1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 * emulate.c
4 *
5 * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
6 *
7 * Copyright (c) 2005 Keir Fraser
8 *
9 * Linux coding style, mod r/m decoder, segment base fixes, real-mode
10 * privileged instructions:
11 *
12 * Copyright (C) 2006 Qumranet
13 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
14 *
15 * Avi Kivity <avi@qumranet.com>
16 * Yaniv Kamay <yaniv@qumranet.com>
17 *
18 * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
19 */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/kvm_host.h>
23 #include "kvm_cache_regs.h"
24 #include "kvm_emulate.h"
25 #include <linux/stringify.h>
26 #include <asm/debugreg.h>
27 #include <asm/nospec-branch.h>
28 #include <asm/ibt.h>
29
30 #include "x86.h"
31 #include "tss.h"
32 #include "mmu.h"
33 #include "pmu.h"
34
35 /*
36 * Operand types
37 */
38 #define OpNone 0ull
39 #define OpImplicit 1ull /* No generic decode */
40 #define OpReg 2ull /* Register */
41 #define OpMem 3ull /* Memory */
42 #define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */
43 #define OpDI 5ull /* ES:DI/EDI/RDI */
44 #define OpMem64 6ull /* Memory, 64-bit */
45 #define OpImmUByte 7ull /* Zero-extended 8-bit immediate */
46 #define OpDX 8ull /* DX register */
47 #define OpCL 9ull /* CL register (for shifts) */
48 #define OpImmByte 10ull /* 8-bit sign extended immediate */
49 #define OpOne 11ull /* Implied 1 */
50 #define OpImm 12ull /* Sign extended up to 32-bit immediate */
51 #define OpMem16 13ull /* Memory operand (16-bit). */
52 #define OpMem32 14ull /* Memory operand (32-bit). */
53 #define OpImmU 15ull /* Immediate operand, zero extended */
54 #define OpSI 16ull /* SI/ESI/RSI */
55 #define OpImmFAddr 17ull /* Immediate far address */
56 #define OpMemFAddr 18ull /* Far address in memory */
57 #define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */
58 #define OpES 20ull /* ES */
59 #define OpCS 21ull /* CS */
60 #define OpSS 22ull /* SS */
61 #define OpDS 23ull /* DS */
62 #define OpFS 24ull /* FS */
63 #define OpGS 25ull /* GS */
64 #define OpMem8 26ull /* 8-bit zero extended memory operand */
65 #define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */
66 #define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */
67 #define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */
68 #define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */
69
70 #define OpBits 5 /* Width of operand field */
71 #define OpMask ((1ull << OpBits) - 1)
72
73 /*
74 * Opcode effective-address decode tables.
75 * Note that we only emulate instructions that have at least one memory
76 * operand (excluding implicit stack references). We assume that stack
77 * references and instruction fetches will never occur in special memory
78 * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
79 * not be handled.
80 */
81
82 /* Operand sizes: 8-bit operands or specified/overridden size. */
83 #define ByteOp (1<<0) /* 8-bit operands. */
84 /* Destination operand type. */
85 #define DstShift 1
86 #define ImplicitOps (OpImplicit << DstShift)
87 #define DstReg (OpReg << DstShift)
88 #define DstMem (OpMem << DstShift)
89 #define DstAcc (OpAcc << DstShift)
90 #define DstDI (OpDI << DstShift)
91 #define DstMem64 (OpMem64 << DstShift)
92 #define DstMem16 (OpMem16 << DstShift)
93 #define DstImmUByte (OpImmUByte << DstShift)
94 #define DstDX (OpDX << DstShift)
95 #define DstAccLo (OpAccLo << DstShift)
96 #define DstMask (OpMask << DstShift)
97 /* Source operand type. */
98 #define SrcShift 6
99 #define SrcNone (OpNone << SrcShift)
100 #define SrcReg (OpReg << SrcShift)
101 #define SrcMem (OpMem << SrcShift)
102 #define SrcMem16 (OpMem16 << SrcShift)
103 #define SrcMem32 (OpMem32 << SrcShift)
104 #define SrcImm (OpImm << SrcShift)
105 #define SrcImmByte (OpImmByte << SrcShift)
106 #define SrcOne (OpOne << SrcShift)
107 #define SrcImmUByte (OpImmUByte << SrcShift)
108 #define SrcImmU (OpImmU << SrcShift)
109 #define SrcSI (OpSI << SrcShift)
110 #define SrcXLat (OpXLat << SrcShift)
111 #define SrcImmFAddr (OpImmFAddr << SrcShift)
112 #define SrcMemFAddr (OpMemFAddr << SrcShift)
113 #define SrcAcc (OpAcc << SrcShift)
114 #define SrcImmU16 (OpImmU16 << SrcShift)
115 #define SrcImm64 (OpImm64 << SrcShift)
116 #define SrcDX (OpDX << SrcShift)
117 #define SrcMem8 (OpMem8 << SrcShift)
118 #define SrcAccHi (OpAccHi << SrcShift)
119 #define SrcMask (OpMask << SrcShift)
120 #define BitOp (1<<11)
121 #define MemAbs (1<<12) /* Memory operand is absolute displacement */
122 #define String (1<<13) /* String instruction (rep capable) */
123 #define Stack (1<<14) /* Stack instruction (push/pop) */
124 #define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */
125 #define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */
126 #define GroupDual (2<<15) /* Alternate decoding of mod == 3 */
127 #define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */
128 #define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */
129 #define Escape (5<<15) /* Escape to coprocessor instruction */
130 #define InstrDual (6<<15) /* Alternate instruction decoding of mod == 3 */
131 #define ModeDual (7<<15) /* Different instruction for 32/64 bit */
132 #define Sse (1<<18) /* SSE Vector instruction */
133 /* Generic ModRM decode. */
134 #define ModRM (1<<19)
135 /* Destination is only written; never read. */
136 #define Mov (1<<20)
137 /* Misc flags */
138 #define Prot (1<<21) /* instruction generates #UD if not in prot-mode */
139 #define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */
140 #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
141 #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */
142 #define Undefined (1<<25) /* No Such Instruction */
143 #define Lock (1<<26) /* lock prefix is allowed for the instruction */
144 #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */
145 #define No64 (1<<28)
146 #define PageTable (1 << 29) /* instruction used to write page table */
147 #define NotImpl (1 << 30) /* instruction is not implemented */
148 /* Source 2 operand type */
149 #define Src2Shift (31)
150 #define Src2None (OpNone << Src2Shift)
151 #define Src2Mem (OpMem << Src2Shift)
152 #define Src2CL (OpCL << Src2Shift)
153 #define Src2ImmByte (OpImmByte << Src2Shift)
154 #define Src2One (OpOne << Src2Shift)
155 #define Src2Imm (OpImm << Src2Shift)
156 #define Src2ES (OpES << Src2Shift)
157 #define Src2CS (OpCS << Src2Shift)
158 #define Src2SS (OpSS << Src2Shift)
159 #define Src2DS (OpDS << Src2Shift)
160 #define Src2FS (OpFS << Src2Shift)
161 #define Src2GS (OpGS << Src2Shift)
162 #define Src2Mask (OpMask << Src2Shift)
163 #define Mmx ((u64)1 << 40) /* MMX Vector instruction */
164 #define AlignMask ((u64)7 << 41)
165 #define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */
166 #define Unaligned ((u64)2 << 41) /* Explicitly unaligned (e.g. MOVDQU) */
167 #define Avx ((u64)3 << 41) /* Advanced Vector Extensions */
168 #define Aligned16 ((u64)4 << 41) /* Aligned to 16 byte boundary (e.g. FXSAVE) */
169 #define Fastop ((u64)1 << 44) /* Use opcode::u.fastop */
170 #define NoWrite ((u64)1 << 45) /* No writeback */
171 #define SrcWrite ((u64)1 << 46) /* Write back src operand */
172 #define NoMod ((u64)1 << 47) /* Mod field is ignored */
173 #define Intercept ((u64)1 << 48) /* Has valid intercept field */
174 #define CheckPerm ((u64)1 << 49) /* Has valid check_perm field */
175 #define PrivUD ((u64)1 << 51) /* #UD instead of #GP on CPL > 0 */
176 #define NearBranch ((u64)1 << 52) /* Near branches */
177 #define No16 ((u64)1 << 53) /* No 16 bit operand */
178 #define IncSP ((u64)1 << 54) /* SP is incremented before ModRM calc */
179 #define TwoMemOp ((u64)1 << 55) /* Instruction has two memory operand */
180 #define IsBranch ((u64)1 << 56) /* Instruction is considered a branch. */
181
182 #define DstXacc (DstAccLo | SrcAccHi | SrcWrite)
183
184 #define X2(x...) x, x
185 #define X3(x...) X2(x), x
186 #define X4(x...) X2(x), X2(x)
187 #define X5(x...) X4(x), x
188 #define X6(x...) X4(x), X2(x)
189 #define X7(x...) X4(x), X3(x)
190 #define X8(x...) X4(x), X4(x)
191 #define X16(x...) X8(x), X8(x)
192
193 struct opcode {
194 u64 flags;
195 u8 intercept;
196 u8 pad[7];
197 union {
198 int (*execute)(struct x86_emulate_ctxt *ctxt);
199 const struct opcode *group;
200 const struct group_dual *gdual;
201 const struct gprefix *gprefix;
202 const struct escape *esc;
203 const struct instr_dual *idual;
204 const struct mode_dual *mdual;
205 void (*fastop)(struct fastop *fake);
206 } u;
207 int (*check_perm)(struct x86_emulate_ctxt *ctxt);
208 };
209
210 struct group_dual {
211 struct opcode mod012[8];
212 struct opcode mod3[8];
213 };
214
215 struct gprefix {
216 struct opcode pfx_no;
217 struct opcode pfx_66;
218 struct opcode pfx_f2;
219 struct opcode pfx_f3;
220 };
221
222 struct escape {
223 struct opcode op[8];
224 struct opcode high[64];
225 };
226
227 struct instr_dual {
228 struct opcode mod012;
229 struct opcode mod3;
230 };
231
232 struct mode_dual {
233 struct opcode mode32;
234 struct opcode mode64;
235 };
236
237 #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
238
239 enum x86_transfer_type {
240 X86_TRANSFER_NONE,
241 X86_TRANSFER_CALL_JMP,
242 X86_TRANSFER_RET,
243 X86_TRANSFER_TASK_SWITCH,
244 };
245
writeback_registers(struct x86_emulate_ctxt * ctxt)246 static void writeback_registers(struct x86_emulate_ctxt *ctxt)
247 {
248 unsigned long dirty = ctxt->regs_dirty;
249 unsigned reg;
250
251 for_each_set_bit(reg, &dirty, NR_EMULATOR_GPRS)
252 ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]);
253 }
254
invalidate_registers(struct x86_emulate_ctxt * ctxt)255 static void invalidate_registers(struct x86_emulate_ctxt *ctxt)
256 {
257 ctxt->regs_dirty = 0;
258 ctxt->regs_valid = 0;
259 }
260
261 /*
262 * These EFLAGS bits are restored from saved value during emulation, and
263 * any changes are written back to the saved value after emulation.
264 */
265 #define EFLAGS_MASK (X86_EFLAGS_OF|X86_EFLAGS_SF|X86_EFLAGS_ZF|X86_EFLAGS_AF|\
266 X86_EFLAGS_PF|X86_EFLAGS_CF)
267
268 #ifdef CONFIG_X86_64
269 #define ON64(x) x
270 #else
271 #define ON64(x)
272 #endif
273
274 /*
275 * fastop functions have a special calling convention:
276 *
277 * dst: rax (in/out)
278 * src: rdx (in/out)
279 * src2: rcx (in)
280 * flags: rflags (in/out)
281 * ex: rsi (in:fastop pointer, out:zero if exception)
282 *
283 * Moreover, they are all exactly FASTOP_SIZE bytes long, so functions for
284 * different operand sizes can be reached by calculation, rather than a jump
285 * table (which would be bigger than the code).
286 *
287 * The 16 byte alignment, considering 5 bytes for the RET thunk, 3 for ENDBR
288 * and 1 for the straight line speculation INT3, leaves 7 bytes for the
289 * body of the function. Currently none is larger than 4.
290 */
291 static int fastop(struct x86_emulate_ctxt *ctxt, fastop_t fop);
292
293 #define FASTOP_SIZE 16
294
295 #define __FOP_FUNC(name) \
296 ".align " __stringify(FASTOP_SIZE) " \n\t" \
297 ".type " name ", @function \n\t" \
298 name ":\n\t" \
299 ASM_ENDBR \
300 IBT_NOSEAL(name)
301
302 #define FOP_FUNC(name) \
303 __FOP_FUNC(#name)
304
305 #define __FOP_RET(name) \
306 "11: " ASM_RET \
307 ".size " name ", .-" name "\n\t"
308
309 #define FOP_RET(name) \
310 __FOP_RET(#name)
311
312 #define __FOP_START(op, align) \
313 extern void em_##op(struct fastop *fake); \
314 asm(".pushsection .text, \"ax\" \n\t" \
315 ".global em_" #op " \n\t" \
316 ".align " __stringify(align) " \n\t" \
317 "em_" #op ":\n\t"
318
319 #define FOP_START(op) __FOP_START(op, FASTOP_SIZE)
320
321 #define FOP_END \
322 ".popsection")
323
324 #define __FOPNOP(name) \
325 __FOP_FUNC(name) \
326 __FOP_RET(name)
327
328 #define FOPNOP() \
329 __FOPNOP(__stringify(__UNIQUE_ID(nop)))
330
331 #define FOP1E(op, dst) \
332 __FOP_FUNC(#op "_" #dst) \
333 "10: " #op " %" #dst " \n\t" \
334 __FOP_RET(#op "_" #dst)
335
336 #define FOP1EEX(op, dst) \
337 FOP1E(op, dst) _ASM_EXTABLE_TYPE_REG(10b, 11b, EX_TYPE_ZERO_REG, %%esi)
338
339 #define FASTOP1(op) \
340 FOP_START(op) \
341 FOP1E(op##b, al) \
342 FOP1E(op##w, ax) \
343 FOP1E(op##l, eax) \
344 ON64(FOP1E(op##q, rax)) \
345 FOP_END
346
347 /* 1-operand, using src2 (for MUL/DIV r/m) */
348 #define FASTOP1SRC2(op, name) \
349 FOP_START(name) \
350 FOP1E(op, cl) \
351 FOP1E(op, cx) \
352 FOP1E(op, ecx) \
353 ON64(FOP1E(op, rcx)) \
354 FOP_END
355
356 /* 1-operand, using src2 (for MUL/DIV r/m), with exceptions */
357 #define FASTOP1SRC2EX(op, name) \
358 FOP_START(name) \
359 FOP1EEX(op, cl) \
360 FOP1EEX(op, cx) \
361 FOP1EEX(op, ecx) \
362 ON64(FOP1EEX(op, rcx)) \
363 FOP_END
364
365 #define FOP2E(op, dst, src) \
366 __FOP_FUNC(#op "_" #dst "_" #src) \
367 #op " %" #src ", %" #dst " \n\t" \
368 __FOP_RET(#op "_" #dst "_" #src)
369
370 #define FASTOP2(op) \
371 FOP_START(op) \
372 FOP2E(op##b, al, dl) \
373 FOP2E(op##w, ax, dx) \
374 FOP2E(op##l, eax, edx) \
375 ON64(FOP2E(op##q, rax, rdx)) \
376 FOP_END
377
378 /* 2 operand, word only */
379 #define FASTOP2W(op) \
380 FOP_START(op) \
381 FOPNOP() \
382 FOP2E(op##w, ax, dx) \
383 FOP2E(op##l, eax, edx) \
384 ON64(FOP2E(op##q, rax, rdx)) \
385 FOP_END
386
387 /* 2 operand, src is CL */
388 #define FASTOP2CL(op) \
389 FOP_START(op) \
390 FOP2E(op##b, al, cl) \
391 FOP2E(op##w, ax, cl) \
392 FOP2E(op##l, eax, cl) \
393 ON64(FOP2E(op##q, rax, cl)) \
394 FOP_END
395
396 /* 2 operand, src and dest are reversed */
397 #define FASTOP2R(op, name) \
398 FOP_START(name) \
399 FOP2E(op##b, dl, al) \
400 FOP2E(op##w, dx, ax) \
401 FOP2E(op##l, edx, eax) \
402 ON64(FOP2E(op##q, rdx, rax)) \
403 FOP_END
404
405 #define FOP3E(op, dst, src, src2) \
406 __FOP_FUNC(#op "_" #dst "_" #src "_" #src2) \
407 #op " %" #src2 ", %" #src ", %" #dst " \n\t"\
408 __FOP_RET(#op "_" #dst "_" #src "_" #src2)
409
410 /* 3-operand, word-only, src2=cl */
411 #define FASTOP3WCL(op) \
412 FOP_START(op) \
413 FOPNOP() \
414 FOP3E(op##w, ax, dx, cl) \
415 FOP3E(op##l, eax, edx, cl) \
416 ON64(FOP3E(op##q, rax, rdx, cl)) \
417 FOP_END
418
419 /* Special case for SETcc - 1 instruction per cc */
420 #define FOP_SETCC(op) \
421 FOP_FUNC(op) \
422 #op " %al \n\t" \
423 FOP_RET(op)
424
425 FOP_START(setcc)
426 FOP_SETCC(seto)
427 FOP_SETCC(setno)
428 FOP_SETCC(setc)
429 FOP_SETCC(setnc)
430 FOP_SETCC(setz)
431 FOP_SETCC(setnz)
432 FOP_SETCC(setbe)
433 FOP_SETCC(setnbe)
434 FOP_SETCC(sets)
435 FOP_SETCC(setns)
436 FOP_SETCC(setp)
437 FOP_SETCC(setnp)
438 FOP_SETCC(setl)
439 FOP_SETCC(setnl)
440 FOP_SETCC(setle)
441 FOP_SETCC(setnle)
442 FOP_END;
443
444 FOP_START(salc)
445 FOP_FUNC(salc)
446 "pushf; sbb %al, %al; popf \n\t"
447 FOP_RET(salc)
448 FOP_END;
449
450 /*
451 * XXX: inoutclob user must know where the argument is being expanded.
452 * Using asm goto would allow us to remove _fault.
453 */
454 #define asm_safe(insn, inoutclob...) \
455 ({ \
456 int _fault = 0; \
457 \
458 asm volatile("1:" insn "\n" \
459 "2:\n" \
460 _ASM_EXTABLE_TYPE_REG(1b, 2b, EX_TYPE_ONE_REG, %[_fault]) \
461 : [_fault] "+r"(_fault) inoutclob ); \
462 \
463 _fault ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; \
464 })
465
emulator_check_intercept(struct x86_emulate_ctxt * ctxt,enum x86_intercept intercept,enum x86_intercept_stage stage)466 static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
467 enum x86_intercept intercept,
468 enum x86_intercept_stage stage)
469 {
470 struct x86_instruction_info info = {
471 .intercept = intercept,
472 .rep_prefix = ctxt->rep_prefix,
473 .modrm_mod = ctxt->modrm_mod,
474 .modrm_reg = ctxt->modrm_reg,
475 .modrm_rm = ctxt->modrm_rm,
476 .src_val = ctxt->src.val64,
477 .dst_val = ctxt->dst.val64,
478 .src_bytes = ctxt->src.bytes,
479 .dst_bytes = ctxt->dst.bytes,
480 .ad_bytes = ctxt->ad_bytes,
481 .next_rip = ctxt->eip,
482 };
483
484 return ctxt->ops->intercept(ctxt, &info, stage);
485 }
486
assign_masked(ulong * dest,ulong src,ulong mask)487 static void assign_masked(ulong *dest, ulong src, ulong mask)
488 {
489 *dest = (*dest & ~mask) | (src & mask);
490 }
491
assign_register(unsigned long * reg,u64 val,int bytes)492 static void assign_register(unsigned long *reg, u64 val, int bytes)
493 {
494 /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
495 switch (bytes) {
496 case 1:
497 *(u8 *)reg = (u8)val;
498 break;
499 case 2:
500 *(u16 *)reg = (u16)val;
501 break;
502 case 4:
503 *reg = (u32)val;
504 break; /* 64b: zero-extend */
505 case 8:
506 *reg = val;
507 break;
508 }
509 }
510
ad_mask(struct x86_emulate_ctxt * ctxt)511 static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt)
512 {
513 return (1UL << (ctxt->ad_bytes << 3)) - 1;
514 }
515
stack_mask(struct x86_emulate_ctxt * ctxt)516 static ulong stack_mask(struct x86_emulate_ctxt *ctxt)
517 {
518 u16 sel;
519 struct desc_struct ss;
520
521 if (ctxt->mode == X86EMUL_MODE_PROT64)
522 return ~0UL;
523 ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS);
524 return ~0U >> ((ss.d ^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */
525 }
526
stack_size(struct x86_emulate_ctxt * ctxt)527 static int stack_size(struct x86_emulate_ctxt *ctxt)
528 {
529 return (__fls(stack_mask(ctxt)) + 1) >> 3;
530 }
531
532 /* Access/update address held in a register, based on addressing mode. */
533 static inline unsigned long
address_mask(struct x86_emulate_ctxt * ctxt,unsigned long reg)534 address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg)
535 {
536 if (ctxt->ad_bytes == sizeof(unsigned long))
537 return reg;
538 else
539 return reg & ad_mask(ctxt);
540 }
541
542 static inline unsigned long
register_address(struct x86_emulate_ctxt * ctxt,int reg)543 register_address(struct x86_emulate_ctxt *ctxt, int reg)
544 {
545 return address_mask(ctxt, reg_read(ctxt, reg));
546 }
547
masked_increment(ulong * reg,ulong mask,int inc)548 static void masked_increment(ulong *reg, ulong mask, int inc)
549 {
550 assign_masked(reg, *reg + inc, mask);
551 }
552
553 static inline void
register_address_increment(struct x86_emulate_ctxt * ctxt,int reg,int inc)554 register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc)
555 {
556 ulong *preg = reg_rmw(ctxt, reg);
557
558 assign_register(preg, *preg + inc, ctxt->ad_bytes);
559 }
560
rsp_increment(struct x86_emulate_ctxt * ctxt,int inc)561 static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc)
562 {
563 masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc);
564 }
565
desc_limit_scaled(struct desc_struct * desc)566 static u32 desc_limit_scaled(struct desc_struct *desc)
567 {
568 u32 limit = get_desc_limit(desc);
569
570 return desc->g ? (limit << 12) | 0xfff : limit;
571 }
572
seg_base(struct x86_emulate_ctxt * ctxt,int seg)573 static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
574 {
575 if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
576 return 0;
577
578 return ctxt->ops->get_cached_segment_base(ctxt, seg);
579 }
580
emulate_exception(struct x86_emulate_ctxt * ctxt,int vec,u32 error,bool valid)581 static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
582 u32 error, bool valid)
583 {
584 if (KVM_EMULATOR_BUG_ON(vec > 0x1f, ctxt))
585 return X86EMUL_UNHANDLEABLE;
586
587 ctxt->exception.vector = vec;
588 ctxt->exception.error_code = error;
589 ctxt->exception.error_code_valid = valid;
590 return X86EMUL_PROPAGATE_FAULT;
591 }
592
emulate_db(struct x86_emulate_ctxt * ctxt)593 static int emulate_db(struct x86_emulate_ctxt *ctxt)
594 {
595 return emulate_exception(ctxt, DB_VECTOR, 0, false);
596 }
597
emulate_gp(struct x86_emulate_ctxt * ctxt,int err)598 static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err)
599 {
600 return emulate_exception(ctxt, GP_VECTOR, err, true);
601 }
602
emulate_ss(struct x86_emulate_ctxt * ctxt,int err)603 static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err)
604 {
605 return emulate_exception(ctxt, SS_VECTOR, err, true);
606 }
607
emulate_ud(struct x86_emulate_ctxt * ctxt)608 static int emulate_ud(struct x86_emulate_ctxt *ctxt)
609 {
610 return emulate_exception(ctxt, UD_VECTOR, 0, false);
611 }
612
emulate_ts(struct x86_emulate_ctxt * ctxt,int err)613 static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err)
614 {
615 return emulate_exception(ctxt, TS_VECTOR, err, true);
616 }
617
emulate_de(struct x86_emulate_ctxt * ctxt)618 static int emulate_de(struct x86_emulate_ctxt *ctxt)
619 {
620 return emulate_exception(ctxt, DE_VECTOR, 0, false);
621 }
622
emulate_nm(struct x86_emulate_ctxt * ctxt)623 static int emulate_nm(struct x86_emulate_ctxt *ctxt)
624 {
625 return emulate_exception(ctxt, NM_VECTOR, 0, false);
626 }
627
get_segment_selector(struct x86_emulate_ctxt * ctxt,unsigned seg)628 static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg)
629 {
630 u16 selector;
631 struct desc_struct desc;
632
633 ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg);
634 return selector;
635 }
636
set_segment_selector(struct x86_emulate_ctxt * ctxt,u16 selector,unsigned seg)637 static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector,
638 unsigned seg)
639 {
640 u16 dummy;
641 u32 base3;
642 struct desc_struct desc;
643
644 ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg);
645 ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg);
646 }
647
ctxt_virt_addr_bits(struct x86_emulate_ctxt * ctxt)648 static inline u8 ctxt_virt_addr_bits(struct x86_emulate_ctxt *ctxt)
649 {
650 return (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_LA57) ? 57 : 48;
651 }
652
emul_is_noncanonical_address(u64 la,struct x86_emulate_ctxt * ctxt)653 static inline bool emul_is_noncanonical_address(u64 la,
654 struct x86_emulate_ctxt *ctxt)
655 {
656 return !__is_canonical_address(la, ctxt_virt_addr_bits(ctxt));
657 }
658
659 /*
660 * x86 defines three classes of vector instructions: explicitly
661 * aligned, explicitly unaligned, and the rest, which change behaviour
662 * depending on whether they're AVX encoded or not.
663 *
664 * Also included is CMPXCHG16B which is not a vector instruction, yet it is
665 * subject to the same check. FXSAVE and FXRSTOR are checked here too as their
666 * 512 bytes of data must be aligned to a 16 byte boundary.
667 */
insn_alignment(struct x86_emulate_ctxt * ctxt,unsigned size)668 static unsigned insn_alignment(struct x86_emulate_ctxt *ctxt, unsigned size)
669 {
670 u64 alignment = ctxt->d & AlignMask;
671
672 if (likely(size < 16))
673 return 1;
674
675 switch (alignment) {
676 case Unaligned:
677 case Avx:
678 return 1;
679 case Aligned16:
680 return 16;
681 case Aligned:
682 default:
683 return size;
684 }
685 }
686
__linearize(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,unsigned * max_size,unsigned size,bool write,bool fetch,enum x86emul_mode mode,ulong * linear)687 static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt,
688 struct segmented_address addr,
689 unsigned *max_size, unsigned size,
690 bool write, bool fetch,
691 enum x86emul_mode mode, ulong *linear)
692 {
693 struct desc_struct desc;
694 bool usable;
695 ulong la;
696 u32 lim;
697 u16 sel;
698 u8 va_bits;
699
700 la = seg_base(ctxt, addr.seg) + addr.ea;
701 *max_size = 0;
702 switch (mode) {
703 case X86EMUL_MODE_PROT64:
704 *linear = la;
705 va_bits = ctxt_virt_addr_bits(ctxt);
706 if (!__is_canonical_address(la, va_bits))
707 goto bad;
708
709 *max_size = min_t(u64, ~0u, (1ull << va_bits) - la);
710 if (size > *max_size)
711 goto bad;
712 break;
713 default:
714 *linear = la = (u32)la;
715 usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL,
716 addr.seg);
717 if (!usable)
718 goto bad;
719 /* code segment in protected mode or read-only data segment */
720 if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8))
721 || !(desc.type & 2)) && write)
722 goto bad;
723 /* unreadable code segment */
724 if (!fetch && (desc.type & 8) && !(desc.type & 2))
725 goto bad;
726 lim = desc_limit_scaled(&desc);
727 if (!(desc.type & 8) && (desc.type & 4)) {
728 /* expand-down segment */
729 if (addr.ea <= lim)
730 goto bad;
731 lim = desc.d ? 0xffffffff : 0xffff;
732 }
733 if (addr.ea > lim)
734 goto bad;
735 if (lim == 0xffffffff)
736 *max_size = ~0u;
737 else {
738 *max_size = (u64)lim + 1 - addr.ea;
739 if (size > *max_size)
740 goto bad;
741 }
742 break;
743 }
744 if (la & (insn_alignment(ctxt, size) - 1))
745 return emulate_gp(ctxt, 0);
746 return X86EMUL_CONTINUE;
747 bad:
748 if (addr.seg == VCPU_SREG_SS)
749 return emulate_ss(ctxt, 0);
750 else
751 return emulate_gp(ctxt, 0);
752 }
753
linearize(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,unsigned size,bool write,ulong * linear)754 static int linearize(struct x86_emulate_ctxt *ctxt,
755 struct segmented_address addr,
756 unsigned size, bool write,
757 ulong *linear)
758 {
759 unsigned max_size;
760 return __linearize(ctxt, addr, &max_size, size, write, false,
761 ctxt->mode, linear);
762 }
763
assign_eip(struct x86_emulate_ctxt * ctxt,ulong dst)764 static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst)
765 {
766 ulong linear;
767 int rc;
768 unsigned max_size;
769 struct segmented_address addr = { .seg = VCPU_SREG_CS,
770 .ea = dst };
771
772 if (ctxt->op_bytes != sizeof(unsigned long))
773 addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1);
774 rc = __linearize(ctxt, addr, &max_size, 1, false, true, ctxt->mode, &linear);
775 if (rc == X86EMUL_CONTINUE)
776 ctxt->_eip = addr.ea;
777 return rc;
778 }
779
emulator_recalc_and_set_mode(struct x86_emulate_ctxt * ctxt)780 static inline int emulator_recalc_and_set_mode(struct x86_emulate_ctxt *ctxt)
781 {
782 u64 efer;
783 struct desc_struct cs;
784 u16 selector;
785 u32 base3;
786
787 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
788
789 if (!(ctxt->ops->get_cr(ctxt, 0) & X86_CR0_PE)) {
790 /* Real mode. cpu must not have long mode active */
791 if (efer & EFER_LMA)
792 return X86EMUL_UNHANDLEABLE;
793 ctxt->mode = X86EMUL_MODE_REAL;
794 return X86EMUL_CONTINUE;
795 }
796
797 if (ctxt->eflags & X86_EFLAGS_VM) {
798 /* Protected/VM86 mode. cpu must not have long mode active */
799 if (efer & EFER_LMA)
800 return X86EMUL_UNHANDLEABLE;
801 ctxt->mode = X86EMUL_MODE_VM86;
802 return X86EMUL_CONTINUE;
803 }
804
805 if (!ctxt->ops->get_segment(ctxt, &selector, &cs, &base3, VCPU_SREG_CS))
806 return X86EMUL_UNHANDLEABLE;
807
808 if (efer & EFER_LMA) {
809 if (cs.l) {
810 /* Proper long mode */
811 ctxt->mode = X86EMUL_MODE_PROT64;
812 } else if (cs.d) {
813 /* 32 bit compatibility mode*/
814 ctxt->mode = X86EMUL_MODE_PROT32;
815 } else {
816 ctxt->mode = X86EMUL_MODE_PROT16;
817 }
818 } else {
819 /* Legacy 32 bit / 16 bit mode */
820 ctxt->mode = cs.d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
821 }
822
823 return X86EMUL_CONTINUE;
824 }
825
assign_eip_near(struct x86_emulate_ctxt * ctxt,ulong dst)826 static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst)
827 {
828 return assign_eip(ctxt, dst);
829 }
830
assign_eip_far(struct x86_emulate_ctxt * ctxt,ulong dst)831 static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst)
832 {
833 int rc = emulator_recalc_and_set_mode(ctxt);
834
835 if (rc != X86EMUL_CONTINUE)
836 return rc;
837
838 return assign_eip(ctxt, dst);
839 }
840
jmp_rel(struct x86_emulate_ctxt * ctxt,int rel)841 static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel)
842 {
843 return assign_eip_near(ctxt, ctxt->_eip + rel);
844 }
845
linear_read_system(struct x86_emulate_ctxt * ctxt,ulong linear,void * data,unsigned size)846 static int linear_read_system(struct x86_emulate_ctxt *ctxt, ulong linear,
847 void *data, unsigned size)
848 {
849 return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, true);
850 }
851
linear_write_system(struct x86_emulate_ctxt * ctxt,ulong linear,void * data,unsigned int size)852 static int linear_write_system(struct x86_emulate_ctxt *ctxt,
853 ulong linear, void *data,
854 unsigned int size)
855 {
856 return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, true);
857 }
858
segmented_read_std(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned size)859 static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
860 struct segmented_address addr,
861 void *data,
862 unsigned size)
863 {
864 int rc;
865 ulong linear;
866
867 rc = linearize(ctxt, addr, size, false, &linear);
868 if (rc != X86EMUL_CONTINUE)
869 return rc;
870 return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, false);
871 }
872
segmented_write_std(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned int size)873 static int segmented_write_std(struct x86_emulate_ctxt *ctxt,
874 struct segmented_address addr,
875 void *data,
876 unsigned int size)
877 {
878 int rc;
879 ulong linear;
880
881 rc = linearize(ctxt, addr, size, true, &linear);
882 if (rc != X86EMUL_CONTINUE)
883 return rc;
884 return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, false);
885 }
886
887 /*
888 * Prefetch the remaining bytes of the instruction without crossing page
889 * boundary if they are not in fetch_cache yet.
890 */
__do_insn_fetch_bytes(struct x86_emulate_ctxt * ctxt,int op_size)891 static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size)
892 {
893 int rc;
894 unsigned size, max_size;
895 unsigned long linear;
896 int cur_size = ctxt->fetch.end - ctxt->fetch.data;
897 struct segmented_address addr = { .seg = VCPU_SREG_CS,
898 .ea = ctxt->eip + cur_size };
899
900 /*
901 * We do not know exactly how many bytes will be needed, and
902 * __linearize is expensive, so fetch as much as possible. We
903 * just have to avoid going beyond the 15 byte limit, the end
904 * of the segment, or the end of the page.
905 *
906 * __linearize is called with size 0 so that it does not do any
907 * boundary check itself. Instead, we use max_size to check
908 * against op_size.
909 */
910 rc = __linearize(ctxt, addr, &max_size, 0, false, true, ctxt->mode,
911 &linear);
912 if (unlikely(rc != X86EMUL_CONTINUE))
913 return rc;
914
915 size = min_t(unsigned, 15UL ^ cur_size, max_size);
916 size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear));
917
918 /*
919 * One instruction can only straddle two pages,
920 * and one has been loaded at the beginning of
921 * x86_decode_insn. So, if not enough bytes
922 * still, we must have hit the 15-byte boundary.
923 */
924 if (unlikely(size < op_size))
925 return emulate_gp(ctxt, 0);
926
927 rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end,
928 size, &ctxt->exception);
929 if (unlikely(rc != X86EMUL_CONTINUE))
930 return rc;
931 ctxt->fetch.end += size;
932 return X86EMUL_CONTINUE;
933 }
934
do_insn_fetch_bytes(struct x86_emulate_ctxt * ctxt,unsigned size)935 static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt,
936 unsigned size)
937 {
938 unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr;
939
940 if (unlikely(done_size < size))
941 return __do_insn_fetch_bytes(ctxt, size - done_size);
942 else
943 return X86EMUL_CONTINUE;
944 }
945
946 /* Fetch next part of the instruction being emulated. */
947 #define insn_fetch(_type, _ctxt) \
948 ({ _type _x; \
949 \
950 rc = do_insn_fetch_bytes(_ctxt, sizeof(_type)); \
951 if (rc != X86EMUL_CONTINUE) \
952 goto done; \
953 ctxt->_eip += sizeof(_type); \
954 memcpy(&_x, ctxt->fetch.ptr, sizeof(_type)); \
955 ctxt->fetch.ptr += sizeof(_type); \
956 _x; \
957 })
958
959 #define insn_fetch_arr(_arr, _size, _ctxt) \
960 ({ \
961 rc = do_insn_fetch_bytes(_ctxt, _size); \
962 if (rc != X86EMUL_CONTINUE) \
963 goto done; \
964 ctxt->_eip += (_size); \
965 memcpy(_arr, ctxt->fetch.ptr, _size); \
966 ctxt->fetch.ptr += (_size); \
967 })
968
969 /*
970 * Given the 'reg' portion of a ModRM byte, and a register block, return a
971 * pointer into the block that addresses the relevant register.
972 * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
973 */
decode_register(struct x86_emulate_ctxt * ctxt,u8 modrm_reg,int byteop)974 static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg,
975 int byteop)
976 {
977 void *p;
978 int highbyte_regs = (ctxt->rex_prefix == 0) && byteop;
979
980 if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
981 p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1;
982 else
983 p = reg_rmw(ctxt, modrm_reg);
984 return p;
985 }
986
read_descriptor(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,u16 * size,unsigned long * address,int op_bytes)987 static int read_descriptor(struct x86_emulate_ctxt *ctxt,
988 struct segmented_address addr,
989 u16 *size, unsigned long *address, int op_bytes)
990 {
991 int rc;
992
993 if (op_bytes == 2)
994 op_bytes = 3;
995 *address = 0;
996 rc = segmented_read_std(ctxt, addr, size, 2);
997 if (rc != X86EMUL_CONTINUE)
998 return rc;
999 addr.ea += 2;
1000 rc = segmented_read_std(ctxt, addr, address, op_bytes);
1001 return rc;
1002 }
1003
1004 FASTOP2(add);
1005 FASTOP2(or);
1006 FASTOP2(adc);
1007 FASTOP2(sbb);
1008 FASTOP2(and);
1009 FASTOP2(sub);
1010 FASTOP2(xor);
1011 FASTOP2(cmp);
1012 FASTOP2(test);
1013
1014 FASTOP1SRC2(mul, mul_ex);
1015 FASTOP1SRC2(imul, imul_ex);
1016 FASTOP1SRC2EX(div, div_ex);
1017 FASTOP1SRC2EX(idiv, idiv_ex);
1018
1019 FASTOP3WCL(shld);
1020 FASTOP3WCL(shrd);
1021
1022 FASTOP2W(imul);
1023
1024 FASTOP1(not);
1025 FASTOP1(neg);
1026 FASTOP1(inc);
1027 FASTOP1(dec);
1028
1029 FASTOP2CL(rol);
1030 FASTOP2CL(ror);
1031 FASTOP2CL(rcl);
1032 FASTOP2CL(rcr);
1033 FASTOP2CL(shl);
1034 FASTOP2CL(shr);
1035 FASTOP2CL(sar);
1036
1037 FASTOP2W(bsf);
1038 FASTOP2W(bsr);
1039 FASTOP2W(bt);
1040 FASTOP2W(bts);
1041 FASTOP2W(btr);
1042 FASTOP2W(btc);
1043
1044 FASTOP2(xadd);
1045
1046 FASTOP2R(cmp, cmp_r);
1047
em_bsf_c(struct x86_emulate_ctxt * ctxt)1048 static int em_bsf_c(struct x86_emulate_ctxt *ctxt)
1049 {
1050 /* If src is zero, do not writeback, but update flags */
1051 if (ctxt->src.val == 0)
1052 ctxt->dst.type = OP_NONE;
1053 return fastop(ctxt, em_bsf);
1054 }
1055
em_bsr_c(struct x86_emulate_ctxt * ctxt)1056 static int em_bsr_c(struct x86_emulate_ctxt *ctxt)
1057 {
1058 /* If src is zero, do not writeback, but update flags */
1059 if (ctxt->src.val == 0)
1060 ctxt->dst.type = OP_NONE;
1061 return fastop(ctxt, em_bsr);
1062 }
1063
test_cc(unsigned int condition,unsigned long flags)1064 static __always_inline u8 test_cc(unsigned int condition, unsigned long flags)
1065 {
1066 u8 rc;
1067 void (*fop)(void) = (void *)em_setcc + FASTOP_SIZE * (condition & 0xf);
1068
1069 flags = (flags & EFLAGS_MASK) | X86_EFLAGS_IF;
1070 asm("push %[flags]; popf; " CALL_NOSPEC
1071 : "=a"(rc) : [thunk_target]"r"(fop), [flags]"r"(flags));
1072 return rc;
1073 }
1074
fetch_register_operand(struct operand * op)1075 static void fetch_register_operand(struct operand *op)
1076 {
1077 switch (op->bytes) {
1078 case 1:
1079 op->val = *(u8 *)op->addr.reg;
1080 break;
1081 case 2:
1082 op->val = *(u16 *)op->addr.reg;
1083 break;
1084 case 4:
1085 op->val = *(u32 *)op->addr.reg;
1086 break;
1087 case 8:
1088 op->val = *(u64 *)op->addr.reg;
1089 break;
1090 }
1091 }
1092
em_fninit(struct x86_emulate_ctxt * ctxt)1093 static int em_fninit(struct x86_emulate_ctxt *ctxt)
1094 {
1095 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1096 return emulate_nm(ctxt);
1097
1098 kvm_fpu_get();
1099 asm volatile("fninit");
1100 kvm_fpu_put();
1101 return X86EMUL_CONTINUE;
1102 }
1103
em_fnstcw(struct x86_emulate_ctxt * ctxt)1104 static int em_fnstcw(struct x86_emulate_ctxt *ctxt)
1105 {
1106 u16 fcw;
1107
1108 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1109 return emulate_nm(ctxt);
1110
1111 kvm_fpu_get();
1112 asm volatile("fnstcw %0": "+m"(fcw));
1113 kvm_fpu_put();
1114
1115 ctxt->dst.val = fcw;
1116
1117 return X86EMUL_CONTINUE;
1118 }
1119
em_fnstsw(struct x86_emulate_ctxt * ctxt)1120 static int em_fnstsw(struct x86_emulate_ctxt *ctxt)
1121 {
1122 u16 fsw;
1123
1124 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1125 return emulate_nm(ctxt);
1126
1127 kvm_fpu_get();
1128 asm volatile("fnstsw %0": "+m"(fsw));
1129 kvm_fpu_put();
1130
1131 ctxt->dst.val = fsw;
1132
1133 return X86EMUL_CONTINUE;
1134 }
1135
decode_register_operand(struct x86_emulate_ctxt * ctxt,struct operand * op)1136 static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
1137 struct operand *op)
1138 {
1139 unsigned int reg;
1140
1141 if (ctxt->d & ModRM)
1142 reg = ctxt->modrm_reg;
1143 else
1144 reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3);
1145
1146 if (ctxt->d & Sse) {
1147 op->type = OP_XMM;
1148 op->bytes = 16;
1149 op->addr.xmm = reg;
1150 kvm_read_sse_reg(reg, &op->vec_val);
1151 return;
1152 }
1153 if (ctxt->d & Mmx) {
1154 reg &= 7;
1155 op->type = OP_MM;
1156 op->bytes = 8;
1157 op->addr.mm = reg;
1158 return;
1159 }
1160
1161 op->type = OP_REG;
1162 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1163 op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp);
1164
1165 fetch_register_operand(op);
1166 op->orig_val = op->val;
1167 }
1168
adjust_modrm_seg(struct x86_emulate_ctxt * ctxt,int base_reg)1169 static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg)
1170 {
1171 if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP)
1172 ctxt->modrm_seg = VCPU_SREG_SS;
1173 }
1174
decode_modrm(struct x86_emulate_ctxt * ctxt,struct operand * op)1175 static int decode_modrm(struct x86_emulate_ctxt *ctxt,
1176 struct operand *op)
1177 {
1178 u8 sib;
1179 int index_reg, base_reg, scale;
1180 int rc = X86EMUL_CONTINUE;
1181 ulong modrm_ea = 0;
1182
1183 ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */
1184 index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */
1185 base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */
1186
1187 ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6;
1188 ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
1189 ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07);
1190 ctxt->modrm_seg = VCPU_SREG_DS;
1191
1192 if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) {
1193 op->type = OP_REG;
1194 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1195 op->addr.reg = decode_register(ctxt, ctxt->modrm_rm,
1196 ctxt->d & ByteOp);
1197 if (ctxt->d & Sse) {
1198 op->type = OP_XMM;
1199 op->bytes = 16;
1200 op->addr.xmm = ctxt->modrm_rm;
1201 kvm_read_sse_reg(ctxt->modrm_rm, &op->vec_val);
1202 return rc;
1203 }
1204 if (ctxt->d & Mmx) {
1205 op->type = OP_MM;
1206 op->bytes = 8;
1207 op->addr.mm = ctxt->modrm_rm & 7;
1208 return rc;
1209 }
1210 fetch_register_operand(op);
1211 return rc;
1212 }
1213
1214 op->type = OP_MEM;
1215
1216 if (ctxt->ad_bytes == 2) {
1217 unsigned bx = reg_read(ctxt, VCPU_REGS_RBX);
1218 unsigned bp = reg_read(ctxt, VCPU_REGS_RBP);
1219 unsigned si = reg_read(ctxt, VCPU_REGS_RSI);
1220 unsigned di = reg_read(ctxt, VCPU_REGS_RDI);
1221
1222 /* 16-bit ModR/M decode. */
1223 switch (ctxt->modrm_mod) {
1224 case 0:
1225 if (ctxt->modrm_rm == 6)
1226 modrm_ea += insn_fetch(u16, ctxt);
1227 break;
1228 case 1:
1229 modrm_ea += insn_fetch(s8, ctxt);
1230 break;
1231 case 2:
1232 modrm_ea += insn_fetch(u16, ctxt);
1233 break;
1234 }
1235 switch (ctxt->modrm_rm) {
1236 case 0:
1237 modrm_ea += bx + si;
1238 break;
1239 case 1:
1240 modrm_ea += bx + di;
1241 break;
1242 case 2:
1243 modrm_ea += bp + si;
1244 break;
1245 case 3:
1246 modrm_ea += bp + di;
1247 break;
1248 case 4:
1249 modrm_ea += si;
1250 break;
1251 case 5:
1252 modrm_ea += di;
1253 break;
1254 case 6:
1255 if (ctxt->modrm_mod != 0)
1256 modrm_ea += bp;
1257 break;
1258 case 7:
1259 modrm_ea += bx;
1260 break;
1261 }
1262 if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 ||
1263 (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0))
1264 ctxt->modrm_seg = VCPU_SREG_SS;
1265 modrm_ea = (u16)modrm_ea;
1266 } else {
1267 /* 32/64-bit ModR/M decode. */
1268 if ((ctxt->modrm_rm & 7) == 4) {
1269 sib = insn_fetch(u8, ctxt);
1270 index_reg |= (sib >> 3) & 7;
1271 base_reg |= sib & 7;
1272 scale = sib >> 6;
1273
1274 if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0)
1275 modrm_ea += insn_fetch(s32, ctxt);
1276 else {
1277 modrm_ea += reg_read(ctxt, base_reg);
1278 adjust_modrm_seg(ctxt, base_reg);
1279 /* Increment ESP on POP [ESP] */
1280 if ((ctxt->d & IncSP) &&
1281 base_reg == VCPU_REGS_RSP)
1282 modrm_ea += ctxt->op_bytes;
1283 }
1284 if (index_reg != 4)
1285 modrm_ea += reg_read(ctxt, index_reg) << scale;
1286 } else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) {
1287 modrm_ea += insn_fetch(s32, ctxt);
1288 if (ctxt->mode == X86EMUL_MODE_PROT64)
1289 ctxt->rip_relative = 1;
1290 } else {
1291 base_reg = ctxt->modrm_rm;
1292 modrm_ea += reg_read(ctxt, base_reg);
1293 adjust_modrm_seg(ctxt, base_reg);
1294 }
1295 switch (ctxt->modrm_mod) {
1296 case 1:
1297 modrm_ea += insn_fetch(s8, ctxt);
1298 break;
1299 case 2:
1300 modrm_ea += insn_fetch(s32, ctxt);
1301 break;
1302 }
1303 }
1304 op->addr.mem.ea = modrm_ea;
1305 if (ctxt->ad_bytes != 8)
1306 ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea;
1307
1308 done:
1309 return rc;
1310 }
1311
decode_abs(struct x86_emulate_ctxt * ctxt,struct operand * op)1312 static int decode_abs(struct x86_emulate_ctxt *ctxt,
1313 struct operand *op)
1314 {
1315 int rc = X86EMUL_CONTINUE;
1316
1317 op->type = OP_MEM;
1318 switch (ctxt->ad_bytes) {
1319 case 2:
1320 op->addr.mem.ea = insn_fetch(u16, ctxt);
1321 break;
1322 case 4:
1323 op->addr.mem.ea = insn_fetch(u32, ctxt);
1324 break;
1325 case 8:
1326 op->addr.mem.ea = insn_fetch(u64, ctxt);
1327 break;
1328 }
1329 done:
1330 return rc;
1331 }
1332
fetch_bit_operand(struct x86_emulate_ctxt * ctxt)1333 static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt)
1334 {
1335 long sv = 0, mask;
1336
1337 if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) {
1338 mask = ~((long)ctxt->dst.bytes * 8 - 1);
1339
1340 if (ctxt->src.bytes == 2)
1341 sv = (s16)ctxt->src.val & (s16)mask;
1342 else if (ctxt->src.bytes == 4)
1343 sv = (s32)ctxt->src.val & (s32)mask;
1344 else
1345 sv = (s64)ctxt->src.val & (s64)mask;
1346
1347 ctxt->dst.addr.mem.ea = address_mask(ctxt,
1348 ctxt->dst.addr.mem.ea + (sv >> 3));
1349 }
1350
1351 /* only subword offset */
1352 ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
1353 }
1354
read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * dest,unsigned size)1355 static int read_emulated(struct x86_emulate_ctxt *ctxt,
1356 unsigned long addr, void *dest, unsigned size)
1357 {
1358 int rc;
1359 struct read_cache *mc = &ctxt->mem_read;
1360
1361 if (mc->pos < mc->end)
1362 goto read_cached;
1363
1364 if (KVM_EMULATOR_BUG_ON((mc->end + size) >= sizeof(mc->data), ctxt))
1365 return X86EMUL_UNHANDLEABLE;
1366
1367 rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size,
1368 &ctxt->exception);
1369 if (rc != X86EMUL_CONTINUE)
1370 return rc;
1371
1372 mc->end += size;
1373
1374 read_cached:
1375 memcpy(dest, mc->data + mc->pos, size);
1376 mc->pos += size;
1377 return X86EMUL_CONTINUE;
1378 }
1379
segmented_read(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned size)1380 static int segmented_read(struct x86_emulate_ctxt *ctxt,
1381 struct segmented_address addr,
1382 void *data,
1383 unsigned size)
1384 {
1385 int rc;
1386 ulong linear;
1387
1388 rc = linearize(ctxt, addr, size, false, &linear);
1389 if (rc != X86EMUL_CONTINUE)
1390 return rc;
1391 return read_emulated(ctxt, linear, data, size);
1392 }
1393
segmented_write(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,const void * data,unsigned size)1394 static int segmented_write(struct x86_emulate_ctxt *ctxt,
1395 struct segmented_address addr,
1396 const void *data,
1397 unsigned size)
1398 {
1399 int rc;
1400 ulong linear;
1401
1402 rc = linearize(ctxt, addr, size, true, &linear);
1403 if (rc != X86EMUL_CONTINUE)
1404 return rc;
1405 return ctxt->ops->write_emulated(ctxt, linear, data, size,
1406 &ctxt->exception);
1407 }
1408
segmented_cmpxchg(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,const void * orig_data,const void * data,unsigned size)1409 static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
1410 struct segmented_address addr,
1411 const void *orig_data, const void *data,
1412 unsigned size)
1413 {
1414 int rc;
1415 ulong linear;
1416
1417 rc = linearize(ctxt, addr, size, true, &linear);
1418 if (rc != X86EMUL_CONTINUE)
1419 return rc;
1420 return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data,
1421 size, &ctxt->exception);
1422 }
1423
pio_in_emulated(struct x86_emulate_ctxt * ctxt,unsigned int size,unsigned short port,void * dest)1424 static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
1425 unsigned int size, unsigned short port,
1426 void *dest)
1427 {
1428 struct read_cache *rc = &ctxt->io_read;
1429
1430 if (rc->pos == rc->end) { /* refill pio read ahead */
1431 unsigned int in_page, n;
1432 unsigned int count = ctxt->rep_prefix ?
1433 address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1;
1434 in_page = (ctxt->eflags & X86_EFLAGS_DF) ?
1435 offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) :
1436 PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI));
1437 n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count);
1438 if (n == 0)
1439 n = 1;
1440 rc->pos = rc->end = 0;
1441 if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n))
1442 return 0;
1443 rc->end = n * size;
1444 }
1445
1446 if (ctxt->rep_prefix && (ctxt->d & String) &&
1447 !(ctxt->eflags & X86_EFLAGS_DF)) {
1448 ctxt->dst.data = rc->data + rc->pos;
1449 ctxt->dst.type = OP_MEM_STR;
1450 ctxt->dst.count = (rc->end - rc->pos) / size;
1451 rc->pos = rc->end;
1452 } else {
1453 memcpy(dest, rc->data + rc->pos, size);
1454 rc->pos += size;
1455 }
1456 return 1;
1457 }
1458
read_interrupt_descriptor(struct x86_emulate_ctxt * ctxt,u16 index,struct desc_struct * desc)1459 static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt,
1460 u16 index, struct desc_struct *desc)
1461 {
1462 struct desc_ptr dt;
1463 ulong addr;
1464
1465 ctxt->ops->get_idt(ctxt, &dt);
1466
1467 if (dt.size < index * 8 + 7)
1468 return emulate_gp(ctxt, index << 3 | 0x2);
1469
1470 addr = dt.address + index * 8;
1471 return linear_read_system(ctxt, addr, desc, sizeof(*desc));
1472 }
1473
get_descriptor_table_ptr(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_ptr * dt)1474 static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
1475 u16 selector, struct desc_ptr *dt)
1476 {
1477 const struct x86_emulate_ops *ops = ctxt->ops;
1478 u32 base3 = 0;
1479
1480 if (selector & 1 << 2) {
1481 struct desc_struct desc;
1482 u16 sel;
1483
1484 memset(dt, 0, sizeof(*dt));
1485 if (!ops->get_segment(ctxt, &sel, &desc, &base3,
1486 VCPU_SREG_LDTR))
1487 return;
1488
1489 dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
1490 dt->address = get_desc_base(&desc) | ((u64)base3 << 32);
1491 } else
1492 ops->get_gdt(ctxt, dt);
1493 }
1494
get_descriptor_ptr(struct x86_emulate_ctxt * ctxt,u16 selector,ulong * desc_addr_p)1495 static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt,
1496 u16 selector, ulong *desc_addr_p)
1497 {
1498 struct desc_ptr dt;
1499 u16 index = selector >> 3;
1500 ulong addr;
1501
1502 get_descriptor_table_ptr(ctxt, selector, &dt);
1503
1504 if (dt.size < index * 8 + 7)
1505 return emulate_gp(ctxt, selector & 0xfffc);
1506
1507 addr = dt.address + index * 8;
1508
1509 #ifdef CONFIG_X86_64
1510 if (addr >> 32 != 0) {
1511 u64 efer = 0;
1512
1513 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1514 if (!(efer & EFER_LMA))
1515 addr &= (u32)-1;
1516 }
1517 #endif
1518
1519 *desc_addr_p = addr;
1520 return X86EMUL_CONTINUE;
1521 }
1522
1523 /* allowed just for 8 bytes segments */
read_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,ulong * desc_addr_p)1524 static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1525 u16 selector, struct desc_struct *desc,
1526 ulong *desc_addr_p)
1527 {
1528 int rc;
1529
1530 rc = get_descriptor_ptr(ctxt, selector, desc_addr_p);
1531 if (rc != X86EMUL_CONTINUE)
1532 return rc;
1533
1534 return linear_read_system(ctxt, *desc_addr_p, desc, sizeof(*desc));
1535 }
1536
1537 /* allowed just for 8 bytes segments */
write_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc)1538 static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1539 u16 selector, struct desc_struct *desc)
1540 {
1541 int rc;
1542 ulong addr;
1543
1544 rc = get_descriptor_ptr(ctxt, selector, &addr);
1545 if (rc != X86EMUL_CONTINUE)
1546 return rc;
1547
1548 return linear_write_system(ctxt, addr, desc, sizeof(*desc));
1549 }
1550
__load_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,int seg,u8 cpl,enum x86_transfer_type transfer,struct desc_struct * desc)1551 static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1552 u16 selector, int seg, u8 cpl,
1553 enum x86_transfer_type transfer,
1554 struct desc_struct *desc)
1555 {
1556 struct desc_struct seg_desc, old_desc;
1557 u8 dpl, rpl;
1558 unsigned err_vec = GP_VECTOR;
1559 u32 err_code = 0;
1560 bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
1561 ulong desc_addr;
1562 int ret;
1563 u16 dummy;
1564 u32 base3 = 0;
1565
1566 memset(&seg_desc, 0, sizeof(seg_desc));
1567
1568 if (ctxt->mode == X86EMUL_MODE_REAL) {
1569 /* set real mode segment descriptor (keep limit etc. for
1570 * unreal mode) */
1571 ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg);
1572 set_desc_base(&seg_desc, selector << 4);
1573 goto load;
1574 } else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) {
1575 /* VM86 needs a clean new segment descriptor */
1576 set_desc_base(&seg_desc, selector << 4);
1577 set_desc_limit(&seg_desc, 0xffff);
1578 seg_desc.type = 3;
1579 seg_desc.p = 1;
1580 seg_desc.s = 1;
1581 seg_desc.dpl = 3;
1582 goto load;
1583 }
1584
1585 rpl = selector & 3;
1586
1587 /* TR should be in GDT only */
1588 if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
1589 goto exception;
1590
1591 /* NULL selector is not valid for TR, CS and (except for long mode) SS */
1592 if (null_selector) {
1593 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_TR)
1594 goto exception;
1595
1596 if (seg == VCPU_SREG_SS) {
1597 if (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl)
1598 goto exception;
1599
1600 /*
1601 * ctxt->ops->set_segment expects the CPL to be in
1602 * SS.DPL, so fake an expand-up 32-bit data segment.
1603 */
1604 seg_desc.type = 3;
1605 seg_desc.p = 1;
1606 seg_desc.s = 1;
1607 seg_desc.dpl = cpl;
1608 seg_desc.d = 1;
1609 seg_desc.g = 1;
1610 }
1611
1612 /* Skip all following checks */
1613 goto load;
1614 }
1615
1616 ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr);
1617 if (ret != X86EMUL_CONTINUE)
1618 return ret;
1619
1620 err_code = selector & 0xfffc;
1621 err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR :
1622 GP_VECTOR;
1623
1624 /* can't load system descriptor into segment selector */
1625 if (seg <= VCPU_SREG_GS && !seg_desc.s) {
1626 if (transfer == X86_TRANSFER_CALL_JMP)
1627 return X86EMUL_UNHANDLEABLE;
1628 goto exception;
1629 }
1630
1631 dpl = seg_desc.dpl;
1632
1633 switch (seg) {
1634 case VCPU_SREG_SS:
1635 /*
1636 * segment is not a writable data segment or segment
1637 * selector's RPL != CPL or DPL != CPL
1638 */
1639 if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
1640 goto exception;
1641 break;
1642 case VCPU_SREG_CS:
1643 /*
1644 * KVM uses "none" when loading CS as part of emulating Real
1645 * Mode exceptions and IRET (handled above). In all other
1646 * cases, loading CS without a control transfer is a KVM bug.
1647 */
1648 if (WARN_ON_ONCE(transfer == X86_TRANSFER_NONE))
1649 goto exception;
1650
1651 if (!(seg_desc.type & 8))
1652 goto exception;
1653
1654 if (transfer == X86_TRANSFER_RET) {
1655 /* RET can never return to an inner privilege level. */
1656 if (rpl < cpl)
1657 goto exception;
1658 /* Outer-privilege level return is not implemented */
1659 if (rpl > cpl)
1660 return X86EMUL_UNHANDLEABLE;
1661 }
1662 if (transfer == X86_TRANSFER_RET || transfer == X86_TRANSFER_TASK_SWITCH) {
1663 if (seg_desc.type & 4) {
1664 /* conforming */
1665 if (dpl > rpl)
1666 goto exception;
1667 } else {
1668 /* nonconforming */
1669 if (dpl != rpl)
1670 goto exception;
1671 }
1672 } else { /* X86_TRANSFER_CALL_JMP */
1673 if (seg_desc.type & 4) {
1674 /* conforming */
1675 if (dpl > cpl)
1676 goto exception;
1677 } else {
1678 /* nonconforming */
1679 if (rpl > cpl || dpl != cpl)
1680 goto exception;
1681 }
1682 }
1683 /* in long-mode d/b must be clear if l is set */
1684 if (seg_desc.d && seg_desc.l) {
1685 u64 efer = 0;
1686
1687 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1688 if (efer & EFER_LMA)
1689 goto exception;
1690 }
1691
1692 /* CS(RPL) <- CPL */
1693 selector = (selector & 0xfffc) | cpl;
1694 break;
1695 case VCPU_SREG_TR:
1696 if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
1697 goto exception;
1698 break;
1699 case VCPU_SREG_LDTR:
1700 if (seg_desc.s || seg_desc.type != 2)
1701 goto exception;
1702 break;
1703 default: /* DS, ES, FS, or GS */
1704 /*
1705 * segment is not a data or readable code segment or
1706 * ((segment is a data or nonconforming code segment)
1707 * and ((RPL > DPL) or (CPL > DPL)))
1708 */
1709 if ((seg_desc.type & 0xa) == 0x8 ||
1710 (((seg_desc.type & 0xc) != 0xc) &&
1711 (rpl > dpl || cpl > dpl)))
1712 goto exception;
1713 break;
1714 }
1715
1716 if (!seg_desc.p) {
1717 err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
1718 goto exception;
1719 }
1720
1721 if (seg_desc.s) {
1722 /* mark segment as accessed */
1723 if (!(seg_desc.type & 1)) {
1724 seg_desc.type |= 1;
1725 ret = write_segment_descriptor(ctxt, selector,
1726 &seg_desc);
1727 if (ret != X86EMUL_CONTINUE)
1728 return ret;
1729 }
1730 } else if (ctxt->mode == X86EMUL_MODE_PROT64) {
1731 ret = linear_read_system(ctxt, desc_addr+8, &base3, sizeof(base3));
1732 if (ret != X86EMUL_CONTINUE)
1733 return ret;
1734 if (emul_is_noncanonical_address(get_desc_base(&seg_desc) |
1735 ((u64)base3 << 32), ctxt))
1736 return emulate_gp(ctxt, err_code);
1737 }
1738
1739 if (seg == VCPU_SREG_TR) {
1740 old_desc = seg_desc;
1741 seg_desc.type |= 2; /* busy */
1742 ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc,
1743 sizeof(seg_desc), &ctxt->exception);
1744 if (ret != X86EMUL_CONTINUE)
1745 return ret;
1746 }
1747 load:
1748 ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg);
1749 if (desc)
1750 *desc = seg_desc;
1751 return X86EMUL_CONTINUE;
1752 exception:
1753 return emulate_exception(ctxt, err_vec, err_code, true);
1754 }
1755
load_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,int seg)1756 static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1757 u16 selector, int seg)
1758 {
1759 u8 cpl = ctxt->ops->cpl(ctxt);
1760
1761 /*
1762 * None of MOV, POP and LSS can load a NULL selector in CPL=3, but
1763 * they can load it at CPL<3 (Intel's manual says only LSS can,
1764 * but it's wrong).
1765 *
1766 * However, the Intel manual says that putting IST=1/DPL=3 in
1767 * an interrupt gate will result in SS=3 (the AMD manual instead
1768 * says it doesn't), so allow SS=3 in __load_segment_descriptor
1769 * and only forbid it here.
1770 */
1771 if (seg == VCPU_SREG_SS && selector == 3 &&
1772 ctxt->mode == X86EMUL_MODE_PROT64)
1773 return emulate_exception(ctxt, GP_VECTOR, 0, true);
1774
1775 return __load_segment_descriptor(ctxt, selector, seg, cpl,
1776 X86_TRANSFER_NONE, NULL);
1777 }
1778
write_register_operand(struct operand * op)1779 static void write_register_operand(struct operand *op)
1780 {
1781 return assign_register(op->addr.reg, op->val, op->bytes);
1782 }
1783
writeback(struct x86_emulate_ctxt * ctxt,struct operand * op)1784 static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op)
1785 {
1786 switch (op->type) {
1787 case OP_REG:
1788 write_register_operand(op);
1789 break;
1790 case OP_MEM:
1791 if (ctxt->lock_prefix)
1792 return segmented_cmpxchg(ctxt,
1793 op->addr.mem,
1794 &op->orig_val,
1795 &op->val,
1796 op->bytes);
1797 else
1798 return segmented_write(ctxt,
1799 op->addr.mem,
1800 &op->val,
1801 op->bytes);
1802 case OP_MEM_STR:
1803 return segmented_write(ctxt,
1804 op->addr.mem,
1805 op->data,
1806 op->bytes * op->count);
1807 case OP_XMM:
1808 kvm_write_sse_reg(op->addr.xmm, &op->vec_val);
1809 break;
1810 case OP_MM:
1811 kvm_write_mmx_reg(op->addr.mm, &op->mm_val);
1812 break;
1813 case OP_NONE:
1814 /* no writeback */
1815 break;
1816 default:
1817 break;
1818 }
1819 return X86EMUL_CONTINUE;
1820 }
1821
push(struct x86_emulate_ctxt * ctxt,void * data,int bytes)1822 static int push(struct x86_emulate_ctxt *ctxt, void *data, int bytes)
1823 {
1824 struct segmented_address addr;
1825
1826 rsp_increment(ctxt, -bytes);
1827 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1828 addr.seg = VCPU_SREG_SS;
1829
1830 return segmented_write(ctxt, addr, data, bytes);
1831 }
1832
em_push(struct x86_emulate_ctxt * ctxt)1833 static int em_push(struct x86_emulate_ctxt *ctxt)
1834 {
1835 /* Disable writeback. */
1836 ctxt->dst.type = OP_NONE;
1837 return push(ctxt, &ctxt->src.val, ctxt->op_bytes);
1838 }
1839
emulate_pop(struct x86_emulate_ctxt * ctxt,void * dest,int len)1840 static int emulate_pop(struct x86_emulate_ctxt *ctxt,
1841 void *dest, int len)
1842 {
1843 int rc;
1844 struct segmented_address addr;
1845
1846 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1847 addr.seg = VCPU_SREG_SS;
1848 rc = segmented_read(ctxt, addr, dest, len);
1849 if (rc != X86EMUL_CONTINUE)
1850 return rc;
1851
1852 rsp_increment(ctxt, len);
1853 return rc;
1854 }
1855
em_pop(struct x86_emulate_ctxt * ctxt)1856 static int em_pop(struct x86_emulate_ctxt *ctxt)
1857 {
1858 return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1859 }
1860
emulate_popf(struct x86_emulate_ctxt * ctxt,void * dest,int len)1861 static int emulate_popf(struct x86_emulate_ctxt *ctxt,
1862 void *dest, int len)
1863 {
1864 int rc;
1865 unsigned long val, change_mask;
1866 int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
1867 int cpl = ctxt->ops->cpl(ctxt);
1868
1869 rc = emulate_pop(ctxt, &val, len);
1870 if (rc != X86EMUL_CONTINUE)
1871 return rc;
1872
1873 change_mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
1874 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF |
1875 X86_EFLAGS_TF | X86_EFLAGS_DF | X86_EFLAGS_NT |
1876 X86_EFLAGS_AC | X86_EFLAGS_ID;
1877
1878 switch(ctxt->mode) {
1879 case X86EMUL_MODE_PROT64:
1880 case X86EMUL_MODE_PROT32:
1881 case X86EMUL_MODE_PROT16:
1882 if (cpl == 0)
1883 change_mask |= X86_EFLAGS_IOPL;
1884 if (cpl <= iopl)
1885 change_mask |= X86_EFLAGS_IF;
1886 break;
1887 case X86EMUL_MODE_VM86:
1888 if (iopl < 3)
1889 return emulate_gp(ctxt, 0);
1890 change_mask |= X86_EFLAGS_IF;
1891 break;
1892 default: /* real mode */
1893 change_mask |= (X86_EFLAGS_IOPL | X86_EFLAGS_IF);
1894 break;
1895 }
1896
1897 *(unsigned long *)dest =
1898 (ctxt->eflags & ~change_mask) | (val & change_mask);
1899
1900 return rc;
1901 }
1902
em_popf(struct x86_emulate_ctxt * ctxt)1903 static int em_popf(struct x86_emulate_ctxt *ctxt)
1904 {
1905 ctxt->dst.type = OP_REG;
1906 ctxt->dst.addr.reg = &ctxt->eflags;
1907 ctxt->dst.bytes = ctxt->op_bytes;
1908 return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1909 }
1910
em_enter(struct x86_emulate_ctxt * ctxt)1911 static int em_enter(struct x86_emulate_ctxt *ctxt)
1912 {
1913 int rc;
1914 unsigned frame_size = ctxt->src.val;
1915 unsigned nesting_level = ctxt->src2.val & 31;
1916 ulong rbp;
1917
1918 if (nesting_level)
1919 return X86EMUL_UNHANDLEABLE;
1920
1921 rbp = reg_read(ctxt, VCPU_REGS_RBP);
1922 rc = push(ctxt, &rbp, stack_size(ctxt));
1923 if (rc != X86EMUL_CONTINUE)
1924 return rc;
1925 assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP),
1926 stack_mask(ctxt));
1927 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP),
1928 reg_read(ctxt, VCPU_REGS_RSP) - frame_size,
1929 stack_mask(ctxt));
1930 return X86EMUL_CONTINUE;
1931 }
1932
em_leave(struct x86_emulate_ctxt * ctxt)1933 static int em_leave(struct x86_emulate_ctxt *ctxt)
1934 {
1935 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP),
1936 stack_mask(ctxt));
1937 return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes);
1938 }
1939
em_push_sreg(struct x86_emulate_ctxt * ctxt)1940 static int em_push_sreg(struct x86_emulate_ctxt *ctxt)
1941 {
1942 int seg = ctxt->src2.val;
1943
1944 ctxt->src.val = get_segment_selector(ctxt, seg);
1945 if (ctxt->op_bytes == 4) {
1946 rsp_increment(ctxt, -2);
1947 ctxt->op_bytes = 2;
1948 }
1949
1950 return em_push(ctxt);
1951 }
1952
em_pop_sreg(struct x86_emulate_ctxt * ctxt)1953 static int em_pop_sreg(struct x86_emulate_ctxt *ctxt)
1954 {
1955 int seg = ctxt->src2.val;
1956 unsigned long selector;
1957 int rc;
1958
1959 rc = emulate_pop(ctxt, &selector, 2);
1960 if (rc != X86EMUL_CONTINUE)
1961 return rc;
1962
1963 if (seg == VCPU_SREG_SS)
1964 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
1965 if (ctxt->op_bytes > 2)
1966 rsp_increment(ctxt, ctxt->op_bytes - 2);
1967
1968 rc = load_segment_descriptor(ctxt, (u16)selector, seg);
1969 return rc;
1970 }
1971
em_pusha(struct x86_emulate_ctxt * ctxt)1972 static int em_pusha(struct x86_emulate_ctxt *ctxt)
1973 {
1974 unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP);
1975 int rc = X86EMUL_CONTINUE;
1976 int reg = VCPU_REGS_RAX;
1977
1978 while (reg <= VCPU_REGS_RDI) {
1979 (reg == VCPU_REGS_RSP) ?
1980 (ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg));
1981
1982 rc = em_push(ctxt);
1983 if (rc != X86EMUL_CONTINUE)
1984 return rc;
1985
1986 ++reg;
1987 }
1988
1989 return rc;
1990 }
1991
em_pushf(struct x86_emulate_ctxt * ctxt)1992 static int em_pushf(struct x86_emulate_ctxt *ctxt)
1993 {
1994 ctxt->src.val = (unsigned long)ctxt->eflags & ~X86_EFLAGS_VM;
1995 return em_push(ctxt);
1996 }
1997
em_popa(struct x86_emulate_ctxt * ctxt)1998 static int em_popa(struct x86_emulate_ctxt *ctxt)
1999 {
2000 int rc = X86EMUL_CONTINUE;
2001 int reg = VCPU_REGS_RDI;
2002 u32 val;
2003
2004 while (reg >= VCPU_REGS_RAX) {
2005 if (reg == VCPU_REGS_RSP) {
2006 rsp_increment(ctxt, ctxt->op_bytes);
2007 --reg;
2008 }
2009
2010 rc = emulate_pop(ctxt, &val, ctxt->op_bytes);
2011 if (rc != X86EMUL_CONTINUE)
2012 break;
2013 assign_register(reg_rmw(ctxt, reg), val, ctxt->op_bytes);
2014 --reg;
2015 }
2016 return rc;
2017 }
2018
__emulate_int_real(struct x86_emulate_ctxt * ctxt,int irq)2019 static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
2020 {
2021 const struct x86_emulate_ops *ops = ctxt->ops;
2022 int rc;
2023 struct desc_ptr dt;
2024 gva_t cs_addr;
2025 gva_t eip_addr;
2026 u16 cs, eip;
2027
2028 /* TODO: Add limit checks */
2029 ctxt->src.val = ctxt->eflags;
2030 rc = em_push(ctxt);
2031 if (rc != X86EMUL_CONTINUE)
2032 return rc;
2033
2034 ctxt->eflags &= ~(X86_EFLAGS_IF | X86_EFLAGS_TF | X86_EFLAGS_AC);
2035
2036 ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
2037 rc = em_push(ctxt);
2038 if (rc != X86EMUL_CONTINUE)
2039 return rc;
2040
2041 ctxt->src.val = ctxt->_eip;
2042 rc = em_push(ctxt);
2043 if (rc != X86EMUL_CONTINUE)
2044 return rc;
2045
2046 ops->get_idt(ctxt, &dt);
2047
2048 eip_addr = dt.address + (irq << 2);
2049 cs_addr = dt.address + (irq << 2) + 2;
2050
2051 rc = linear_read_system(ctxt, cs_addr, &cs, 2);
2052 if (rc != X86EMUL_CONTINUE)
2053 return rc;
2054
2055 rc = linear_read_system(ctxt, eip_addr, &eip, 2);
2056 if (rc != X86EMUL_CONTINUE)
2057 return rc;
2058
2059 rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS);
2060 if (rc != X86EMUL_CONTINUE)
2061 return rc;
2062
2063 ctxt->_eip = eip;
2064
2065 return rc;
2066 }
2067
emulate_int_real(struct x86_emulate_ctxt * ctxt,int irq)2068 int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
2069 {
2070 int rc;
2071
2072 invalidate_registers(ctxt);
2073 rc = __emulate_int_real(ctxt, irq);
2074 if (rc == X86EMUL_CONTINUE)
2075 writeback_registers(ctxt);
2076 return rc;
2077 }
2078
emulate_int(struct x86_emulate_ctxt * ctxt,int irq)2079 static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq)
2080 {
2081 switch(ctxt->mode) {
2082 case X86EMUL_MODE_REAL:
2083 return __emulate_int_real(ctxt, irq);
2084 case X86EMUL_MODE_VM86:
2085 case X86EMUL_MODE_PROT16:
2086 case X86EMUL_MODE_PROT32:
2087 case X86EMUL_MODE_PROT64:
2088 default:
2089 /* Protected mode interrupts unimplemented yet */
2090 return X86EMUL_UNHANDLEABLE;
2091 }
2092 }
2093
emulate_iret_real(struct x86_emulate_ctxt * ctxt)2094 static int emulate_iret_real(struct x86_emulate_ctxt *ctxt)
2095 {
2096 int rc = X86EMUL_CONTINUE;
2097 unsigned long temp_eip = 0;
2098 unsigned long temp_eflags = 0;
2099 unsigned long cs = 0;
2100 unsigned long mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
2101 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_TF |
2102 X86_EFLAGS_IF | X86_EFLAGS_DF | X86_EFLAGS_OF |
2103 X86_EFLAGS_IOPL | X86_EFLAGS_NT | X86_EFLAGS_RF |
2104 X86_EFLAGS_AC | X86_EFLAGS_ID |
2105 X86_EFLAGS_FIXED;
2106 unsigned long vm86_mask = X86_EFLAGS_VM | X86_EFLAGS_VIF |
2107 X86_EFLAGS_VIP;
2108
2109 /* TODO: Add stack limit check */
2110
2111 rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes);
2112
2113 if (rc != X86EMUL_CONTINUE)
2114 return rc;
2115
2116 if (temp_eip & ~0xffff)
2117 return emulate_gp(ctxt, 0);
2118
2119 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2120
2121 if (rc != X86EMUL_CONTINUE)
2122 return rc;
2123
2124 rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes);
2125
2126 if (rc != X86EMUL_CONTINUE)
2127 return rc;
2128
2129 rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
2130
2131 if (rc != X86EMUL_CONTINUE)
2132 return rc;
2133
2134 ctxt->_eip = temp_eip;
2135
2136 if (ctxt->op_bytes == 4)
2137 ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
2138 else if (ctxt->op_bytes == 2) {
2139 ctxt->eflags &= ~0xffff;
2140 ctxt->eflags |= temp_eflags;
2141 }
2142
2143 ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */
2144 ctxt->eflags |= X86_EFLAGS_FIXED;
2145 ctxt->ops->set_nmi_mask(ctxt, false);
2146
2147 return rc;
2148 }
2149
em_iret(struct x86_emulate_ctxt * ctxt)2150 static int em_iret(struct x86_emulate_ctxt *ctxt)
2151 {
2152 switch(ctxt->mode) {
2153 case X86EMUL_MODE_REAL:
2154 return emulate_iret_real(ctxt);
2155 case X86EMUL_MODE_VM86:
2156 case X86EMUL_MODE_PROT16:
2157 case X86EMUL_MODE_PROT32:
2158 case X86EMUL_MODE_PROT64:
2159 default:
2160 /* iret from protected mode unimplemented yet */
2161 return X86EMUL_UNHANDLEABLE;
2162 }
2163 }
2164
em_jmp_far(struct x86_emulate_ctxt * ctxt)2165 static int em_jmp_far(struct x86_emulate_ctxt *ctxt)
2166 {
2167 int rc;
2168 unsigned short sel;
2169 struct desc_struct new_desc;
2170 u8 cpl = ctxt->ops->cpl(ctxt);
2171
2172 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2173
2174 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
2175 X86_TRANSFER_CALL_JMP,
2176 &new_desc);
2177 if (rc != X86EMUL_CONTINUE)
2178 return rc;
2179
2180 rc = assign_eip_far(ctxt, ctxt->src.val);
2181 /* Error handling is not implemented. */
2182 if (rc != X86EMUL_CONTINUE)
2183 return X86EMUL_UNHANDLEABLE;
2184
2185 return rc;
2186 }
2187
em_jmp_abs(struct x86_emulate_ctxt * ctxt)2188 static int em_jmp_abs(struct x86_emulate_ctxt *ctxt)
2189 {
2190 return assign_eip_near(ctxt, ctxt->src.val);
2191 }
2192
em_call_near_abs(struct x86_emulate_ctxt * ctxt)2193 static int em_call_near_abs(struct x86_emulate_ctxt *ctxt)
2194 {
2195 int rc;
2196 long int old_eip;
2197
2198 old_eip = ctxt->_eip;
2199 rc = assign_eip_near(ctxt, ctxt->src.val);
2200 if (rc != X86EMUL_CONTINUE)
2201 return rc;
2202 ctxt->src.val = old_eip;
2203 rc = em_push(ctxt);
2204 return rc;
2205 }
2206
em_cmpxchg8b(struct x86_emulate_ctxt * ctxt)2207 static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt)
2208 {
2209 u64 old = ctxt->dst.orig_val64;
2210
2211 if (ctxt->dst.bytes == 16)
2212 return X86EMUL_UNHANDLEABLE;
2213
2214 if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) ||
2215 ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) {
2216 *reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0);
2217 *reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32);
2218 ctxt->eflags &= ~X86_EFLAGS_ZF;
2219 } else {
2220 ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) |
2221 (u32) reg_read(ctxt, VCPU_REGS_RBX);
2222
2223 ctxt->eflags |= X86_EFLAGS_ZF;
2224 }
2225 return X86EMUL_CONTINUE;
2226 }
2227
em_ret(struct x86_emulate_ctxt * ctxt)2228 static int em_ret(struct x86_emulate_ctxt *ctxt)
2229 {
2230 int rc;
2231 unsigned long eip;
2232
2233 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2234 if (rc != X86EMUL_CONTINUE)
2235 return rc;
2236
2237 return assign_eip_near(ctxt, eip);
2238 }
2239
em_ret_far(struct x86_emulate_ctxt * ctxt)2240 static int em_ret_far(struct x86_emulate_ctxt *ctxt)
2241 {
2242 int rc;
2243 unsigned long eip, cs;
2244 int cpl = ctxt->ops->cpl(ctxt);
2245 struct desc_struct new_desc;
2246
2247 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2248 if (rc != X86EMUL_CONTINUE)
2249 return rc;
2250 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2251 if (rc != X86EMUL_CONTINUE)
2252 return rc;
2253 rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl,
2254 X86_TRANSFER_RET,
2255 &new_desc);
2256 if (rc != X86EMUL_CONTINUE)
2257 return rc;
2258 rc = assign_eip_far(ctxt, eip);
2259 /* Error handling is not implemented. */
2260 if (rc != X86EMUL_CONTINUE)
2261 return X86EMUL_UNHANDLEABLE;
2262
2263 return rc;
2264 }
2265
em_ret_far_imm(struct x86_emulate_ctxt * ctxt)2266 static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt)
2267 {
2268 int rc;
2269
2270 rc = em_ret_far(ctxt);
2271 if (rc != X86EMUL_CONTINUE)
2272 return rc;
2273 rsp_increment(ctxt, ctxt->src.val);
2274 return X86EMUL_CONTINUE;
2275 }
2276
em_cmpxchg(struct x86_emulate_ctxt * ctxt)2277 static int em_cmpxchg(struct x86_emulate_ctxt *ctxt)
2278 {
2279 /* Save real source value, then compare EAX against destination. */
2280 ctxt->dst.orig_val = ctxt->dst.val;
2281 ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX);
2282 ctxt->src.orig_val = ctxt->src.val;
2283 ctxt->src.val = ctxt->dst.orig_val;
2284 fastop(ctxt, em_cmp);
2285
2286 if (ctxt->eflags & X86_EFLAGS_ZF) {
2287 /* Success: write back to memory; no update of EAX */
2288 ctxt->src.type = OP_NONE;
2289 ctxt->dst.val = ctxt->src.orig_val;
2290 } else {
2291 /* Failure: write the value we saw to EAX. */
2292 ctxt->src.type = OP_REG;
2293 ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
2294 ctxt->src.val = ctxt->dst.orig_val;
2295 /* Create write-cycle to dest by writing the same value */
2296 ctxt->dst.val = ctxt->dst.orig_val;
2297 }
2298 return X86EMUL_CONTINUE;
2299 }
2300
em_lseg(struct x86_emulate_ctxt * ctxt)2301 static int em_lseg(struct x86_emulate_ctxt *ctxt)
2302 {
2303 int seg = ctxt->src2.val;
2304 unsigned short sel;
2305 int rc;
2306
2307 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2308
2309 rc = load_segment_descriptor(ctxt, sel, seg);
2310 if (rc != X86EMUL_CONTINUE)
2311 return rc;
2312
2313 ctxt->dst.val = ctxt->src.val;
2314 return rc;
2315 }
2316
em_rsm(struct x86_emulate_ctxt * ctxt)2317 static int em_rsm(struct x86_emulate_ctxt *ctxt)
2318 {
2319 if (!ctxt->ops->is_smm(ctxt))
2320 return emulate_ud(ctxt);
2321
2322 if (ctxt->ops->leave_smm(ctxt))
2323 ctxt->ops->triple_fault(ctxt);
2324
2325 return emulator_recalc_and_set_mode(ctxt);
2326 }
2327
2328 static void
setup_syscalls_segments(struct desc_struct * cs,struct desc_struct * ss)2329 setup_syscalls_segments(struct desc_struct *cs, struct desc_struct *ss)
2330 {
2331 cs->l = 0; /* will be adjusted later */
2332 set_desc_base(cs, 0); /* flat segment */
2333 cs->g = 1; /* 4kb granularity */
2334 set_desc_limit(cs, 0xfffff); /* 4GB limit */
2335 cs->type = 0x0b; /* Read, Execute, Accessed */
2336 cs->s = 1;
2337 cs->dpl = 0; /* will be adjusted later */
2338 cs->p = 1;
2339 cs->d = 1;
2340 cs->avl = 0;
2341
2342 set_desc_base(ss, 0); /* flat segment */
2343 set_desc_limit(ss, 0xfffff); /* 4GB limit */
2344 ss->g = 1; /* 4kb granularity */
2345 ss->s = 1;
2346 ss->type = 0x03; /* Read/Write, Accessed */
2347 ss->d = 1; /* 32bit stack segment */
2348 ss->dpl = 0;
2349 ss->p = 1;
2350 ss->l = 0;
2351 ss->avl = 0;
2352 }
2353
vendor_intel(struct x86_emulate_ctxt * ctxt)2354 static bool vendor_intel(struct x86_emulate_ctxt *ctxt)
2355 {
2356 u32 eax, ebx, ecx, edx;
2357
2358 eax = ecx = 0;
2359 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true);
2360 return is_guest_vendor_intel(ebx, ecx, edx);
2361 }
2362
em_syscall_is_enabled(struct x86_emulate_ctxt * ctxt)2363 static bool em_syscall_is_enabled(struct x86_emulate_ctxt *ctxt)
2364 {
2365 const struct x86_emulate_ops *ops = ctxt->ops;
2366 u32 eax, ebx, ecx, edx;
2367
2368 /*
2369 * syscall should always be enabled in longmode - so only become
2370 * vendor specific (cpuid) if other modes are active...
2371 */
2372 if (ctxt->mode == X86EMUL_MODE_PROT64)
2373 return true;
2374
2375 eax = 0x00000000;
2376 ecx = 0x00000000;
2377 ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true);
2378 /*
2379 * remark: Intel CPUs only support "syscall" in 64bit longmode. Also a
2380 * 64bit guest with a 32bit compat-app running will #UD !! While this
2381 * behaviour can be fixed (by emulating) into AMD response - CPUs of
2382 * AMD can't behave like Intel.
2383 */
2384 if (is_guest_vendor_intel(ebx, ecx, edx))
2385 return false;
2386
2387 if (is_guest_vendor_amd(ebx, ecx, edx) ||
2388 is_guest_vendor_hygon(ebx, ecx, edx))
2389 return true;
2390
2391 /*
2392 * default: (not Intel, not AMD, not Hygon), apply Intel's
2393 * stricter rules...
2394 */
2395 return false;
2396 }
2397
em_syscall(struct x86_emulate_ctxt * ctxt)2398 static int em_syscall(struct x86_emulate_ctxt *ctxt)
2399 {
2400 const struct x86_emulate_ops *ops = ctxt->ops;
2401 struct desc_struct cs, ss;
2402 u64 msr_data;
2403 u16 cs_sel, ss_sel;
2404 u64 efer = 0;
2405
2406 /* syscall is not available in real mode */
2407 if (ctxt->mode == X86EMUL_MODE_REAL ||
2408 ctxt->mode == X86EMUL_MODE_VM86)
2409 return emulate_ud(ctxt);
2410
2411 if (!(em_syscall_is_enabled(ctxt)))
2412 return emulate_ud(ctxt);
2413
2414 ops->get_msr(ctxt, MSR_EFER, &efer);
2415 if (!(efer & EFER_SCE))
2416 return emulate_ud(ctxt);
2417
2418 setup_syscalls_segments(&cs, &ss);
2419 ops->get_msr(ctxt, MSR_STAR, &msr_data);
2420 msr_data >>= 32;
2421 cs_sel = (u16)(msr_data & 0xfffc);
2422 ss_sel = (u16)(msr_data + 8);
2423
2424 if (efer & EFER_LMA) {
2425 cs.d = 0;
2426 cs.l = 1;
2427 }
2428 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2429 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2430
2431 *reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip;
2432 if (efer & EFER_LMA) {
2433 #ifdef CONFIG_X86_64
2434 *reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags;
2435
2436 ops->get_msr(ctxt,
2437 ctxt->mode == X86EMUL_MODE_PROT64 ?
2438 MSR_LSTAR : MSR_CSTAR, &msr_data);
2439 ctxt->_eip = msr_data;
2440
2441 ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data);
2442 ctxt->eflags &= ~msr_data;
2443 ctxt->eflags |= X86_EFLAGS_FIXED;
2444 #endif
2445 } else {
2446 /* legacy mode */
2447 ops->get_msr(ctxt, MSR_STAR, &msr_data);
2448 ctxt->_eip = (u32)msr_data;
2449
2450 ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2451 }
2452
2453 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
2454 return X86EMUL_CONTINUE;
2455 }
2456
em_sysenter(struct x86_emulate_ctxt * ctxt)2457 static int em_sysenter(struct x86_emulate_ctxt *ctxt)
2458 {
2459 const struct x86_emulate_ops *ops = ctxt->ops;
2460 struct desc_struct cs, ss;
2461 u64 msr_data;
2462 u16 cs_sel, ss_sel;
2463 u64 efer = 0;
2464
2465 ops->get_msr(ctxt, MSR_EFER, &efer);
2466 /* inject #GP if in real mode */
2467 if (ctxt->mode == X86EMUL_MODE_REAL)
2468 return emulate_gp(ctxt, 0);
2469
2470 /*
2471 * Not recognized on AMD in compat mode (but is recognized in legacy
2472 * mode).
2473 */
2474 if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA)
2475 && !vendor_intel(ctxt))
2476 return emulate_ud(ctxt);
2477
2478 /* sysenter/sysexit have not been tested in 64bit mode. */
2479 if (ctxt->mode == X86EMUL_MODE_PROT64)
2480 return X86EMUL_UNHANDLEABLE;
2481
2482 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2483 if ((msr_data & 0xfffc) == 0x0)
2484 return emulate_gp(ctxt, 0);
2485
2486 setup_syscalls_segments(&cs, &ss);
2487 ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2488 cs_sel = (u16)msr_data & ~SEGMENT_RPL_MASK;
2489 ss_sel = cs_sel + 8;
2490 if (efer & EFER_LMA) {
2491 cs.d = 0;
2492 cs.l = 1;
2493 }
2494
2495 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2496 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2497
2498 ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data);
2499 ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data;
2500
2501 ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data);
2502 *reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data :
2503 (u32)msr_data;
2504 if (efer & EFER_LMA)
2505 ctxt->mode = X86EMUL_MODE_PROT64;
2506
2507 return X86EMUL_CONTINUE;
2508 }
2509
em_sysexit(struct x86_emulate_ctxt * ctxt)2510 static int em_sysexit(struct x86_emulate_ctxt *ctxt)
2511 {
2512 const struct x86_emulate_ops *ops = ctxt->ops;
2513 struct desc_struct cs, ss;
2514 u64 msr_data, rcx, rdx;
2515 int usermode;
2516 u16 cs_sel = 0, ss_sel = 0;
2517
2518 /* inject #GP if in real mode or Virtual 8086 mode */
2519 if (ctxt->mode == X86EMUL_MODE_REAL ||
2520 ctxt->mode == X86EMUL_MODE_VM86)
2521 return emulate_gp(ctxt, 0);
2522
2523 setup_syscalls_segments(&cs, &ss);
2524
2525 if ((ctxt->rex_prefix & 0x8) != 0x0)
2526 usermode = X86EMUL_MODE_PROT64;
2527 else
2528 usermode = X86EMUL_MODE_PROT32;
2529
2530 rcx = reg_read(ctxt, VCPU_REGS_RCX);
2531 rdx = reg_read(ctxt, VCPU_REGS_RDX);
2532
2533 cs.dpl = 3;
2534 ss.dpl = 3;
2535 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2536 switch (usermode) {
2537 case X86EMUL_MODE_PROT32:
2538 cs_sel = (u16)(msr_data + 16);
2539 if ((msr_data & 0xfffc) == 0x0)
2540 return emulate_gp(ctxt, 0);
2541 ss_sel = (u16)(msr_data + 24);
2542 rcx = (u32)rcx;
2543 rdx = (u32)rdx;
2544 break;
2545 case X86EMUL_MODE_PROT64:
2546 cs_sel = (u16)(msr_data + 32);
2547 if (msr_data == 0x0)
2548 return emulate_gp(ctxt, 0);
2549 ss_sel = cs_sel + 8;
2550 cs.d = 0;
2551 cs.l = 1;
2552 if (emul_is_noncanonical_address(rcx, ctxt) ||
2553 emul_is_noncanonical_address(rdx, ctxt))
2554 return emulate_gp(ctxt, 0);
2555 break;
2556 }
2557 cs_sel |= SEGMENT_RPL_MASK;
2558 ss_sel |= SEGMENT_RPL_MASK;
2559
2560 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2561 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2562
2563 ctxt->_eip = rdx;
2564 ctxt->mode = usermode;
2565 *reg_write(ctxt, VCPU_REGS_RSP) = rcx;
2566
2567 return X86EMUL_CONTINUE;
2568 }
2569
emulator_bad_iopl(struct x86_emulate_ctxt * ctxt)2570 static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt)
2571 {
2572 int iopl;
2573 if (ctxt->mode == X86EMUL_MODE_REAL)
2574 return false;
2575 if (ctxt->mode == X86EMUL_MODE_VM86)
2576 return true;
2577 iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
2578 return ctxt->ops->cpl(ctxt) > iopl;
2579 }
2580
2581 #define VMWARE_PORT_VMPORT (0x5658)
2582 #define VMWARE_PORT_VMRPC (0x5659)
2583
emulator_io_port_access_allowed(struct x86_emulate_ctxt * ctxt,u16 port,u16 len)2584 static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
2585 u16 port, u16 len)
2586 {
2587 const struct x86_emulate_ops *ops = ctxt->ops;
2588 struct desc_struct tr_seg;
2589 u32 base3;
2590 int r;
2591 u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7;
2592 unsigned mask = (1 << len) - 1;
2593 unsigned long base;
2594
2595 /*
2596 * VMware allows access to these ports even if denied
2597 * by TSS I/O permission bitmap. Mimic behavior.
2598 */
2599 if (enable_vmware_backdoor &&
2600 ((port == VMWARE_PORT_VMPORT) || (port == VMWARE_PORT_VMRPC)))
2601 return true;
2602
2603 ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR);
2604 if (!tr_seg.p)
2605 return false;
2606 if (desc_limit_scaled(&tr_seg) < 103)
2607 return false;
2608 base = get_desc_base(&tr_seg);
2609 #ifdef CONFIG_X86_64
2610 base |= ((u64)base3) << 32;
2611 #endif
2612 r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL, true);
2613 if (r != X86EMUL_CONTINUE)
2614 return false;
2615 if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg))
2616 return false;
2617 r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL, true);
2618 if (r != X86EMUL_CONTINUE)
2619 return false;
2620 if ((perm >> bit_idx) & mask)
2621 return false;
2622 return true;
2623 }
2624
emulator_io_permitted(struct x86_emulate_ctxt * ctxt,u16 port,u16 len)2625 static bool emulator_io_permitted(struct x86_emulate_ctxt *ctxt,
2626 u16 port, u16 len)
2627 {
2628 if (ctxt->perm_ok)
2629 return true;
2630
2631 if (emulator_bad_iopl(ctxt))
2632 if (!emulator_io_port_access_allowed(ctxt, port, len))
2633 return false;
2634
2635 ctxt->perm_ok = true;
2636
2637 return true;
2638 }
2639
string_registers_quirk(struct x86_emulate_ctxt * ctxt)2640 static void string_registers_quirk(struct x86_emulate_ctxt *ctxt)
2641 {
2642 /*
2643 * Intel CPUs mask the counter and pointers in quite strange
2644 * manner when ECX is zero due to REP-string optimizations.
2645 */
2646 #ifdef CONFIG_X86_64
2647 if (ctxt->ad_bytes != 4 || !vendor_intel(ctxt))
2648 return;
2649
2650 *reg_write(ctxt, VCPU_REGS_RCX) = 0;
2651
2652 switch (ctxt->b) {
2653 case 0xa4: /* movsb */
2654 case 0xa5: /* movsd/w */
2655 *reg_rmw(ctxt, VCPU_REGS_RSI) &= (u32)-1;
2656 fallthrough;
2657 case 0xaa: /* stosb */
2658 case 0xab: /* stosd/w */
2659 *reg_rmw(ctxt, VCPU_REGS_RDI) &= (u32)-1;
2660 }
2661 #endif
2662 }
2663
save_state_to_tss16(struct x86_emulate_ctxt * ctxt,struct tss_segment_16 * tss)2664 static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
2665 struct tss_segment_16 *tss)
2666 {
2667 tss->ip = ctxt->_eip;
2668 tss->flag = ctxt->eflags;
2669 tss->ax = reg_read(ctxt, VCPU_REGS_RAX);
2670 tss->cx = reg_read(ctxt, VCPU_REGS_RCX);
2671 tss->dx = reg_read(ctxt, VCPU_REGS_RDX);
2672 tss->bx = reg_read(ctxt, VCPU_REGS_RBX);
2673 tss->sp = reg_read(ctxt, VCPU_REGS_RSP);
2674 tss->bp = reg_read(ctxt, VCPU_REGS_RBP);
2675 tss->si = reg_read(ctxt, VCPU_REGS_RSI);
2676 tss->di = reg_read(ctxt, VCPU_REGS_RDI);
2677
2678 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2679 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2680 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2681 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2682 tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR);
2683 }
2684
load_state_from_tss16(struct x86_emulate_ctxt * ctxt,struct tss_segment_16 * tss)2685 static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
2686 struct tss_segment_16 *tss)
2687 {
2688 int ret;
2689 u8 cpl;
2690
2691 ctxt->_eip = tss->ip;
2692 ctxt->eflags = tss->flag | 2;
2693 *reg_write(ctxt, VCPU_REGS_RAX) = tss->ax;
2694 *reg_write(ctxt, VCPU_REGS_RCX) = tss->cx;
2695 *reg_write(ctxt, VCPU_REGS_RDX) = tss->dx;
2696 *reg_write(ctxt, VCPU_REGS_RBX) = tss->bx;
2697 *reg_write(ctxt, VCPU_REGS_RSP) = tss->sp;
2698 *reg_write(ctxt, VCPU_REGS_RBP) = tss->bp;
2699 *reg_write(ctxt, VCPU_REGS_RSI) = tss->si;
2700 *reg_write(ctxt, VCPU_REGS_RDI) = tss->di;
2701
2702 /*
2703 * SDM says that segment selectors are loaded before segment
2704 * descriptors
2705 */
2706 set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR);
2707 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2708 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2709 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2710 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2711
2712 cpl = tss->cs & 3;
2713
2714 /*
2715 * Now load segment descriptors. If fault happens at this stage
2716 * it is handled in a context of new task
2717 */
2718 ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl,
2719 X86_TRANSFER_TASK_SWITCH, NULL);
2720 if (ret != X86EMUL_CONTINUE)
2721 return ret;
2722 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
2723 X86_TRANSFER_TASK_SWITCH, NULL);
2724 if (ret != X86EMUL_CONTINUE)
2725 return ret;
2726 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
2727 X86_TRANSFER_TASK_SWITCH, NULL);
2728 if (ret != X86EMUL_CONTINUE)
2729 return ret;
2730 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
2731 X86_TRANSFER_TASK_SWITCH, NULL);
2732 if (ret != X86EMUL_CONTINUE)
2733 return ret;
2734 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
2735 X86_TRANSFER_TASK_SWITCH, NULL);
2736 if (ret != X86EMUL_CONTINUE)
2737 return ret;
2738
2739 return X86EMUL_CONTINUE;
2740 }
2741
task_switch_16(struct x86_emulate_ctxt * ctxt,u16 old_tss_sel,ulong old_tss_base,struct desc_struct * new_desc)2742 static int task_switch_16(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel,
2743 ulong old_tss_base, struct desc_struct *new_desc)
2744 {
2745 struct tss_segment_16 tss_seg;
2746 int ret;
2747 u32 new_tss_base = get_desc_base(new_desc);
2748
2749 ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2750 if (ret != X86EMUL_CONTINUE)
2751 return ret;
2752
2753 save_state_to_tss16(ctxt, &tss_seg);
2754
2755 ret = linear_write_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2756 if (ret != X86EMUL_CONTINUE)
2757 return ret;
2758
2759 ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg));
2760 if (ret != X86EMUL_CONTINUE)
2761 return ret;
2762
2763 if (old_tss_sel != 0xffff) {
2764 tss_seg.prev_task_link = old_tss_sel;
2765
2766 ret = linear_write_system(ctxt, new_tss_base,
2767 &tss_seg.prev_task_link,
2768 sizeof(tss_seg.prev_task_link));
2769 if (ret != X86EMUL_CONTINUE)
2770 return ret;
2771 }
2772
2773 return load_state_from_tss16(ctxt, &tss_seg);
2774 }
2775
save_state_to_tss32(struct x86_emulate_ctxt * ctxt,struct tss_segment_32 * tss)2776 static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
2777 struct tss_segment_32 *tss)
2778 {
2779 /* CR3 and ldt selector are not saved intentionally */
2780 tss->eip = ctxt->_eip;
2781 tss->eflags = ctxt->eflags;
2782 tss->eax = reg_read(ctxt, VCPU_REGS_RAX);
2783 tss->ecx = reg_read(ctxt, VCPU_REGS_RCX);
2784 tss->edx = reg_read(ctxt, VCPU_REGS_RDX);
2785 tss->ebx = reg_read(ctxt, VCPU_REGS_RBX);
2786 tss->esp = reg_read(ctxt, VCPU_REGS_RSP);
2787 tss->ebp = reg_read(ctxt, VCPU_REGS_RBP);
2788 tss->esi = reg_read(ctxt, VCPU_REGS_RSI);
2789 tss->edi = reg_read(ctxt, VCPU_REGS_RDI);
2790
2791 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2792 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2793 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2794 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2795 tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS);
2796 tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS);
2797 }
2798
load_state_from_tss32(struct x86_emulate_ctxt * ctxt,struct tss_segment_32 * tss)2799 static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
2800 struct tss_segment_32 *tss)
2801 {
2802 int ret;
2803 u8 cpl;
2804
2805 if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
2806 return emulate_gp(ctxt, 0);
2807 ctxt->_eip = tss->eip;
2808 ctxt->eflags = tss->eflags | 2;
2809
2810 /* General purpose registers */
2811 *reg_write(ctxt, VCPU_REGS_RAX) = tss->eax;
2812 *reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx;
2813 *reg_write(ctxt, VCPU_REGS_RDX) = tss->edx;
2814 *reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx;
2815 *reg_write(ctxt, VCPU_REGS_RSP) = tss->esp;
2816 *reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp;
2817 *reg_write(ctxt, VCPU_REGS_RSI) = tss->esi;
2818 *reg_write(ctxt, VCPU_REGS_RDI) = tss->edi;
2819
2820 /*
2821 * SDM says that segment selectors are loaded before segment
2822 * descriptors. This is important because CPL checks will
2823 * use CS.RPL.
2824 */
2825 set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
2826 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2827 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2828 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2829 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2830 set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS);
2831 set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS);
2832
2833 /*
2834 * If we're switching between Protected Mode and VM86, we need to make
2835 * sure to update the mode before loading the segment descriptors so
2836 * that the selectors are interpreted correctly.
2837 */
2838 if (ctxt->eflags & X86_EFLAGS_VM) {
2839 ctxt->mode = X86EMUL_MODE_VM86;
2840 cpl = 3;
2841 } else {
2842 ctxt->mode = X86EMUL_MODE_PROT32;
2843 cpl = tss->cs & 3;
2844 }
2845
2846 /*
2847 * Now load segment descriptors. If fault happens at this stage
2848 * it is handled in a context of new task
2849 */
2850 ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR,
2851 cpl, X86_TRANSFER_TASK_SWITCH, NULL);
2852 if (ret != X86EMUL_CONTINUE)
2853 return ret;
2854 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
2855 X86_TRANSFER_TASK_SWITCH, NULL);
2856 if (ret != X86EMUL_CONTINUE)
2857 return ret;
2858 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
2859 X86_TRANSFER_TASK_SWITCH, NULL);
2860 if (ret != X86EMUL_CONTINUE)
2861 return ret;
2862 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
2863 X86_TRANSFER_TASK_SWITCH, NULL);
2864 if (ret != X86EMUL_CONTINUE)
2865 return ret;
2866 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
2867 X86_TRANSFER_TASK_SWITCH, NULL);
2868 if (ret != X86EMUL_CONTINUE)
2869 return ret;
2870 ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl,
2871 X86_TRANSFER_TASK_SWITCH, NULL);
2872 if (ret != X86EMUL_CONTINUE)
2873 return ret;
2874 ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl,
2875 X86_TRANSFER_TASK_SWITCH, NULL);
2876
2877 return ret;
2878 }
2879
task_switch_32(struct x86_emulate_ctxt * ctxt,u16 old_tss_sel,ulong old_tss_base,struct desc_struct * new_desc)2880 static int task_switch_32(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel,
2881 ulong old_tss_base, struct desc_struct *new_desc)
2882 {
2883 struct tss_segment_32 tss_seg;
2884 int ret;
2885 u32 new_tss_base = get_desc_base(new_desc);
2886 u32 eip_offset = offsetof(struct tss_segment_32, eip);
2887 u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector);
2888
2889 ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2890 if (ret != X86EMUL_CONTINUE)
2891 return ret;
2892
2893 save_state_to_tss32(ctxt, &tss_seg);
2894
2895 /* Only GP registers and segment selectors are saved */
2896 ret = linear_write_system(ctxt, old_tss_base + eip_offset, &tss_seg.eip,
2897 ldt_sel_offset - eip_offset);
2898 if (ret != X86EMUL_CONTINUE)
2899 return ret;
2900
2901 ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg));
2902 if (ret != X86EMUL_CONTINUE)
2903 return ret;
2904
2905 if (old_tss_sel != 0xffff) {
2906 tss_seg.prev_task_link = old_tss_sel;
2907
2908 ret = linear_write_system(ctxt, new_tss_base,
2909 &tss_seg.prev_task_link,
2910 sizeof(tss_seg.prev_task_link));
2911 if (ret != X86EMUL_CONTINUE)
2912 return ret;
2913 }
2914
2915 return load_state_from_tss32(ctxt, &tss_seg);
2916 }
2917
emulator_do_task_switch(struct x86_emulate_ctxt * ctxt,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)2918 static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
2919 u16 tss_selector, int idt_index, int reason,
2920 bool has_error_code, u32 error_code)
2921 {
2922 const struct x86_emulate_ops *ops = ctxt->ops;
2923 struct desc_struct curr_tss_desc, next_tss_desc;
2924 int ret;
2925 u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR);
2926 ulong old_tss_base =
2927 ops->get_cached_segment_base(ctxt, VCPU_SREG_TR);
2928 u32 desc_limit;
2929 ulong desc_addr, dr7;
2930
2931 /* FIXME: old_tss_base == ~0 ? */
2932
2933 ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr);
2934 if (ret != X86EMUL_CONTINUE)
2935 return ret;
2936 ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr);
2937 if (ret != X86EMUL_CONTINUE)
2938 return ret;
2939
2940 /* FIXME: check that next_tss_desc is tss */
2941
2942 /*
2943 * Check privileges. The three cases are task switch caused by...
2944 *
2945 * 1. jmp/call/int to task gate: Check against DPL of the task gate
2946 * 2. Exception/IRQ/iret: No check is performed
2947 * 3. jmp/call to TSS/task-gate: No check is performed since the
2948 * hardware checks it before exiting.
2949 */
2950 if (reason == TASK_SWITCH_GATE) {
2951 if (idt_index != -1) {
2952 /* Software interrupts */
2953 struct desc_struct task_gate_desc;
2954 int dpl;
2955
2956 ret = read_interrupt_descriptor(ctxt, idt_index,
2957 &task_gate_desc);
2958 if (ret != X86EMUL_CONTINUE)
2959 return ret;
2960
2961 dpl = task_gate_desc.dpl;
2962 if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
2963 return emulate_gp(ctxt, (idt_index << 3) | 0x2);
2964 }
2965 }
2966
2967 desc_limit = desc_limit_scaled(&next_tss_desc);
2968 if (!next_tss_desc.p ||
2969 ((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
2970 desc_limit < 0x2b)) {
2971 return emulate_ts(ctxt, tss_selector & 0xfffc);
2972 }
2973
2974 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
2975 curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
2976 write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
2977 }
2978
2979 if (reason == TASK_SWITCH_IRET)
2980 ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
2981
2982 /* set back link to prev task only if NT bit is set in eflags
2983 note that old_tss_sel is not used after this point */
2984 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
2985 old_tss_sel = 0xffff;
2986
2987 if (next_tss_desc.type & 8)
2988 ret = task_switch_32(ctxt, old_tss_sel, old_tss_base, &next_tss_desc);
2989 else
2990 ret = task_switch_16(ctxt, old_tss_sel,
2991 old_tss_base, &next_tss_desc);
2992 if (ret != X86EMUL_CONTINUE)
2993 return ret;
2994
2995 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
2996 ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
2997
2998 if (reason != TASK_SWITCH_IRET) {
2999 next_tss_desc.type |= (1 << 1); /* set busy flag */
3000 write_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
3001 }
3002
3003 ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS);
3004 ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR);
3005
3006 if (has_error_code) {
3007 ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
3008 ctxt->lock_prefix = 0;
3009 ctxt->src.val = (unsigned long) error_code;
3010 ret = em_push(ctxt);
3011 }
3012
3013 ops->get_dr(ctxt, 7, &dr7);
3014 ops->set_dr(ctxt, 7, dr7 & ~(DR_LOCAL_ENABLE_MASK | DR_LOCAL_SLOWDOWN));
3015
3016 return ret;
3017 }
3018
emulator_task_switch(struct x86_emulate_ctxt * ctxt,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)3019 int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
3020 u16 tss_selector, int idt_index, int reason,
3021 bool has_error_code, u32 error_code)
3022 {
3023 int rc;
3024
3025 invalidate_registers(ctxt);
3026 ctxt->_eip = ctxt->eip;
3027 ctxt->dst.type = OP_NONE;
3028
3029 rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason,
3030 has_error_code, error_code);
3031
3032 if (rc == X86EMUL_CONTINUE) {
3033 ctxt->eip = ctxt->_eip;
3034 writeback_registers(ctxt);
3035 }
3036
3037 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
3038 }
3039
string_addr_inc(struct x86_emulate_ctxt * ctxt,int reg,struct operand * op)3040 static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg,
3041 struct operand *op)
3042 {
3043 int df = (ctxt->eflags & X86_EFLAGS_DF) ? -op->count : op->count;
3044
3045 register_address_increment(ctxt, reg, df * op->bytes);
3046 op->addr.mem.ea = register_address(ctxt, reg);
3047 }
3048
em_das(struct x86_emulate_ctxt * ctxt)3049 static int em_das(struct x86_emulate_ctxt *ctxt)
3050 {
3051 u8 al, old_al;
3052 bool af, cf, old_cf;
3053
3054 cf = ctxt->eflags & X86_EFLAGS_CF;
3055 al = ctxt->dst.val;
3056
3057 old_al = al;
3058 old_cf = cf;
3059 cf = false;
3060 af = ctxt->eflags & X86_EFLAGS_AF;
3061 if ((al & 0x0f) > 9 || af) {
3062 al -= 6;
3063 cf = old_cf | (al >= 250);
3064 af = true;
3065 } else {
3066 af = false;
3067 }
3068 if (old_al > 0x99 || old_cf) {
3069 al -= 0x60;
3070 cf = true;
3071 }
3072
3073 ctxt->dst.val = al;
3074 /* Set PF, ZF, SF */
3075 ctxt->src.type = OP_IMM;
3076 ctxt->src.val = 0;
3077 ctxt->src.bytes = 1;
3078 fastop(ctxt, em_or);
3079 ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
3080 if (cf)
3081 ctxt->eflags |= X86_EFLAGS_CF;
3082 if (af)
3083 ctxt->eflags |= X86_EFLAGS_AF;
3084 return X86EMUL_CONTINUE;
3085 }
3086
em_aam(struct x86_emulate_ctxt * ctxt)3087 static int em_aam(struct x86_emulate_ctxt *ctxt)
3088 {
3089 u8 al, ah;
3090
3091 if (ctxt->src.val == 0)
3092 return emulate_de(ctxt);
3093
3094 al = ctxt->dst.val & 0xff;
3095 ah = al / ctxt->src.val;
3096 al %= ctxt->src.val;
3097
3098 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8);
3099
3100 /* Set PF, ZF, SF */
3101 ctxt->src.type = OP_IMM;
3102 ctxt->src.val = 0;
3103 ctxt->src.bytes = 1;
3104 fastop(ctxt, em_or);
3105
3106 return X86EMUL_CONTINUE;
3107 }
3108
em_aad(struct x86_emulate_ctxt * ctxt)3109 static int em_aad(struct x86_emulate_ctxt *ctxt)
3110 {
3111 u8 al = ctxt->dst.val & 0xff;
3112 u8 ah = (ctxt->dst.val >> 8) & 0xff;
3113
3114 al = (al + (ah * ctxt->src.val)) & 0xff;
3115
3116 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al;
3117
3118 /* Set PF, ZF, SF */
3119 ctxt->src.type = OP_IMM;
3120 ctxt->src.val = 0;
3121 ctxt->src.bytes = 1;
3122 fastop(ctxt, em_or);
3123
3124 return X86EMUL_CONTINUE;
3125 }
3126
em_call(struct x86_emulate_ctxt * ctxt)3127 static int em_call(struct x86_emulate_ctxt *ctxt)
3128 {
3129 int rc;
3130 long rel = ctxt->src.val;
3131
3132 ctxt->src.val = (unsigned long)ctxt->_eip;
3133 rc = jmp_rel(ctxt, rel);
3134 if (rc != X86EMUL_CONTINUE)
3135 return rc;
3136 return em_push(ctxt);
3137 }
3138
em_call_far(struct x86_emulate_ctxt * ctxt)3139 static int em_call_far(struct x86_emulate_ctxt *ctxt)
3140 {
3141 u16 sel, old_cs;
3142 ulong old_eip;
3143 int rc;
3144 struct desc_struct old_desc, new_desc;
3145 const struct x86_emulate_ops *ops = ctxt->ops;
3146 int cpl = ctxt->ops->cpl(ctxt);
3147 enum x86emul_mode prev_mode = ctxt->mode;
3148
3149 old_eip = ctxt->_eip;
3150 ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS);
3151
3152 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
3153 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
3154 X86_TRANSFER_CALL_JMP, &new_desc);
3155 if (rc != X86EMUL_CONTINUE)
3156 return rc;
3157
3158 rc = assign_eip_far(ctxt, ctxt->src.val);
3159 if (rc != X86EMUL_CONTINUE)
3160 goto fail;
3161
3162 ctxt->src.val = old_cs;
3163 rc = em_push(ctxt);
3164 if (rc != X86EMUL_CONTINUE)
3165 goto fail;
3166
3167 ctxt->src.val = old_eip;
3168 rc = em_push(ctxt);
3169 /* If we failed, we tainted the memory, but the very least we should
3170 restore cs */
3171 if (rc != X86EMUL_CONTINUE) {
3172 pr_warn_once("faulting far call emulation tainted memory\n");
3173 goto fail;
3174 }
3175 return rc;
3176 fail:
3177 ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
3178 ctxt->mode = prev_mode;
3179 return rc;
3180
3181 }
3182
em_ret_near_imm(struct x86_emulate_ctxt * ctxt)3183 static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
3184 {
3185 int rc;
3186 unsigned long eip;
3187
3188 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
3189 if (rc != X86EMUL_CONTINUE)
3190 return rc;
3191 rc = assign_eip_near(ctxt, eip);
3192 if (rc != X86EMUL_CONTINUE)
3193 return rc;
3194 rsp_increment(ctxt, ctxt->src.val);
3195 return X86EMUL_CONTINUE;
3196 }
3197
em_xchg(struct x86_emulate_ctxt * ctxt)3198 static int em_xchg(struct x86_emulate_ctxt *ctxt)
3199 {
3200 /* Write back the register source. */
3201 ctxt->src.val = ctxt->dst.val;
3202 write_register_operand(&ctxt->src);
3203
3204 /* Write back the memory destination with implicit LOCK prefix. */
3205 ctxt->dst.val = ctxt->src.orig_val;
3206 ctxt->lock_prefix = 1;
3207 return X86EMUL_CONTINUE;
3208 }
3209
em_imul_3op(struct x86_emulate_ctxt * ctxt)3210 static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
3211 {
3212 ctxt->dst.val = ctxt->src2.val;
3213 return fastop(ctxt, em_imul);
3214 }
3215
em_cwd(struct x86_emulate_ctxt * ctxt)3216 static int em_cwd(struct x86_emulate_ctxt *ctxt)
3217 {
3218 ctxt->dst.type = OP_REG;
3219 ctxt->dst.bytes = ctxt->src.bytes;
3220 ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
3221 ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1);
3222
3223 return X86EMUL_CONTINUE;
3224 }
3225
em_rdpid(struct x86_emulate_ctxt * ctxt)3226 static int em_rdpid(struct x86_emulate_ctxt *ctxt)
3227 {
3228 u64 tsc_aux = 0;
3229
3230 if (!ctxt->ops->guest_has_rdpid(ctxt))
3231 return emulate_ud(ctxt);
3232
3233 ctxt->ops->get_msr(ctxt, MSR_TSC_AUX, &tsc_aux);
3234 ctxt->dst.val = tsc_aux;
3235 return X86EMUL_CONTINUE;
3236 }
3237
em_rdtsc(struct x86_emulate_ctxt * ctxt)3238 static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
3239 {
3240 u64 tsc = 0;
3241
3242 ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc);
3243 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc;
3244 *reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32;
3245 return X86EMUL_CONTINUE;
3246 }
3247
em_rdpmc(struct x86_emulate_ctxt * ctxt)3248 static int em_rdpmc(struct x86_emulate_ctxt *ctxt)
3249 {
3250 u64 pmc;
3251
3252 if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc))
3253 return emulate_gp(ctxt, 0);
3254 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc;
3255 *reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32;
3256 return X86EMUL_CONTINUE;
3257 }
3258
em_mov(struct x86_emulate_ctxt * ctxt)3259 static int em_mov(struct x86_emulate_ctxt *ctxt)
3260 {
3261 memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr));
3262 return X86EMUL_CONTINUE;
3263 }
3264
em_movbe(struct x86_emulate_ctxt * ctxt)3265 static int em_movbe(struct x86_emulate_ctxt *ctxt)
3266 {
3267 u16 tmp;
3268
3269 if (!ctxt->ops->guest_has_movbe(ctxt))
3270 return emulate_ud(ctxt);
3271
3272 switch (ctxt->op_bytes) {
3273 case 2:
3274 /*
3275 * From MOVBE definition: "...When the operand size is 16 bits,
3276 * the upper word of the destination register remains unchanged
3277 * ..."
3278 *
3279 * Both casting ->valptr and ->val to u16 breaks strict aliasing
3280 * rules so we have to do the operation almost per hand.
3281 */
3282 tmp = (u16)ctxt->src.val;
3283 ctxt->dst.val &= ~0xffffUL;
3284 ctxt->dst.val |= (unsigned long)swab16(tmp);
3285 break;
3286 case 4:
3287 ctxt->dst.val = swab32((u32)ctxt->src.val);
3288 break;
3289 case 8:
3290 ctxt->dst.val = swab64(ctxt->src.val);
3291 break;
3292 default:
3293 BUG();
3294 }
3295 return X86EMUL_CONTINUE;
3296 }
3297
em_cr_write(struct x86_emulate_ctxt * ctxt)3298 static int em_cr_write(struct x86_emulate_ctxt *ctxt)
3299 {
3300 int cr_num = ctxt->modrm_reg;
3301 int r;
3302
3303 if (ctxt->ops->set_cr(ctxt, cr_num, ctxt->src.val))
3304 return emulate_gp(ctxt, 0);
3305
3306 /* Disable writeback. */
3307 ctxt->dst.type = OP_NONE;
3308
3309 if (cr_num == 0) {
3310 /*
3311 * CR0 write might have updated CR0.PE and/or CR0.PG
3312 * which can affect the cpu's execution mode.
3313 */
3314 r = emulator_recalc_and_set_mode(ctxt);
3315 if (r != X86EMUL_CONTINUE)
3316 return r;
3317 }
3318
3319 return X86EMUL_CONTINUE;
3320 }
3321
em_dr_write(struct x86_emulate_ctxt * ctxt)3322 static int em_dr_write(struct x86_emulate_ctxt *ctxt)
3323 {
3324 unsigned long val;
3325
3326 if (ctxt->mode == X86EMUL_MODE_PROT64)
3327 val = ctxt->src.val & ~0ULL;
3328 else
3329 val = ctxt->src.val & ~0U;
3330
3331 /* #UD condition is already handled. */
3332 if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0)
3333 return emulate_gp(ctxt, 0);
3334
3335 /* Disable writeback. */
3336 ctxt->dst.type = OP_NONE;
3337 return X86EMUL_CONTINUE;
3338 }
3339
em_wrmsr(struct x86_emulate_ctxt * ctxt)3340 static int em_wrmsr(struct x86_emulate_ctxt *ctxt)
3341 {
3342 u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
3343 u64 msr_data;
3344 int r;
3345
3346 msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX)
3347 | ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32);
3348 r = ctxt->ops->set_msr_with_filter(ctxt, msr_index, msr_data);
3349
3350 if (r == X86EMUL_PROPAGATE_FAULT)
3351 return emulate_gp(ctxt, 0);
3352
3353 return r;
3354 }
3355
em_rdmsr(struct x86_emulate_ctxt * ctxt)3356 static int em_rdmsr(struct x86_emulate_ctxt *ctxt)
3357 {
3358 u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
3359 u64 msr_data;
3360 int r;
3361
3362 r = ctxt->ops->get_msr_with_filter(ctxt, msr_index, &msr_data);
3363
3364 if (r == X86EMUL_PROPAGATE_FAULT)
3365 return emulate_gp(ctxt, 0);
3366
3367 if (r == X86EMUL_CONTINUE) {
3368 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data;
3369 *reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32;
3370 }
3371 return r;
3372 }
3373
em_store_sreg(struct x86_emulate_ctxt * ctxt,int segment)3374 static int em_store_sreg(struct x86_emulate_ctxt *ctxt, int segment)
3375 {
3376 if (segment > VCPU_SREG_GS &&
3377 (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3378 ctxt->ops->cpl(ctxt) > 0)
3379 return emulate_gp(ctxt, 0);
3380
3381 ctxt->dst.val = get_segment_selector(ctxt, segment);
3382 if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM)
3383 ctxt->dst.bytes = 2;
3384 return X86EMUL_CONTINUE;
3385 }
3386
em_mov_rm_sreg(struct x86_emulate_ctxt * ctxt)3387 static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt)
3388 {
3389 if (ctxt->modrm_reg > VCPU_SREG_GS)
3390 return emulate_ud(ctxt);
3391
3392 return em_store_sreg(ctxt, ctxt->modrm_reg);
3393 }
3394
em_mov_sreg_rm(struct x86_emulate_ctxt * ctxt)3395 static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt)
3396 {
3397 u16 sel = ctxt->src.val;
3398
3399 if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS)
3400 return emulate_ud(ctxt);
3401
3402 if (ctxt->modrm_reg == VCPU_SREG_SS)
3403 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
3404
3405 /* Disable writeback. */
3406 ctxt->dst.type = OP_NONE;
3407 return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg);
3408 }
3409
em_sldt(struct x86_emulate_ctxt * ctxt)3410 static int em_sldt(struct x86_emulate_ctxt *ctxt)
3411 {
3412 return em_store_sreg(ctxt, VCPU_SREG_LDTR);
3413 }
3414
em_lldt(struct x86_emulate_ctxt * ctxt)3415 static int em_lldt(struct x86_emulate_ctxt *ctxt)
3416 {
3417 u16 sel = ctxt->src.val;
3418
3419 /* Disable writeback. */
3420 ctxt->dst.type = OP_NONE;
3421 return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR);
3422 }
3423
em_str(struct x86_emulate_ctxt * ctxt)3424 static int em_str(struct x86_emulate_ctxt *ctxt)
3425 {
3426 return em_store_sreg(ctxt, VCPU_SREG_TR);
3427 }
3428
em_ltr(struct x86_emulate_ctxt * ctxt)3429 static int em_ltr(struct x86_emulate_ctxt *ctxt)
3430 {
3431 u16 sel = ctxt->src.val;
3432
3433 /* Disable writeback. */
3434 ctxt->dst.type = OP_NONE;
3435 return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR);
3436 }
3437
em_invlpg(struct x86_emulate_ctxt * ctxt)3438 static int em_invlpg(struct x86_emulate_ctxt *ctxt)
3439 {
3440 int rc;
3441 ulong linear;
3442
3443 rc = linearize(ctxt, ctxt->src.addr.mem, 1, false, &linear);
3444 if (rc == X86EMUL_CONTINUE)
3445 ctxt->ops->invlpg(ctxt, linear);
3446 /* Disable writeback. */
3447 ctxt->dst.type = OP_NONE;
3448 return X86EMUL_CONTINUE;
3449 }
3450
em_clts(struct x86_emulate_ctxt * ctxt)3451 static int em_clts(struct x86_emulate_ctxt *ctxt)
3452 {
3453 ulong cr0;
3454
3455 cr0 = ctxt->ops->get_cr(ctxt, 0);
3456 cr0 &= ~X86_CR0_TS;
3457 ctxt->ops->set_cr(ctxt, 0, cr0);
3458 return X86EMUL_CONTINUE;
3459 }
3460
em_hypercall(struct x86_emulate_ctxt * ctxt)3461 static int em_hypercall(struct x86_emulate_ctxt *ctxt)
3462 {
3463 int rc = ctxt->ops->fix_hypercall(ctxt);
3464
3465 if (rc != X86EMUL_CONTINUE)
3466 return rc;
3467
3468 /* Let the processor re-execute the fixed hypercall */
3469 ctxt->_eip = ctxt->eip;
3470 /* Disable writeback. */
3471 ctxt->dst.type = OP_NONE;
3472 return X86EMUL_CONTINUE;
3473 }
3474
emulate_store_desc_ptr(struct x86_emulate_ctxt * ctxt,void (* get)(struct x86_emulate_ctxt * ctxt,struct desc_ptr * ptr))3475 static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt,
3476 void (*get)(struct x86_emulate_ctxt *ctxt,
3477 struct desc_ptr *ptr))
3478 {
3479 struct desc_ptr desc_ptr;
3480
3481 if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3482 ctxt->ops->cpl(ctxt) > 0)
3483 return emulate_gp(ctxt, 0);
3484
3485 if (ctxt->mode == X86EMUL_MODE_PROT64)
3486 ctxt->op_bytes = 8;
3487 get(ctxt, &desc_ptr);
3488 if (ctxt->op_bytes == 2) {
3489 ctxt->op_bytes = 4;
3490 desc_ptr.address &= 0x00ffffff;
3491 }
3492 /* Disable writeback. */
3493 ctxt->dst.type = OP_NONE;
3494 return segmented_write_std(ctxt, ctxt->dst.addr.mem,
3495 &desc_ptr, 2 + ctxt->op_bytes);
3496 }
3497
em_sgdt(struct x86_emulate_ctxt * ctxt)3498 static int em_sgdt(struct x86_emulate_ctxt *ctxt)
3499 {
3500 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt);
3501 }
3502
em_sidt(struct x86_emulate_ctxt * ctxt)3503 static int em_sidt(struct x86_emulate_ctxt *ctxt)
3504 {
3505 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt);
3506 }
3507
em_lgdt_lidt(struct x86_emulate_ctxt * ctxt,bool lgdt)3508 static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt)
3509 {
3510 struct desc_ptr desc_ptr;
3511 int rc;
3512
3513 if (ctxt->mode == X86EMUL_MODE_PROT64)
3514 ctxt->op_bytes = 8;
3515 rc = read_descriptor(ctxt, ctxt->src.addr.mem,
3516 &desc_ptr.size, &desc_ptr.address,
3517 ctxt->op_bytes);
3518 if (rc != X86EMUL_CONTINUE)
3519 return rc;
3520 if (ctxt->mode == X86EMUL_MODE_PROT64 &&
3521 emul_is_noncanonical_address(desc_ptr.address, ctxt))
3522 return emulate_gp(ctxt, 0);
3523 if (lgdt)
3524 ctxt->ops->set_gdt(ctxt, &desc_ptr);
3525 else
3526 ctxt->ops->set_idt(ctxt, &desc_ptr);
3527 /* Disable writeback. */
3528 ctxt->dst.type = OP_NONE;
3529 return X86EMUL_CONTINUE;
3530 }
3531
em_lgdt(struct x86_emulate_ctxt * ctxt)3532 static int em_lgdt(struct x86_emulate_ctxt *ctxt)
3533 {
3534 return em_lgdt_lidt(ctxt, true);
3535 }
3536
em_lidt(struct x86_emulate_ctxt * ctxt)3537 static int em_lidt(struct x86_emulate_ctxt *ctxt)
3538 {
3539 return em_lgdt_lidt(ctxt, false);
3540 }
3541
em_smsw(struct x86_emulate_ctxt * ctxt)3542 static int em_smsw(struct x86_emulate_ctxt *ctxt)
3543 {
3544 if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3545 ctxt->ops->cpl(ctxt) > 0)
3546 return emulate_gp(ctxt, 0);
3547
3548 if (ctxt->dst.type == OP_MEM)
3549 ctxt->dst.bytes = 2;
3550 ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0);
3551 return X86EMUL_CONTINUE;
3552 }
3553
em_lmsw(struct x86_emulate_ctxt * ctxt)3554 static int em_lmsw(struct x86_emulate_ctxt *ctxt)
3555 {
3556 ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul)
3557 | (ctxt->src.val & 0x0f));
3558 ctxt->dst.type = OP_NONE;
3559 return X86EMUL_CONTINUE;
3560 }
3561
em_loop(struct x86_emulate_ctxt * ctxt)3562 static int em_loop(struct x86_emulate_ctxt *ctxt)
3563 {
3564 int rc = X86EMUL_CONTINUE;
3565
3566 register_address_increment(ctxt, VCPU_REGS_RCX, -1);
3567 if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) &&
3568 (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags)))
3569 rc = jmp_rel(ctxt, ctxt->src.val);
3570
3571 return rc;
3572 }
3573
em_jcxz(struct x86_emulate_ctxt * ctxt)3574 static int em_jcxz(struct x86_emulate_ctxt *ctxt)
3575 {
3576 int rc = X86EMUL_CONTINUE;
3577
3578 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0)
3579 rc = jmp_rel(ctxt, ctxt->src.val);
3580
3581 return rc;
3582 }
3583
em_in(struct x86_emulate_ctxt * ctxt)3584 static int em_in(struct x86_emulate_ctxt *ctxt)
3585 {
3586 if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val,
3587 &ctxt->dst.val))
3588 return X86EMUL_IO_NEEDED;
3589
3590 return X86EMUL_CONTINUE;
3591 }
3592
em_out(struct x86_emulate_ctxt * ctxt)3593 static int em_out(struct x86_emulate_ctxt *ctxt)
3594 {
3595 ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val,
3596 &ctxt->src.val, 1);
3597 /* Disable writeback. */
3598 ctxt->dst.type = OP_NONE;
3599 return X86EMUL_CONTINUE;
3600 }
3601
em_cli(struct x86_emulate_ctxt * ctxt)3602 static int em_cli(struct x86_emulate_ctxt *ctxt)
3603 {
3604 if (emulator_bad_iopl(ctxt))
3605 return emulate_gp(ctxt, 0);
3606
3607 ctxt->eflags &= ~X86_EFLAGS_IF;
3608 return X86EMUL_CONTINUE;
3609 }
3610
em_sti(struct x86_emulate_ctxt * ctxt)3611 static int em_sti(struct x86_emulate_ctxt *ctxt)
3612 {
3613 if (emulator_bad_iopl(ctxt))
3614 return emulate_gp(ctxt, 0);
3615
3616 ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
3617 ctxt->eflags |= X86_EFLAGS_IF;
3618 return X86EMUL_CONTINUE;
3619 }
3620
em_cpuid(struct x86_emulate_ctxt * ctxt)3621 static int em_cpuid(struct x86_emulate_ctxt *ctxt)
3622 {
3623 u32 eax, ebx, ecx, edx;
3624 u64 msr = 0;
3625
3626 ctxt->ops->get_msr(ctxt, MSR_MISC_FEATURES_ENABLES, &msr);
3627 if (msr & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3628 ctxt->ops->cpl(ctxt)) {
3629 return emulate_gp(ctxt, 0);
3630 }
3631
3632 eax = reg_read(ctxt, VCPU_REGS_RAX);
3633 ecx = reg_read(ctxt, VCPU_REGS_RCX);
3634 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false);
3635 *reg_write(ctxt, VCPU_REGS_RAX) = eax;
3636 *reg_write(ctxt, VCPU_REGS_RBX) = ebx;
3637 *reg_write(ctxt, VCPU_REGS_RCX) = ecx;
3638 *reg_write(ctxt, VCPU_REGS_RDX) = edx;
3639 return X86EMUL_CONTINUE;
3640 }
3641
em_sahf(struct x86_emulate_ctxt * ctxt)3642 static int em_sahf(struct x86_emulate_ctxt *ctxt)
3643 {
3644 u32 flags;
3645
3646 flags = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
3647 X86_EFLAGS_SF;
3648 flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8;
3649
3650 ctxt->eflags &= ~0xffUL;
3651 ctxt->eflags |= flags | X86_EFLAGS_FIXED;
3652 return X86EMUL_CONTINUE;
3653 }
3654
em_lahf(struct x86_emulate_ctxt * ctxt)3655 static int em_lahf(struct x86_emulate_ctxt *ctxt)
3656 {
3657 *reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL;
3658 *reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8;
3659 return X86EMUL_CONTINUE;
3660 }
3661
em_bswap(struct x86_emulate_ctxt * ctxt)3662 static int em_bswap(struct x86_emulate_ctxt *ctxt)
3663 {
3664 switch (ctxt->op_bytes) {
3665 #ifdef CONFIG_X86_64
3666 case 8:
3667 asm("bswap %0" : "+r"(ctxt->dst.val));
3668 break;
3669 #endif
3670 default:
3671 asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val));
3672 break;
3673 }
3674 return X86EMUL_CONTINUE;
3675 }
3676
em_clflush(struct x86_emulate_ctxt * ctxt)3677 static int em_clflush(struct x86_emulate_ctxt *ctxt)
3678 {
3679 /* emulating clflush regardless of cpuid */
3680 return X86EMUL_CONTINUE;
3681 }
3682
em_clflushopt(struct x86_emulate_ctxt * ctxt)3683 static int em_clflushopt(struct x86_emulate_ctxt *ctxt)
3684 {
3685 /* emulating clflushopt regardless of cpuid */
3686 return X86EMUL_CONTINUE;
3687 }
3688
em_movsxd(struct x86_emulate_ctxt * ctxt)3689 static int em_movsxd(struct x86_emulate_ctxt *ctxt)
3690 {
3691 ctxt->dst.val = (s32) ctxt->src.val;
3692 return X86EMUL_CONTINUE;
3693 }
3694
check_fxsr(struct x86_emulate_ctxt * ctxt)3695 static int check_fxsr(struct x86_emulate_ctxt *ctxt)
3696 {
3697 if (!ctxt->ops->guest_has_fxsr(ctxt))
3698 return emulate_ud(ctxt);
3699
3700 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
3701 return emulate_nm(ctxt);
3702
3703 /*
3704 * Don't emulate a case that should never be hit, instead of working
3705 * around a lack of fxsave64/fxrstor64 on old compilers.
3706 */
3707 if (ctxt->mode >= X86EMUL_MODE_PROT64)
3708 return X86EMUL_UNHANDLEABLE;
3709
3710 return X86EMUL_CONTINUE;
3711 }
3712
3713 /*
3714 * Hardware doesn't save and restore XMM 0-7 without CR4.OSFXSR, but does save
3715 * and restore MXCSR.
3716 */
__fxstate_size(int nregs)3717 static size_t __fxstate_size(int nregs)
3718 {
3719 return offsetof(struct fxregs_state, xmm_space[0]) + nregs * 16;
3720 }
3721
fxstate_size(struct x86_emulate_ctxt * ctxt)3722 static inline size_t fxstate_size(struct x86_emulate_ctxt *ctxt)
3723 {
3724 bool cr4_osfxsr;
3725 if (ctxt->mode == X86EMUL_MODE_PROT64)
3726 return __fxstate_size(16);
3727
3728 cr4_osfxsr = ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR;
3729 return __fxstate_size(cr4_osfxsr ? 8 : 0);
3730 }
3731
3732 /*
3733 * FXSAVE and FXRSTOR have 4 different formats depending on execution mode,
3734 * 1) 16 bit mode
3735 * 2) 32 bit mode
3736 * - like (1), but FIP and FDP (foo) are only 16 bit. At least Intel CPUs
3737 * preserve whole 32 bit values, though, so (1) and (2) are the same wrt.
3738 * save and restore
3739 * 3) 64-bit mode with REX.W prefix
3740 * - like (2), but XMM 8-15 are being saved and restored
3741 * 4) 64-bit mode without REX.W prefix
3742 * - like (3), but FIP and FDP are 64 bit
3743 *
3744 * Emulation uses (3) for (1) and (2) and preserves XMM 8-15 to reach the
3745 * desired result. (4) is not emulated.
3746 *
3747 * Note: Guest and host CPUID.(EAX=07H,ECX=0H):EBX[bit 13] (deprecate FPU CS
3748 * and FPU DS) should match.
3749 */
em_fxsave(struct x86_emulate_ctxt * ctxt)3750 static int em_fxsave(struct x86_emulate_ctxt *ctxt)
3751 {
3752 struct fxregs_state fx_state;
3753 int rc;
3754
3755 rc = check_fxsr(ctxt);
3756 if (rc != X86EMUL_CONTINUE)
3757 return rc;
3758
3759 kvm_fpu_get();
3760
3761 rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_state));
3762
3763 kvm_fpu_put();
3764
3765 if (rc != X86EMUL_CONTINUE)
3766 return rc;
3767
3768 return segmented_write_std(ctxt, ctxt->memop.addr.mem, &fx_state,
3769 fxstate_size(ctxt));
3770 }
3771
3772 /*
3773 * FXRSTOR might restore XMM registers not provided by the guest. Fill
3774 * in the host registers (via FXSAVE) instead, so they won't be modified.
3775 * (preemption has to stay disabled until FXRSTOR).
3776 *
3777 * Use noinline to keep the stack for other functions called by callers small.
3778 */
fxregs_fixup(struct fxregs_state * fx_state,const size_t used_size)3779 static noinline int fxregs_fixup(struct fxregs_state *fx_state,
3780 const size_t used_size)
3781 {
3782 struct fxregs_state fx_tmp;
3783 int rc;
3784
3785 rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_tmp));
3786 memcpy((void *)fx_state + used_size, (void *)&fx_tmp + used_size,
3787 __fxstate_size(16) - used_size);
3788
3789 return rc;
3790 }
3791
em_fxrstor(struct x86_emulate_ctxt * ctxt)3792 static int em_fxrstor(struct x86_emulate_ctxt *ctxt)
3793 {
3794 struct fxregs_state fx_state;
3795 int rc;
3796 size_t size;
3797
3798 rc = check_fxsr(ctxt);
3799 if (rc != X86EMUL_CONTINUE)
3800 return rc;
3801
3802 size = fxstate_size(ctxt);
3803 rc = segmented_read_std(ctxt, ctxt->memop.addr.mem, &fx_state, size);
3804 if (rc != X86EMUL_CONTINUE)
3805 return rc;
3806
3807 kvm_fpu_get();
3808
3809 if (size < __fxstate_size(16)) {
3810 rc = fxregs_fixup(&fx_state, size);
3811 if (rc != X86EMUL_CONTINUE)
3812 goto out;
3813 }
3814
3815 if (fx_state.mxcsr >> 16) {
3816 rc = emulate_gp(ctxt, 0);
3817 goto out;
3818 }
3819
3820 if (rc == X86EMUL_CONTINUE)
3821 rc = asm_safe("fxrstor %[fx]", : [fx] "m"(fx_state));
3822
3823 out:
3824 kvm_fpu_put();
3825
3826 return rc;
3827 }
3828
em_xsetbv(struct x86_emulate_ctxt * ctxt)3829 static int em_xsetbv(struct x86_emulate_ctxt *ctxt)
3830 {
3831 u32 eax, ecx, edx;
3832
3833 if (!(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSXSAVE))
3834 return emulate_ud(ctxt);
3835
3836 eax = reg_read(ctxt, VCPU_REGS_RAX);
3837 edx = reg_read(ctxt, VCPU_REGS_RDX);
3838 ecx = reg_read(ctxt, VCPU_REGS_RCX);
3839
3840 if (ctxt->ops->set_xcr(ctxt, ecx, ((u64)edx << 32) | eax))
3841 return emulate_gp(ctxt, 0);
3842
3843 return X86EMUL_CONTINUE;
3844 }
3845
valid_cr(int nr)3846 static bool valid_cr(int nr)
3847 {
3848 switch (nr) {
3849 case 0:
3850 case 2 ... 4:
3851 case 8:
3852 return true;
3853 default:
3854 return false;
3855 }
3856 }
3857
check_cr_access(struct x86_emulate_ctxt * ctxt)3858 static int check_cr_access(struct x86_emulate_ctxt *ctxt)
3859 {
3860 if (!valid_cr(ctxt->modrm_reg))
3861 return emulate_ud(ctxt);
3862
3863 return X86EMUL_CONTINUE;
3864 }
3865
check_dr7_gd(struct x86_emulate_ctxt * ctxt)3866 static int check_dr7_gd(struct x86_emulate_ctxt *ctxt)
3867 {
3868 unsigned long dr7;
3869
3870 ctxt->ops->get_dr(ctxt, 7, &dr7);
3871
3872 return dr7 & DR7_GD;
3873 }
3874
check_dr_read(struct x86_emulate_ctxt * ctxt)3875 static int check_dr_read(struct x86_emulate_ctxt *ctxt)
3876 {
3877 int dr = ctxt->modrm_reg;
3878 u64 cr4;
3879
3880 if (dr > 7)
3881 return emulate_ud(ctxt);
3882
3883 cr4 = ctxt->ops->get_cr(ctxt, 4);
3884 if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5))
3885 return emulate_ud(ctxt);
3886
3887 if (check_dr7_gd(ctxt)) {
3888 ulong dr6;
3889
3890 ctxt->ops->get_dr(ctxt, 6, &dr6);
3891 dr6 &= ~DR_TRAP_BITS;
3892 dr6 |= DR6_BD | DR6_ACTIVE_LOW;
3893 ctxt->ops->set_dr(ctxt, 6, dr6);
3894 return emulate_db(ctxt);
3895 }
3896
3897 return X86EMUL_CONTINUE;
3898 }
3899
check_dr_write(struct x86_emulate_ctxt * ctxt)3900 static int check_dr_write(struct x86_emulate_ctxt *ctxt)
3901 {
3902 u64 new_val = ctxt->src.val64;
3903 int dr = ctxt->modrm_reg;
3904
3905 if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL))
3906 return emulate_gp(ctxt, 0);
3907
3908 return check_dr_read(ctxt);
3909 }
3910
check_svme(struct x86_emulate_ctxt * ctxt)3911 static int check_svme(struct x86_emulate_ctxt *ctxt)
3912 {
3913 u64 efer = 0;
3914
3915 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
3916
3917 if (!(efer & EFER_SVME))
3918 return emulate_ud(ctxt);
3919
3920 return X86EMUL_CONTINUE;
3921 }
3922
check_svme_pa(struct x86_emulate_ctxt * ctxt)3923 static int check_svme_pa(struct x86_emulate_ctxt *ctxt)
3924 {
3925 u64 rax = reg_read(ctxt, VCPU_REGS_RAX);
3926
3927 /* Valid physical address? */
3928 if (rax & 0xffff000000000000ULL)
3929 return emulate_gp(ctxt, 0);
3930
3931 return check_svme(ctxt);
3932 }
3933
check_rdtsc(struct x86_emulate_ctxt * ctxt)3934 static int check_rdtsc(struct x86_emulate_ctxt *ctxt)
3935 {
3936 u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
3937
3938 if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt))
3939 return emulate_gp(ctxt, 0);
3940
3941 return X86EMUL_CONTINUE;
3942 }
3943
check_rdpmc(struct x86_emulate_ctxt * ctxt)3944 static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
3945 {
3946 u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
3947 u64 rcx = reg_read(ctxt, VCPU_REGS_RCX);
3948
3949 /*
3950 * VMware allows access to these Pseduo-PMCs even when read via RDPMC
3951 * in Ring3 when CR4.PCE=0.
3952 */
3953 if (enable_vmware_backdoor && is_vmware_backdoor_pmc(rcx))
3954 return X86EMUL_CONTINUE;
3955
3956 /*
3957 * If CR4.PCE is set, the SDM requires CPL=0 or CR0.PE=0. The CR0.PE
3958 * check however is unnecessary because CPL is always 0 outside
3959 * protected mode.
3960 */
3961 if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) ||
3962 ctxt->ops->check_pmc(ctxt, rcx))
3963 return emulate_gp(ctxt, 0);
3964
3965 return X86EMUL_CONTINUE;
3966 }
3967
check_perm_in(struct x86_emulate_ctxt * ctxt)3968 static int check_perm_in(struct x86_emulate_ctxt *ctxt)
3969 {
3970 ctxt->dst.bytes = min(ctxt->dst.bytes, 4u);
3971 if (!emulator_io_permitted(ctxt, ctxt->src.val, ctxt->dst.bytes))
3972 return emulate_gp(ctxt, 0);
3973
3974 return X86EMUL_CONTINUE;
3975 }
3976
check_perm_out(struct x86_emulate_ctxt * ctxt)3977 static int check_perm_out(struct x86_emulate_ctxt *ctxt)
3978 {
3979 ctxt->src.bytes = min(ctxt->src.bytes, 4u);
3980 if (!emulator_io_permitted(ctxt, ctxt->dst.val, ctxt->src.bytes))
3981 return emulate_gp(ctxt, 0);
3982
3983 return X86EMUL_CONTINUE;
3984 }
3985
3986 #define D(_y) { .flags = (_y) }
3987 #define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i }
3988 #define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \
3989 .intercept = x86_intercept_##_i, .check_perm = (_p) }
3990 #define N D(NotImpl)
3991 #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) }
3992 #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) }
3993 #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) }
3994 #define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) }
3995 #define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) }
3996 #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) }
3997 #define I(_f, _e) { .flags = (_f), .u.execute = (_e) }
3998 #define F(_f, _e) { .flags = (_f) | Fastop, .u.fastop = (_e) }
3999 #define II(_f, _e, _i) \
4000 { .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i }
4001 #define IIP(_f, _e, _i, _p) \
4002 { .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \
4003 .intercept = x86_intercept_##_i, .check_perm = (_p) }
4004 #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) }
4005
4006 #define D2bv(_f) D((_f) | ByteOp), D(_f)
4007 #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p)
4008 #define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e)
4009 #define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e)
4010 #define I2bvIP(_f, _e, _i, _p) \
4011 IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p)
4012
4013 #define F6ALU(_f, _e) F2bv((_f) | DstMem | SrcReg | ModRM, _e), \
4014 F2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \
4015 F2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e)
4016
4017 static const struct opcode group7_rm0[] = {
4018 N,
4019 I(SrcNone | Priv | EmulateOnUD, em_hypercall),
4020 N, N, N, N, N, N,
4021 };
4022
4023 static const struct opcode group7_rm1[] = {
4024 DI(SrcNone | Priv, monitor),
4025 DI(SrcNone | Priv, mwait),
4026 N, N, N, N, N, N,
4027 };
4028
4029 static const struct opcode group7_rm2[] = {
4030 N,
4031 II(ImplicitOps | Priv, em_xsetbv, xsetbv),
4032 N, N, N, N, N, N,
4033 };
4034
4035 static const struct opcode group7_rm3[] = {
4036 DIP(SrcNone | Prot | Priv, vmrun, check_svme_pa),
4037 II(SrcNone | Prot | EmulateOnUD, em_hypercall, vmmcall),
4038 DIP(SrcNone | Prot | Priv, vmload, check_svme_pa),
4039 DIP(SrcNone | Prot | Priv, vmsave, check_svme_pa),
4040 DIP(SrcNone | Prot | Priv, stgi, check_svme),
4041 DIP(SrcNone | Prot | Priv, clgi, check_svme),
4042 DIP(SrcNone | Prot | Priv, skinit, check_svme),
4043 DIP(SrcNone | Prot | Priv, invlpga, check_svme),
4044 };
4045
4046 static const struct opcode group7_rm7[] = {
4047 N,
4048 DIP(SrcNone, rdtscp, check_rdtsc),
4049 N, N, N, N, N, N,
4050 };
4051
4052 static const struct opcode group1[] = {
4053 F(Lock, em_add),
4054 F(Lock | PageTable, em_or),
4055 F(Lock, em_adc),
4056 F(Lock, em_sbb),
4057 F(Lock | PageTable, em_and),
4058 F(Lock, em_sub),
4059 F(Lock, em_xor),
4060 F(NoWrite, em_cmp),
4061 };
4062
4063 static const struct opcode group1A[] = {
4064 I(DstMem | SrcNone | Mov | Stack | IncSP | TwoMemOp, em_pop), N, N, N, N, N, N, N,
4065 };
4066
4067 static const struct opcode group2[] = {
4068 F(DstMem | ModRM, em_rol),
4069 F(DstMem | ModRM, em_ror),
4070 F(DstMem | ModRM, em_rcl),
4071 F(DstMem | ModRM, em_rcr),
4072 F(DstMem | ModRM, em_shl),
4073 F(DstMem | ModRM, em_shr),
4074 F(DstMem | ModRM, em_shl),
4075 F(DstMem | ModRM, em_sar),
4076 };
4077
4078 static const struct opcode group3[] = {
4079 F(DstMem | SrcImm | NoWrite, em_test),
4080 F(DstMem | SrcImm | NoWrite, em_test),
4081 F(DstMem | SrcNone | Lock, em_not),
4082 F(DstMem | SrcNone | Lock, em_neg),
4083 F(DstXacc | Src2Mem, em_mul_ex),
4084 F(DstXacc | Src2Mem, em_imul_ex),
4085 F(DstXacc | Src2Mem, em_div_ex),
4086 F(DstXacc | Src2Mem, em_idiv_ex),
4087 };
4088
4089 static const struct opcode group4[] = {
4090 F(ByteOp | DstMem | SrcNone | Lock, em_inc),
4091 F(ByteOp | DstMem | SrcNone | Lock, em_dec),
4092 N, N, N, N, N, N,
4093 };
4094
4095 static const struct opcode group5[] = {
4096 F(DstMem | SrcNone | Lock, em_inc),
4097 F(DstMem | SrcNone | Lock, em_dec),
4098 I(SrcMem | NearBranch | IsBranch, em_call_near_abs),
4099 I(SrcMemFAddr | ImplicitOps | IsBranch, em_call_far),
4100 I(SrcMem | NearBranch | IsBranch, em_jmp_abs),
4101 I(SrcMemFAddr | ImplicitOps | IsBranch, em_jmp_far),
4102 I(SrcMem | Stack | TwoMemOp, em_push), D(Undefined),
4103 };
4104
4105 static const struct opcode group6[] = {
4106 II(Prot | DstMem, em_sldt, sldt),
4107 II(Prot | DstMem, em_str, str),
4108 II(Prot | Priv | SrcMem16, em_lldt, lldt),
4109 II(Prot | Priv | SrcMem16, em_ltr, ltr),
4110 N, N, N, N,
4111 };
4112
4113 static const struct group_dual group7 = { {
4114 II(Mov | DstMem, em_sgdt, sgdt),
4115 II(Mov | DstMem, em_sidt, sidt),
4116 II(SrcMem | Priv, em_lgdt, lgdt),
4117 II(SrcMem | Priv, em_lidt, lidt),
4118 II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
4119 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
4120 II(SrcMem | ByteOp | Priv | NoAccess, em_invlpg, invlpg),
4121 }, {
4122 EXT(0, group7_rm0),
4123 EXT(0, group7_rm1),
4124 EXT(0, group7_rm2),
4125 EXT(0, group7_rm3),
4126 II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
4127 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
4128 EXT(0, group7_rm7),
4129 } };
4130
4131 static const struct opcode group8[] = {
4132 N, N, N, N,
4133 F(DstMem | SrcImmByte | NoWrite, em_bt),
4134 F(DstMem | SrcImmByte | Lock | PageTable, em_bts),
4135 F(DstMem | SrcImmByte | Lock, em_btr),
4136 F(DstMem | SrcImmByte | Lock | PageTable, em_btc),
4137 };
4138
4139 /*
4140 * The "memory" destination is actually always a register, since we come
4141 * from the register case of group9.
4142 */
4143 static const struct gprefix pfx_0f_c7_7 = {
4144 N, N, N, II(DstMem | ModRM | Op3264 | EmulateOnUD, em_rdpid, rdpid),
4145 };
4146
4147
4148 static const struct group_dual group9 = { {
4149 N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N,
4150 }, {
4151 N, N, N, N, N, N, N,
4152 GP(0, &pfx_0f_c7_7),
4153 } };
4154
4155 static const struct opcode group11[] = {
4156 I(DstMem | SrcImm | Mov | PageTable, em_mov),
4157 X7(D(Undefined)),
4158 };
4159
4160 static const struct gprefix pfx_0f_ae_7 = {
4161 I(SrcMem | ByteOp, em_clflush), I(SrcMem | ByteOp, em_clflushopt), N, N,
4162 };
4163
4164 static const struct group_dual group15 = { {
4165 I(ModRM | Aligned16, em_fxsave),
4166 I(ModRM | Aligned16, em_fxrstor),
4167 N, N, N, N, N, GP(0, &pfx_0f_ae_7),
4168 }, {
4169 N, N, N, N, N, N, N, N,
4170 } };
4171
4172 static const struct gprefix pfx_0f_6f_0f_7f = {
4173 I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov),
4174 };
4175
4176 static const struct instr_dual instr_dual_0f_2b = {
4177 I(0, em_mov), N
4178 };
4179
4180 static const struct gprefix pfx_0f_2b = {
4181 ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N,
4182 };
4183
4184 static const struct gprefix pfx_0f_10_0f_11 = {
4185 I(Unaligned, em_mov), I(Unaligned, em_mov), N, N,
4186 };
4187
4188 static const struct gprefix pfx_0f_28_0f_29 = {
4189 I(Aligned, em_mov), I(Aligned, em_mov), N, N,
4190 };
4191
4192 static const struct gprefix pfx_0f_e7 = {
4193 N, I(Sse, em_mov), N, N,
4194 };
4195
4196 static const struct escape escape_d9 = { {
4197 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw),
4198 }, {
4199 /* 0xC0 - 0xC7 */
4200 N, N, N, N, N, N, N, N,
4201 /* 0xC8 - 0xCF */
4202 N, N, N, N, N, N, N, N,
4203 /* 0xD0 - 0xC7 */
4204 N, N, N, N, N, N, N, N,
4205 /* 0xD8 - 0xDF */
4206 N, N, N, N, N, N, N, N,
4207 /* 0xE0 - 0xE7 */
4208 N, N, N, N, N, N, N, N,
4209 /* 0xE8 - 0xEF */
4210 N, N, N, N, N, N, N, N,
4211 /* 0xF0 - 0xF7 */
4212 N, N, N, N, N, N, N, N,
4213 /* 0xF8 - 0xFF */
4214 N, N, N, N, N, N, N, N,
4215 } };
4216
4217 static const struct escape escape_db = { {
4218 N, N, N, N, N, N, N, N,
4219 }, {
4220 /* 0xC0 - 0xC7 */
4221 N, N, N, N, N, N, N, N,
4222 /* 0xC8 - 0xCF */
4223 N, N, N, N, N, N, N, N,
4224 /* 0xD0 - 0xC7 */
4225 N, N, N, N, N, N, N, N,
4226 /* 0xD8 - 0xDF */
4227 N, N, N, N, N, N, N, N,
4228 /* 0xE0 - 0xE7 */
4229 N, N, N, I(ImplicitOps, em_fninit), N, N, N, N,
4230 /* 0xE8 - 0xEF */
4231 N, N, N, N, N, N, N, N,
4232 /* 0xF0 - 0xF7 */
4233 N, N, N, N, N, N, N, N,
4234 /* 0xF8 - 0xFF */
4235 N, N, N, N, N, N, N, N,
4236 } };
4237
4238 static const struct escape escape_dd = { {
4239 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw),
4240 }, {
4241 /* 0xC0 - 0xC7 */
4242 N, N, N, N, N, N, N, N,
4243 /* 0xC8 - 0xCF */
4244 N, N, N, N, N, N, N, N,
4245 /* 0xD0 - 0xC7 */
4246 N, N, N, N, N, N, N, N,
4247 /* 0xD8 - 0xDF */
4248 N, N, N, N, N, N, N, N,
4249 /* 0xE0 - 0xE7 */
4250 N, N, N, N, N, N, N, N,
4251 /* 0xE8 - 0xEF */
4252 N, N, N, N, N, N, N, N,
4253 /* 0xF0 - 0xF7 */
4254 N, N, N, N, N, N, N, N,
4255 /* 0xF8 - 0xFF */
4256 N, N, N, N, N, N, N, N,
4257 } };
4258
4259 static const struct instr_dual instr_dual_0f_c3 = {
4260 I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N
4261 };
4262
4263 static const struct mode_dual mode_dual_63 = {
4264 N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd)
4265 };
4266
4267 static const struct instr_dual instr_dual_8d = {
4268 D(DstReg | SrcMem | ModRM | NoAccess), N
4269 };
4270
4271 static const struct opcode opcode_table[256] = {
4272 /* 0x00 - 0x07 */
4273 F6ALU(Lock, em_add),
4274 I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg),
4275 I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg),
4276 /* 0x08 - 0x0F */
4277 F6ALU(Lock | PageTable, em_or),
4278 I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg),
4279 N,
4280 /* 0x10 - 0x17 */
4281 F6ALU(Lock, em_adc),
4282 I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg),
4283 I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg),
4284 /* 0x18 - 0x1F */
4285 F6ALU(Lock, em_sbb),
4286 I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg),
4287 I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg),
4288 /* 0x20 - 0x27 */
4289 F6ALU(Lock | PageTable, em_and), N, N,
4290 /* 0x28 - 0x2F */
4291 F6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das),
4292 /* 0x30 - 0x37 */
4293 F6ALU(Lock, em_xor), N, N,
4294 /* 0x38 - 0x3F */
4295 F6ALU(NoWrite, em_cmp), N, N,
4296 /* 0x40 - 0x4F */
4297 X8(F(DstReg, em_inc)), X8(F(DstReg, em_dec)),
4298 /* 0x50 - 0x57 */
4299 X8(I(SrcReg | Stack, em_push)),
4300 /* 0x58 - 0x5F */
4301 X8(I(DstReg | Stack, em_pop)),
4302 /* 0x60 - 0x67 */
4303 I(ImplicitOps | Stack | No64, em_pusha),
4304 I(ImplicitOps | Stack | No64, em_popa),
4305 N, MD(ModRM, &mode_dual_63),
4306 N, N, N, N,
4307 /* 0x68 - 0x6F */
4308 I(SrcImm | Mov | Stack, em_push),
4309 I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op),
4310 I(SrcImmByte | Mov | Stack, em_push),
4311 I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op),
4312 I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */
4313 I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */
4314 /* 0x70 - 0x7F */
4315 X16(D(SrcImmByte | NearBranch | IsBranch)),
4316 /* 0x80 - 0x87 */
4317 G(ByteOp | DstMem | SrcImm, group1),
4318 G(DstMem | SrcImm, group1),
4319 G(ByteOp | DstMem | SrcImm | No64, group1),
4320 G(DstMem | SrcImmByte, group1),
4321 F2bv(DstMem | SrcReg | ModRM | NoWrite, em_test),
4322 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg),
4323 /* 0x88 - 0x8F */
4324 I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov),
4325 I2bv(DstReg | SrcMem | ModRM | Mov, em_mov),
4326 I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg),
4327 ID(0, &instr_dual_8d),
4328 I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm),
4329 G(0, group1A),
4330 /* 0x90 - 0x97 */
4331 DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)),
4332 /* 0x98 - 0x9F */
4333 D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd),
4334 I(SrcImmFAddr | No64 | IsBranch, em_call_far), N,
4335 II(ImplicitOps | Stack, em_pushf, pushf),
4336 II(ImplicitOps | Stack, em_popf, popf),
4337 I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf),
4338 /* 0xA0 - 0xA7 */
4339 I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov),
4340 I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov),
4341 I2bv(SrcSI | DstDI | Mov | String | TwoMemOp, em_mov),
4342 F2bv(SrcSI | DstDI | String | NoWrite | TwoMemOp, em_cmp_r),
4343 /* 0xA8 - 0xAF */
4344 F2bv(DstAcc | SrcImm | NoWrite, em_test),
4345 I2bv(SrcAcc | DstDI | Mov | String, em_mov),
4346 I2bv(SrcSI | DstAcc | Mov | String, em_mov),
4347 F2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r),
4348 /* 0xB0 - 0xB7 */
4349 X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)),
4350 /* 0xB8 - 0xBF */
4351 X8(I(DstReg | SrcImm64 | Mov, em_mov)),
4352 /* 0xC0 - 0xC7 */
4353 G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2),
4354 I(ImplicitOps | NearBranch | SrcImmU16 | IsBranch, em_ret_near_imm),
4355 I(ImplicitOps | NearBranch | IsBranch, em_ret),
4356 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg),
4357 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg),
4358 G(ByteOp, group11), G(0, group11),
4359 /* 0xC8 - 0xCF */
4360 I(Stack | SrcImmU16 | Src2ImmByte | IsBranch, em_enter),
4361 I(Stack | IsBranch, em_leave),
4362 I(ImplicitOps | SrcImmU16 | IsBranch, em_ret_far_imm),
4363 I(ImplicitOps | IsBranch, em_ret_far),
4364 D(ImplicitOps | IsBranch), DI(SrcImmByte | IsBranch, intn),
4365 D(ImplicitOps | No64 | IsBranch),
4366 II(ImplicitOps | IsBranch, em_iret, iret),
4367 /* 0xD0 - 0xD7 */
4368 G(Src2One | ByteOp, group2), G(Src2One, group2),
4369 G(Src2CL | ByteOp, group2), G(Src2CL, group2),
4370 I(DstAcc | SrcImmUByte | No64, em_aam),
4371 I(DstAcc | SrcImmUByte | No64, em_aad),
4372 F(DstAcc | ByteOp | No64, em_salc),
4373 I(DstAcc | SrcXLat | ByteOp, em_mov),
4374 /* 0xD8 - 0xDF */
4375 N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N,
4376 /* 0xE0 - 0xE7 */
4377 X3(I(SrcImmByte | NearBranch | IsBranch, em_loop)),
4378 I(SrcImmByte | NearBranch | IsBranch, em_jcxz),
4379 I2bvIP(SrcImmUByte | DstAcc, em_in, in, check_perm_in),
4380 I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out),
4381 /* 0xE8 - 0xEF */
4382 I(SrcImm | NearBranch | IsBranch, em_call),
4383 D(SrcImm | ImplicitOps | NearBranch | IsBranch),
4384 I(SrcImmFAddr | No64 | IsBranch, em_jmp_far),
4385 D(SrcImmByte | ImplicitOps | NearBranch | IsBranch),
4386 I2bvIP(SrcDX | DstAcc, em_in, in, check_perm_in),
4387 I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out),
4388 /* 0xF0 - 0xF7 */
4389 N, DI(ImplicitOps, icebp), N, N,
4390 DI(ImplicitOps | Priv, hlt), D(ImplicitOps),
4391 G(ByteOp, group3), G(0, group3),
4392 /* 0xF8 - 0xFF */
4393 D(ImplicitOps), D(ImplicitOps),
4394 I(ImplicitOps, em_cli), I(ImplicitOps, em_sti),
4395 D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5),
4396 };
4397
4398 static const struct opcode twobyte_table[256] = {
4399 /* 0x00 - 0x0F */
4400 G(0, group6), GD(0, &group7), N, N,
4401 N, I(ImplicitOps | EmulateOnUD | IsBranch, em_syscall),
4402 II(ImplicitOps | Priv, em_clts, clts), N,
4403 DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
4404 N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4405 /* 0x10 - 0x1F */
4406 GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_10_0f_11),
4407 GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_10_0f_11),
4408 N, N, N, N, N, N,
4409 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 4 * prefetch + 4 * reserved NOP */
4410 D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4411 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4412 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4413 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4414 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* NOP + 7 * reserved NOP */
4415 /* 0x20 - 0x2F */
4416 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_access),
4417 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read),
4418 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write,
4419 check_cr_access),
4420 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write,
4421 check_dr_write),
4422 N, N, N, N,
4423 GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29),
4424 GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29),
4425 N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b),
4426 N, N, N, N,
4427 /* 0x30 - 0x3F */
4428 II(ImplicitOps | Priv, em_wrmsr, wrmsr),
4429 IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc),
4430 II(ImplicitOps | Priv, em_rdmsr, rdmsr),
4431 IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc),
4432 I(ImplicitOps | EmulateOnUD | IsBranch, em_sysenter),
4433 I(ImplicitOps | Priv | EmulateOnUD | IsBranch, em_sysexit),
4434 N, N,
4435 N, N, N, N, N, N, N, N,
4436 /* 0x40 - 0x4F */
4437 X16(D(DstReg | SrcMem | ModRM)),
4438 /* 0x50 - 0x5F */
4439 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4440 /* 0x60 - 0x6F */
4441 N, N, N, N,
4442 N, N, N, N,
4443 N, N, N, N,
4444 N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f),
4445 /* 0x70 - 0x7F */
4446 N, N, N, N,
4447 N, N, N, N,
4448 N, N, N, N,
4449 N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f),
4450 /* 0x80 - 0x8F */
4451 X16(D(SrcImm | NearBranch | IsBranch)),
4452 /* 0x90 - 0x9F */
4453 X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)),
4454 /* 0xA0 - 0xA7 */
4455 I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg),
4456 II(ImplicitOps, em_cpuid, cpuid),
4457 F(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt),
4458 F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld),
4459 F(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N,
4460 /* 0xA8 - 0xAF */
4461 I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg),
4462 II(EmulateOnUD | ImplicitOps, em_rsm, rsm),
4463 F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts),
4464 F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd),
4465 F(DstMem | SrcReg | Src2CL | ModRM, em_shrd),
4466 GD(0, &group15), F(DstReg | SrcMem | ModRM, em_imul),
4467 /* 0xB0 - 0xB7 */
4468 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg),
4469 I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg),
4470 F(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr),
4471 I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg),
4472 I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg),
4473 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4474 /* 0xB8 - 0xBF */
4475 N, N,
4476 G(BitOp, group8),
4477 F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc),
4478 I(DstReg | SrcMem | ModRM, em_bsf_c),
4479 I(DstReg | SrcMem | ModRM, em_bsr_c),
4480 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4481 /* 0xC0 - 0xC7 */
4482 F2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd),
4483 N, ID(0, &instr_dual_0f_c3),
4484 N, N, N, GD(0, &group9),
4485 /* 0xC8 - 0xCF */
4486 X8(I(DstReg, em_bswap)),
4487 /* 0xD0 - 0xDF */
4488 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4489 /* 0xE0 - 0xEF */
4490 N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7),
4491 N, N, N, N, N, N, N, N,
4492 /* 0xF0 - 0xFF */
4493 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N
4494 };
4495
4496 static const struct instr_dual instr_dual_0f_38_f0 = {
4497 I(DstReg | SrcMem | Mov, em_movbe), N
4498 };
4499
4500 static const struct instr_dual instr_dual_0f_38_f1 = {
4501 I(DstMem | SrcReg | Mov, em_movbe), N
4502 };
4503
4504 static const struct gprefix three_byte_0f_38_f0 = {
4505 ID(0, &instr_dual_0f_38_f0), N, N, N
4506 };
4507
4508 static const struct gprefix three_byte_0f_38_f1 = {
4509 ID(0, &instr_dual_0f_38_f1), N, N, N
4510 };
4511
4512 /*
4513 * Insns below are selected by the prefix which indexed by the third opcode
4514 * byte.
4515 */
4516 static const struct opcode opcode_map_0f_38[256] = {
4517 /* 0x00 - 0x7f */
4518 X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4519 /* 0x80 - 0xef */
4520 X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4521 /* 0xf0 - 0xf1 */
4522 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0),
4523 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1),
4524 /* 0xf2 - 0xff */
4525 N, N, X4(N), X8(N)
4526 };
4527
4528 #undef D
4529 #undef N
4530 #undef G
4531 #undef GD
4532 #undef I
4533 #undef GP
4534 #undef EXT
4535 #undef MD
4536 #undef ID
4537
4538 #undef D2bv
4539 #undef D2bvIP
4540 #undef I2bv
4541 #undef I2bvIP
4542 #undef I6ALU
4543
imm_size(struct x86_emulate_ctxt * ctxt)4544 static unsigned imm_size(struct x86_emulate_ctxt *ctxt)
4545 {
4546 unsigned size;
4547
4548 size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4549 if (size == 8)
4550 size = 4;
4551 return size;
4552 }
4553
decode_imm(struct x86_emulate_ctxt * ctxt,struct operand * op,unsigned size,bool sign_extension)4554 static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op,
4555 unsigned size, bool sign_extension)
4556 {
4557 int rc = X86EMUL_CONTINUE;
4558
4559 op->type = OP_IMM;
4560 op->bytes = size;
4561 op->addr.mem.ea = ctxt->_eip;
4562 /* NB. Immediates are sign-extended as necessary. */
4563 switch (op->bytes) {
4564 case 1:
4565 op->val = insn_fetch(s8, ctxt);
4566 break;
4567 case 2:
4568 op->val = insn_fetch(s16, ctxt);
4569 break;
4570 case 4:
4571 op->val = insn_fetch(s32, ctxt);
4572 break;
4573 case 8:
4574 op->val = insn_fetch(s64, ctxt);
4575 break;
4576 }
4577 if (!sign_extension) {
4578 switch (op->bytes) {
4579 case 1:
4580 op->val &= 0xff;
4581 break;
4582 case 2:
4583 op->val &= 0xffff;
4584 break;
4585 case 4:
4586 op->val &= 0xffffffff;
4587 break;
4588 }
4589 }
4590 done:
4591 return rc;
4592 }
4593
decode_operand(struct x86_emulate_ctxt * ctxt,struct operand * op,unsigned d)4594 static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op,
4595 unsigned d)
4596 {
4597 int rc = X86EMUL_CONTINUE;
4598
4599 switch (d) {
4600 case OpReg:
4601 decode_register_operand(ctxt, op);
4602 break;
4603 case OpImmUByte:
4604 rc = decode_imm(ctxt, op, 1, false);
4605 break;
4606 case OpMem:
4607 ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4608 mem_common:
4609 *op = ctxt->memop;
4610 ctxt->memopp = op;
4611 if (ctxt->d & BitOp)
4612 fetch_bit_operand(ctxt);
4613 op->orig_val = op->val;
4614 break;
4615 case OpMem64:
4616 ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8;
4617 goto mem_common;
4618 case OpAcc:
4619 op->type = OP_REG;
4620 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4621 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4622 fetch_register_operand(op);
4623 op->orig_val = op->val;
4624 break;
4625 case OpAccLo:
4626 op->type = OP_REG;
4627 op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes;
4628 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4629 fetch_register_operand(op);
4630 op->orig_val = op->val;
4631 break;
4632 case OpAccHi:
4633 if (ctxt->d & ByteOp) {
4634 op->type = OP_NONE;
4635 break;
4636 }
4637 op->type = OP_REG;
4638 op->bytes = ctxt->op_bytes;
4639 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4640 fetch_register_operand(op);
4641 op->orig_val = op->val;
4642 break;
4643 case OpDI:
4644 op->type = OP_MEM;
4645 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4646 op->addr.mem.ea =
4647 register_address(ctxt, VCPU_REGS_RDI);
4648 op->addr.mem.seg = VCPU_SREG_ES;
4649 op->val = 0;
4650 op->count = 1;
4651 break;
4652 case OpDX:
4653 op->type = OP_REG;
4654 op->bytes = 2;
4655 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4656 fetch_register_operand(op);
4657 break;
4658 case OpCL:
4659 op->type = OP_IMM;
4660 op->bytes = 1;
4661 op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff;
4662 break;
4663 case OpImmByte:
4664 rc = decode_imm(ctxt, op, 1, true);
4665 break;
4666 case OpOne:
4667 op->type = OP_IMM;
4668 op->bytes = 1;
4669 op->val = 1;
4670 break;
4671 case OpImm:
4672 rc = decode_imm(ctxt, op, imm_size(ctxt), true);
4673 break;
4674 case OpImm64:
4675 rc = decode_imm(ctxt, op, ctxt->op_bytes, true);
4676 break;
4677 case OpMem8:
4678 ctxt->memop.bytes = 1;
4679 if (ctxt->memop.type == OP_REG) {
4680 ctxt->memop.addr.reg = decode_register(ctxt,
4681 ctxt->modrm_rm, true);
4682 fetch_register_operand(&ctxt->memop);
4683 }
4684 goto mem_common;
4685 case OpMem16:
4686 ctxt->memop.bytes = 2;
4687 goto mem_common;
4688 case OpMem32:
4689 ctxt->memop.bytes = 4;
4690 goto mem_common;
4691 case OpImmU16:
4692 rc = decode_imm(ctxt, op, 2, false);
4693 break;
4694 case OpImmU:
4695 rc = decode_imm(ctxt, op, imm_size(ctxt), false);
4696 break;
4697 case OpSI:
4698 op->type = OP_MEM;
4699 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4700 op->addr.mem.ea =
4701 register_address(ctxt, VCPU_REGS_RSI);
4702 op->addr.mem.seg = ctxt->seg_override;
4703 op->val = 0;
4704 op->count = 1;
4705 break;
4706 case OpXLat:
4707 op->type = OP_MEM;
4708 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4709 op->addr.mem.ea =
4710 address_mask(ctxt,
4711 reg_read(ctxt, VCPU_REGS_RBX) +
4712 (reg_read(ctxt, VCPU_REGS_RAX) & 0xff));
4713 op->addr.mem.seg = ctxt->seg_override;
4714 op->val = 0;
4715 break;
4716 case OpImmFAddr:
4717 op->type = OP_IMM;
4718 op->addr.mem.ea = ctxt->_eip;
4719 op->bytes = ctxt->op_bytes + 2;
4720 insn_fetch_arr(op->valptr, op->bytes, ctxt);
4721 break;
4722 case OpMemFAddr:
4723 ctxt->memop.bytes = ctxt->op_bytes + 2;
4724 goto mem_common;
4725 case OpES:
4726 op->type = OP_IMM;
4727 op->val = VCPU_SREG_ES;
4728 break;
4729 case OpCS:
4730 op->type = OP_IMM;
4731 op->val = VCPU_SREG_CS;
4732 break;
4733 case OpSS:
4734 op->type = OP_IMM;
4735 op->val = VCPU_SREG_SS;
4736 break;
4737 case OpDS:
4738 op->type = OP_IMM;
4739 op->val = VCPU_SREG_DS;
4740 break;
4741 case OpFS:
4742 op->type = OP_IMM;
4743 op->val = VCPU_SREG_FS;
4744 break;
4745 case OpGS:
4746 op->type = OP_IMM;
4747 op->val = VCPU_SREG_GS;
4748 break;
4749 case OpImplicit:
4750 /* Special instructions do their own operand decoding. */
4751 default:
4752 op->type = OP_NONE; /* Disable writeback. */
4753 break;
4754 }
4755
4756 done:
4757 return rc;
4758 }
4759
x86_decode_insn(struct x86_emulate_ctxt * ctxt,void * insn,int insn_len,int emulation_type)4760 int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len, int emulation_type)
4761 {
4762 int rc = X86EMUL_CONTINUE;
4763 int mode = ctxt->mode;
4764 int def_op_bytes, def_ad_bytes, goffset, simd_prefix;
4765 bool op_prefix = false;
4766 bool has_seg_override = false;
4767 struct opcode opcode;
4768 u16 dummy;
4769 struct desc_struct desc;
4770
4771 ctxt->memop.type = OP_NONE;
4772 ctxt->memopp = NULL;
4773 ctxt->_eip = ctxt->eip;
4774 ctxt->fetch.ptr = ctxt->fetch.data;
4775 ctxt->fetch.end = ctxt->fetch.data + insn_len;
4776 ctxt->opcode_len = 1;
4777 ctxt->intercept = x86_intercept_none;
4778 if (insn_len > 0)
4779 memcpy(ctxt->fetch.data, insn, insn_len);
4780 else {
4781 rc = __do_insn_fetch_bytes(ctxt, 1);
4782 if (rc != X86EMUL_CONTINUE)
4783 goto done;
4784 }
4785
4786 switch (mode) {
4787 case X86EMUL_MODE_REAL:
4788 case X86EMUL_MODE_VM86:
4789 def_op_bytes = def_ad_bytes = 2;
4790 ctxt->ops->get_segment(ctxt, &dummy, &desc, NULL, VCPU_SREG_CS);
4791 if (desc.d)
4792 def_op_bytes = def_ad_bytes = 4;
4793 break;
4794 case X86EMUL_MODE_PROT16:
4795 def_op_bytes = def_ad_bytes = 2;
4796 break;
4797 case X86EMUL_MODE_PROT32:
4798 def_op_bytes = def_ad_bytes = 4;
4799 break;
4800 #ifdef CONFIG_X86_64
4801 case X86EMUL_MODE_PROT64:
4802 def_op_bytes = 4;
4803 def_ad_bytes = 8;
4804 break;
4805 #endif
4806 default:
4807 return EMULATION_FAILED;
4808 }
4809
4810 ctxt->op_bytes = def_op_bytes;
4811 ctxt->ad_bytes = def_ad_bytes;
4812
4813 /* Legacy prefixes. */
4814 for (;;) {
4815 switch (ctxt->b = insn_fetch(u8, ctxt)) {
4816 case 0x66: /* operand-size override */
4817 op_prefix = true;
4818 /* switch between 2/4 bytes */
4819 ctxt->op_bytes = def_op_bytes ^ 6;
4820 break;
4821 case 0x67: /* address-size override */
4822 if (mode == X86EMUL_MODE_PROT64)
4823 /* switch between 4/8 bytes */
4824 ctxt->ad_bytes = def_ad_bytes ^ 12;
4825 else
4826 /* switch between 2/4 bytes */
4827 ctxt->ad_bytes = def_ad_bytes ^ 6;
4828 break;
4829 case 0x26: /* ES override */
4830 has_seg_override = true;
4831 ctxt->seg_override = VCPU_SREG_ES;
4832 break;
4833 case 0x2e: /* CS override */
4834 has_seg_override = true;
4835 ctxt->seg_override = VCPU_SREG_CS;
4836 break;
4837 case 0x36: /* SS override */
4838 has_seg_override = true;
4839 ctxt->seg_override = VCPU_SREG_SS;
4840 break;
4841 case 0x3e: /* DS override */
4842 has_seg_override = true;
4843 ctxt->seg_override = VCPU_SREG_DS;
4844 break;
4845 case 0x64: /* FS override */
4846 has_seg_override = true;
4847 ctxt->seg_override = VCPU_SREG_FS;
4848 break;
4849 case 0x65: /* GS override */
4850 has_seg_override = true;
4851 ctxt->seg_override = VCPU_SREG_GS;
4852 break;
4853 case 0x40 ... 0x4f: /* REX */
4854 if (mode != X86EMUL_MODE_PROT64)
4855 goto done_prefixes;
4856 ctxt->rex_prefix = ctxt->b;
4857 continue;
4858 case 0xf0: /* LOCK */
4859 ctxt->lock_prefix = 1;
4860 break;
4861 case 0xf2: /* REPNE/REPNZ */
4862 case 0xf3: /* REP/REPE/REPZ */
4863 ctxt->rep_prefix = ctxt->b;
4864 break;
4865 default:
4866 goto done_prefixes;
4867 }
4868
4869 /* Any legacy prefix after a REX prefix nullifies its effect. */
4870
4871 ctxt->rex_prefix = 0;
4872 }
4873
4874 done_prefixes:
4875
4876 /* REX prefix. */
4877 if (ctxt->rex_prefix & 8)
4878 ctxt->op_bytes = 8; /* REX.W */
4879
4880 /* Opcode byte(s). */
4881 opcode = opcode_table[ctxt->b];
4882 /* Two-byte opcode? */
4883 if (ctxt->b == 0x0f) {
4884 ctxt->opcode_len = 2;
4885 ctxt->b = insn_fetch(u8, ctxt);
4886 opcode = twobyte_table[ctxt->b];
4887
4888 /* 0F_38 opcode map */
4889 if (ctxt->b == 0x38) {
4890 ctxt->opcode_len = 3;
4891 ctxt->b = insn_fetch(u8, ctxt);
4892 opcode = opcode_map_0f_38[ctxt->b];
4893 }
4894 }
4895 ctxt->d = opcode.flags;
4896
4897 if (ctxt->d & ModRM)
4898 ctxt->modrm = insn_fetch(u8, ctxt);
4899
4900 /* vex-prefix instructions are not implemented */
4901 if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) &&
4902 (mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) {
4903 ctxt->d = NotImpl;
4904 }
4905
4906 while (ctxt->d & GroupMask) {
4907 switch (ctxt->d & GroupMask) {
4908 case Group:
4909 goffset = (ctxt->modrm >> 3) & 7;
4910 opcode = opcode.u.group[goffset];
4911 break;
4912 case GroupDual:
4913 goffset = (ctxt->modrm >> 3) & 7;
4914 if ((ctxt->modrm >> 6) == 3)
4915 opcode = opcode.u.gdual->mod3[goffset];
4916 else
4917 opcode = opcode.u.gdual->mod012[goffset];
4918 break;
4919 case RMExt:
4920 goffset = ctxt->modrm & 7;
4921 opcode = opcode.u.group[goffset];
4922 break;
4923 case Prefix:
4924 if (ctxt->rep_prefix && op_prefix)
4925 return EMULATION_FAILED;
4926 simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix;
4927 switch (simd_prefix) {
4928 case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
4929 case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
4930 case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break;
4931 case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break;
4932 }
4933 break;
4934 case Escape:
4935 if (ctxt->modrm > 0xbf) {
4936 size_t size = ARRAY_SIZE(opcode.u.esc->high);
4937 u32 index = array_index_nospec(
4938 ctxt->modrm - 0xc0, size);
4939
4940 opcode = opcode.u.esc->high[index];
4941 } else {
4942 opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7];
4943 }
4944 break;
4945 case InstrDual:
4946 if ((ctxt->modrm >> 6) == 3)
4947 opcode = opcode.u.idual->mod3;
4948 else
4949 opcode = opcode.u.idual->mod012;
4950 break;
4951 case ModeDual:
4952 if (ctxt->mode == X86EMUL_MODE_PROT64)
4953 opcode = opcode.u.mdual->mode64;
4954 else
4955 opcode = opcode.u.mdual->mode32;
4956 break;
4957 default:
4958 return EMULATION_FAILED;
4959 }
4960
4961 ctxt->d &= ~(u64)GroupMask;
4962 ctxt->d |= opcode.flags;
4963 }
4964
4965 ctxt->is_branch = opcode.flags & IsBranch;
4966
4967 /* Unrecognised? */
4968 if (ctxt->d == 0)
4969 return EMULATION_FAILED;
4970
4971 ctxt->execute = opcode.u.execute;
4972
4973 if (unlikely(emulation_type & EMULTYPE_TRAP_UD) &&
4974 likely(!(ctxt->d & EmulateOnUD)))
4975 return EMULATION_FAILED;
4976
4977 if (unlikely(ctxt->d &
4978 (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch|
4979 No16))) {
4980 /*
4981 * These are copied unconditionally here, and checked unconditionally
4982 * in x86_emulate_insn.
4983 */
4984 ctxt->check_perm = opcode.check_perm;
4985 ctxt->intercept = opcode.intercept;
4986
4987 if (ctxt->d & NotImpl)
4988 return EMULATION_FAILED;
4989
4990 if (mode == X86EMUL_MODE_PROT64) {
4991 if (ctxt->op_bytes == 4 && (ctxt->d & Stack))
4992 ctxt->op_bytes = 8;
4993 else if (ctxt->d & NearBranch)
4994 ctxt->op_bytes = 8;
4995 }
4996
4997 if (ctxt->d & Op3264) {
4998 if (mode == X86EMUL_MODE_PROT64)
4999 ctxt->op_bytes = 8;
5000 else
5001 ctxt->op_bytes = 4;
5002 }
5003
5004 if ((ctxt->d & No16) && ctxt->op_bytes == 2)
5005 ctxt->op_bytes = 4;
5006
5007 if (ctxt->d & Sse)
5008 ctxt->op_bytes = 16;
5009 else if (ctxt->d & Mmx)
5010 ctxt->op_bytes = 8;
5011 }
5012
5013 /* ModRM and SIB bytes. */
5014 if (ctxt->d & ModRM) {
5015 rc = decode_modrm(ctxt, &ctxt->memop);
5016 if (!has_seg_override) {
5017 has_seg_override = true;
5018 ctxt->seg_override = ctxt->modrm_seg;
5019 }
5020 } else if (ctxt->d & MemAbs)
5021 rc = decode_abs(ctxt, &ctxt->memop);
5022 if (rc != X86EMUL_CONTINUE)
5023 goto done;
5024
5025 if (!has_seg_override)
5026 ctxt->seg_override = VCPU_SREG_DS;
5027
5028 ctxt->memop.addr.mem.seg = ctxt->seg_override;
5029
5030 /*
5031 * Decode and fetch the source operand: register, memory
5032 * or immediate.
5033 */
5034 rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask);
5035 if (rc != X86EMUL_CONTINUE)
5036 goto done;
5037
5038 /*
5039 * Decode and fetch the second source operand: register, memory
5040 * or immediate.
5041 */
5042 rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask);
5043 if (rc != X86EMUL_CONTINUE)
5044 goto done;
5045
5046 /* Decode and fetch the destination operand: register or memory. */
5047 rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask);
5048
5049 if (ctxt->rip_relative && likely(ctxt->memopp))
5050 ctxt->memopp->addr.mem.ea = address_mask(ctxt,
5051 ctxt->memopp->addr.mem.ea + ctxt->_eip);
5052
5053 done:
5054 if (rc == X86EMUL_PROPAGATE_FAULT)
5055 ctxt->have_exception = true;
5056 return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK;
5057 }
5058
x86_page_table_writing_insn(struct x86_emulate_ctxt * ctxt)5059 bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt)
5060 {
5061 return ctxt->d & PageTable;
5062 }
5063
string_insn_completed(struct x86_emulate_ctxt * ctxt)5064 static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
5065 {
5066 /* The second termination condition only applies for REPE
5067 * and REPNE. Test if the repeat string operation prefix is
5068 * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
5069 * corresponding termination condition according to:
5070 * - if REPE/REPZ and ZF = 0 then done
5071 * - if REPNE/REPNZ and ZF = 1 then done
5072 */
5073 if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) ||
5074 (ctxt->b == 0xae) || (ctxt->b == 0xaf))
5075 && (((ctxt->rep_prefix == REPE_PREFIX) &&
5076 ((ctxt->eflags & X86_EFLAGS_ZF) == 0))
5077 || ((ctxt->rep_prefix == REPNE_PREFIX) &&
5078 ((ctxt->eflags & X86_EFLAGS_ZF) == X86_EFLAGS_ZF))))
5079 return true;
5080
5081 return false;
5082 }
5083
flush_pending_x87_faults(struct x86_emulate_ctxt * ctxt)5084 static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt)
5085 {
5086 int rc;
5087
5088 kvm_fpu_get();
5089 rc = asm_safe("fwait");
5090 kvm_fpu_put();
5091
5092 if (unlikely(rc != X86EMUL_CONTINUE))
5093 return emulate_exception(ctxt, MF_VECTOR, 0, false);
5094
5095 return X86EMUL_CONTINUE;
5096 }
5097
fetch_possible_mmx_operand(struct operand * op)5098 static void fetch_possible_mmx_operand(struct operand *op)
5099 {
5100 if (op->type == OP_MM)
5101 kvm_read_mmx_reg(op->addr.mm, &op->mm_val);
5102 }
5103
fastop(struct x86_emulate_ctxt * ctxt,fastop_t fop)5104 static int fastop(struct x86_emulate_ctxt *ctxt, fastop_t fop)
5105 {
5106 ulong flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF;
5107
5108 if (!(ctxt->d & ByteOp))
5109 fop += __ffs(ctxt->dst.bytes) * FASTOP_SIZE;
5110
5111 asm("push %[flags]; popf; " CALL_NOSPEC " ; pushf; pop %[flags]\n"
5112 : "+a"(ctxt->dst.val), "+d"(ctxt->src.val), [flags]"+D"(flags),
5113 [thunk_target]"+S"(fop), ASM_CALL_CONSTRAINT
5114 : "c"(ctxt->src2.val));
5115
5116 ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK);
5117 if (!fop) /* exception is returned in fop variable */
5118 return emulate_de(ctxt);
5119 return X86EMUL_CONTINUE;
5120 }
5121
init_decode_cache(struct x86_emulate_ctxt * ctxt)5122 void init_decode_cache(struct x86_emulate_ctxt *ctxt)
5123 {
5124 /* Clear fields that are set conditionally but read without a guard. */
5125 ctxt->rip_relative = false;
5126 ctxt->rex_prefix = 0;
5127 ctxt->lock_prefix = 0;
5128 ctxt->rep_prefix = 0;
5129 ctxt->regs_valid = 0;
5130 ctxt->regs_dirty = 0;
5131
5132 ctxt->io_read.pos = 0;
5133 ctxt->io_read.end = 0;
5134 ctxt->mem_read.end = 0;
5135 }
5136
x86_emulate_insn(struct x86_emulate_ctxt * ctxt)5137 int x86_emulate_insn(struct x86_emulate_ctxt *ctxt)
5138 {
5139 const struct x86_emulate_ops *ops = ctxt->ops;
5140 int rc = X86EMUL_CONTINUE;
5141 int saved_dst_type = ctxt->dst.type;
5142 bool is_guest_mode = ctxt->ops->is_guest_mode(ctxt);
5143
5144 ctxt->mem_read.pos = 0;
5145
5146 /* LOCK prefix is allowed only with some instructions */
5147 if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) {
5148 rc = emulate_ud(ctxt);
5149 goto done;
5150 }
5151
5152 if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) {
5153 rc = emulate_ud(ctxt);
5154 goto done;
5155 }
5156
5157 if (unlikely(ctxt->d &
5158 (No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) {
5159 if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) ||
5160 (ctxt->d & Undefined)) {
5161 rc = emulate_ud(ctxt);
5162 goto done;
5163 }
5164
5165 if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM)))
5166 || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) {
5167 rc = emulate_ud(ctxt);
5168 goto done;
5169 }
5170
5171 if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
5172 rc = emulate_nm(ctxt);
5173 goto done;
5174 }
5175
5176 if (ctxt->d & Mmx) {
5177 rc = flush_pending_x87_faults(ctxt);
5178 if (rc != X86EMUL_CONTINUE)
5179 goto done;
5180 /*
5181 * Now that we know the fpu is exception safe, we can fetch
5182 * operands from it.
5183 */
5184 fetch_possible_mmx_operand(&ctxt->src);
5185 fetch_possible_mmx_operand(&ctxt->src2);
5186 if (!(ctxt->d & Mov))
5187 fetch_possible_mmx_operand(&ctxt->dst);
5188 }
5189
5190 if (unlikely(is_guest_mode) && ctxt->intercept) {
5191 rc = emulator_check_intercept(ctxt, ctxt->intercept,
5192 X86_ICPT_PRE_EXCEPT);
5193 if (rc != X86EMUL_CONTINUE)
5194 goto done;
5195 }
5196
5197 /* Instruction can only be executed in protected mode */
5198 if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) {
5199 rc = emulate_ud(ctxt);
5200 goto done;
5201 }
5202
5203 /* Privileged instruction can be executed only in CPL=0 */
5204 if ((ctxt->d & Priv) && ops->cpl(ctxt)) {
5205 if (ctxt->d & PrivUD)
5206 rc = emulate_ud(ctxt);
5207 else
5208 rc = emulate_gp(ctxt, 0);
5209 goto done;
5210 }
5211
5212 /* Do instruction specific permission checks */
5213 if (ctxt->d & CheckPerm) {
5214 rc = ctxt->check_perm(ctxt);
5215 if (rc != X86EMUL_CONTINUE)
5216 goto done;
5217 }
5218
5219 if (unlikely(is_guest_mode) && (ctxt->d & Intercept)) {
5220 rc = emulator_check_intercept(ctxt, ctxt->intercept,
5221 X86_ICPT_POST_EXCEPT);
5222 if (rc != X86EMUL_CONTINUE)
5223 goto done;
5224 }
5225
5226 if (ctxt->rep_prefix && (ctxt->d & String)) {
5227 /* All REP prefixes have the same first termination condition */
5228 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) {
5229 string_registers_quirk(ctxt);
5230 ctxt->eip = ctxt->_eip;
5231 ctxt->eflags &= ~X86_EFLAGS_RF;
5232 goto done;
5233 }
5234 }
5235 }
5236
5237 if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) {
5238 rc = segmented_read(ctxt, ctxt->src.addr.mem,
5239 ctxt->src.valptr, ctxt->src.bytes);
5240 if (rc != X86EMUL_CONTINUE)
5241 goto done;
5242 ctxt->src.orig_val64 = ctxt->src.val64;
5243 }
5244
5245 if (ctxt->src2.type == OP_MEM) {
5246 rc = segmented_read(ctxt, ctxt->src2.addr.mem,
5247 &ctxt->src2.val, ctxt->src2.bytes);
5248 if (rc != X86EMUL_CONTINUE)
5249 goto done;
5250 }
5251
5252 if ((ctxt->d & DstMask) == ImplicitOps)
5253 goto special_insn;
5254
5255
5256 if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) {
5257 /* optimisation - avoid slow emulated read if Mov */
5258 rc = segmented_read(ctxt, ctxt->dst.addr.mem,
5259 &ctxt->dst.val, ctxt->dst.bytes);
5260 if (rc != X86EMUL_CONTINUE) {
5261 if (!(ctxt->d & NoWrite) &&
5262 rc == X86EMUL_PROPAGATE_FAULT &&
5263 ctxt->exception.vector == PF_VECTOR)
5264 ctxt->exception.error_code |= PFERR_WRITE_MASK;
5265 goto done;
5266 }
5267 }
5268 /* Copy full 64-bit value for CMPXCHG8B. */
5269 ctxt->dst.orig_val64 = ctxt->dst.val64;
5270
5271 special_insn:
5272
5273 if (unlikely(is_guest_mode) && (ctxt->d & Intercept)) {
5274 rc = emulator_check_intercept(ctxt, ctxt->intercept,
5275 X86_ICPT_POST_MEMACCESS);
5276 if (rc != X86EMUL_CONTINUE)
5277 goto done;
5278 }
5279
5280 if (ctxt->rep_prefix && (ctxt->d & String))
5281 ctxt->eflags |= X86_EFLAGS_RF;
5282 else
5283 ctxt->eflags &= ~X86_EFLAGS_RF;
5284
5285 if (ctxt->execute) {
5286 if (ctxt->d & Fastop)
5287 rc = fastop(ctxt, ctxt->fop);
5288 else
5289 rc = ctxt->execute(ctxt);
5290 if (rc != X86EMUL_CONTINUE)
5291 goto done;
5292 goto writeback;
5293 }
5294
5295 if (ctxt->opcode_len == 2)
5296 goto twobyte_insn;
5297 else if (ctxt->opcode_len == 3)
5298 goto threebyte_insn;
5299
5300 switch (ctxt->b) {
5301 case 0x70 ... 0x7f: /* jcc (short) */
5302 if (test_cc(ctxt->b, ctxt->eflags))
5303 rc = jmp_rel(ctxt, ctxt->src.val);
5304 break;
5305 case 0x8d: /* lea r16/r32, m */
5306 ctxt->dst.val = ctxt->src.addr.mem.ea;
5307 break;
5308 case 0x90 ... 0x97: /* nop / xchg reg, rax */
5309 if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX))
5310 ctxt->dst.type = OP_NONE;
5311 else
5312 rc = em_xchg(ctxt);
5313 break;
5314 case 0x98: /* cbw/cwde/cdqe */
5315 switch (ctxt->op_bytes) {
5316 case 2: ctxt->dst.val = (s8)ctxt->dst.val; break;
5317 case 4: ctxt->dst.val = (s16)ctxt->dst.val; break;
5318 case 8: ctxt->dst.val = (s32)ctxt->dst.val; break;
5319 }
5320 break;
5321 case 0xcc: /* int3 */
5322 rc = emulate_int(ctxt, 3);
5323 break;
5324 case 0xcd: /* int n */
5325 rc = emulate_int(ctxt, ctxt->src.val);
5326 break;
5327 case 0xce: /* into */
5328 if (ctxt->eflags & X86_EFLAGS_OF)
5329 rc = emulate_int(ctxt, 4);
5330 break;
5331 case 0xe9: /* jmp rel */
5332 case 0xeb: /* jmp rel short */
5333 rc = jmp_rel(ctxt, ctxt->src.val);
5334 ctxt->dst.type = OP_NONE; /* Disable writeback. */
5335 break;
5336 case 0xf4: /* hlt */
5337 ctxt->ops->halt(ctxt);
5338 break;
5339 case 0xf5: /* cmc */
5340 /* complement carry flag from eflags reg */
5341 ctxt->eflags ^= X86_EFLAGS_CF;
5342 break;
5343 case 0xf8: /* clc */
5344 ctxt->eflags &= ~X86_EFLAGS_CF;
5345 break;
5346 case 0xf9: /* stc */
5347 ctxt->eflags |= X86_EFLAGS_CF;
5348 break;
5349 case 0xfc: /* cld */
5350 ctxt->eflags &= ~X86_EFLAGS_DF;
5351 break;
5352 case 0xfd: /* std */
5353 ctxt->eflags |= X86_EFLAGS_DF;
5354 break;
5355 default:
5356 goto cannot_emulate;
5357 }
5358
5359 if (rc != X86EMUL_CONTINUE)
5360 goto done;
5361
5362 writeback:
5363 if (ctxt->d & SrcWrite) {
5364 BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR);
5365 rc = writeback(ctxt, &ctxt->src);
5366 if (rc != X86EMUL_CONTINUE)
5367 goto done;
5368 }
5369 if (!(ctxt->d & NoWrite)) {
5370 rc = writeback(ctxt, &ctxt->dst);
5371 if (rc != X86EMUL_CONTINUE)
5372 goto done;
5373 }
5374
5375 /*
5376 * restore dst type in case the decoding will be reused
5377 * (happens for string instruction )
5378 */
5379 ctxt->dst.type = saved_dst_type;
5380
5381 if ((ctxt->d & SrcMask) == SrcSI)
5382 string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src);
5383
5384 if ((ctxt->d & DstMask) == DstDI)
5385 string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst);
5386
5387 if (ctxt->rep_prefix && (ctxt->d & String)) {
5388 unsigned int count;
5389 struct read_cache *r = &ctxt->io_read;
5390 if ((ctxt->d & SrcMask) == SrcSI)
5391 count = ctxt->src.count;
5392 else
5393 count = ctxt->dst.count;
5394 register_address_increment(ctxt, VCPU_REGS_RCX, -count);
5395
5396 if (!string_insn_completed(ctxt)) {
5397 /*
5398 * Re-enter guest when pio read ahead buffer is empty
5399 * or, if it is not used, after each 1024 iteration.
5400 */
5401 if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) &&
5402 (r->end == 0 || r->end != r->pos)) {
5403 /*
5404 * Reset read cache. Usually happens before
5405 * decode, but since instruction is restarted
5406 * we have to do it here.
5407 */
5408 ctxt->mem_read.end = 0;
5409 writeback_registers(ctxt);
5410 return EMULATION_RESTART;
5411 }
5412 goto done; /* skip rip writeback */
5413 }
5414 ctxt->eflags &= ~X86_EFLAGS_RF;
5415 }
5416
5417 ctxt->eip = ctxt->_eip;
5418 if (ctxt->mode != X86EMUL_MODE_PROT64)
5419 ctxt->eip = (u32)ctxt->_eip;
5420
5421 done:
5422 if (rc == X86EMUL_PROPAGATE_FAULT) {
5423 if (KVM_EMULATOR_BUG_ON(ctxt->exception.vector > 0x1f, ctxt))
5424 return EMULATION_FAILED;
5425 ctxt->have_exception = true;
5426 }
5427 if (rc == X86EMUL_INTERCEPTED)
5428 return EMULATION_INTERCEPTED;
5429
5430 if (rc == X86EMUL_CONTINUE)
5431 writeback_registers(ctxt);
5432
5433 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
5434
5435 twobyte_insn:
5436 switch (ctxt->b) {
5437 case 0x09: /* wbinvd */
5438 (ctxt->ops->wbinvd)(ctxt);
5439 break;
5440 case 0x08: /* invd */
5441 case 0x0d: /* GrpP (prefetch) */
5442 case 0x18: /* Grp16 (prefetch/nop) */
5443 case 0x1f: /* nop */
5444 break;
5445 case 0x20: /* mov cr, reg */
5446 ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg);
5447 break;
5448 case 0x21: /* mov from dr to reg */
5449 ops->get_dr(ctxt, ctxt->modrm_reg, &ctxt->dst.val);
5450 break;
5451 case 0x40 ... 0x4f: /* cmov */
5452 if (test_cc(ctxt->b, ctxt->eflags))
5453 ctxt->dst.val = ctxt->src.val;
5454 else if (ctxt->op_bytes != 4)
5455 ctxt->dst.type = OP_NONE; /* no writeback */
5456 break;
5457 case 0x80 ... 0x8f: /* jnz rel, etc*/
5458 if (test_cc(ctxt->b, ctxt->eflags))
5459 rc = jmp_rel(ctxt, ctxt->src.val);
5460 break;
5461 case 0x90 ... 0x9f: /* setcc r/m8 */
5462 ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags);
5463 break;
5464 case 0xb6 ... 0xb7: /* movzx */
5465 ctxt->dst.bytes = ctxt->op_bytes;
5466 ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val
5467 : (u16) ctxt->src.val;
5468 break;
5469 case 0xbe ... 0xbf: /* movsx */
5470 ctxt->dst.bytes = ctxt->op_bytes;
5471 ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val :
5472 (s16) ctxt->src.val;
5473 break;
5474 default:
5475 goto cannot_emulate;
5476 }
5477
5478 threebyte_insn:
5479
5480 if (rc != X86EMUL_CONTINUE)
5481 goto done;
5482
5483 goto writeback;
5484
5485 cannot_emulate:
5486 return EMULATION_FAILED;
5487 }
5488
emulator_invalidate_register_cache(struct x86_emulate_ctxt * ctxt)5489 void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt)
5490 {
5491 invalidate_registers(ctxt);
5492 }
5493
emulator_writeback_register_cache(struct x86_emulate_ctxt * ctxt)5494 void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt)
5495 {
5496 writeback_registers(ctxt);
5497 }
5498
emulator_can_use_gpa(struct x86_emulate_ctxt * ctxt)5499 bool emulator_can_use_gpa(struct x86_emulate_ctxt *ctxt)
5500 {
5501 if (ctxt->rep_prefix && (ctxt->d & String))
5502 return false;
5503
5504 if (ctxt->d & TwoMemOp)
5505 return false;
5506
5507 return true;
5508 }
5509