xref: /openbmc/linux/arch/riscv/net/bpf_jit_comp64.c (revision 7112cd26)
1 // SPDX-License-Identifier: GPL-2.0
2 /* BPF JIT compiler for RV64G
3  *
4  * Copyright(c) 2019 Björn Töpel <bjorn.topel@gmail.com>
5  *
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/bpf.h>
10 #include <linux/filter.h>
11 #include <linux/memory.h>
12 #include <linux/stop_machine.h>
13 #include <asm/patch.h>
14 #include "bpf_jit.h"
15 
16 #define RV_FENTRY_NINSNS 2
17 
18 #define RV_REG_TCC RV_REG_A6
19 #define RV_REG_TCC_SAVED RV_REG_S6 /* Store A6 in S6 if program do calls */
20 
21 static const int regmap[] = {
22 	[BPF_REG_0] =	RV_REG_A5,
23 	[BPF_REG_1] =	RV_REG_A0,
24 	[BPF_REG_2] =	RV_REG_A1,
25 	[BPF_REG_3] =	RV_REG_A2,
26 	[BPF_REG_4] =	RV_REG_A3,
27 	[BPF_REG_5] =	RV_REG_A4,
28 	[BPF_REG_6] =	RV_REG_S1,
29 	[BPF_REG_7] =	RV_REG_S2,
30 	[BPF_REG_8] =	RV_REG_S3,
31 	[BPF_REG_9] =	RV_REG_S4,
32 	[BPF_REG_FP] =	RV_REG_S5,
33 	[BPF_REG_AX] =	RV_REG_T0,
34 };
35 
36 static const int pt_regmap[] = {
37 	[RV_REG_A0] = offsetof(struct pt_regs, a0),
38 	[RV_REG_A1] = offsetof(struct pt_regs, a1),
39 	[RV_REG_A2] = offsetof(struct pt_regs, a2),
40 	[RV_REG_A3] = offsetof(struct pt_regs, a3),
41 	[RV_REG_A4] = offsetof(struct pt_regs, a4),
42 	[RV_REG_A5] = offsetof(struct pt_regs, a5),
43 	[RV_REG_S1] = offsetof(struct pt_regs, s1),
44 	[RV_REG_S2] = offsetof(struct pt_regs, s2),
45 	[RV_REG_S3] = offsetof(struct pt_regs, s3),
46 	[RV_REG_S4] = offsetof(struct pt_regs, s4),
47 	[RV_REG_S5] = offsetof(struct pt_regs, s5),
48 	[RV_REG_T0] = offsetof(struct pt_regs, t0),
49 };
50 
51 enum {
52 	RV_CTX_F_SEEN_TAIL_CALL =	0,
53 	RV_CTX_F_SEEN_CALL =		RV_REG_RA,
54 	RV_CTX_F_SEEN_S1 =		RV_REG_S1,
55 	RV_CTX_F_SEEN_S2 =		RV_REG_S2,
56 	RV_CTX_F_SEEN_S3 =		RV_REG_S3,
57 	RV_CTX_F_SEEN_S4 =		RV_REG_S4,
58 	RV_CTX_F_SEEN_S5 =		RV_REG_S5,
59 	RV_CTX_F_SEEN_S6 =		RV_REG_S6,
60 };
61 
bpf_to_rv_reg(int bpf_reg,struct rv_jit_context * ctx)62 static u8 bpf_to_rv_reg(int bpf_reg, struct rv_jit_context *ctx)
63 {
64 	u8 reg = regmap[bpf_reg];
65 
66 	switch (reg) {
67 	case RV_CTX_F_SEEN_S1:
68 	case RV_CTX_F_SEEN_S2:
69 	case RV_CTX_F_SEEN_S3:
70 	case RV_CTX_F_SEEN_S4:
71 	case RV_CTX_F_SEEN_S5:
72 	case RV_CTX_F_SEEN_S6:
73 		__set_bit(reg, &ctx->flags);
74 	}
75 	return reg;
76 };
77 
seen_reg(int reg,struct rv_jit_context * ctx)78 static bool seen_reg(int reg, struct rv_jit_context *ctx)
79 {
80 	switch (reg) {
81 	case RV_CTX_F_SEEN_CALL:
82 	case RV_CTX_F_SEEN_S1:
83 	case RV_CTX_F_SEEN_S2:
84 	case RV_CTX_F_SEEN_S3:
85 	case RV_CTX_F_SEEN_S4:
86 	case RV_CTX_F_SEEN_S5:
87 	case RV_CTX_F_SEEN_S6:
88 		return test_bit(reg, &ctx->flags);
89 	}
90 	return false;
91 }
92 
mark_fp(struct rv_jit_context * ctx)93 static void mark_fp(struct rv_jit_context *ctx)
94 {
95 	__set_bit(RV_CTX_F_SEEN_S5, &ctx->flags);
96 }
97 
mark_call(struct rv_jit_context * ctx)98 static void mark_call(struct rv_jit_context *ctx)
99 {
100 	__set_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
101 }
102 
seen_call(struct rv_jit_context * ctx)103 static bool seen_call(struct rv_jit_context *ctx)
104 {
105 	return test_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
106 }
107 
mark_tail_call(struct rv_jit_context * ctx)108 static void mark_tail_call(struct rv_jit_context *ctx)
109 {
110 	__set_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
111 }
112 
seen_tail_call(struct rv_jit_context * ctx)113 static bool seen_tail_call(struct rv_jit_context *ctx)
114 {
115 	return test_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
116 }
117 
rv_tail_call_reg(struct rv_jit_context * ctx)118 static u8 rv_tail_call_reg(struct rv_jit_context *ctx)
119 {
120 	mark_tail_call(ctx);
121 
122 	if (seen_call(ctx)) {
123 		__set_bit(RV_CTX_F_SEEN_S6, &ctx->flags);
124 		return RV_REG_S6;
125 	}
126 	return RV_REG_A6;
127 }
128 
is_32b_int(s64 val)129 static bool is_32b_int(s64 val)
130 {
131 	return -(1L << 31) <= val && val < (1L << 31);
132 }
133 
in_auipc_jalr_range(s64 val)134 static bool in_auipc_jalr_range(s64 val)
135 {
136 	/*
137 	 * auipc+jalr can reach any signed PC-relative offset in the range
138 	 * [-2^31 - 2^11, 2^31 - 2^11).
139 	 */
140 	return (-(1L << 31) - (1L << 11)) <= val &&
141 		val < ((1L << 31) - (1L << 11));
142 }
143 
144 /* Emit fixed-length instructions for address */
emit_addr(u8 rd,u64 addr,bool extra_pass,struct rv_jit_context * ctx)145 static int emit_addr(u8 rd, u64 addr, bool extra_pass, struct rv_jit_context *ctx)
146 {
147 	/*
148 	 * Use the ro_insns(RX) to calculate the offset as the BPF program will
149 	 * finally run from this memory region.
150 	 */
151 	u64 ip = (u64)(ctx->ro_insns + ctx->ninsns);
152 	s64 off = addr - ip;
153 	s64 upper = (off + (1 << 11)) >> 12;
154 	s64 lower = off & 0xfff;
155 
156 	if (extra_pass && !in_auipc_jalr_range(off)) {
157 		pr_err("bpf-jit: target offset 0x%llx is out of range\n", off);
158 		return -ERANGE;
159 	}
160 
161 	emit(rv_auipc(rd, upper), ctx);
162 	emit(rv_addi(rd, rd, lower), ctx);
163 	return 0;
164 }
165 
166 /* Emit variable-length instructions for 32-bit and 64-bit imm */
emit_imm(u8 rd,s64 val,struct rv_jit_context * ctx)167 static void emit_imm(u8 rd, s64 val, struct rv_jit_context *ctx)
168 {
169 	/* Note that the immediate from the add is sign-extended,
170 	 * which means that we need to compensate this by adding 2^12,
171 	 * when the 12th bit is set. A simpler way of doing this, and
172 	 * getting rid of the check, is to just add 2**11 before the
173 	 * shift. The "Loading a 32-Bit constant" example from the
174 	 * "Computer Organization and Design, RISC-V edition" book by
175 	 * Patterson/Hennessy highlights this fact.
176 	 *
177 	 * This also means that we need to process LSB to MSB.
178 	 */
179 	s64 upper = (val + (1 << 11)) >> 12;
180 	/* Sign-extend lower 12 bits to 64 bits since immediates for li, addiw,
181 	 * and addi are signed and RVC checks will perform signed comparisons.
182 	 */
183 	s64 lower = ((val & 0xfff) << 52) >> 52;
184 	int shift;
185 
186 	if (is_32b_int(val)) {
187 		if (upper)
188 			emit_lui(rd, upper, ctx);
189 
190 		if (!upper) {
191 			emit_li(rd, lower, ctx);
192 			return;
193 		}
194 
195 		emit_addiw(rd, rd, lower, ctx);
196 		return;
197 	}
198 
199 	shift = __ffs(upper);
200 	upper >>= shift;
201 	shift += 12;
202 
203 	emit_imm(rd, upper, ctx);
204 
205 	emit_slli(rd, rd, shift, ctx);
206 	if (lower)
207 		emit_addi(rd, rd, lower, ctx);
208 }
209 
__build_epilogue(bool is_tail_call,struct rv_jit_context * ctx)210 static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx)
211 {
212 	int stack_adjust = ctx->stack_size, store_offset = stack_adjust - 8;
213 
214 	if (seen_reg(RV_REG_RA, ctx)) {
215 		emit_ld(RV_REG_RA, store_offset, RV_REG_SP, ctx);
216 		store_offset -= 8;
217 	}
218 	emit_ld(RV_REG_FP, store_offset, RV_REG_SP, ctx);
219 	store_offset -= 8;
220 	if (seen_reg(RV_REG_S1, ctx)) {
221 		emit_ld(RV_REG_S1, store_offset, RV_REG_SP, ctx);
222 		store_offset -= 8;
223 	}
224 	if (seen_reg(RV_REG_S2, ctx)) {
225 		emit_ld(RV_REG_S2, store_offset, RV_REG_SP, ctx);
226 		store_offset -= 8;
227 	}
228 	if (seen_reg(RV_REG_S3, ctx)) {
229 		emit_ld(RV_REG_S3, store_offset, RV_REG_SP, ctx);
230 		store_offset -= 8;
231 	}
232 	if (seen_reg(RV_REG_S4, ctx)) {
233 		emit_ld(RV_REG_S4, store_offset, RV_REG_SP, ctx);
234 		store_offset -= 8;
235 	}
236 	if (seen_reg(RV_REG_S5, ctx)) {
237 		emit_ld(RV_REG_S5, store_offset, RV_REG_SP, ctx);
238 		store_offset -= 8;
239 	}
240 	if (seen_reg(RV_REG_S6, ctx)) {
241 		emit_ld(RV_REG_S6, store_offset, RV_REG_SP, ctx);
242 		store_offset -= 8;
243 	}
244 
245 	emit_addi(RV_REG_SP, RV_REG_SP, stack_adjust, ctx);
246 	/* Set return value. */
247 	if (!is_tail_call)
248 		emit_addiw(RV_REG_A0, RV_REG_A5, 0, ctx);
249 	emit_jalr(RV_REG_ZERO, is_tail_call ? RV_REG_T3 : RV_REG_RA,
250 		  is_tail_call ? (RV_FENTRY_NINSNS + 1) * 4 : 0, /* skip reserved nops and TCC init */
251 		  ctx);
252 }
253 
emit_bcc(u8 cond,u8 rd,u8 rs,int rvoff,struct rv_jit_context * ctx)254 static void emit_bcc(u8 cond, u8 rd, u8 rs, int rvoff,
255 		     struct rv_jit_context *ctx)
256 {
257 	switch (cond) {
258 	case BPF_JEQ:
259 		emit(rv_beq(rd, rs, rvoff >> 1), ctx);
260 		return;
261 	case BPF_JGT:
262 		emit(rv_bltu(rs, rd, rvoff >> 1), ctx);
263 		return;
264 	case BPF_JLT:
265 		emit(rv_bltu(rd, rs, rvoff >> 1), ctx);
266 		return;
267 	case BPF_JGE:
268 		emit(rv_bgeu(rd, rs, rvoff >> 1), ctx);
269 		return;
270 	case BPF_JLE:
271 		emit(rv_bgeu(rs, rd, rvoff >> 1), ctx);
272 		return;
273 	case BPF_JNE:
274 		emit(rv_bne(rd, rs, rvoff >> 1), ctx);
275 		return;
276 	case BPF_JSGT:
277 		emit(rv_blt(rs, rd, rvoff >> 1), ctx);
278 		return;
279 	case BPF_JSLT:
280 		emit(rv_blt(rd, rs, rvoff >> 1), ctx);
281 		return;
282 	case BPF_JSGE:
283 		emit(rv_bge(rd, rs, rvoff >> 1), ctx);
284 		return;
285 	case BPF_JSLE:
286 		emit(rv_bge(rs, rd, rvoff >> 1), ctx);
287 	}
288 }
289 
emit_branch(u8 cond,u8 rd,u8 rs,int rvoff,struct rv_jit_context * ctx)290 static void emit_branch(u8 cond, u8 rd, u8 rs, int rvoff,
291 			struct rv_jit_context *ctx)
292 {
293 	s64 upper, lower;
294 
295 	if (is_13b_int(rvoff)) {
296 		emit_bcc(cond, rd, rs, rvoff, ctx);
297 		return;
298 	}
299 
300 	/* Adjust for jal */
301 	rvoff -= 4;
302 
303 	/* Transform, e.g.:
304 	 *   bne rd,rs,foo
305 	 * to
306 	 *   beq rd,rs,<.L1>
307 	 *   (auipc foo)
308 	 *   jal(r) foo
309 	 * .L1
310 	 */
311 	cond = invert_bpf_cond(cond);
312 	if (is_21b_int(rvoff)) {
313 		emit_bcc(cond, rd, rs, 8, ctx);
314 		emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx);
315 		return;
316 	}
317 
318 	/* 32b No need for an additional rvoff adjustment, since we
319 	 * get that from the auipc at PC', where PC = PC' + 4.
320 	 */
321 	upper = (rvoff + (1 << 11)) >> 12;
322 	lower = rvoff & 0xfff;
323 
324 	emit_bcc(cond, rd, rs, 12, ctx);
325 	emit(rv_auipc(RV_REG_T1, upper), ctx);
326 	emit(rv_jalr(RV_REG_ZERO, RV_REG_T1, lower), ctx);
327 }
328 
emit_zext_32(u8 reg,struct rv_jit_context * ctx)329 static void emit_zext_32(u8 reg, struct rv_jit_context *ctx)
330 {
331 	emit_slli(reg, reg, 32, ctx);
332 	emit_srli(reg, reg, 32, ctx);
333 }
334 
emit_bpf_tail_call(int insn,struct rv_jit_context * ctx)335 static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx)
336 {
337 	int tc_ninsn, off, start_insn = ctx->ninsns;
338 	u8 tcc = rv_tail_call_reg(ctx);
339 
340 	/* a0: &ctx
341 	 * a1: &array
342 	 * a2: index
343 	 *
344 	 * if (index >= array->map.max_entries)
345 	 *	goto out;
346 	 */
347 	tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] :
348 		   ctx->offset[0];
349 	emit_zext_32(RV_REG_A2, ctx);
350 
351 	off = offsetof(struct bpf_array, map.max_entries);
352 	if (is_12b_check(off, insn))
353 		return -1;
354 	emit(rv_lwu(RV_REG_T1, off, RV_REG_A1), ctx);
355 	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
356 	emit_branch(BPF_JGE, RV_REG_A2, RV_REG_T1, off, ctx);
357 
358 	/* if (--TCC < 0)
359 	 *     goto out;
360 	 */
361 	emit_addi(RV_REG_TCC, tcc, -1, ctx);
362 	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
363 	emit_branch(BPF_JSLT, RV_REG_TCC, RV_REG_ZERO, off, ctx);
364 
365 	/* prog = array->ptrs[index];
366 	 * if (!prog)
367 	 *     goto out;
368 	 */
369 	emit_slli(RV_REG_T2, RV_REG_A2, 3, ctx);
370 	emit_add(RV_REG_T2, RV_REG_T2, RV_REG_A1, ctx);
371 	off = offsetof(struct bpf_array, ptrs);
372 	if (is_12b_check(off, insn))
373 		return -1;
374 	emit_ld(RV_REG_T2, off, RV_REG_T2, ctx);
375 	off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
376 	emit_branch(BPF_JEQ, RV_REG_T2, RV_REG_ZERO, off, ctx);
377 
378 	/* goto *(prog->bpf_func + 4); */
379 	off = offsetof(struct bpf_prog, bpf_func);
380 	if (is_12b_check(off, insn))
381 		return -1;
382 	emit_ld(RV_REG_T3, off, RV_REG_T2, ctx);
383 	__build_epilogue(true, ctx);
384 	return 0;
385 }
386 
init_regs(u8 * rd,u8 * rs,const struct bpf_insn * insn,struct rv_jit_context * ctx)387 static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn,
388 		      struct rv_jit_context *ctx)
389 {
390 	u8 code = insn->code;
391 
392 	switch (code) {
393 	case BPF_JMP | BPF_JA:
394 	case BPF_JMP | BPF_CALL:
395 	case BPF_JMP | BPF_EXIT:
396 	case BPF_JMP | BPF_TAIL_CALL:
397 		break;
398 	default:
399 		*rd = bpf_to_rv_reg(insn->dst_reg, ctx);
400 	}
401 
402 	if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) ||
403 	    code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) ||
404 	    code & BPF_LDX || code & BPF_STX)
405 		*rs = bpf_to_rv_reg(insn->src_reg, ctx);
406 }
407 
emit_zext_32_rd_rs(u8 * rd,u8 * rs,struct rv_jit_context * ctx)408 static void emit_zext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx)
409 {
410 	emit_mv(RV_REG_T2, *rd, ctx);
411 	emit_zext_32(RV_REG_T2, ctx);
412 	emit_mv(RV_REG_T1, *rs, ctx);
413 	emit_zext_32(RV_REG_T1, ctx);
414 	*rd = RV_REG_T2;
415 	*rs = RV_REG_T1;
416 }
417 
emit_sext_32_rd_rs(u8 * rd,u8 * rs,struct rv_jit_context * ctx)418 static void emit_sext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx)
419 {
420 	emit_addiw(RV_REG_T2, *rd, 0, ctx);
421 	emit_addiw(RV_REG_T1, *rs, 0, ctx);
422 	*rd = RV_REG_T2;
423 	*rs = RV_REG_T1;
424 }
425 
emit_zext_32_rd_t1(u8 * rd,struct rv_jit_context * ctx)426 static void emit_zext_32_rd_t1(u8 *rd, struct rv_jit_context *ctx)
427 {
428 	emit_mv(RV_REG_T2, *rd, ctx);
429 	emit_zext_32(RV_REG_T2, ctx);
430 	emit_zext_32(RV_REG_T1, ctx);
431 	*rd = RV_REG_T2;
432 }
433 
emit_sext_32_rd(u8 * rd,struct rv_jit_context * ctx)434 static void emit_sext_32_rd(u8 *rd, struct rv_jit_context *ctx)
435 {
436 	emit_addiw(RV_REG_T2, *rd, 0, ctx);
437 	*rd = RV_REG_T2;
438 }
439 
emit_jump_and_link(u8 rd,s64 rvoff,bool fixed_addr,struct rv_jit_context * ctx)440 static int emit_jump_and_link(u8 rd, s64 rvoff, bool fixed_addr,
441 			      struct rv_jit_context *ctx)
442 {
443 	s64 upper, lower;
444 
445 	if (rvoff && fixed_addr && is_21b_int(rvoff)) {
446 		emit(rv_jal(rd, rvoff >> 1), ctx);
447 		return 0;
448 	} else if (in_auipc_jalr_range(rvoff)) {
449 		upper = (rvoff + (1 << 11)) >> 12;
450 		lower = rvoff & 0xfff;
451 		emit(rv_auipc(RV_REG_T1, upper), ctx);
452 		emit(rv_jalr(rd, RV_REG_T1, lower), ctx);
453 		return 0;
454 	}
455 
456 	pr_err("bpf-jit: target offset 0x%llx is out of range\n", rvoff);
457 	return -ERANGE;
458 }
459 
is_signed_bpf_cond(u8 cond)460 static bool is_signed_bpf_cond(u8 cond)
461 {
462 	return cond == BPF_JSGT || cond == BPF_JSLT ||
463 		cond == BPF_JSGE || cond == BPF_JSLE;
464 }
465 
emit_call(u64 addr,bool fixed_addr,struct rv_jit_context * ctx)466 static int emit_call(u64 addr, bool fixed_addr, struct rv_jit_context *ctx)
467 {
468 	s64 off = 0;
469 	u64 ip;
470 
471 	if (addr && ctx->insns && ctx->ro_insns) {
472 		/*
473 		 * Use the ro_insns(RX) to calculate the offset as the BPF
474 		 * program will finally run from this memory region.
475 		 */
476 		ip = (u64)(long)(ctx->ro_insns + ctx->ninsns);
477 		off = addr - ip;
478 	}
479 
480 	return emit_jump_and_link(RV_REG_RA, off, fixed_addr, ctx);
481 }
482 
emit_atomic(u8 rd,u8 rs,s16 off,s32 imm,bool is64,struct rv_jit_context * ctx)483 static void emit_atomic(u8 rd, u8 rs, s16 off, s32 imm, bool is64,
484 			struct rv_jit_context *ctx)
485 {
486 	u8 r0;
487 	int jmp_offset;
488 
489 	if (off) {
490 		if (is_12b_int(off)) {
491 			emit_addi(RV_REG_T1, rd, off, ctx);
492 		} else {
493 			emit_imm(RV_REG_T1, off, ctx);
494 			emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
495 		}
496 		rd = RV_REG_T1;
497 	}
498 
499 	switch (imm) {
500 	/* lock *(u32/u64 *)(dst_reg + off16) <op>= src_reg */
501 	case BPF_ADD:
502 		emit(is64 ? rv_amoadd_d(RV_REG_ZERO, rs, rd, 0, 0) :
503 		     rv_amoadd_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
504 		break;
505 	case BPF_AND:
506 		emit(is64 ? rv_amoand_d(RV_REG_ZERO, rs, rd, 0, 0) :
507 		     rv_amoand_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
508 		break;
509 	case BPF_OR:
510 		emit(is64 ? rv_amoor_d(RV_REG_ZERO, rs, rd, 0, 0) :
511 		     rv_amoor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
512 		break;
513 	case BPF_XOR:
514 		emit(is64 ? rv_amoxor_d(RV_REG_ZERO, rs, rd, 0, 0) :
515 		     rv_amoxor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
516 		break;
517 	/* src_reg = atomic_fetch_<op>(dst_reg + off16, src_reg) */
518 	case BPF_ADD | BPF_FETCH:
519 		emit(is64 ? rv_amoadd_d(rs, rs, rd, 0, 0) :
520 		     rv_amoadd_w(rs, rs, rd, 0, 0), ctx);
521 		if (!is64)
522 			emit_zext_32(rs, ctx);
523 		break;
524 	case BPF_AND | BPF_FETCH:
525 		emit(is64 ? rv_amoand_d(rs, rs, rd, 0, 0) :
526 		     rv_amoand_w(rs, rs, rd, 0, 0), ctx);
527 		if (!is64)
528 			emit_zext_32(rs, ctx);
529 		break;
530 	case BPF_OR | BPF_FETCH:
531 		emit(is64 ? rv_amoor_d(rs, rs, rd, 0, 0) :
532 		     rv_amoor_w(rs, rs, rd, 0, 0), ctx);
533 		if (!is64)
534 			emit_zext_32(rs, ctx);
535 		break;
536 	case BPF_XOR | BPF_FETCH:
537 		emit(is64 ? rv_amoxor_d(rs, rs, rd, 0, 0) :
538 		     rv_amoxor_w(rs, rs, rd, 0, 0), ctx);
539 		if (!is64)
540 			emit_zext_32(rs, ctx);
541 		break;
542 	/* src_reg = atomic_xchg(dst_reg + off16, src_reg); */
543 	case BPF_XCHG:
544 		emit(is64 ? rv_amoswap_d(rs, rs, rd, 0, 0) :
545 		     rv_amoswap_w(rs, rs, rd, 0, 0), ctx);
546 		if (!is64)
547 			emit_zext_32(rs, ctx);
548 		break;
549 	/* r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg); */
550 	case BPF_CMPXCHG:
551 		r0 = bpf_to_rv_reg(BPF_REG_0, ctx);
552 		emit(is64 ? rv_addi(RV_REG_T2, r0, 0) :
553 		     rv_addiw(RV_REG_T2, r0, 0), ctx);
554 		emit(is64 ? rv_lr_d(r0, 0, rd, 0, 0) :
555 		     rv_lr_w(r0, 0, rd, 0, 0), ctx);
556 		jmp_offset = ninsns_rvoff(8);
557 		emit(rv_bne(RV_REG_T2, r0, jmp_offset >> 1), ctx);
558 		emit(is64 ? rv_sc_d(RV_REG_T3, rs, rd, 0, 0) :
559 		     rv_sc_w(RV_REG_T3, rs, rd, 0, 0), ctx);
560 		jmp_offset = ninsns_rvoff(-6);
561 		emit(rv_bne(RV_REG_T3, 0, jmp_offset >> 1), ctx);
562 		emit(rv_fence(0x3, 0x3), ctx);
563 		break;
564 	}
565 }
566 
567 #define BPF_FIXUP_OFFSET_MASK   GENMASK(26, 0)
568 #define BPF_FIXUP_REG_MASK      GENMASK(31, 27)
569 
ex_handler_bpf(const struct exception_table_entry * ex,struct pt_regs * regs)570 bool ex_handler_bpf(const struct exception_table_entry *ex,
571 		    struct pt_regs *regs)
572 {
573 	off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
574 	int regs_offset = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
575 
576 	*(unsigned long *)((void *)regs + pt_regmap[regs_offset]) = 0;
577 	regs->epc = (unsigned long)&ex->fixup - offset;
578 
579 	return true;
580 }
581 
582 /* For accesses to BTF pointers, add an entry to the exception table */
add_exception_handler(const struct bpf_insn * insn,struct rv_jit_context * ctx,int dst_reg,int insn_len)583 static int add_exception_handler(const struct bpf_insn *insn,
584 				 struct rv_jit_context *ctx,
585 				 int dst_reg, int insn_len)
586 {
587 	struct exception_table_entry *ex;
588 	unsigned long pc;
589 	off_t ins_offset;
590 	off_t fixup_offset;
591 
592 	if (!ctx->insns || !ctx->ro_insns || !ctx->prog->aux->extable ||
593 	    (BPF_MODE(insn->code) != BPF_PROBE_MEM && BPF_MODE(insn->code) != BPF_PROBE_MEMSX))
594 		return 0;
595 
596 	if (WARN_ON_ONCE(ctx->nexentries >= ctx->prog->aux->num_exentries))
597 		return -EINVAL;
598 
599 	if (WARN_ON_ONCE(insn_len > ctx->ninsns))
600 		return -EINVAL;
601 
602 	if (WARN_ON_ONCE(!rvc_enabled() && insn_len == 1))
603 		return -EINVAL;
604 
605 	ex = &ctx->prog->aux->extable[ctx->nexentries];
606 	pc = (unsigned long)&ctx->ro_insns[ctx->ninsns - insn_len];
607 
608 	/*
609 	 * This is the relative offset of the instruction that may fault from
610 	 * the exception table itself. This will be written to the exception
611 	 * table and if this instruction faults, the destination register will
612 	 * be set to '0' and the execution will jump to the next instruction.
613 	 */
614 	ins_offset = pc - (long)&ex->insn;
615 	if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN))
616 		return -ERANGE;
617 
618 	/*
619 	 * Since the extable follows the program, the fixup offset is always
620 	 * negative and limited to BPF_JIT_REGION_SIZE. Store a positive value
621 	 * to keep things simple, and put the destination register in the upper
622 	 * bits. We don't need to worry about buildtime or runtime sort
623 	 * modifying the upper bits because the table is already sorted, and
624 	 * isn't part of the main exception table.
625 	 *
626 	 * The fixup_offset is set to the next instruction from the instruction
627 	 * that may fault. The execution will jump to this after handling the
628 	 * fault.
629 	 */
630 	fixup_offset = (long)&ex->fixup - (pc + insn_len * sizeof(u16));
631 	if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, fixup_offset))
632 		return -ERANGE;
633 
634 	/*
635 	 * The offsets above have been calculated using the RO buffer but we
636 	 * need to use the R/W buffer for writes.
637 	 * switch ex to rw buffer for writing.
638 	 */
639 	ex = (void *)ctx->insns + ((void *)ex - (void *)ctx->ro_insns);
640 
641 	ex->insn = ins_offset;
642 
643 	ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, fixup_offset) |
644 		FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
645 	ex->type = EX_TYPE_BPF;
646 
647 	ctx->nexentries++;
648 	return 0;
649 }
650 
gen_jump_or_nops(void * target,void * ip,u32 * insns,bool is_call)651 static int gen_jump_or_nops(void *target, void *ip, u32 *insns, bool is_call)
652 {
653 	s64 rvoff;
654 	struct rv_jit_context ctx;
655 
656 	ctx.ninsns = 0;
657 	ctx.insns = (u16 *)insns;
658 
659 	if (!target) {
660 		emit(rv_nop(), &ctx);
661 		emit(rv_nop(), &ctx);
662 		return 0;
663 	}
664 
665 	rvoff = (s64)(target - ip);
666 	return emit_jump_and_link(is_call ? RV_REG_T0 : RV_REG_ZERO, rvoff, false, &ctx);
667 }
668 
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type poke_type,void * old_addr,void * new_addr)669 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type poke_type,
670 		       void *old_addr, void *new_addr)
671 {
672 	u32 old_insns[RV_FENTRY_NINSNS], new_insns[RV_FENTRY_NINSNS];
673 	bool is_call = poke_type == BPF_MOD_CALL;
674 	int ret;
675 
676 	if (!is_kernel_text((unsigned long)ip) &&
677 	    !is_bpf_text_address((unsigned long)ip))
678 		return -ENOTSUPP;
679 
680 	ret = gen_jump_or_nops(old_addr, ip, old_insns, is_call);
681 	if (ret)
682 		return ret;
683 
684 	if (memcmp(ip, old_insns, RV_FENTRY_NINSNS * 4))
685 		return -EFAULT;
686 
687 	ret = gen_jump_or_nops(new_addr, ip, new_insns, is_call);
688 	if (ret)
689 		return ret;
690 
691 	cpus_read_lock();
692 	mutex_lock(&text_mutex);
693 	if (memcmp(ip, new_insns, RV_FENTRY_NINSNS * 4))
694 		ret = patch_text(ip, new_insns, RV_FENTRY_NINSNS);
695 	mutex_unlock(&text_mutex);
696 	cpus_read_unlock();
697 
698 	return ret;
699 }
700 
store_args(int nregs,int args_off,struct rv_jit_context * ctx)701 static void store_args(int nregs, int args_off, struct rv_jit_context *ctx)
702 {
703 	int i;
704 
705 	for (i = 0; i < nregs; i++) {
706 		emit_sd(RV_REG_FP, -args_off, RV_REG_A0 + i, ctx);
707 		args_off -= 8;
708 	}
709 }
710 
restore_args(int nregs,int args_off,struct rv_jit_context * ctx)711 static void restore_args(int nregs, int args_off, struct rv_jit_context *ctx)
712 {
713 	int i;
714 
715 	for (i = 0; i < nregs; i++) {
716 		emit_ld(RV_REG_A0 + i, -args_off, RV_REG_FP, ctx);
717 		args_off -= 8;
718 	}
719 }
720 
invoke_bpf_prog(struct bpf_tramp_link * l,int args_off,int retval_off,int run_ctx_off,bool save_ret,struct rv_jit_context * ctx)721 static int invoke_bpf_prog(struct bpf_tramp_link *l, int args_off, int retval_off,
722 			   int run_ctx_off, bool save_ret, struct rv_jit_context *ctx)
723 {
724 	int ret, branch_off;
725 	struct bpf_prog *p = l->link.prog;
726 	int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
727 
728 	if (l->cookie) {
729 		emit_imm(RV_REG_T1, l->cookie, ctx);
730 		emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_T1, ctx);
731 	} else {
732 		emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_ZERO, ctx);
733 	}
734 
735 	/* arg1: prog */
736 	emit_imm(RV_REG_A0, (const s64)p, ctx);
737 	/* arg2: &run_ctx */
738 	emit_addi(RV_REG_A1, RV_REG_FP, -run_ctx_off, ctx);
739 	ret = emit_call((const u64)bpf_trampoline_enter(p), true, ctx);
740 	if (ret)
741 		return ret;
742 
743 	/* if (__bpf_prog_enter(prog) == 0)
744 	 *	goto skip_exec_of_prog;
745 	 */
746 	branch_off = ctx->ninsns;
747 	/* nop reserved for conditional jump */
748 	emit(rv_nop(), ctx);
749 
750 	/* store prog start time */
751 	emit_mv(RV_REG_S1, RV_REG_A0, ctx);
752 
753 	/* arg1: &args_off */
754 	emit_addi(RV_REG_A0, RV_REG_FP, -args_off, ctx);
755 	if (!p->jited)
756 		/* arg2: progs[i]->insnsi for interpreter */
757 		emit_imm(RV_REG_A1, (const s64)p->insnsi, ctx);
758 	ret = emit_call((const u64)p->bpf_func, true, ctx);
759 	if (ret)
760 		return ret;
761 
762 	if (save_ret) {
763 		emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
764 		emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx);
765 	}
766 
767 	/* update branch with beqz */
768 	if (ctx->insns) {
769 		int offset = ninsns_rvoff(ctx->ninsns - branch_off);
770 		u32 insn = rv_beq(RV_REG_A0, RV_REG_ZERO, offset >> 1);
771 		*(u32 *)(ctx->insns + branch_off) = insn;
772 	}
773 
774 	/* arg1: prog */
775 	emit_imm(RV_REG_A0, (const s64)p, ctx);
776 	/* arg2: prog start time */
777 	emit_mv(RV_REG_A1, RV_REG_S1, ctx);
778 	/* arg3: &run_ctx */
779 	emit_addi(RV_REG_A2, RV_REG_FP, -run_ctx_off, ctx);
780 	ret = emit_call((const u64)bpf_trampoline_exit(p), true, ctx);
781 
782 	return ret;
783 }
784 
__arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,const struct btf_func_model * m,struct bpf_tramp_links * tlinks,void * func_addr,u32 flags,struct rv_jit_context * ctx)785 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
786 					 const struct btf_func_model *m,
787 					 struct bpf_tramp_links *tlinks,
788 					 void *func_addr, u32 flags,
789 					 struct rv_jit_context *ctx)
790 {
791 	int i, ret, offset;
792 	int *branches_off = NULL;
793 	int stack_size = 0, nregs = m->nr_args;
794 	int retval_off, args_off, nregs_off, ip_off, run_ctx_off, sreg_off;
795 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
796 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
797 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
798 	void *orig_call = func_addr;
799 	bool save_ret;
800 	u32 insn;
801 
802 	/* Two types of generated trampoline stack layout:
803 	 *
804 	 * 1. trampoline called from function entry
805 	 * --------------------------------------
806 	 * FP + 8	    [ RA to parent func	] return address to parent
807 	 *					  function
808 	 * FP + 0	    [ FP of parent func ] frame pointer of parent
809 	 *					  function
810 	 * FP - 8           [ T0 to traced func ] return address of traced
811 	 *					  function
812 	 * FP - 16	    [ FP of traced func ] frame pointer of traced
813 	 *					  function
814 	 * --------------------------------------
815 	 *
816 	 * 2. trampoline called directly
817 	 * --------------------------------------
818 	 * FP - 8	    [ RA to caller func ] return address to caller
819 	 *					  function
820 	 * FP - 16	    [ FP of caller func	] frame pointer of caller
821 	 *					  function
822 	 * --------------------------------------
823 	 *
824 	 * FP - retval_off  [ return value      ] BPF_TRAMP_F_CALL_ORIG or
825 	 *					  BPF_TRAMP_F_RET_FENTRY_RET
826 	 *                  [ argN              ]
827 	 *                  [ ...               ]
828 	 * FP - args_off    [ arg1              ]
829 	 *
830 	 * FP - nregs_off   [ regs count        ]
831 	 *
832 	 * FP - ip_off      [ traced func	] BPF_TRAMP_F_IP_ARG
833 	 *
834 	 * FP - run_ctx_off [ bpf_tramp_run_ctx ]
835 	 *
836 	 * FP - sreg_off    [ callee saved reg	]
837 	 *
838 	 *		    [ pads              ] pads for 16 bytes alignment
839 	 */
840 
841 	if (flags & (BPF_TRAMP_F_ORIG_STACK | BPF_TRAMP_F_SHARE_IPMODIFY))
842 		return -ENOTSUPP;
843 
844 	/* extra regiters for struct arguments */
845 	for (i = 0; i < m->nr_args; i++)
846 		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
847 			nregs += round_up(m->arg_size[i], 8) / 8 - 1;
848 
849 	/* 8 arguments passed by registers */
850 	if (nregs > 8)
851 		return -ENOTSUPP;
852 
853 	/* room of trampoline frame to store return address and frame pointer */
854 	stack_size += 16;
855 
856 	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
857 	if (save_ret) {
858 		stack_size += 16; /* Save both A5 (BPF R0) and A0 */
859 		retval_off = stack_size;
860 	}
861 
862 	stack_size += nregs * 8;
863 	args_off = stack_size;
864 
865 	stack_size += 8;
866 	nregs_off = stack_size;
867 
868 	if (flags & BPF_TRAMP_F_IP_ARG) {
869 		stack_size += 8;
870 		ip_off = stack_size;
871 	}
872 
873 	stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8);
874 	run_ctx_off = stack_size;
875 
876 	stack_size += 8;
877 	sreg_off = stack_size;
878 
879 	stack_size = round_up(stack_size, 16);
880 
881 	if (func_addr) {
882 		/* For the trampoline called from function entry,
883 		 * the frame of traced function and the frame of
884 		 * trampoline need to be considered.
885 		 */
886 		emit_addi(RV_REG_SP, RV_REG_SP, -16, ctx);
887 		emit_sd(RV_REG_SP, 8, RV_REG_RA, ctx);
888 		emit_sd(RV_REG_SP, 0, RV_REG_FP, ctx);
889 		emit_addi(RV_REG_FP, RV_REG_SP, 16, ctx);
890 
891 		emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
892 		emit_sd(RV_REG_SP, stack_size - 8, RV_REG_T0, ctx);
893 		emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
894 		emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
895 	} else {
896 		/* For the trampoline called directly, just handle
897 		 * the frame of trampoline.
898 		 */
899 		emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
900 		emit_sd(RV_REG_SP, stack_size - 8, RV_REG_RA, ctx);
901 		emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
902 		emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
903 	}
904 
905 	/* callee saved register S1 to pass start time */
906 	emit_sd(RV_REG_FP, -sreg_off, RV_REG_S1, ctx);
907 
908 	/* store ip address of the traced function */
909 	if (flags & BPF_TRAMP_F_IP_ARG) {
910 		emit_imm(RV_REG_T1, (const s64)func_addr, ctx);
911 		emit_sd(RV_REG_FP, -ip_off, RV_REG_T1, ctx);
912 	}
913 
914 	emit_li(RV_REG_T1, nregs, ctx);
915 	emit_sd(RV_REG_FP, -nregs_off, RV_REG_T1, ctx);
916 
917 	store_args(nregs, args_off, ctx);
918 
919 	/* skip to actual body of traced function */
920 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
921 		orig_call += RV_FENTRY_NINSNS * 4;
922 
923 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
924 		emit_imm(RV_REG_A0, (const s64)im, ctx);
925 		ret = emit_call((const u64)__bpf_tramp_enter, true, ctx);
926 		if (ret)
927 			return ret;
928 	}
929 
930 	for (i = 0; i < fentry->nr_links; i++) {
931 		ret = invoke_bpf_prog(fentry->links[i], args_off, retval_off, run_ctx_off,
932 				      flags & BPF_TRAMP_F_RET_FENTRY_RET, ctx);
933 		if (ret)
934 			return ret;
935 	}
936 
937 	if (fmod_ret->nr_links) {
938 		branches_off = kcalloc(fmod_ret->nr_links, sizeof(int), GFP_KERNEL);
939 		if (!branches_off)
940 			return -ENOMEM;
941 
942 		/* cleanup to avoid garbage return value confusion */
943 		emit_sd(RV_REG_FP, -retval_off, RV_REG_ZERO, ctx);
944 		for (i = 0; i < fmod_ret->nr_links; i++) {
945 			ret = invoke_bpf_prog(fmod_ret->links[i], args_off, retval_off,
946 					      run_ctx_off, true, ctx);
947 			if (ret)
948 				goto out;
949 			emit_ld(RV_REG_T1, -retval_off, RV_REG_FP, ctx);
950 			branches_off[i] = ctx->ninsns;
951 			/* nop reserved for conditional jump */
952 			emit(rv_nop(), ctx);
953 		}
954 	}
955 
956 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
957 		restore_args(nregs, args_off, ctx);
958 		ret = emit_call((const u64)orig_call, true, ctx);
959 		if (ret)
960 			goto out;
961 		emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
962 		emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx);
963 		im->ip_after_call = ctx->insns + ctx->ninsns;
964 		/* 2 nops reserved for auipc+jalr pair */
965 		emit(rv_nop(), ctx);
966 		emit(rv_nop(), ctx);
967 	}
968 
969 	/* update branches saved in invoke_bpf_mod_ret with bnez */
970 	for (i = 0; ctx->insns && i < fmod_ret->nr_links; i++) {
971 		offset = ninsns_rvoff(ctx->ninsns - branches_off[i]);
972 		insn = rv_bne(RV_REG_T1, RV_REG_ZERO, offset >> 1);
973 		*(u32 *)(ctx->insns + branches_off[i]) = insn;
974 	}
975 
976 	for (i = 0; i < fexit->nr_links; i++) {
977 		ret = invoke_bpf_prog(fexit->links[i], args_off, retval_off,
978 				      run_ctx_off, false, ctx);
979 		if (ret)
980 			goto out;
981 	}
982 
983 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
984 		im->ip_epilogue = ctx->insns + ctx->ninsns;
985 		emit_imm(RV_REG_A0, (const s64)im, ctx);
986 		ret = emit_call((const u64)__bpf_tramp_exit, true, ctx);
987 		if (ret)
988 			goto out;
989 	}
990 
991 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
992 		restore_args(nregs, args_off, ctx);
993 
994 	if (save_ret) {
995 		emit_ld(RV_REG_A0, -retval_off, RV_REG_FP, ctx);
996 		emit_ld(regmap[BPF_REG_0], -(retval_off - 8), RV_REG_FP, ctx);
997 	}
998 
999 	emit_ld(RV_REG_S1, -sreg_off, RV_REG_FP, ctx);
1000 
1001 	if (func_addr) {
1002 		/* trampoline called from function entry */
1003 		emit_ld(RV_REG_T0, stack_size - 8, RV_REG_SP, ctx);
1004 		emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1005 		emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1006 
1007 		emit_ld(RV_REG_RA, 8, RV_REG_SP, ctx);
1008 		emit_ld(RV_REG_FP, 0, RV_REG_SP, ctx);
1009 		emit_addi(RV_REG_SP, RV_REG_SP, 16, ctx);
1010 
1011 		if (flags & BPF_TRAMP_F_SKIP_FRAME)
1012 			/* return to parent function */
1013 			emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1014 		else
1015 			/* return to traced function */
1016 			emit_jalr(RV_REG_ZERO, RV_REG_T0, 0, ctx);
1017 	} else {
1018 		/* trampoline called directly */
1019 		emit_ld(RV_REG_RA, stack_size - 8, RV_REG_SP, ctx);
1020 		emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1021 		emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1022 
1023 		emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1024 	}
1025 
1026 	ret = ctx->ninsns;
1027 out:
1028 	kfree(branches_off);
1029 	return ret;
1030 }
1031 
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * image,void * image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)1032 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
1033 				void *image_end, const struct btf_func_model *m,
1034 				u32 flags, struct bpf_tramp_links *tlinks,
1035 				void *func_addr)
1036 {
1037 	int ret;
1038 	struct rv_jit_context ctx;
1039 
1040 	ctx.ninsns = 0;
1041 	ctx.insns = NULL;
1042 	ctx.ro_insns = NULL;
1043 	ret = __arch_prepare_bpf_trampoline(im, m, tlinks, func_addr, flags, &ctx);
1044 	if (ret < 0)
1045 		return ret;
1046 
1047 	if (ninsns_rvoff(ret) > (long)image_end - (long)image)
1048 		return -EFBIG;
1049 
1050 	ctx.ninsns = 0;
1051 	/*
1052 	 * The bpf_int_jit_compile() uses a RW buffer (ctx.insns) to write the
1053 	 * JITed instructions and later copies it to a RX region (ctx.ro_insns).
1054 	 * It also uses ctx.ro_insns to calculate offsets for jumps etc. As the
1055 	 * trampoline image uses the same memory area for writing and execution,
1056 	 * both ctx.insns and ctx.ro_insns can be set to image.
1057 	 */
1058 	ctx.insns = image;
1059 	ctx.ro_insns = image;
1060 	ret = __arch_prepare_bpf_trampoline(im, m, tlinks, func_addr, flags, &ctx);
1061 	if (ret < 0)
1062 		return ret;
1063 
1064 	bpf_flush_icache(ctx.insns, ctx.insns + ctx.ninsns);
1065 
1066 	return ninsns_rvoff(ret);
1067 }
1068 
bpf_jit_emit_insn(const struct bpf_insn * insn,struct rv_jit_context * ctx,bool extra_pass)1069 int bpf_jit_emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx,
1070 		      bool extra_pass)
1071 {
1072 	bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
1073 		    BPF_CLASS(insn->code) == BPF_JMP;
1074 	int s, e, rvoff, ret, i = insn - ctx->prog->insnsi;
1075 	struct bpf_prog_aux *aux = ctx->prog->aux;
1076 	u8 rd = -1, rs = -1, code = insn->code;
1077 	s16 off = insn->off;
1078 	s32 imm = insn->imm;
1079 
1080 	init_regs(&rd, &rs, insn, ctx);
1081 
1082 	switch (code) {
1083 	/* dst = src */
1084 	case BPF_ALU | BPF_MOV | BPF_X:
1085 	case BPF_ALU64 | BPF_MOV | BPF_X:
1086 		if (imm == 1) {
1087 			/* Special mov32 for zext */
1088 			emit_zext_32(rd, ctx);
1089 			break;
1090 		}
1091 		switch (insn->off) {
1092 		case 0:
1093 			emit_mv(rd, rs, ctx);
1094 			break;
1095 		case 8:
1096 		case 16:
1097 			emit_slli(RV_REG_T1, rs, 64 - insn->off, ctx);
1098 			emit_srai(rd, RV_REG_T1, 64 - insn->off, ctx);
1099 			break;
1100 		case 32:
1101 			emit_addiw(rd, rs, 0, ctx);
1102 			break;
1103 		}
1104 		if (!is64 && !aux->verifier_zext)
1105 			emit_zext_32(rd, ctx);
1106 		break;
1107 
1108 	/* dst = dst OP src */
1109 	case BPF_ALU | BPF_ADD | BPF_X:
1110 	case BPF_ALU64 | BPF_ADD | BPF_X:
1111 		emit_add(rd, rd, rs, ctx);
1112 		if (!is64 && !aux->verifier_zext)
1113 			emit_zext_32(rd, ctx);
1114 		break;
1115 	case BPF_ALU | BPF_SUB | BPF_X:
1116 	case BPF_ALU64 | BPF_SUB | BPF_X:
1117 		if (is64)
1118 			emit_sub(rd, rd, rs, ctx);
1119 		else
1120 			emit_subw(rd, rd, rs, ctx);
1121 
1122 		if (!is64 && !aux->verifier_zext)
1123 			emit_zext_32(rd, ctx);
1124 		break;
1125 	case BPF_ALU | BPF_AND | BPF_X:
1126 	case BPF_ALU64 | BPF_AND | BPF_X:
1127 		emit_and(rd, rd, rs, ctx);
1128 		if (!is64 && !aux->verifier_zext)
1129 			emit_zext_32(rd, ctx);
1130 		break;
1131 	case BPF_ALU | BPF_OR | BPF_X:
1132 	case BPF_ALU64 | BPF_OR | BPF_X:
1133 		emit_or(rd, rd, rs, ctx);
1134 		if (!is64 && !aux->verifier_zext)
1135 			emit_zext_32(rd, ctx);
1136 		break;
1137 	case BPF_ALU | BPF_XOR | BPF_X:
1138 	case BPF_ALU64 | BPF_XOR | BPF_X:
1139 		emit_xor(rd, rd, rs, ctx);
1140 		if (!is64 && !aux->verifier_zext)
1141 			emit_zext_32(rd, ctx);
1142 		break;
1143 	case BPF_ALU | BPF_MUL | BPF_X:
1144 	case BPF_ALU64 | BPF_MUL | BPF_X:
1145 		emit(is64 ? rv_mul(rd, rd, rs) : rv_mulw(rd, rd, rs), ctx);
1146 		if (!is64 && !aux->verifier_zext)
1147 			emit_zext_32(rd, ctx);
1148 		break;
1149 	case BPF_ALU | BPF_DIV | BPF_X:
1150 	case BPF_ALU64 | BPF_DIV | BPF_X:
1151 		if (off)
1152 			emit(is64 ? rv_div(rd, rd, rs) : rv_divw(rd, rd, rs), ctx);
1153 		else
1154 			emit(is64 ? rv_divu(rd, rd, rs) : rv_divuw(rd, rd, rs), ctx);
1155 		if (!is64 && !aux->verifier_zext)
1156 			emit_zext_32(rd, ctx);
1157 		break;
1158 	case BPF_ALU | BPF_MOD | BPF_X:
1159 	case BPF_ALU64 | BPF_MOD | BPF_X:
1160 		if (off)
1161 			emit(is64 ? rv_rem(rd, rd, rs) : rv_remw(rd, rd, rs), ctx);
1162 		else
1163 			emit(is64 ? rv_remu(rd, rd, rs) : rv_remuw(rd, rd, rs), ctx);
1164 		if (!is64 && !aux->verifier_zext)
1165 			emit_zext_32(rd, ctx);
1166 		break;
1167 	case BPF_ALU | BPF_LSH | BPF_X:
1168 	case BPF_ALU64 | BPF_LSH | BPF_X:
1169 		emit(is64 ? rv_sll(rd, rd, rs) : rv_sllw(rd, rd, rs), ctx);
1170 		if (!is64 && !aux->verifier_zext)
1171 			emit_zext_32(rd, ctx);
1172 		break;
1173 	case BPF_ALU | BPF_RSH | BPF_X:
1174 	case BPF_ALU64 | BPF_RSH | BPF_X:
1175 		emit(is64 ? rv_srl(rd, rd, rs) : rv_srlw(rd, rd, rs), ctx);
1176 		if (!is64 && !aux->verifier_zext)
1177 			emit_zext_32(rd, ctx);
1178 		break;
1179 	case BPF_ALU | BPF_ARSH | BPF_X:
1180 	case BPF_ALU64 | BPF_ARSH | BPF_X:
1181 		emit(is64 ? rv_sra(rd, rd, rs) : rv_sraw(rd, rd, rs), ctx);
1182 		if (!is64 && !aux->verifier_zext)
1183 			emit_zext_32(rd, ctx);
1184 		break;
1185 
1186 	/* dst = -dst */
1187 	case BPF_ALU | BPF_NEG:
1188 	case BPF_ALU64 | BPF_NEG:
1189 		emit_sub(rd, RV_REG_ZERO, rd, ctx);
1190 		if (!is64 && !aux->verifier_zext)
1191 			emit_zext_32(rd, ctx);
1192 		break;
1193 
1194 	/* dst = BSWAP##imm(dst) */
1195 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1196 		switch (imm) {
1197 		case 16:
1198 			emit_slli(rd, rd, 48, ctx);
1199 			emit_srli(rd, rd, 48, ctx);
1200 			break;
1201 		case 32:
1202 			if (!aux->verifier_zext)
1203 				emit_zext_32(rd, ctx);
1204 			break;
1205 		case 64:
1206 			/* Do nothing */
1207 			break;
1208 		}
1209 		break;
1210 
1211 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1212 	case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1213 		emit_li(RV_REG_T2, 0, ctx);
1214 
1215 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1216 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1217 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1218 		emit_srli(rd, rd, 8, ctx);
1219 		if (imm == 16)
1220 			goto out_be;
1221 
1222 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1223 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1224 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1225 		emit_srli(rd, rd, 8, ctx);
1226 
1227 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1228 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1229 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1230 		emit_srli(rd, rd, 8, ctx);
1231 		if (imm == 32)
1232 			goto out_be;
1233 
1234 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1235 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1236 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1237 		emit_srli(rd, rd, 8, ctx);
1238 
1239 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1240 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1241 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1242 		emit_srli(rd, rd, 8, ctx);
1243 
1244 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1245 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1246 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1247 		emit_srli(rd, rd, 8, ctx);
1248 
1249 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1250 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1251 		emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1252 		emit_srli(rd, rd, 8, ctx);
1253 out_be:
1254 		emit_andi(RV_REG_T1, rd, 0xff, ctx);
1255 		emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1256 
1257 		emit_mv(rd, RV_REG_T2, ctx);
1258 		break;
1259 
1260 	/* dst = imm */
1261 	case BPF_ALU | BPF_MOV | BPF_K:
1262 	case BPF_ALU64 | BPF_MOV | BPF_K:
1263 		emit_imm(rd, imm, ctx);
1264 		if (!is64 && !aux->verifier_zext)
1265 			emit_zext_32(rd, ctx);
1266 		break;
1267 
1268 	/* dst = dst OP imm */
1269 	case BPF_ALU | BPF_ADD | BPF_K:
1270 	case BPF_ALU64 | BPF_ADD | BPF_K:
1271 		if (is_12b_int(imm)) {
1272 			emit_addi(rd, rd, imm, ctx);
1273 		} else {
1274 			emit_imm(RV_REG_T1, imm, ctx);
1275 			emit_add(rd, rd, RV_REG_T1, ctx);
1276 		}
1277 		if (!is64 && !aux->verifier_zext)
1278 			emit_zext_32(rd, ctx);
1279 		break;
1280 	case BPF_ALU | BPF_SUB | BPF_K:
1281 	case BPF_ALU64 | BPF_SUB | BPF_K:
1282 		if (is_12b_int(-imm)) {
1283 			emit_addi(rd, rd, -imm, ctx);
1284 		} else {
1285 			emit_imm(RV_REG_T1, imm, ctx);
1286 			emit_sub(rd, rd, RV_REG_T1, ctx);
1287 		}
1288 		if (!is64 && !aux->verifier_zext)
1289 			emit_zext_32(rd, ctx);
1290 		break;
1291 	case BPF_ALU | BPF_AND | BPF_K:
1292 	case BPF_ALU64 | BPF_AND | BPF_K:
1293 		if (is_12b_int(imm)) {
1294 			emit_andi(rd, rd, imm, ctx);
1295 		} else {
1296 			emit_imm(RV_REG_T1, imm, ctx);
1297 			emit_and(rd, rd, RV_REG_T1, ctx);
1298 		}
1299 		if (!is64 && !aux->verifier_zext)
1300 			emit_zext_32(rd, ctx);
1301 		break;
1302 	case BPF_ALU | BPF_OR | BPF_K:
1303 	case BPF_ALU64 | BPF_OR | BPF_K:
1304 		if (is_12b_int(imm)) {
1305 			emit(rv_ori(rd, rd, imm), ctx);
1306 		} else {
1307 			emit_imm(RV_REG_T1, imm, ctx);
1308 			emit_or(rd, rd, RV_REG_T1, ctx);
1309 		}
1310 		if (!is64 && !aux->verifier_zext)
1311 			emit_zext_32(rd, ctx);
1312 		break;
1313 	case BPF_ALU | BPF_XOR | BPF_K:
1314 	case BPF_ALU64 | BPF_XOR | BPF_K:
1315 		if (is_12b_int(imm)) {
1316 			emit(rv_xori(rd, rd, imm), ctx);
1317 		} else {
1318 			emit_imm(RV_REG_T1, imm, ctx);
1319 			emit_xor(rd, rd, RV_REG_T1, ctx);
1320 		}
1321 		if (!is64 && !aux->verifier_zext)
1322 			emit_zext_32(rd, ctx);
1323 		break;
1324 	case BPF_ALU | BPF_MUL | BPF_K:
1325 	case BPF_ALU64 | BPF_MUL | BPF_K:
1326 		emit_imm(RV_REG_T1, imm, ctx);
1327 		emit(is64 ? rv_mul(rd, rd, RV_REG_T1) :
1328 		     rv_mulw(rd, rd, RV_REG_T1), ctx);
1329 		if (!is64 && !aux->verifier_zext)
1330 			emit_zext_32(rd, ctx);
1331 		break;
1332 	case BPF_ALU | BPF_DIV | BPF_K:
1333 	case BPF_ALU64 | BPF_DIV | BPF_K:
1334 		emit_imm(RV_REG_T1, imm, ctx);
1335 		if (off)
1336 			emit(is64 ? rv_div(rd, rd, RV_REG_T1) :
1337 			     rv_divw(rd, rd, RV_REG_T1), ctx);
1338 		else
1339 			emit(is64 ? rv_divu(rd, rd, RV_REG_T1) :
1340 			     rv_divuw(rd, rd, RV_REG_T1), ctx);
1341 		if (!is64 && !aux->verifier_zext)
1342 			emit_zext_32(rd, ctx);
1343 		break;
1344 	case BPF_ALU | BPF_MOD | BPF_K:
1345 	case BPF_ALU64 | BPF_MOD | BPF_K:
1346 		emit_imm(RV_REG_T1, imm, ctx);
1347 		if (off)
1348 			emit(is64 ? rv_rem(rd, rd, RV_REG_T1) :
1349 			     rv_remw(rd, rd, RV_REG_T1), ctx);
1350 		else
1351 			emit(is64 ? rv_remu(rd, rd, RV_REG_T1) :
1352 			     rv_remuw(rd, rd, RV_REG_T1), ctx);
1353 		if (!is64 && !aux->verifier_zext)
1354 			emit_zext_32(rd, ctx);
1355 		break;
1356 	case BPF_ALU | BPF_LSH | BPF_K:
1357 	case BPF_ALU64 | BPF_LSH | BPF_K:
1358 		emit_slli(rd, rd, imm, ctx);
1359 
1360 		if (!is64 && !aux->verifier_zext)
1361 			emit_zext_32(rd, ctx);
1362 		break;
1363 	case BPF_ALU | BPF_RSH | BPF_K:
1364 	case BPF_ALU64 | BPF_RSH | BPF_K:
1365 		if (is64)
1366 			emit_srli(rd, rd, imm, ctx);
1367 		else
1368 			emit(rv_srliw(rd, rd, imm), ctx);
1369 
1370 		if (!is64 && !aux->verifier_zext)
1371 			emit_zext_32(rd, ctx);
1372 		break;
1373 	case BPF_ALU | BPF_ARSH | BPF_K:
1374 	case BPF_ALU64 | BPF_ARSH | BPF_K:
1375 		if (is64)
1376 			emit_srai(rd, rd, imm, ctx);
1377 		else
1378 			emit(rv_sraiw(rd, rd, imm), ctx);
1379 
1380 		if (!is64 && !aux->verifier_zext)
1381 			emit_zext_32(rd, ctx);
1382 		break;
1383 
1384 	/* JUMP off */
1385 	case BPF_JMP | BPF_JA:
1386 	case BPF_JMP32 | BPF_JA:
1387 		if (BPF_CLASS(code) == BPF_JMP)
1388 			rvoff = rv_offset(i, off, ctx);
1389 		else
1390 			rvoff = rv_offset(i, imm, ctx);
1391 		ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1392 		if (ret)
1393 			return ret;
1394 		break;
1395 
1396 	/* IF (dst COND src) JUMP off */
1397 	case BPF_JMP | BPF_JEQ | BPF_X:
1398 	case BPF_JMP32 | BPF_JEQ | BPF_X:
1399 	case BPF_JMP | BPF_JGT | BPF_X:
1400 	case BPF_JMP32 | BPF_JGT | BPF_X:
1401 	case BPF_JMP | BPF_JLT | BPF_X:
1402 	case BPF_JMP32 | BPF_JLT | BPF_X:
1403 	case BPF_JMP | BPF_JGE | BPF_X:
1404 	case BPF_JMP32 | BPF_JGE | BPF_X:
1405 	case BPF_JMP | BPF_JLE | BPF_X:
1406 	case BPF_JMP32 | BPF_JLE | BPF_X:
1407 	case BPF_JMP | BPF_JNE | BPF_X:
1408 	case BPF_JMP32 | BPF_JNE | BPF_X:
1409 	case BPF_JMP | BPF_JSGT | BPF_X:
1410 	case BPF_JMP32 | BPF_JSGT | BPF_X:
1411 	case BPF_JMP | BPF_JSLT | BPF_X:
1412 	case BPF_JMP32 | BPF_JSLT | BPF_X:
1413 	case BPF_JMP | BPF_JSGE | BPF_X:
1414 	case BPF_JMP32 | BPF_JSGE | BPF_X:
1415 	case BPF_JMP | BPF_JSLE | BPF_X:
1416 	case BPF_JMP32 | BPF_JSLE | BPF_X:
1417 	case BPF_JMP | BPF_JSET | BPF_X:
1418 	case BPF_JMP32 | BPF_JSET | BPF_X:
1419 		rvoff = rv_offset(i, off, ctx);
1420 		if (!is64) {
1421 			s = ctx->ninsns;
1422 			if (is_signed_bpf_cond(BPF_OP(code)))
1423 				emit_sext_32_rd_rs(&rd, &rs, ctx);
1424 			else
1425 				emit_zext_32_rd_rs(&rd, &rs, ctx);
1426 			e = ctx->ninsns;
1427 
1428 			/* Adjust for extra insns */
1429 			rvoff -= ninsns_rvoff(e - s);
1430 		}
1431 
1432 		if (BPF_OP(code) == BPF_JSET) {
1433 			/* Adjust for and */
1434 			rvoff -= 4;
1435 			emit_and(RV_REG_T1, rd, rs, ctx);
1436 			emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff,
1437 				    ctx);
1438 		} else {
1439 			emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1440 		}
1441 		break;
1442 
1443 	/* IF (dst COND imm) JUMP off */
1444 	case BPF_JMP | BPF_JEQ | BPF_K:
1445 	case BPF_JMP32 | BPF_JEQ | BPF_K:
1446 	case BPF_JMP | BPF_JGT | BPF_K:
1447 	case BPF_JMP32 | BPF_JGT | BPF_K:
1448 	case BPF_JMP | BPF_JLT | BPF_K:
1449 	case BPF_JMP32 | BPF_JLT | BPF_K:
1450 	case BPF_JMP | BPF_JGE | BPF_K:
1451 	case BPF_JMP32 | BPF_JGE | BPF_K:
1452 	case BPF_JMP | BPF_JLE | BPF_K:
1453 	case BPF_JMP32 | BPF_JLE | BPF_K:
1454 	case BPF_JMP | BPF_JNE | BPF_K:
1455 	case BPF_JMP32 | BPF_JNE | BPF_K:
1456 	case BPF_JMP | BPF_JSGT | BPF_K:
1457 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1458 	case BPF_JMP | BPF_JSLT | BPF_K:
1459 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1460 	case BPF_JMP | BPF_JSGE | BPF_K:
1461 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1462 	case BPF_JMP | BPF_JSLE | BPF_K:
1463 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1464 		rvoff = rv_offset(i, off, ctx);
1465 		s = ctx->ninsns;
1466 		if (imm) {
1467 			emit_imm(RV_REG_T1, imm, ctx);
1468 			rs = RV_REG_T1;
1469 		} else {
1470 			/* If imm is 0, simply use zero register. */
1471 			rs = RV_REG_ZERO;
1472 		}
1473 		if (!is64) {
1474 			if (is_signed_bpf_cond(BPF_OP(code)))
1475 				emit_sext_32_rd(&rd, ctx);
1476 			else
1477 				emit_zext_32_rd_t1(&rd, ctx);
1478 		}
1479 		e = ctx->ninsns;
1480 
1481 		/* Adjust for extra insns */
1482 		rvoff -= ninsns_rvoff(e - s);
1483 		emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1484 		break;
1485 
1486 	case BPF_JMP | BPF_JSET | BPF_K:
1487 	case BPF_JMP32 | BPF_JSET | BPF_K:
1488 		rvoff = rv_offset(i, off, ctx);
1489 		s = ctx->ninsns;
1490 		if (is_12b_int(imm)) {
1491 			emit_andi(RV_REG_T1, rd, imm, ctx);
1492 		} else {
1493 			emit_imm(RV_REG_T1, imm, ctx);
1494 			emit_and(RV_REG_T1, rd, RV_REG_T1, ctx);
1495 		}
1496 		/* For jset32, we should clear the upper 32 bits of t1, but
1497 		 * sign-extension is sufficient here and saves one instruction,
1498 		 * as t1 is used only in comparison against zero.
1499 		 */
1500 		if (!is64 && imm < 0)
1501 			emit_addiw(RV_REG_T1, RV_REG_T1, 0, ctx);
1502 		e = ctx->ninsns;
1503 		rvoff -= ninsns_rvoff(e - s);
1504 		emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
1505 		break;
1506 
1507 	/* function call */
1508 	case BPF_JMP | BPF_CALL:
1509 	{
1510 		bool fixed_addr;
1511 		u64 addr;
1512 
1513 		mark_call(ctx);
1514 		ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
1515 					    &addr, &fixed_addr);
1516 		if (ret < 0)
1517 			return ret;
1518 
1519 		ret = emit_call(addr, fixed_addr, ctx);
1520 		if (ret)
1521 			return ret;
1522 
1523 		if (insn->src_reg != BPF_PSEUDO_CALL)
1524 			emit_mv(bpf_to_rv_reg(BPF_REG_0, ctx), RV_REG_A0, ctx);
1525 		break;
1526 	}
1527 	/* tail call */
1528 	case BPF_JMP | BPF_TAIL_CALL:
1529 		if (emit_bpf_tail_call(i, ctx))
1530 			return -1;
1531 		break;
1532 
1533 	/* function return */
1534 	case BPF_JMP | BPF_EXIT:
1535 		if (i == ctx->prog->len - 1)
1536 			break;
1537 
1538 		rvoff = epilogue_offset(ctx);
1539 		ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1540 		if (ret)
1541 			return ret;
1542 		break;
1543 
1544 	/* dst = imm64 */
1545 	case BPF_LD | BPF_IMM | BPF_DW:
1546 	{
1547 		struct bpf_insn insn1 = insn[1];
1548 		u64 imm64;
1549 
1550 		imm64 = (u64)insn1.imm << 32 | (u32)imm;
1551 		if (bpf_pseudo_func(insn)) {
1552 			/* fixed-length insns for extra jit pass */
1553 			ret = emit_addr(rd, imm64, extra_pass, ctx);
1554 			if (ret)
1555 				return ret;
1556 		} else {
1557 			emit_imm(rd, imm64, ctx);
1558 		}
1559 
1560 		return 1;
1561 	}
1562 
1563 	/* LDX: dst = *(unsigned size *)(src + off) */
1564 	case BPF_LDX | BPF_MEM | BPF_B:
1565 	case BPF_LDX | BPF_MEM | BPF_H:
1566 	case BPF_LDX | BPF_MEM | BPF_W:
1567 	case BPF_LDX | BPF_MEM | BPF_DW:
1568 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1569 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1570 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1571 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1572 	/* LDSX: dst = *(signed size *)(src + off) */
1573 	case BPF_LDX | BPF_MEMSX | BPF_B:
1574 	case BPF_LDX | BPF_MEMSX | BPF_H:
1575 	case BPF_LDX | BPF_MEMSX | BPF_W:
1576 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1577 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1578 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1579 	{
1580 		int insn_len, insns_start;
1581 		bool sign_ext;
1582 
1583 		sign_ext = BPF_MODE(insn->code) == BPF_MEMSX ||
1584 			   BPF_MODE(insn->code) == BPF_PROBE_MEMSX;
1585 
1586 		switch (BPF_SIZE(code)) {
1587 		case BPF_B:
1588 			if (is_12b_int(off)) {
1589 				insns_start = ctx->ninsns;
1590 				if (sign_ext)
1591 					emit(rv_lb(rd, off, rs), ctx);
1592 				else
1593 					emit(rv_lbu(rd, off, rs), ctx);
1594 				insn_len = ctx->ninsns - insns_start;
1595 				break;
1596 			}
1597 
1598 			emit_imm(RV_REG_T1, off, ctx);
1599 			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1600 			insns_start = ctx->ninsns;
1601 			if (sign_ext)
1602 				emit(rv_lb(rd, 0, RV_REG_T1), ctx);
1603 			else
1604 				emit(rv_lbu(rd, 0, RV_REG_T1), ctx);
1605 			insn_len = ctx->ninsns - insns_start;
1606 			break;
1607 		case BPF_H:
1608 			if (is_12b_int(off)) {
1609 				insns_start = ctx->ninsns;
1610 				if (sign_ext)
1611 					emit(rv_lh(rd, off, rs), ctx);
1612 				else
1613 					emit(rv_lhu(rd, off, rs), ctx);
1614 				insn_len = ctx->ninsns - insns_start;
1615 				break;
1616 			}
1617 
1618 			emit_imm(RV_REG_T1, off, ctx);
1619 			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1620 			insns_start = ctx->ninsns;
1621 			if (sign_ext)
1622 				emit(rv_lh(rd, 0, RV_REG_T1), ctx);
1623 			else
1624 				emit(rv_lhu(rd, 0, RV_REG_T1), ctx);
1625 			insn_len = ctx->ninsns - insns_start;
1626 			break;
1627 		case BPF_W:
1628 			if (is_12b_int(off)) {
1629 				insns_start = ctx->ninsns;
1630 				if (sign_ext)
1631 					emit(rv_lw(rd, off, rs), ctx);
1632 				else
1633 					emit(rv_lwu(rd, off, rs), ctx);
1634 				insn_len = ctx->ninsns - insns_start;
1635 				break;
1636 			}
1637 
1638 			emit_imm(RV_REG_T1, off, ctx);
1639 			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1640 			insns_start = ctx->ninsns;
1641 			if (sign_ext)
1642 				emit(rv_lw(rd, 0, RV_REG_T1), ctx);
1643 			else
1644 				emit(rv_lwu(rd, 0, RV_REG_T1), ctx);
1645 			insn_len = ctx->ninsns - insns_start;
1646 			break;
1647 		case BPF_DW:
1648 			if (is_12b_int(off)) {
1649 				insns_start = ctx->ninsns;
1650 				emit_ld(rd, off, rs, ctx);
1651 				insn_len = ctx->ninsns - insns_start;
1652 				break;
1653 			}
1654 
1655 			emit_imm(RV_REG_T1, off, ctx);
1656 			emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1657 			insns_start = ctx->ninsns;
1658 			emit_ld(rd, 0, RV_REG_T1, ctx);
1659 			insn_len = ctx->ninsns - insns_start;
1660 			break;
1661 		}
1662 
1663 		ret = add_exception_handler(insn, ctx, rd, insn_len);
1664 		if (ret)
1665 			return ret;
1666 
1667 		if (BPF_SIZE(code) != BPF_DW && insn_is_zext(&insn[1]))
1668 			return 1;
1669 		break;
1670 	}
1671 	/* speculation barrier */
1672 	case BPF_ST | BPF_NOSPEC:
1673 		break;
1674 
1675 	/* ST: *(size *)(dst + off) = imm */
1676 	case BPF_ST | BPF_MEM | BPF_B:
1677 		emit_imm(RV_REG_T1, imm, ctx);
1678 		if (is_12b_int(off)) {
1679 			emit(rv_sb(rd, off, RV_REG_T1), ctx);
1680 			break;
1681 		}
1682 
1683 		emit_imm(RV_REG_T2, off, ctx);
1684 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1685 		emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx);
1686 		break;
1687 
1688 	case BPF_ST | BPF_MEM | BPF_H:
1689 		emit_imm(RV_REG_T1, imm, ctx);
1690 		if (is_12b_int(off)) {
1691 			emit(rv_sh(rd, off, RV_REG_T1), ctx);
1692 			break;
1693 		}
1694 
1695 		emit_imm(RV_REG_T2, off, ctx);
1696 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1697 		emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx);
1698 		break;
1699 	case BPF_ST | BPF_MEM | BPF_W:
1700 		emit_imm(RV_REG_T1, imm, ctx);
1701 		if (is_12b_int(off)) {
1702 			emit_sw(rd, off, RV_REG_T1, ctx);
1703 			break;
1704 		}
1705 
1706 		emit_imm(RV_REG_T2, off, ctx);
1707 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1708 		emit_sw(RV_REG_T2, 0, RV_REG_T1, ctx);
1709 		break;
1710 	case BPF_ST | BPF_MEM | BPF_DW:
1711 		emit_imm(RV_REG_T1, imm, ctx);
1712 		if (is_12b_int(off)) {
1713 			emit_sd(rd, off, RV_REG_T1, ctx);
1714 			break;
1715 		}
1716 
1717 		emit_imm(RV_REG_T2, off, ctx);
1718 		emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1719 		emit_sd(RV_REG_T2, 0, RV_REG_T1, ctx);
1720 		break;
1721 
1722 	/* STX: *(size *)(dst + off) = src */
1723 	case BPF_STX | BPF_MEM | BPF_B:
1724 		if (is_12b_int(off)) {
1725 			emit(rv_sb(rd, off, rs), ctx);
1726 			break;
1727 		}
1728 
1729 		emit_imm(RV_REG_T1, off, ctx);
1730 		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1731 		emit(rv_sb(RV_REG_T1, 0, rs), ctx);
1732 		break;
1733 	case BPF_STX | BPF_MEM | BPF_H:
1734 		if (is_12b_int(off)) {
1735 			emit(rv_sh(rd, off, rs), ctx);
1736 			break;
1737 		}
1738 
1739 		emit_imm(RV_REG_T1, off, ctx);
1740 		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1741 		emit(rv_sh(RV_REG_T1, 0, rs), ctx);
1742 		break;
1743 	case BPF_STX | BPF_MEM | BPF_W:
1744 		if (is_12b_int(off)) {
1745 			emit_sw(rd, off, rs, ctx);
1746 			break;
1747 		}
1748 
1749 		emit_imm(RV_REG_T1, off, ctx);
1750 		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1751 		emit_sw(RV_REG_T1, 0, rs, ctx);
1752 		break;
1753 	case BPF_STX | BPF_MEM | BPF_DW:
1754 		if (is_12b_int(off)) {
1755 			emit_sd(rd, off, rs, ctx);
1756 			break;
1757 		}
1758 
1759 		emit_imm(RV_REG_T1, off, ctx);
1760 		emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1761 		emit_sd(RV_REG_T1, 0, rs, ctx);
1762 		break;
1763 	case BPF_STX | BPF_ATOMIC | BPF_W:
1764 	case BPF_STX | BPF_ATOMIC | BPF_DW:
1765 		emit_atomic(rd, rs, off, imm,
1766 			    BPF_SIZE(code) == BPF_DW, ctx);
1767 		break;
1768 	default:
1769 		pr_err("bpf-jit: unknown opcode %02x\n", code);
1770 		return -EINVAL;
1771 	}
1772 
1773 	return 0;
1774 }
1775 
bpf_jit_build_prologue(struct rv_jit_context * ctx)1776 void bpf_jit_build_prologue(struct rv_jit_context *ctx)
1777 {
1778 	int i, stack_adjust = 0, store_offset, bpf_stack_adjust;
1779 
1780 	bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, 16);
1781 	if (bpf_stack_adjust)
1782 		mark_fp(ctx);
1783 
1784 	if (seen_reg(RV_REG_RA, ctx))
1785 		stack_adjust += 8;
1786 	stack_adjust += 8; /* RV_REG_FP */
1787 	if (seen_reg(RV_REG_S1, ctx))
1788 		stack_adjust += 8;
1789 	if (seen_reg(RV_REG_S2, ctx))
1790 		stack_adjust += 8;
1791 	if (seen_reg(RV_REG_S3, ctx))
1792 		stack_adjust += 8;
1793 	if (seen_reg(RV_REG_S4, ctx))
1794 		stack_adjust += 8;
1795 	if (seen_reg(RV_REG_S5, ctx))
1796 		stack_adjust += 8;
1797 	if (seen_reg(RV_REG_S6, ctx))
1798 		stack_adjust += 8;
1799 
1800 	stack_adjust = round_up(stack_adjust, 16);
1801 	stack_adjust += bpf_stack_adjust;
1802 
1803 	store_offset = stack_adjust - 8;
1804 
1805 	/* nops reserved for auipc+jalr pair */
1806 	for (i = 0; i < RV_FENTRY_NINSNS; i++)
1807 		emit(rv_nop(), ctx);
1808 
1809 	/* First instruction is always setting the tail-call-counter
1810 	 * (TCC) register. This instruction is skipped for tail calls.
1811 	 * Force using a 4-byte (non-compressed) instruction.
1812 	 */
1813 	emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx);
1814 
1815 	emit_addi(RV_REG_SP, RV_REG_SP, -stack_adjust, ctx);
1816 
1817 	if (seen_reg(RV_REG_RA, ctx)) {
1818 		emit_sd(RV_REG_SP, store_offset, RV_REG_RA, ctx);
1819 		store_offset -= 8;
1820 	}
1821 	emit_sd(RV_REG_SP, store_offset, RV_REG_FP, ctx);
1822 	store_offset -= 8;
1823 	if (seen_reg(RV_REG_S1, ctx)) {
1824 		emit_sd(RV_REG_SP, store_offset, RV_REG_S1, ctx);
1825 		store_offset -= 8;
1826 	}
1827 	if (seen_reg(RV_REG_S2, ctx)) {
1828 		emit_sd(RV_REG_SP, store_offset, RV_REG_S2, ctx);
1829 		store_offset -= 8;
1830 	}
1831 	if (seen_reg(RV_REG_S3, ctx)) {
1832 		emit_sd(RV_REG_SP, store_offset, RV_REG_S3, ctx);
1833 		store_offset -= 8;
1834 	}
1835 	if (seen_reg(RV_REG_S4, ctx)) {
1836 		emit_sd(RV_REG_SP, store_offset, RV_REG_S4, ctx);
1837 		store_offset -= 8;
1838 	}
1839 	if (seen_reg(RV_REG_S5, ctx)) {
1840 		emit_sd(RV_REG_SP, store_offset, RV_REG_S5, ctx);
1841 		store_offset -= 8;
1842 	}
1843 	if (seen_reg(RV_REG_S6, ctx)) {
1844 		emit_sd(RV_REG_SP, store_offset, RV_REG_S6, ctx);
1845 		store_offset -= 8;
1846 	}
1847 
1848 	emit_addi(RV_REG_FP, RV_REG_SP, stack_adjust, ctx);
1849 
1850 	if (bpf_stack_adjust)
1851 		emit_addi(RV_REG_S5, RV_REG_SP, bpf_stack_adjust, ctx);
1852 
1853 	/* Program contains calls and tail calls, so RV_REG_TCC need
1854 	 * to be saved across calls.
1855 	 */
1856 	if (seen_tail_call(ctx) && seen_call(ctx))
1857 		emit_mv(RV_REG_TCC_SAVED, RV_REG_TCC, ctx);
1858 
1859 	ctx->stack_size = stack_adjust;
1860 }
1861 
bpf_jit_build_epilogue(struct rv_jit_context * ctx)1862 void bpf_jit_build_epilogue(struct rv_jit_context *ctx)
1863 {
1864 	__build_epilogue(false, ctx);
1865 }
1866 
bpf_jit_supports_kfunc_call(void)1867 bool bpf_jit_supports_kfunc_call(void)
1868 {
1869 	return true;
1870 }
1871