,		clgi,		check_svme),
4036 	DIP(SrcNone | Prot | Priv,		skinit,		check_svme),
4037 	DIP(SrcNone | Prot | Priv,		invlpga,	check_svme),
4038 };
4039 
4040 static const struct opcode group7_rm7[] = {
4041 	N,
4042 	DIP(SrcNone, rdtscp, check_rdtsc),
4043 	N, N, N, N, N, N,
4044 };
4045 
4046 static const struct opcode group1[] = {
4047 	F(Lock, em_add),
4048 	F(Lock | PageTable, em_or),
4049 	F(Lock, em_adc),
4050 	F(Lock, em_sbb),
4051 	F(Lock | PageTable, em_and),
4052 	F(Lock, em_sub),
4053 	F(Lock, em_xor),
4054 	F(NoWrite, em_cmp),
4055 };
4056 
4057 static const struct opcode group1A[] = {
4058 	I(DstMem | SrcNone | Mov | Stack | IncSP | TwoMemOp, em_pop), N, N, N, N, N, N, N,
4059 };
4060 
4061 static const struct opcode group2[] = {
4062 	F(DstMem | ModRM, em_rol),
4063 	F(DstMem | ModRM, em_ror),
4064 	F(DstMem | ModRM, em_rcl),
4065 	F(DstMem | ModRM, em_rcr),
4066 	F(DstMem | ModRM, em_shl),
4067 	F(DstMem | ModRM, em_shr),
4068 	F(DstMem | ModRM, em_shl),
4069 	F(DstMem | ModRM, em_sar),
4070 };
4071 
4072 static const struct opcode group3[] = {
4073 	F(DstMem | SrcImm | NoWrite, em_test),
4074 	F(DstMem | SrcImm | NoWrite, em_test),
4075 	F(DstMem | SrcNone | Lock, em_not),
4076 	F(DstMem | SrcNone | Lock, em_neg),
4077 	F(DstXacc | Src2Mem, em_mul_ex),
4078 	F(DstXacc | Src2Mem, em_imul_ex),
4079 	F(DstXacc | Src2Mem, em_div_ex),
4080 	F(DstXacc | Src2Mem, em_idiv_ex),
4081 };
4082 
4083 static const struct opcode group4[] = {
4084 	F(ByteOp | DstMem | SrcNone | Lock, em_inc),
4085 	F(ByteOp | DstMem | SrcNone | Lock, em_dec),
4086 	N, N, N, N, N, N,
4087 };
4088 
4089 static const struct opcode group5[] = {
4090 	F(DstMem | SrcNone | Lock,		em_inc),
4091 	F(DstMem | SrcNone | Lock,		em_dec),
4092 	I(SrcMem | NearBranch | IsBranch,       em_call_near_abs),
4093 	I(SrcMemFAddr | ImplicitOps | IsBranch, em_call_far),
4094 	I(SrcMem | NearBranch | IsBranch,       em_jmp_abs),
4095 	I(SrcMemFAddr | ImplicitOps | IsBranch, em_jmp_far),
4096 	I(SrcMem | Stack | TwoMemOp,		em_push), D(Undefined),
4097 };
4098 
4099 static const struct opcode group6[] = {
4100 	II(Prot | DstMem,	   em_sldt, sldt),
4101 	II(Prot | DstMem,	   em_str, str),
4102 	II(Prot | Priv | SrcMem16, em_lldt, lldt),
4103 	II(Prot | Priv | SrcMem16, em_ltr, ltr),
4104 	N, N, N, N,
4105 };
4106 
4107 static const struct group_dual group7 = { {
4108 	II(Mov | DstMem,			em_sgdt, sgdt),
4109 	II(Mov | DstMem,			em_sidt, sidt),
4110 	II(SrcMem | Priv,			em_lgdt, lgdt),
4111 	II(SrcMem | Priv,			em_lidt, lidt),
4112 	II(SrcNone | DstMem | Mov,		em_smsw, smsw), N,
4113 	II(SrcMem16 | Mov | Priv,		em_lmsw, lmsw),
4114 	II(SrcMem | ByteOp | Priv | NoAccess,	em_invlpg, invlpg),
4115 }, {
4116 	EXT(0, group7_rm0),
4117 	EXT(0, group7_rm1),
4118 	EXT(0, group7_rm2),
4119 	EXT(0, group7_rm3),
4120 	II(SrcNone | DstMem | Mov,		em_smsw, smsw), N,
4121 	II(SrcMem16 | Mov | Priv,		em_lmsw, lmsw),
4122 	EXT(0, group7_rm7),
4123 } };
4124 
4125 static const struct opcode group8[] = {
4126 	N, N, N, N,
4127 	F(DstMem | SrcImmByte | NoWrite,		em_bt),
4128 	F(DstMem | SrcImmByte | Lock | PageTable,	em_bts),
4129 	F(DstMem | SrcImmByte | Lock,			em_btr),
4130 	F(DstMem | SrcImmByte | Lock | PageTable,	em_btc),
4131 };
4132 
4133 /*
4134  * The "memory" destination is actually always a register, since we come
4135  * from the register case of group9.
4136  */
4137 static const struct gprefix pfx_0f_c7_7 = {
4138 	N, N, N, II(DstMem | ModRM | Op3264 | EmulateOnUD, em_rdpid, rdpid),
4139 };
4140 
4141 
4142 static const struct group_dual group9 = { {
4143 	N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N,
4144 }, {
4145 	N, N, N, N, N, N, N,
4146 	GP(0, &pfx_0f_c7_7),
4147 } };
4148 
4149 static const struct opcode group11[] = {
4150 	I(DstMem | SrcImm | Mov | PageTable, em_mov),
4151 	X7(D(Undefined)),
4152 };
4153 
4154 static const struct gprefix pfx_0f_ae_7 = {
4155 	I(SrcMem | ByteOp, em_clflush), I(SrcMem | ByteOp, em_clflushopt), N, N,
4156 };
4157 
4158 static const struct group_dual group15 = { {
4159 	I(ModRM | Aligned16, em_fxsave),
4160 	I(ModRM | Aligned16, em_fxrstor),
4161 	N, N, N, N, N, GP(0, &pfx_0f_ae_7),
4162 }, {
4163 	N, N, N, N, N, N, N, N,
4164 } };
4165 
4166 static const struct gprefix pfx_0f_6f_0f_7f = {
4167 	I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov),
4168 };
4169 
4170 static const struct instr_dual instr_dual_0f_2b = {
4171 	I(0, em_mov), N
4172 };
4173 
4174 static const struct gprefix pfx_0f_2b = {
4175 	ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N,
4176 };
4177 
4178 static const struct gprefix pfx_0f_10_0f_11 = {
4179 	I(Unaligned, em_mov), I(Unaligned, em_mov), N, N,
4180 };
4181 
4182 static const struct gprefix pfx_0f_28_0f_29 = {
4183 	I(Aligned, em_mov), I(Aligned, em_mov), N, N,
4184 };
4185 
4186 static const struct gprefix pfx_0f_e7 = {
4187 	N, I(Sse, em_mov), N, N,
4188 };
4189 
4190 static const struct escape escape_d9 = { {
4191 	N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw),
4192 }, {
4193 	/* 0xC0 - 0xC7 */
4194 	N, N, N, N, N, N, N, N,
4195 	/* 0xC8 - 0xCF */
4196 	N, N, N, N, N, N, N, N,
4197 	/* 0xD0 - 0xC7 */
4198 	N, N, N, N, N, N, N, N,
4199 	/* 0xD8 - 0xDF */
4200 	N, N, N, N, N, N, N, N,
4201 	/* 0xE0 - 0xE7 */
4202 	N, N, N, N, N, N, N, N,
4203 	/* 0xE8 - 0xEF */
4204 	N, N, N, N, N, N, N, N,
4205 	/* 0xF0 - 0xF7 */
4206 	N, N, N, N, N, N, N, N,
4207 	/* 0xF8 - 0xFF */
4208 	N, N, N, N, N, N, N, N,
4209 } };
4210 
4211 static const struct escape escape_db = { {
4212 	N, N, N, N, N, N, N, N,
4213 }, {
4214 	/* 0xC0 - 0xC7 */
4215 	N, N, N, N, N, N, N, N,
4216 	/* 0xC8 - 0xCF */
4217 	N, N, N, N, N, N, N, N,
4218 	/* 0xD0 - 0xC7 */
4219 	N, N, N, N, N, N, N, N,
4220 	/* 0xD8 - 0xDF */
4221 	N, N, N, N, N, N, N, N,
4222 	/* 0xE0 - 0xE7 */
4223 	N, N, N, I(ImplicitOps, em_fninit), N, N, N, N,
4224 	/* 0xE8 - 0xEF */
4225 	N, N, N, N, N, N, N, N,
4226 	/* 0xF0 - 0xF7 */
4227 	N, N, N, N, N, N, N, N,
4228 	/* 0xF8 - 0xFF */
4229 	N, N, N, N, N, N, N, N,
4230 } };
4231 
4232 static const struct escape escape_dd = { {
4233 	N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw),
4234 }, {
4235 	/* 0xC0 - 0xC7 */
4236 	N, N, N, N, N, N, N, N,
4237 	/* 0xC8 - 0xCF */
4238 	N, N, N, N, N, N, N, N,
4239 	/* 0xD0 - 0xC7 */
4240 	N, N, N, N, N, N, N, N,
4241 	/* 0xD8 - 0xDF */
4242 	N, N, N, N, N, N, N, N,
4243 	/* 0xE0 - 0xE7 */
4244 	N, N, N, N, N, N, N, N,
4245 	/* 0xE8 - 0xEF */
4246 	N, N, N, N, N, N, N, N,
4247 	/* 0xF0 - 0xF7 */
4248 	N, N, N, N, N, N, N, N,
4249 	/* 0xF8 - 0xFF */
4250 	N, N, N, N, N, N, N, N,
4251 } };
4252 
4253 static const struct instr_dual instr_dual_0f_c3 = {
4254 	I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N
4255 };
4256 
4257 static const struct mode_dual mode_dual_63 = {
4258 	N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd)
4259 };
4260 
4261 static const struct instr_dual instr_dual_8d = {
4262 	D(DstReg | SrcMem | ModRM | NoAccess), N
4263 };
4264 
4265 static const struct opcode opcode_table[256] = {
4266 	/* 0x00 - 0x07 */
4267 	F6ALU(Lock, em_add),
4268 	I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg),
4269 	I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg),
4270 	/* 0x08 - 0x0F */
4271 	F6ALU(Lock | PageTable, em_or),
4272 	I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg),
4273 	N,
4274 	/* 0x10 - 0x17 */
4275 	F6ALU(Lock, em_adc),
4276 	I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg),
4277 	I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg),
4278 	/* 0x18 - 0x1F */
4279 	F6ALU(Lock, em_sbb),
4280 	I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg),
4281 	I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg),
4282 	/* 0x20 - 0x27 */
4283 	F6ALU(Lock | PageTable, em_and), N, N,
4284 	/* 0x28 - 0x2F */
4285 	F6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das),
4286 	/* 0x30 - 0x37 */
4287 	F6ALU(Lock, em_xor), N, N,
4288 	/* 0x38 - 0x3F */
4289 	F6ALU(NoWrite, em_cmp), N, N,
4290 	/* 0x40 - 0x4F */
4291 	X8(F(DstReg, em_inc)), X8(F(DstReg, em_dec)),
4292 	/* 0x50 - 0x57 */
4293 	X8(I(SrcReg | Stack, em_push)),
4294 	/* 0x58 - 0x5F */
4295 	X8(I(DstReg | Stack, em_pop)),
4296 	/* 0x60 - 0x67 */
4297 	I(ImplicitOps | Stack | No64, em_pusha),
4298 	I(ImplicitOps | Stack | No64, em_popa),
4299 	N, MD(ModRM, &mode_dual_63),
4300 	N, N, N, N,
4301 	/* 0x68 - 0x6F */
4302 	I(SrcImm | Mov | Stack, em_push),
4303 	I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op),
4304 	I(SrcImmByte | Mov | Stack, em_push),
4305 	I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op),
4306 	I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */
4307 	I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */
4308 	/* 0x70 - 0x7F */
4309 	X16(D(SrcImmByte | NearBranch | IsBranch)),
4310 	/* 0x80 - 0x87 */
4311 	G(ByteOp | DstMem | SrcImm, group1),
4312 	G(DstMem | SrcImm, group1),
4313 	G(ByteOp | DstMem | SrcImm | No64, group1),
4314 	G(DstMem | SrcImmByte, group1),
4315 	F2bv(DstMem | SrcReg | ModRM | NoWrite, em_test),
4316 	I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg),
4317 	/* 0x88 - 0x8F */
4318 	I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov),
4319 	I2bv(DstReg | SrcMem | ModRM | Mov, em_mov),
4320 	I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg),
4321 	ID(0, &instr_dual_8d),
4322 	I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm),
4323 	G(0, group1A),
4324 	/* 0x90 - 0x97 */
4325 	DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)),
4326 	/* 0x98 - 0x9F */
4327 	D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd),
4328 	I(SrcImmFAddr | No64 | IsBranch, em_call_far), N,
4329 	II(ImplicitOps | Stack, em_pushf, pushf),
4330 	II(ImplicitOps | Stack, em_popf, popf),
4331 	I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf),
4332 	/* 0xA0 - 0xA7 */
4333 	I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov),
4334 	I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov),
4335 	I2bv(SrcSI | DstDI | Mov | String | TwoMemOp, em_mov),
4336 	F2bv(SrcSI | DstDI | String | NoWrite | TwoMemOp, em_cmp_r),
4337 	/* 0xA8 - 0xAF */
4338 	F2bv(DstAcc | SrcImm | NoWrite, em_test),
4339 	I2bv(SrcAcc | DstDI | Mov | String, em_mov),
4340 	I2bv(SrcSI | DstAcc | Mov | String, em_mov),
4341 	F2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r),
4342 	/* 0xB0 - 0xB7 */
4343 	X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)),
4344 	/* 0xB8 - 0xBF */
4345 	X8(I(DstReg | SrcImm64 | Mov, em_mov)),
4346 	/* 0xC0 - 0xC7 */
4347 	G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2),
4348 	I(ImplicitOps | NearBranch | SrcImmU16 | IsBranch, em_ret_near_imm),
4349 	I(ImplicitOps | NearBranch | IsBranch, em_ret),
4350 	I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg),
4351 	I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg),
4352 	G(ByteOp, group11), G(0, group11),
4353 	/* 0xC8 - 0xCF */
4354 	I(Stack | SrcImmU16 | Src2ImmByte | IsBranch, em_enter),
4355 	I(Stack | IsBranch, em_leave),
4356 	I(ImplicitOps | SrcImmU16 | IsBranch, em_ret_far_imm),
4357 	I(ImplicitOps | IsBranch, em_ret_far),
4358 	D(ImplicitOps | IsBranch), DI(SrcImmByte | IsBranch, intn),
4359 	D(ImplicitOps | No64 | IsBranch),
4360 	II(ImplicitOps | IsBranch, em_iret, iret),
4361 	/* 0xD0 - 0xD7 */
4362 	G(Src2One | ByteOp, group2), G(Src2One, group2),
4363 	G(Src2CL | ByteOp, group2), G(Src2CL, group2),
4364 	I(DstAcc | SrcImmUByte | No64, em_aam),
4365 	I(DstAcc | SrcImmUByte | No64, em_aad),
4366 	F(DstAcc | ByteOp | No64, em_salc),
4367 	I(DstAcc | SrcXLat | ByteOp, em_mov),
4368 	/* 0xD8 - 0xDF */
4369 	N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N,
4370 	/* 0xE0 - 0xE7 */
4371 	X3(I(SrcImmByte | NearBranch | IsBranch, em_loop)),
4372 	I(SrcImmByte | NearBranch | IsBranch, em_jcxz),
4373 	I2bvIP(SrcImmUByte | DstAcc, em_in,  in,  check_perm_in),
4374 	I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out),
4375 	/* 0xE8 - 0xEF */
4376 	I(SrcImm | NearBranch | IsBranch, em_call),
4377 	D(SrcImm | ImplicitOps | NearBranch | IsBranch),
4378 	I(SrcImmFAddr | No64 | IsBranch, em_jmp_far),
4379 	D(SrcImmByte | ImplicitOps | NearBranch | IsBranch),
4380 	I2bvIP(SrcDX | DstAcc, em_in,  in,  check_perm_in),
4381 	I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out),
4382 	/* 0xF0 - 0xF7 */
4383 	N, DI(ImplicitOps, icebp), N, N,
4384 	DI(ImplicitOps | Priv, hlt), D(ImplicitOps),
4385 	G(ByteOp, group3), G(0, group3),
4386 	/* 0xF8 - 0xFF */
4387 	D(ImplicitOps), D(ImplicitOps),
4388 	I(ImplicitOps, em_cli), I(ImplicitOps, em_sti),
4389 	D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5),
4390 };
4391 
4392 static const struct opcode twobyte_table[256] = {
4393 	/* 0x00 - 0x0F */
4394 	G(0, group6), GD(0, &group7), N, N,
4395 	N, I(ImplicitOps | EmulateOnUD | IsBranch, em_syscall),
4396 	II(ImplicitOps | Priv, em_clts, clts), N,
4397 	DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
4398 	N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4399 	/* 0x10 - 0x1F */
4400 	GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_10_0f_11),
4401 	GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_10_0f_11),
4402 	N, N, N, N, N, N,
4403 	D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 4 * prefetch + 4 * reserved NOP */
4404 	D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4405 	D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4406 	D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4407 	D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4408 	D(ImplicitOps | ModRM | SrcMem | NoAccess), /* NOP + 7 * reserved NOP */
4409 	/* 0x20 - 0x2F */
4410 	DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_access),
4411 	DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read),
4412 	IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write,
4413 						check_cr_access),
4414 	IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write,
4415 						check_dr_write),
4416 	N, N, N, N,
4417 	GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29),
4418 	GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29),
4419 	N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b),
4420 	N, N, N, N,
4421 	/* 0x30 - 0x3F */
4422 	II(ImplicitOps | Priv, em_wrmsr, wrmsr),
4423 	IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc),
4424 	II(ImplicitOps | Priv, em_rdmsr, rdmsr),
4425 	IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc),
4426 	I(ImplicitOps | EmulateOnUD | IsBranch, em_sysenter),
4427 	I(ImplicitOps | Priv | EmulateOnUD | IsBranch, em_sysexit),
4428 	N, N,
4429 	N, N, N, N, N, N, N, N,
4430 	/* 0x40 - 0x4F */
4431 	X16(D(DstReg | SrcMem | ModRM)),
4432 	/* 0x50 - 0x5F */
4433 	N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4434 	/* 0x60 - 0x6F */
4435 	N, N, N, N,
4436 	N, N, N, N,
4437 	N, N, N, N,
4438 	N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f),
4439 	/* 0x70 - 0x7F */
4440 	N, N, N, N,
4441 	N, N, N, N,
4442 	N, N, N, N,
4443 	N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f),
4444 	/* 0x80 - 0x8F */
4445 	X16(D(SrcImm | NearBranch | IsBranch)),
4446 	/* 0x90 - 0x9F */
4447 	X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)),
4448 	/* 0xA0 - 0xA7 */
4449 	I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg),
4450 	II(ImplicitOps, em_cpuid, cpuid),
4451 	F(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt),
4452 	F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld),
4453 	F(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N,
4454 	/* 0xA8 - 0xAF */
4455 	I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg),
4456 	II(EmulateOnUD | ImplicitOps, em_rsm, rsm),
4457 	F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts),
4458 	F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd),
4459 	F(DstMem | SrcReg | Src2CL | ModRM, em_shrd),
4460 	GD(0, &group15), F(DstReg | SrcMem | ModRM, em_imul),
4461 	/* 0xB0 - 0xB7 */
4462 	I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg),
4463 	I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg),
4464 	F(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr),
4465 	I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg),
4466 	I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg),
4467 	D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4468 	/* 0xB8 - 0xBF */
4469 	N, N,
4470 	G(BitOp, group8),
4471 	F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc),
4472 	I(DstReg | SrcMem | ModRM, em_bsf_c),
4473 	I(DstReg | SrcMem | ModRM, em_bsr_c),
4474 	D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4475 	/* 0xC0 - 0xC7 */
4476 	F2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd),
4477 	N, ID(0, &instr_dual_0f_c3),
4478 	N, N, N, GD(0, &group9),
4479 	/* 0xC8 - 0xCF */
4480 	X8(I(DstReg, em_bswap)),
4481 	/* 0xD0 - 0xDF */
4482 	N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4483 	/* 0xE0 - 0xEF */
4484 	N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7),
4485 	N, N, N, N, N, N, N, N,
4486 	/* 0xF0 - 0xFF */
4487 	N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N
4488 };
4489 
4490 static const struct instr_dual instr_dual_0f_38_f0 = {
4491 	I(DstReg | SrcMem | Mov, em_movbe), N
4492 };
4493 
4494 static const struct instr_dual instr_dual_0f_38_f1 = {
4495 	I(DstMem | SrcReg | Mov, em_movbe), N
4496 };
4497 
4498 static const struct gprefix three_byte_0f_38_f0 = {
4499 	ID(0, &instr_dual_0f_38_f0), N, N, N
4500 };
4501 
4502 static const struct gprefix three_byte_0f_38_f1 = {
4503 	ID(0, &instr_dual_0f_38_f1), N, N, N
4504 };
4505 
4506 /*
4507  * Insns below are selected by the prefix which indexed by the third opcode
4508  * byte.
4509  */
4510 static const struct opcode opcode_map_0f_38[256] = {
4511 	/* 0x00 - 0x7f */
4512 	X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4513 	/* 0x80 - 0xef */
4514 	X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4515 	/* 0xf0 - 0xf1 */
4516 	GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0),
4517 	GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1),
4518 	/* 0xf2 - 0xff */
4519 	N, N, X4(N), X8(N)
4520 };
4521 
4522 #undef D
4523 #undef N
4524 #undef G
4525 #undef GD
4526 #undef I
4527 #undef GP
4528 #undef EXT
4529 #undef MD
4530 #undef ID
4531 
4532 #undef D2bv
4533 #undef D2bvIP
4534 #undef I2bv
4535 #undef I2bvIP
4536 #undef I6ALU
4537 
4538 static unsigned imm_size(struct x86_emulate_ctxt *ctxt)
4539 {
4540 	unsigned size;
4541 
4542 	size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4543 	if (size == 8)
4544 		size = 4;
4545 	return size;
4546 }
4547 
4548 static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op,
4549 		      unsigned size, bool sign_extension)
4550 {
4551 	int rc = X86EMUL_CONTINUE;
4552 
4553 	op->type = OP_IMM;
4554 	op->bytes = size;
4555 	op->addr.mem.ea = ctxt->_eip;
4556 	/* NB. Immediates are sign-extended as necessary. */
4557 	switch (op->bytes) {
4558 	case 1:
4559 		op->val = insn_fetch(s8, ctxt);
4560 		break;
4561 	case 2:
4562 		op->val = insn_fetch(s16, ctxt);
4563 		break;
4564 	case 4:
4565 		op->val = insn_fetch(s32, ctxt);
4566 		break;
4567 	case 8:
4568 		op->val = insn_fetch(s64, ctxt);
4569 		break;
4570 	}
4571 	if (!sign_extension) {
4572 		switch (op->bytes) {
4573 		case 1:
4574 			op->val &= 0xff;
4575 			break;
4576 		case 2:
4577 			op->val &= 0xffff;
4578 			break;
4579 		case 4:
4580 			op->val &= 0xffffffff;
4581 			break;
4582 		}
4583 	}
4584 done:
4585 	return rc;
4586 }
4587 
4588 static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op,
4589 			  unsigned d)
4590 {
4591 	int rc = X86EMUL_CONTINUE;
4592 
4593 	switch (d) {
4594 	case OpReg:
4595 		decode_register_operand(ctxt, op);
4596 		break;
4597 	case OpImmUByte:
4598 		rc = decode_imm(ctxt, op, 1, false);
4599 		break;
4600 	case OpMem:
4601 		ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4602 	mem_common:
4603 		*op = ctxt->memop;
4604 		ctxt->memopp = op;
4605 		if (ctxt->d & BitOp)
4606 			fetch_bit_operand(ctxt);
4607 		op->orig_val = op->val;
4608 		break;
4609 	case OpMem64:
4610 		ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8;
4611 		goto mem_common;
4612 	case OpAcc:
4613 		op->type = OP_REG;
4614 		op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4615 		op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4616 		fetch_register_operand(op);
4617 		op->orig_val = op->val;
4618 		break;
4619 	case OpAccLo:
4620 		op->type = OP_REG;
4621 		op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes;
4622 		op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4623 		fetch_register_operand(op);
4624 		op->orig_val = op->val;
4625 		break;
4626 	case OpAccHi:
4627 		if (ctxt->d & ByteOp) {
4628 			op->type = OP_NONE;
4629 			break;
4630 		}
4631 		op->type = OP_REG;
4632 		op->bytes = ctxt->op_bytes;
4633 		op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4634 		fetch_register_operand(op);
4635 		op->orig_val = op->val;
4636 		break;
4637 	case OpDI:
4638 		op->type = OP_MEM;
4639 		op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4640 		op->addr.mem.ea =
4641 			register_address(ctxt, VCPU_REGS_RDI);
4642 		op->addr.mem.seg = VCPU_SREG_ES;
4643 		op->val = 0;
4644 		op->count = 1;
4645 		break;
4646 	case OpDX:
4647 		op->type = OP_REG;
4648 		op->bytes = 2;
4649 		op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4650 		fetch_register_operand(op);
4651 		break;
4652 	case OpCL:
4653 		op->type = OP_IMM;
4654 		op->bytes = 1;
4655 		op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff;
4656 		break;
4657 	case OpImmByte:
4658 		rc = decode_imm(ctxt, op, 1, true);
4659 		break;
4660 	case OpOne:
4661 		op->type = OP_IMM;
4662 		op->bytes = 1;
4663 		op->val = 1;
4664 		break;
4665 	case OpImm:
4666 		rc = decode_imm(ctxt, op, imm_size(ctxt), true);
4667 		break;
4668 	case OpImm64:
4669 		rc = decode_imm(ctxt, op, ctxt->op_bytes, true);
4670 		break;
4671 	case OpMem8:
4672 		ctxt->memop.bytes = 1;
4673 		if (ctxt->memop.type == OP_REG) {
4674 			ctxt->memop.addr.reg = decode_register(ctxt,
4675 					ctxt->modrm_rm, true);
4676 			fetch_register_operand(&ctxt->memop);
4677 		}
4678 		goto mem_common;
4679 	case OpMem16:
4680 		ctxt->memop.bytes = 2;
4681 		goto mem_common;
4682 	case OpMem32:
4683 		ctxt->memop.bytes = 4;
4684 		goto mem_common;
4685 	case OpImmU16:
4686 		rc = decode_imm(ctxt, op, 2, false);
4687 		break;
4688 	case OpImmU:
4689 		rc = decode_imm(ctxt, op, imm_size(ctxt), false);
4690 		break;
4691 	case OpSI:
4692 		op->type = OP_MEM;
4693 		op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4694 		op->addr.mem.ea =
4695 			register_address(ctxt, VCPU_REGS_RSI);
4696 		op->addr.mem.seg = ctxt->seg_override;
4697 		op->val = 0;
4698 		op->count = 1;
4699 		break;
4700 	case OpXLat:
4701 		op->type = OP_MEM;
4702 		op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4703 		op->addr.mem.ea =
4704 			address_mask(ctxt,
4705 				reg_read(ctxt, VCPU_REGS_RBX) +
4706 				(reg_read(ctxt, VCPU_REGS_RAX) & 0xff));
4707 		op->addr.mem.seg = ctxt->seg_override;
4708 		op->val = 0;
4709 		break;
4710 	case OpImmFAddr:
4711 		op->type = OP_IMM;
4712 		op->addr.mem.ea = ctxt->_eip;
4713 		op->bytes = ctxt->op_bytes + 2;
4714 		insn_fetch_arr(op->valptr, op->bytes, ctxt);
4715 		break;
4716 	case OpMemFAddr:
4717 		ctxt->memop.bytes = ctxt->op_bytes + 2;
4718 		goto mem_common;
4719 	case OpES:
4720 		op->type = OP_IMM;
4721 		op->val = VCPU_SREG_ES;
4722 		break;
4723 	case OpCS:
4724 		op->type = OP_IMM;
4725 		op->val = VCPU_SREG_CS;
4726 		break;
4727 	case OpSS:
4728 		op->type = OP_IMM;
4729 		op->val = VCPU_SREG_SS;
4730 		break;
4731 	case OpDS:
4732 		op->type = OP_IMM;
4733 		op->val = VCPU_SREG_DS;
4734 		break;
4735 	case OpFS:
4736 		op->type = OP_IMM;
4737 		op->val = VCPU_SREG_FS;
4738 		break;
4739 	case OpGS:
4740 		op->type = OP_IMM;
4741 		op->val = VCPU_SREG_GS;
4742 		break;
4743 	case OpImplicit:
4744 		/* Special instructions do their own operand decoding. */
4745 	default:
4746 		op->type = OP_NONE; /* Disable writeback. */
4747 		break;
4748 	}
4749 
4750 done:
4751 	return rc;
4752 }
4753 
4754 int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len, int emulation_type)
4755 {
4756 	int rc = X86EMUL_CONTINUE;
4757 	int mode = ctxt->mode;
4758 	int def_op_bytes, def_ad_bytes, goffset, simd_prefix;
4759 	bool op_prefix = false;
4760 	bool has_seg_override = false;
4761 	struct opcode opcode;
4762 	u16 dummy;
4763 	struct desc_struct desc;
4764 
4765 	ctxt->memop.type = OP_NONE;
4766 	ctxt->memopp = NULL;
4767 	ctxt->_eip = ctxt->eip;
4768 	ctxt->fetch.ptr = ctxt->fetch.data;
4769 	ctxt->fetch.end = ctxt->fetch.data + insn_len;
4770 	ctxt->opcode_len = 1;
4771 	ctxt->intercept = x86_intercept_none;
4772 	if (insn_len > 0)
4773 		memcpy(ctxt->fetch.data, insn, insn_len);
4774 	else {
4775 		rc = __do_insn_fetch_bytes(ctxt, 1);
4776 		if (rc != X86EMUL_CONTINUE)
4777 			goto done;
4778 	}
4779 
4780 	switch (mode) {
4781 	case X86EMUL_MODE_REAL:
4782 	case X86EMUL_MODE_VM86:
4783 		def_op_bytes = def_ad_bytes = 2;
4784 		ctxt->ops->get_segment(ctxt, &dummy, &desc, NULL, VCPU_SREG_CS);
4785 		if (desc.d)
4786 			def_op_bytes = def_ad_bytes = 4;
4787 		break;
4788 	case X86EMUL_MODE_PROT16:
4789 		def_op_bytes = def_ad_bytes = 2;
4790 		break;
4791 	case X86EMUL_MODE_PROT32:
4792 		def_op_bytes = def_ad_bytes = 4;
4793 		break;
4794 #ifdef CONFIG_X86_64
4795 	case X86EMUL_MODE_PROT64:
4796 		def_op_bytes = 4;
4797 		def_ad_bytes = 8;
4798 		break;
4799 #endif
4800 	default:
4801 		return EMULATION_FAILED;
4802 	}
4803 
4804 	ctxt->op_bytes = def_op_bytes;
4805 	ctxt->ad_bytes = def_ad_bytes;
4806 
4807 	/* Legacy prefixes. */
4808 	for (;;) {
4809 		switch (ctxt->b = insn_fetch(u8, ctxt)) {
4810 		case 0x66:	/* operand-size override */
4811 			op_prefix = true;
4812 			/* switch between 2/4 bytes */
4813 			ctxt->op_bytes = def_op_bytes ^ 6;
4814 			break;
4815 		case 0x67:	/* address-size override */
4816 			if (mode == X86EMUL_MODE_PROT64)
4817 				/* switch between 4/8 bytes */
4818 				ctxt->ad_bytes = def_ad_bytes ^ 12;
4819 			else
4820 				/* switch between 2/4 bytes */
4821 				ctxt->ad_bytes = def_ad_bytes ^ 6;
4822 			break;
4823 		case 0x26:	/* ES override */
4824 			has_seg_override = true;
4825 			ctxt->seg_override = VCPU_SREG_ES;
4826 			break;
4827 		case 0x2e:	/* CS override */
4828 			has_seg_override = true;
4829 			ctxt->seg_override = VCPU_SREG_CS;
4830 			break;
4831 		case 0x36:	/* SS override */
4832 			has_seg_override = true;
4833 			ctxt->seg_override = VCPU_SREG_SS;
4834 			break;
4835 		case 0x3e:	/* DS override */
4836 			has_seg_override = true;
4837 			ctxt->seg_override = VCPU_SREG_DS;
4838 			break;
4839 		case 0x64:	/* FS override */
4840 			has_seg_override = true;
4841 			ctxt->seg_override = VCPU_SREG_FS;
4842 			break;
4843 		case 0x65:	/* GS override */
4844 			has_seg_override = true;
4845 			ctxt->seg_override = VCPU_SREG_GS;
4846 			break;
4847 		case 0x40 ... 0x4f: /* REX */
4848 			if (mode != X86EMUL_MODE_PROT64)
4849 				goto done_prefixes;
4850 			ctxt->rex_prefix = ctxt->b;
4851 			continue;
4852 		case 0xf0:	/* LOCK */
4853 			ctxt->lock_prefix = 1;
4854 			break;
4855 		case 0xf2:	/* REPNE/REPNZ */
4856 		case 0xf3:	/* REP/REPE/REPZ */
4857 			ctxt->rep_prefix = ctxt->b;
4858 			break;
4859 		default:
4860 			goto done_prefixes;
4861 		}
4862 
4863 		/* Any legacy prefix after a REX prefix nullifies its effect. */
4864 
4865 		ctxt->rex_prefix = 0;
4866 	}
4867 
4868 done_prefixes:
4869 
4870 	/* REX prefix. */
4871 	if (ctxt->rex_prefix & 8)
4872 		ctxt->op_bytes = 8;	/* REX.W */
4873 
4874 	/* Opcode byte(s). */
4875 	opcode = opcode_table[ctxt->b];
4876 	/* Two-byte opcode? */
4877 	if (ctxt->b == 0x0f) {
4878 		ctxt->opcode_len = 2;
4879 		ctxt->b = insn_fetch(u8, ctxt);
4880 		opcode = twobyte_table[ctxt->b];
4881 
4882 		/* 0F_38 opcode map */
4883 		if (ctxt->b == 0x38) {
4884 			ctxt->opcode_len = 3;
4885 			ctxt->b = insn_fetch(u8, ctxt);
4886 			opcode = opcode_map_0f_38[ctxt->b];
4887 		}
4888 	}
4889 	ctxt->d = opcode.flags;
4890 
4891 	if (ctxt->d & ModRM)
4892 		ctxt->modrm = insn_fetch(u8, ctxt);
4893 
4894 	/* vex-prefix instructions are not implemented */
4895 	if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) &&
4896 	    (mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) {
4897 		ctxt->d = NotImpl;
4898 	}
4899 
4900 	while (ctxt->d & GroupMask) {
4901 		switch (ctxt->d & GroupMask) {
4902 		case Group:
4903 			goffset = (ctxt->modrm >> 3) & 7;
4904 			opcode = opcode.u.group[goffset];
4905 			break;
4906 		case GroupDual:
4907 			goffset = (ctxt->modrm >> 3) & 7;
4908 			if ((ctxt->modrm >> 6) == 3)
4909 				opcode = opcode.u.gdual->mod3[goffset];
4910 			else
4911 				opcode = opcode.u.gdual->mod012[goffset];
4912 			break;
4913 		case RMExt:
4914 			goffset = ctxt->modrm & 7;
4915 			opcode = opcode.u.group[goffset];
4916 			break;
4917 		case Prefix:
4918 			if (ctxt->rep_prefix && op_prefix)
4919 				return EMULATION_FAILED;
4920 			simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix;
4921 			switch (simd_prefix) {
4922 			case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
4923 			case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
4924 			case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break;
4925 			case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break;
4926 			}
4927 			break;
4928 		case Escape:
4929 			if (ctxt->modrm > 0xbf) {
4930 				size_t size = ARRAY_SIZE(opcode.u.esc->high);
4931 				u32 index = array_index_nospec(
4932 					ctxt->modrm - 0xc0, size);
4933 
4934 				opcode = opcode.u.esc->high[index];
4935 			} else {
4936 				opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7];
4937 			}
4938 			break;
4939 		case InstrDual:
4940 			if ((ctxt->modrm >> 6) == 3)
4941 				opcode = opcode.u.idual->mod3;
4942 			else
4943 				opcode = opcode.u.idual->mod012;
4944 			break;
4945 		case ModeDual:
4946 			if (ctxt->mode == X86EMUL_MODE_PROT64)
4947 				opcode = opcode.u.mdual->mode64;
4948 			else
4949 				opcode = opcode.u.mdual->mode32;
4950 			break;
4951 		default:
4952 			return EMULATION_FAILED;
4953 		}
4954 
4955 		ctxt->d &= ~(u64)GroupMask;
4956 		ctxt->d |= opcode.flags;
4957 	}
4958 
4959 	ctxt->is_branch = opcode.flags & IsBranch;
4960 
4961 	/* Unrecognised? */
4962 	if (ctxt->d == 0)
4963 		return EMULATION_FAILED;
4964 
4965 	ctxt->execute = opcode.u.execute;
4966 
4967 	if (unlikely(emulation_type & EMULTYPE_TRAP_UD) &&
4968 	    likely(!(ctxt->d & EmulateOnUD)))
4969 		return EMULATION_FAILED;
4970 
4971 	if (unlikely(ctxt->d &
4972 	    (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch|
4973 	     No16))) {
4974 		/*
4975 		 * These are copied unconditionally here, and checked unconditionally
4976 		 * in x86_emulate_insn.
4977 		 */
4978 		ctxt->check_perm = opcode.check_perm;
4979 		ctxt->intercept = opcode.intercept;
4980 
4981 		if (ctxt->d & NotImpl)
4982 			return EMULATION_FAILED;
4983 
4984 		if (mode == X86EMUL_MODE_PROT64) {
4985 			if (ctxt->op_bytes == 4 && (ctxt->d & Stack))
4986 				ctxt->op_bytes = 8;
4987 			else if (ctxt->d & NearBranch)
4988 				ctxt->op_bytes = 8;
4989 		}
4990 
4991 		if (ctxt->d & Op3264) {
4992 			if (mode == X86EMUL_MODE_PROT64)
4993 				ctxt->op_bytes = 8;
4994 			else
4995 				ctxt->op_bytes = 4;
4996 		}
4997 
4998 		if ((ctxt->d & No16) && ctxt->op_bytes == 2)
4999 			ctxt->op_bytes = 4;
5000 
5001 		if (ctxt->d & Sse)
5002 			ctxt->op_bytes = 16;
5003 		else if (ctxt->d & Mmx)
5004 			ctxt->op_bytes = 8;
5005 	}
5006 
5007 	/* ModRM and SIB bytes. */
5008 	if (ctxt->d & ModRM) {
5009 		rc = decode_modrm(ctxt, &ctxt->memop);
5010 		if (!has_seg_override) {
5011 			has_seg_override = true;
5012 			ctxt->seg_override = ctxt->modrm_seg;
5013 		}
5014 	} else if (ctxt->d & MemAbs)
5015 		rc = decode_abs(ctxt, &ctxt->memop);
5016 	if (rc != X86EMUL_CONTINUE)
5017 		goto done;
5018 
5019 	if (!has_seg_override)
5020 		ctxt->seg_override = VCPU_SREG_DS;
5021 
5022 	ctxt->memop.addr.mem.seg = ctxt->seg_override;
5023 
5024 	/*
5025 	 * Decode and fetch the source operand: register, memory
5026 	 * or immediate.
5027 	 */
5028 	rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask);
5029 	if (rc != X86EMUL_CONTINUE)
5030 		goto done;
5031 
5032 	/*
5033 	 * Decode and fetch the second source operand: register, memory
5034 	 * or immediate.
5035 	 */
5036 	rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask);
5037 	if (rc != X86EMUL_CONTINUE)
5038 		goto done;
5039 
5040 	/* Decode and fetch the destination operand: register or memory. */
5041 	rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask);
5042 
5043 	if (ctxt->rip_relative && likely(ctxt->memopp))
5044 		ctxt->memopp->addr.mem.ea = address_mask(ctxt,
5045 					ctxt->memopp->addr.mem.ea + ctxt->_eip);
5046 
5047 done:
5048 	if (rc == X86EMUL_PROPAGATE_FAULT)
5049 		ctxt->have_exception = true;
5050 	return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK;
5051 }
5052 
5053 bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt)
5054 {
5055 	return ctxt->d & PageTable;
5056 }
5057 
5058 static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
5059 {
5060 	/* The second termination condition only applies for REPE
5061 	 * and REPNE. Test if the repeat string operation prefix is
5062 	 * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
5063 	 * corresponding termination condition according to:
5064 	 * 	- if REPE/REPZ and ZF = 0 then done
5065 	 * 	- if REPNE/REPNZ and ZF = 1 then done
5066 	 */
5067 	if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) ||
5068 	     (ctxt->b == 0xae) || (ctxt->b == 0xaf))
5069 	    && (((ctxt->rep_prefix == REPE_PREFIX) &&
5070 		 ((ctxt->eflags & X86_EFLAGS_ZF) == 0))
5071 		|| ((ctxt->rep_prefix == REPNE_PREFIX) &&
5072 		    ((ctxt->eflags & X86_EFLAGS_ZF) == X86_EFLAGS_ZF))))
5073 		return true;
5074 
5075 	return false;
5076 }
5077 
5078 static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt)
5079 {
5080 	int rc;
5081 
5082 	kvm_fpu_get();
5083 	rc = asm_safe("fwait");
5084 	kvm_fpu_put();
5085 
5086 	if (unlikely(rc != X86EMUL_CONTINUE))
5087 		return emulate_exception(ctxt, MF_VECTOR, 0, false);
5088 
5089 	return X86EMUL_CONTINUE;
5090 }
5091 
5092 static void fetch_possible_mmx_operand(struct operand *op)
5093 {
5094 	if (op->type == OP_MM)
5095 		kvm_read_mmx_reg(op->addr.mm, &op->mm_val);
5096 }
5097 
5098 static int fastop(struct x86_emulate_ctxt *ctxt, fastop_t fop)
5099 {
5100 	ulong flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF;
5101 
5102 	if (!(ctxt->d & ByteOp))
5103 		fop += __ffs(ctxt->dst.bytes) * FASTOP_SIZE;
5104 
5105 	asm("push %[flags]; popf; " CALL_NOSPEC " ; pushf; pop %[flags]\n"
5106 	    : "+a"(ctxt->dst.val), "+d"(ctxt->src.val), [flags]"+D"(flags),
5107 	      [thunk_target]"+S"(fop), ASM_CALL_CONSTRAINT
5108 	    : "c"(ctxt->src2.val));
5109 
5110 	ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK);
5111 	if (!fop) /* exception is returned in fop variable */
5112 		return emulate_de(ctxt);
5113 	return X86EMUL_CONTINUE;
5114 }
5115 
5116 void init_decode_cache(struct x86_emulate_ctxt *ctxt)
5117 {
5118 	/* Clear fields that are set conditionally but read without a guard. */
5119 	ctxt->rip_relative = false;
5120 	ctxt->rex_prefix = 0;
5121 	ctxt->lock_prefix = 0;
5122 	ctxt->rep_prefix = 0;
5123 	ctxt->regs_valid = 0;
5124 	ctxt->regs_dirty = 0;
5125 
5126 	ctxt->io_read.pos = 0;
5127 	ctxt->io_read.end = 0;
5128 	ctxt->mem_read.end = 0;
5129 }
5130 
5131 int x86_emulate_insn(struct x86_emulate_ctxt *ctxt)
5132 {
5133 	const struct x86_emulate_ops *ops = ctxt->ops;
5134 	int rc = X86EMUL_CONTINUE;
5135 	int saved_dst_type = ctxt->dst.type;
5136 	bool is_guest_mode = ctxt->ops->is_guest_mode(ctxt);
5137 
5138 	ctxt->mem_read.pos = 0;
5139 
5140 	/* LOCK prefix is allowed only with some instructions */
5141 	if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) {
5142 		rc = emulate_ud(ctxt);
5143 		goto done;
5144 	}
5145 
5146 	if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) {
5147 		rc = emulate_ud(ctxt);
5148 		goto done;
5149 	}
5150 
5151 	if (unlikely(ctxt->d &
5152 		     (No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) {
5153 		if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) ||
5154 				(ctxt->d & Undefined)) {
5155 			rc = emulate_ud(ctxt);
5156 			goto done;
5157 		}
5158 
5159 		if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM)))
5160 		    || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) {
5161 			rc = emulate_ud(ctxt);
5162 			goto done;
5163 		}
5164 
5165 		if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
5166 			rc = emulate_nm(ctxt);
5167 			goto done;
5168 		}
5169 
5170 		if (ctxt->d & Mmx) {
5171 			rc = flush_pending_x87_faults(ctxt);
5172 			if (rc != X86EMUL_CONTINUE)
5173 				goto done;
5174 			/*
5175 			 * Now that we know the fpu is exception safe, we can fetch
5176 			 * operands from it.
5177 			 */
5178 			fetch_possible_mmx_operand(&ctxt->src);
5179 			fetch_possible_mmx_operand(&ctxt->src2);
5180 			if (!(ctxt->d & Mov))
5181 				fetch_possible_mmx_operand(&ctxt->dst);
5182 		}
5183 
5184 		if (unlikely(is_guest_mode) && ctxt->intercept) {
5185 			rc = emulator_check_intercept(ctxt, ctxt->intercept,
5186 						      X86_ICPT_PRE_EXCEPT);
5187 			if (rc != X86EMUL_CONTINUE)
5188 				goto done;
5189 		}
5190 
5191 		/* Instruction can only be executed in protected mode */
5192 		if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) {
5193 			rc = emulate_ud(ctxt);
5194 			goto done;
5195 		}
5196 
5197 		/* Privileged instruction can be executed only in CPL=0 */
5198 		if ((ctxt->d & Priv) && ops->cpl(ctxt)) {
5199 			if (ctxt->d & PrivUD)
5200 				rc = emulate_ud(ctxt);
5201 			else
5202 				rc = emulate_gp(ctxt, 0);
5203 			goto done;
5204 		}
5205 
5206 		/* Do instruction specific permission checks */
5207 		if (ctxt->d & CheckPerm) {
5208 			rc = ctxt->check_perm(ctxt);
5209 			if (rc != X86EMUL_CONTINUE)
5210 				goto done;
5211 		}
5212 
5213 		if (unlikely(is_guest_mode) && (ctxt->d & Intercept)) {
5214 			rc = emulator_check_intercept(ctxt, ctxt->intercept,
5215 						      X86_ICPT_POST_EXCEPT);
5216 			if (rc != X86EMUL_CONTINUE)
5217 				goto done;
5218 		}
5219 
5220 		if (ctxt->rep_prefix && (ctxt->d & String)) {
5221 			/* All REP prefixes have the same first termination condition */
5222 			if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) {
5223 				string_registers_quirk(ctxt);
5224 				ctxt->eip = ctxt->_eip;
5225 				ctxt->eflags &= ~X86_EFLAGS_RF;
5226 				goto done;
5227 			}
5228 		}
5229 	}
5230 
5231 	if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) {
5232 		rc = segmented_read(ctxt, ctxt->src.addr.mem,
5233 				    ctxt->src.valptr, ctxt->src.bytes);
5234 		if (rc != X86EMUL_CONTINUE)
5235 			goto done;
5236 		ctxt->src.orig_val64 = ctxt->src.val64;
5237 	}
5238 
5239 	if (ctxt->src2.type == OP_MEM) {
5240 		rc = segmented_read(ctxt, ctxt->src2.addr.mem,
5241 				    &ctxt->src2.val, ctxt->src2.bytes);
5242 		if (rc != X86EMUL_CONTINUE)
5243 			goto done;
5244 	}
5245 
5246 	if ((ctxt->d & DstMask) == ImplicitOps)
5247 		goto special_insn;
5248 
5249 
5250 	if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) {
5251 		/* optimisation - avoid slow emulated read if Mov */
5252 		rc = segmented_read(ctxt, ctxt->dst.addr.mem,
5253 				   &ctxt->dst.val, ctxt->dst.bytes);
5254 		if (rc != X86EMUL_CONTINUE) {
5255 			if (!(ctxt->d & NoWrite) &&
5256 			    rc == X86EMUL_PROPAGATE_FAULT &&
5257 			    ctxt->exception.vector == PF_VECTOR)
5258 				ctxt->exception.error_code |= PFERR_WRITE_MASK;
5259 			goto done;
5260 		}
5261 	}
5262 	/* Copy full 64-bit value for CMPXCHG8B.  */
5263 	ctxt->dst.orig_val64 = ctxt->dst.val64;
5264 
5265 special_insn:
5266 
5267 	if (unlikely(is_guest_mode) && (ctxt->d & Intercept)) {
5268 		rc = emulator_check_intercept(ctxt, ctxt->intercept,
5269 					      X86_ICPT_POST_MEMACCESS);
5270 		if (rc != X86EMUL_CONTINUE)
5271 			goto done;
5272 	}
5273 
5274 	if (ctxt->rep_prefix && (ctxt->d & String))
5275 		ctxt->eflags |= X86_EFLAGS_RF;
5276 	else
5277 		ctxt->eflags &= ~X86_EFLAGS_RF;
5278 
5279 	if (ctxt->execute) {
5280 		if (ctxt->d & Fastop)
5281 			rc = fastop(ctxt, ctxt->fop);
5282 		else
5283 			rc = ctxt->execute(ctxt);
5284 		if (rc != X86EMUL_CONTINUE)
5285 			goto done;
5286 		goto writeback;
5287 	}
5288 
5289 	if (ctxt->opcode_len == 2)
5290 		goto twobyte_insn;
5291 	else if (ctxt->opcode_len == 3)
5292 		goto threebyte_insn;
5293 
5294 	switch (ctxt->b) {
5295 	case 0x70 ... 0x7f: /* jcc (short) */
5296 		if (test_cc(ctxt->b, ctxt->eflags))
5297 			rc = jmp_rel(ctxt, ctxt->src.val);
5298 		break;
5299 	case 0x8d: /* lea r16/r32, m */
5300 		ctxt->dst.val = ctxt->src.addr.mem.ea;
5301 		break;
5302 	case 0x90 ... 0x97: /* nop / xchg reg, rax */
5303 		if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX))
5304 			ctxt->dst.type = OP_NONE;
5305 		else
5306 			rc = em_xchg(ctxt);
5307 		break;
5308 	case 0x98: /* cbw/cwde/cdqe */
5309 		switch (ctxt->op_bytes) {
5310 		case 2: ctxt->dst.val = (s8)ctxt->dst.val; break;
5311 		case 4: ctxt->dst.val = (s16)ctxt->dst.val; break;
5312 		case 8: ctxt->dst.val = (s32)ctxt->dst.val; break;
5313 		}
5314 		break;
5315 	case 0xcc:		/* int3 */
5316 		rc = emulate_int(ctxt, 3);
5317 		break;
5318 	case 0xcd:		/* int n */
5319 		rc = emulate_int(ctxt, ctxt->src.val);
5320 		break;
5321 	case 0xce:		/* into */
5322 		if (ctxt->eflags & X86_EFLAGS_OF)
5323 			rc = emulate_int(ctxt, 4);
5324 		break;
5325 	case 0xe9: /* jmp rel */
5326 	case 0xeb: /* jmp rel short */
5327 		rc = jmp_rel(ctxt, ctxt->src.val);
5328 		ctxt->dst.type = OP_NONE; /* Disable writeback. */
5329 		break;
5330 	case 0xf4:              /* hlt */
5331 		ctxt->ops->halt(ctxt);
5332 		break;
5333 	case 0xf5:	/* cmc */
5334 		/* complement carry flag from eflags reg */
5335 		ctxt->eflags ^= X86_EFLAGS_CF;
5336 		break;
5337 	case 0xf8: /* clc */
5338 		ctxt->eflags &= ~X86_EFLAGS_CF;
5339 		break;
5340 	case 0xf9: /* stc */
5341 		ctxt->eflags |= X86_EFLAGS_CF;
5342 		break;
5343 	case 0xfc: /* cld */
5344 		ctxt->eflags &= ~X86_EFLAGS_DF;
5345 		break;
5346 	case 0xfd: /* std */
5347 		ctxt->eflags |= X86_EFLAGS_DF;
5348 		break;
5349 	default:
5350 		goto cannot_emulate;
5351 	}
5352 
5353 	if (rc != X86EMUL_CONTINUE)
5354 		goto done;
5355 
5356 writeback:
5357 	if (ctxt->d & SrcWrite) {
5358 		BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR);
5359 		rc = writeback(ctxt, &ctxt->src);
5360 		if (rc != X86EMUL_CONTINUE)
5361 			goto done;
5362 	}
5363 	if (!(ctxt->d & NoWrite)) {
5364 		rc = writeback(ctxt, &ctxt->dst);
5365 		if (rc != X86EMUL_CONTINUE)
5366 			goto done;
5367 	}
5368 
5369 	/*
5370 	 * restore dst type in case the decoding will be reused
5371 	 * (happens for string instruction )
5372 	 */
5373 	ctxt->dst.type = saved_dst_type;
5374 
5375 	if ((ctxt->d & SrcMask) == SrcSI)
5376 		string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src);
5377 
5378 	if ((ctxt->d & DstMask) == DstDI)
5379 		string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst);
5380 
5381 	if (ctxt->rep_prefix && (ctxt->d & String)) {
5382 		unsigned int count;
5383 		struct read_cache *r = &ctxt->io_read;
5384 		if ((ctxt->d & SrcMask) == SrcSI)
5385 			count = ctxt->src.count;
5386 		else
5387 			count = ctxt->dst.count;
5388 		register_address_increment(ctxt, VCPU_REGS_RCX, -count);
5389 
5390 		if (!string_insn_completed(ctxt)) {
5391 			/*
5392 			 * Re-enter guest when pio read ahead buffer is empty
5393 			 * or, if it is not used, after each 1024 iteration.
5394 			 */
5395 			if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) &&
5396 			    (r->end == 0 || r->end != r->pos)) {
5397 				/*
5398 				 * Reset read cache. Usually happens before
5399 				 * decode, but since instruction is restarted
5400 				 * we have to do it here.
5401 				 */
5402 				ctxt->mem_read.end = 0;
5403 				writeback_registers(ctxt);
5404 				return EMULATION_RESTART;
5405 			}
5406 			goto done; /* skip rip writeback */
5407 		}
5408 		ctxt->eflags &= ~X86_EFLAGS_RF;
5409 	}
5410 
5411 	ctxt->eip = ctxt->_eip;
5412 	if (ctxt->mode != X86EMUL_MODE_PROT64)
5413 		ctxt->eip = (u32)ctxt->_eip;
5414 
5415 done:
5416 	if (rc == X86EMUL_PROPAGATE_FAULT) {
5417 		if (KVM_EMULATOR_BUG_ON(ctxt->exception.vector > 0x1f, ctxt))
5418 			return EMULATION_FAILED;
5419 		ctxt->have_exception = true;
5420 	}
5421 	if (rc == X86EMUL_INTERCEPTED)
5422 		return EMULATION_INTERCEPTED;
5423 
5424 	if (rc == X86EMUL_CONTINUE)
5425 		writeback_registers(ctxt);
5426 
5427 	return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
5428 
5429 twobyte_insn:
5430 	switch (ctxt->b) {
5431 	case 0x09:		/* wbinvd */
5432 		(ctxt->ops->wbinvd)(ctxt);
5433 		break;
5434 	case 0x08:		/* invd */
5435 	case 0x0d:		/* GrpP (prefetch) */
5436 	case 0x18:		/* Grp16 (prefetch/nop) */
5437 	case 0x1f:		/* nop */
5438 		break;
5439 	case 0x20: /* mov cr, reg */
5440 		ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg);
5441 		break;
5442 	case 0x21: /* mov from dr to reg */
5443 		ops->get_dr(ctxt, ctxt->modrm_reg, &ctxt->dst.val);
5444 		break;
5445 	case 0x40 ... 0x4f:	/* cmov */
5446 		if (test_cc(ctxt->b, ctxt->eflags))
5447 			ctxt->dst.val = ctxt->src.val;
5448 		else if (ctxt->op_bytes != 4)
5449 			ctxt->dst.type = OP_NONE; /* no writeback */
5450 		break;
5451 	case 0x80 ... 0x8f: /* jnz rel, etc*/
5452 		if (test_cc(ctxt->b, ctxt->eflags))
5453 			rc = jmp_rel(ctxt, ctxt->src.val);
5454 		break;
5455 	case 0x90 ... 0x9f:     /* setcc r/m8 */
5456 		ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags);
5457 		break;
5458 	case 0xb6 ... 0xb7:	/* movzx */
5459 		ctxt->dst.bytes = ctxt->op_bytes;
5460 		ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val
5461 						       : (u16) ctxt->src.val;
5462 		break;
5463 	case 0xbe ... 0xbf:	/* movsx */
5464 		ctxt->dst.bytes = ctxt->op_bytes;
5465 		ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val :
5466 							(s16) ctxt->src.val;
5467 		break;
5468 	default:
5469 		goto cannot_emulate;
5470 	}
5471 
5472 threebyte_insn:
5473 
5474 	if (rc != X86EMUL_CONTINUE)
5475 		goto done;
5476 
5477 	goto writeback;
5478 
5479 cannot_emulate:
5480 	return EMULATION_FAILED;
5481 }
5482 
5483 void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt)
5484 {
5485 	invalidate_registers(ctxt);
5486 }
5487 
5488 void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt)
5489 {
5490 	writeback_registers(ctxt);
5491 }
5492 
5493 bool emulator_can_use_gpa(struct x86_emulate_ctxt *ctxt)
5494 {
5495 	if (ctxt->rep_prefix && (ctxt->d & String))
5496 		return false;
5497 
5498 	if (ctxt->d & TwoMemOp)
5499 		return false;
5500 
5501 	return true;
5502 }
5503