1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29 
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45 
46 #include <misc/cxl-base.h>
47 
48 #include "powernv.h"
49 #include "pci.h"
50 
51 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
52 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
53 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
54 
55 #define POWERNV_IOMMU_DEFAULT_LEVELS	1
56 #define POWERNV_IOMMU_MAX_LEVELS	5
57 
58 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
59 
60 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
61 			    const char *fmt, ...)
62 {
63 	struct va_format vaf;
64 	va_list args;
65 	char pfix[32];
66 
67 	va_start(args, fmt);
68 
69 	vaf.fmt = fmt;
70 	vaf.va = &args;
71 
72 	if (pe->flags & PNV_IODA_PE_DEV)
73 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
74 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
75 		sprintf(pfix, "%04x:%02x     ",
76 			pci_domain_nr(pe->pbus), pe->pbus->number);
77 #ifdef CONFIG_PCI_IOV
78 	else if (pe->flags & PNV_IODA_PE_VF)
79 		sprintf(pfix, "%04x:%02x:%2x.%d",
80 			pci_domain_nr(pe->parent_dev->bus),
81 			(pe->rid & 0xff00) >> 8,
82 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
83 #endif /* CONFIG_PCI_IOV*/
84 
85 	printk("%spci %s: [PE# %.3d] %pV",
86 	       level, pfix, pe->pe_number, &vaf);
87 
88 	va_end(args);
89 }
90 
91 #define pe_err(pe, fmt, ...)					\
92 	pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
93 #define pe_warn(pe, fmt, ...)					\
94 	pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
95 #define pe_info(pe, fmt, ...)					\
96 	pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
97 
98 static bool pnv_iommu_bypass_disabled __read_mostly;
99 
100 static int __init iommu_setup(char *str)
101 {
102 	if (!str)
103 		return -EINVAL;
104 
105 	while (*str) {
106 		if (!strncmp(str, "nobypass", 8)) {
107 			pnv_iommu_bypass_disabled = true;
108 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
109 			break;
110 		}
111 		str += strcspn(str, ",");
112 		if (*str == ',')
113 			str++;
114 	}
115 
116 	return 0;
117 }
118 early_param("iommu", iommu_setup);
119 
120 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
121 {
122 	return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
123 		(IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
124 }
125 
126 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
127 {
128 	phb->ioda.pe_array[pe_no].phb = phb;
129 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
130 
131 	return &phb->ioda.pe_array[pe_no];
132 }
133 
134 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
135 {
136 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
137 		pr_warn("%s: Invalid PE %d on PHB#%x\n",
138 			__func__, pe_no, phb->hose->global_number);
139 		return;
140 	}
141 
142 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
143 		pr_debug("%s: PE %d was reserved on PHB#%x\n",
144 			 __func__, pe_no, phb->hose->global_number);
145 
146 	pnv_ioda_init_pe(phb, pe_no);
147 }
148 
149 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
150 {
151 	unsigned long pe;
152 
153 	do {
154 		pe = find_next_zero_bit(phb->ioda.pe_alloc,
155 					phb->ioda.total_pe_num, 0);
156 		if (pe >= phb->ioda.total_pe_num)
157 			return NULL;
158 	} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
159 
160 	return pnv_ioda_init_pe(phb, pe);
161 }
162 
163 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
164 {
165 	struct pnv_phb *phb = pe->phb;
166 
167 	WARN_ON(pe->pdev);
168 
169 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
170 	clear_bit(pe->pe_number, phb->ioda.pe_alloc);
171 }
172 
173 /* The default M64 BAR is shared by all PEs */
174 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
175 {
176 	const char *desc;
177 	struct resource *r;
178 	s64 rc;
179 
180 	/* Configure the default M64 BAR */
181 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
182 					 OPAL_M64_WINDOW_TYPE,
183 					 phb->ioda.m64_bar_idx,
184 					 phb->ioda.m64_base,
185 					 0, /* unused */
186 					 phb->ioda.m64_size);
187 	if (rc != OPAL_SUCCESS) {
188 		desc = "configuring";
189 		goto fail;
190 	}
191 
192 	/* Enable the default M64 BAR */
193 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
194 				      OPAL_M64_WINDOW_TYPE,
195 				      phb->ioda.m64_bar_idx,
196 				      OPAL_ENABLE_M64_SPLIT);
197 	if (rc != OPAL_SUCCESS) {
198 		desc = "enabling";
199 		goto fail;
200 	}
201 
202 	/* Mark the M64 BAR assigned */
203 	set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
204 
205 	/*
206 	 * Strip off the segment used by the reserved PE, which is
207 	 * expected to be 0 or last one of PE capabicity.
208 	 */
209 	r = &phb->hose->mem_resources[1];
210 	if (phb->ioda.reserved_pe_idx == 0)
211 		r->start += phb->ioda.m64_segsize;
212 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
213 		r->end -= phb->ioda.m64_segsize;
214 	else
215 		pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
216 			phb->ioda.reserved_pe_idx);
217 
218 	return 0;
219 
220 fail:
221 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
222 		rc, desc, phb->ioda.m64_bar_idx);
223 	opal_pci_phb_mmio_enable(phb->opal_id,
224 				 OPAL_M64_WINDOW_TYPE,
225 				 phb->ioda.m64_bar_idx,
226 				 OPAL_DISABLE_M64);
227 	return -EIO;
228 }
229 
230 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
231 					 unsigned long *pe_bitmap)
232 {
233 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
234 	struct pnv_phb *phb = hose->private_data;
235 	struct resource *r;
236 	resource_size_t base, sgsz, start, end;
237 	int segno, i;
238 
239 	base = phb->ioda.m64_base;
240 	sgsz = phb->ioda.m64_segsize;
241 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
242 		r = &pdev->resource[i];
243 		if (!r->parent || !pnv_pci_is_mem_pref_64(r->flags))
244 			continue;
245 
246 		start = _ALIGN_DOWN(r->start - base, sgsz);
247 		end = _ALIGN_UP(r->end - base, sgsz);
248 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
249 			if (pe_bitmap)
250 				set_bit(segno, pe_bitmap);
251 			else
252 				pnv_ioda_reserve_pe(phb, segno);
253 		}
254 	}
255 }
256 
257 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
258 {
259 	struct resource *r;
260 	int index;
261 
262 	/*
263 	 * There are 16 M64 BARs, each of which has 8 segments. So
264 	 * there are as many M64 segments as the maximum number of
265 	 * PEs, which is 128.
266 	 */
267 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
268 		unsigned long base, segsz = phb->ioda.m64_segsize;
269 		int64_t rc;
270 
271 		base = phb->ioda.m64_base +
272 		       index * PNV_IODA1_M64_SEGS * segsz;
273 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
274 				OPAL_M64_WINDOW_TYPE, index, base, 0,
275 				PNV_IODA1_M64_SEGS * segsz);
276 		if (rc != OPAL_SUCCESS) {
277 			pr_warn("  Error %lld setting M64 PHB#%d-BAR#%d\n",
278 				rc, phb->hose->global_number, index);
279 			goto fail;
280 		}
281 
282 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
283 				OPAL_M64_WINDOW_TYPE, index,
284 				OPAL_ENABLE_M64_SPLIT);
285 		if (rc != OPAL_SUCCESS) {
286 			pr_warn("  Error %lld enabling M64 PHB#%d-BAR#%d\n",
287 				rc, phb->hose->global_number, index);
288 			goto fail;
289 		}
290 	}
291 
292 	/*
293 	 * Exclude the segment used by the reserved PE, which
294 	 * is expected to be 0 or last supported PE#.
295 	 */
296 	r = &phb->hose->mem_resources[1];
297 	if (phb->ioda.reserved_pe_idx == 0)
298 		r->start += phb->ioda.m64_segsize;
299 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
300 		r->end -= phb->ioda.m64_segsize;
301 	else
302 		WARN(1, "Wrong reserved PE#%d on PHB#%d\n",
303 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
304 
305 	return 0;
306 
307 fail:
308 	for ( ; index >= 0; index--)
309 		opal_pci_phb_mmio_enable(phb->opal_id,
310 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
311 
312 	return -EIO;
313 }
314 
315 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
316 				    unsigned long *pe_bitmap,
317 				    bool all)
318 {
319 	struct pci_dev *pdev;
320 
321 	list_for_each_entry(pdev, &bus->devices, bus_list) {
322 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
323 
324 		if (all && pdev->subordinate)
325 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
326 						pe_bitmap, all);
327 	}
328 }
329 
330 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
331 {
332 	struct pci_controller *hose = pci_bus_to_host(bus);
333 	struct pnv_phb *phb = hose->private_data;
334 	struct pnv_ioda_pe *master_pe, *pe;
335 	unsigned long size, *pe_alloc;
336 	int i;
337 
338 	/* Root bus shouldn't use M64 */
339 	if (pci_is_root_bus(bus))
340 		return NULL;
341 
342 	/* Allocate bitmap */
343 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
344 	pe_alloc = kzalloc(size, GFP_KERNEL);
345 	if (!pe_alloc) {
346 		pr_warn("%s: Out of memory !\n",
347 			__func__);
348 		return NULL;
349 	}
350 
351 	/* Figure out reserved PE numbers by the PE */
352 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
353 
354 	/*
355 	 * the current bus might not own M64 window and that's all
356 	 * contributed by its child buses. For the case, we needn't
357 	 * pick M64 dependent PE#.
358 	 */
359 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
360 		kfree(pe_alloc);
361 		return NULL;
362 	}
363 
364 	/*
365 	 * Figure out the master PE and put all slave PEs to master
366 	 * PE's list to form compound PE.
367 	 */
368 	master_pe = NULL;
369 	i = -1;
370 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
371 		phb->ioda.total_pe_num) {
372 		pe = &phb->ioda.pe_array[i];
373 
374 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
375 		if (!master_pe) {
376 			pe->flags |= PNV_IODA_PE_MASTER;
377 			INIT_LIST_HEAD(&pe->slaves);
378 			master_pe = pe;
379 		} else {
380 			pe->flags |= PNV_IODA_PE_SLAVE;
381 			pe->master = master_pe;
382 			list_add_tail(&pe->list, &master_pe->slaves);
383 		}
384 
385 		/*
386 		 * P7IOC supports M64DT, which helps mapping M64 segment
387 		 * to one particular PE#. However, PHB3 has fixed mapping
388 		 * between M64 segment and PE#. In order to have same logic
389 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
390 		 * segment and PE# on P7IOC.
391 		 */
392 		if (phb->type == PNV_PHB_IODA1) {
393 			int64_t rc;
394 
395 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
396 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
397 					pe->pe_number / PNV_IODA1_M64_SEGS,
398 					pe->pe_number % PNV_IODA1_M64_SEGS);
399 			if (rc != OPAL_SUCCESS)
400 				pr_warn("%s: Error %lld mapping M64 for PHB#%d-PE#%d\n",
401 					__func__, rc, phb->hose->global_number,
402 					pe->pe_number);
403 		}
404 	}
405 
406 	kfree(pe_alloc);
407 	return master_pe;
408 }
409 
410 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
411 {
412 	struct pci_controller *hose = phb->hose;
413 	struct device_node *dn = hose->dn;
414 	struct resource *res;
415 	const u32 *r;
416 	u64 pci_addr;
417 
418 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
419 		pr_info("  Not support M64 window\n");
420 		return;
421 	}
422 
423 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
424 		pr_info("  Firmware too old to support M64 window\n");
425 		return;
426 	}
427 
428 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
429 	if (!r) {
430 		pr_info("  No <ibm,opal-m64-window> on %s\n",
431 			dn->full_name);
432 		return;
433 	}
434 
435 	res = &hose->mem_resources[1];
436 	res->name = dn->full_name;
437 	res->start = of_translate_address(dn, r + 2);
438 	res->end = res->start + of_read_number(r + 4, 2) - 1;
439 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
440 	pci_addr = of_read_number(r, 2);
441 	hose->mem_offset[1] = res->start - pci_addr;
442 
443 	phb->ioda.m64_size = resource_size(res);
444 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
445 	phb->ioda.m64_base = pci_addr;
446 
447 	pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
448 			res->start, res->end, pci_addr);
449 
450 	/* Use last M64 BAR to cover M64 window */
451 	phb->ioda.m64_bar_idx = 15;
452 	if (phb->type == PNV_PHB_IODA1)
453 		phb->init_m64 = pnv_ioda1_init_m64;
454 	else
455 		phb->init_m64 = pnv_ioda2_init_m64;
456 	phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
457 	phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
458 }
459 
460 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
461 {
462 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
463 	struct pnv_ioda_pe *slave;
464 	s64 rc;
465 
466 	/* Fetch master PE */
467 	if (pe->flags & PNV_IODA_PE_SLAVE) {
468 		pe = pe->master;
469 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
470 			return;
471 
472 		pe_no = pe->pe_number;
473 	}
474 
475 	/* Freeze master PE */
476 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
477 				     pe_no,
478 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
479 	if (rc != OPAL_SUCCESS) {
480 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
481 			__func__, rc, phb->hose->global_number, pe_no);
482 		return;
483 	}
484 
485 	/* Freeze slave PEs */
486 	if (!(pe->flags & PNV_IODA_PE_MASTER))
487 		return;
488 
489 	list_for_each_entry(slave, &pe->slaves, list) {
490 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
491 					     slave->pe_number,
492 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
493 		if (rc != OPAL_SUCCESS)
494 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
495 				__func__, rc, phb->hose->global_number,
496 				slave->pe_number);
497 	}
498 }
499 
500 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
501 {
502 	struct pnv_ioda_pe *pe, *slave;
503 	s64 rc;
504 
505 	/* Find master PE */
506 	pe = &phb->ioda.pe_array[pe_no];
507 	if (pe->flags & PNV_IODA_PE_SLAVE) {
508 		pe = pe->master;
509 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
510 		pe_no = pe->pe_number;
511 	}
512 
513 	/* Clear frozen state for master PE */
514 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
515 	if (rc != OPAL_SUCCESS) {
516 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
517 			__func__, rc, opt, phb->hose->global_number, pe_no);
518 		return -EIO;
519 	}
520 
521 	if (!(pe->flags & PNV_IODA_PE_MASTER))
522 		return 0;
523 
524 	/* Clear frozen state for slave PEs */
525 	list_for_each_entry(slave, &pe->slaves, list) {
526 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
527 					     slave->pe_number,
528 					     opt);
529 		if (rc != OPAL_SUCCESS) {
530 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
531 				__func__, rc, opt, phb->hose->global_number,
532 				slave->pe_number);
533 			return -EIO;
534 		}
535 	}
536 
537 	return 0;
538 }
539 
540 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
541 {
542 	struct pnv_ioda_pe *slave, *pe;
543 	u8 fstate, state;
544 	__be16 pcierr;
545 	s64 rc;
546 
547 	/* Sanity check on PE number */
548 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
549 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
550 
551 	/*
552 	 * Fetch the master PE and the PE instance might be
553 	 * not initialized yet.
554 	 */
555 	pe = &phb->ioda.pe_array[pe_no];
556 	if (pe->flags & PNV_IODA_PE_SLAVE) {
557 		pe = pe->master;
558 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
559 		pe_no = pe->pe_number;
560 	}
561 
562 	/* Check the master PE */
563 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
564 					&state, &pcierr, NULL);
565 	if (rc != OPAL_SUCCESS) {
566 		pr_warn("%s: Failure %lld getting "
567 			"PHB#%x-PE#%x state\n",
568 			__func__, rc,
569 			phb->hose->global_number, pe_no);
570 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
571 	}
572 
573 	/* Check the slave PE */
574 	if (!(pe->flags & PNV_IODA_PE_MASTER))
575 		return state;
576 
577 	list_for_each_entry(slave, &pe->slaves, list) {
578 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
579 						slave->pe_number,
580 						&fstate,
581 						&pcierr,
582 						NULL);
583 		if (rc != OPAL_SUCCESS) {
584 			pr_warn("%s: Failure %lld getting "
585 				"PHB#%x-PE#%x state\n",
586 				__func__, rc,
587 				phb->hose->global_number, slave->pe_number);
588 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
589 		}
590 
591 		/*
592 		 * Override the result based on the ascending
593 		 * priority.
594 		 */
595 		if (fstate > state)
596 			state = fstate;
597 	}
598 
599 	return state;
600 }
601 
602 /* Currently those 2 are only used when MSIs are enabled, this will change
603  * but in the meantime, we need to protect them to avoid warnings
604  */
605 #ifdef CONFIG_PCI_MSI
606 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
607 {
608 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
609 	struct pnv_phb *phb = hose->private_data;
610 	struct pci_dn *pdn = pci_get_pdn(dev);
611 
612 	if (!pdn)
613 		return NULL;
614 	if (pdn->pe_number == IODA_INVALID_PE)
615 		return NULL;
616 	return &phb->ioda.pe_array[pdn->pe_number];
617 }
618 #endif /* CONFIG_PCI_MSI */
619 
620 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
621 				  struct pnv_ioda_pe *parent,
622 				  struct pnv_ioda_pe *child,
623 				  bool is_add)
624 {
625 	const char *desc = is_add ? "adding" : "removing";
626 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
627 			      OPAL_REMOVE_PE_FROM_DOMAIN;
628 	struct pnv_ioda_pe *slave;
629 	long rc;
630 
631 	/* Parent PE affects child PE */
632 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
633 				child->pe_number, op);
634 	if (rc != OPAL_SUCCESS) {
635 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
636 			rc, desc);
637 		return -ENXIO;
638 	}
639 
640 	if (!(child->flags & PNV_IODA_PE_MASTER))
641 		return 0;
642 
643 	/* Compound case: parent PE affects slave PEs */
644 	list_for_each_entry(slave, &child->slaves, list) {
645 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
646 					slave->pe_number, op);
647 		if (rc != OPAL_SUCCESS) {
648 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
649 				rc, desc);
650 			return -ENXIO;
651 		}
652 	}
653 
654 	return 0;
655 }
656 
657 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
658 			      struct pnv_ioda_pe *pe,
659 			      bool is_add)
660 {
661 	struct pnv_ioda_pe *slave;
662 	struct pci_dev *pdev = NULL;
663 	int ret;
664 
665 	/*
666 	 * Clear PE frozen state. If it's master PE, we need
667 	 * clear slave PE frozen state as well.
668 	 */
669 	if (is_add) {
670 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
671 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
672 		if (pe->flags & PNV_IODA_PE_MASTER) {
673 			list_for_each_entry(slave, &pe->slaves, list)
674 				opal_pci_eeh_freeze_clear(phb->opal_id,
675 							  slave->pe_number,
676 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
677 		}
678 	}
679 
680 	/*
681 	 * Associate PE in PELT. We need add the PE into the
682 	 * corresponding PELT-V as well. Otherwise, the error
683 	 * originated from the PE might contribute to other
684 	 * PEs.
685 	 */
686 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
687 	if (ret)
688 		return ret;
689 
690 	/* For compound PEs, any one affects all of them */
691 	if (pe->flags & PNV_IODA_PE_MASTER) {
692 		list_for_each_entry(slave, &pe->slaves, list) {
693 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
694 			if (ret)
695 				return ret;
696 		}
697 	}
698 
699 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
700 		pdev = pe->pbus->self;
701 	else if (pe->flags & PNV_IODA_PE_DEV)
702 		pdev = pe->pdev->bus->self;
703 #ifdef CONFIG_PCI_IOV
704 	else if (pe->flags & PNV_IODA_PE_VF)
705 		pdev = pe->parent_dev;
706 #endif /* CONFIG_PCI_IOV */
707 	while (pdev) {
708 		struct pci_dn *pdn = pci_get_pdn(pdev);
709 		struct pnv_ioda_pe *parent;
710 
711 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
712 			parent = &phb->ioda.pe_array[pdn->pe_number];
713 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
714 			if (ret)
715 				return ret;
716 		}
717 
718 		pdev = pdev->bus->self;
719 	}
720 
721 	return 0;
722 }
723 
724 #ifdef CONFIG_PCI_IOV
725 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
726 {
727 	struct pci_dev *parent;
728 	uint8_t bcomp, dcomp, fcomp;
729 	int64_t rc;
730 	long rid_end, rid;
731 
732 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
733 	if (pe->pbus) {
734 		int count;
735 
736 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
737 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
738 		parent = pe->pbus->self;
739 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
740 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
741 		else
742 			count = 1;
743 
744 		switch(count) {
745 		case  1: bcomp = OpalPciBusAll;         break;
746 		case  2: bcomp = OpalPciBus7Bits;       break;
747 		case  4: bcomp = OpalPciBus6Bits;       break;
748 		case  8: bcomp = OpalPciBus5Bits;       break;
749 		case 16: bcomp = OpalPciBus4Bits;       break;
750 		case 32: bcomp = OpalPciBus3Bits;       break;
751 		default:
752 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
753 			        count);
754 			/* Do an exact match only */
755 			bcomp = OpalPciBusAll;
756 		}
757 		rid_end = pe->rid + (count << 8);
758 	} else {
759 		if (pe->flags & PNV_IODA_PE_VF)
760 			parent = pe->parent_dev;
761 		else
762 			parent = pe->pdev->bus->self;
763 		bcomp = OpalPciBusAll;
764 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
765 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
766 		rid_end = pe->rid + 1;
767 	}
768 
769 	/* Clear the reverse map */
770 	for (rid = pe->rid; rid < rid_end; rid++)
771 		phb->ioda.pe_rmap[rid] = 0;
772 
773 	/* Release from all parents PELT-V */
774 	while (parent) {
775 		struct pci_dn *pdn = pci_get_pdn(parent);
776 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
777 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
778 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
779 			/* XXX What to do in case of error ? */
780 		}
781 		parent = parent->bus->self;
782 	}
783 
784 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
785 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
786 
787 	/* Disassociate PE in PELT */
788 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
789 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
790 	if (rc)
791 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
792 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
793 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
794 	if (rc)
795 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
796 
797 	pe->pbus = NULL;
798 	pe->pdev = NULL;
799 	pe->parent_dev = NULL;
800 
801 	return 0;
802 }
803 #endif /* CONFIG_PCI_IOV */
804 
805 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
806 {
807 	struct pci_dev *parent;
808 	uint8_t bcomp, dcomp, fcomp;
809 	long rc, rid_end, rid;
810 
811 	/* Bus validation ? */
812 	if (pe->pbus) {
813 		int count;
814 
815 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
816 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
817 		parent = pe->pbus->self;
818 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
819 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
820 		else
821 			count = 1;
822 
823 		switch(count) {
824 		case  1: bcomp = OpalPciBusAll;		break;
825 		case  2: bcomp = OpalPciBus7Bits;	break;
826 		case  4: bcomp = OpalPciBus6Bits;	break;
827 		case  8: bcomp = OpalPciBus5Bits;	break;
828 		case 16: bcomp = OpalPciBus4Bits;	break;
829 		case 32: bcomp = OpalPciBus3Bits;	break;
830 		default:
831 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
832 			        count);
833 			/* Do an exact match only */
834 			bcomp = OpalPciBusAll;
835 		}
836 		rid_end = pe->rid + (count << 8);
837 	} else {
838 #ifdef CONFIG_PCI_IOV
839 		if (pe->flags & PNV_IODA_PE_VF)
840 			parent = pe->parent_dev;
841 		else
842 #endif /* CONFIG_PCI_IOV */
843 			parent = pe->pdev->bus->self;
844 		bcomp = OpalPciBusAll;
845 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
846 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
847 		rid_end = pe->rid + 1;
848 	}
849 
850 	/*
851 	 * Associate PE in PELT. We need add the PE into the
852 	 * corresponding PELT-V as well. Otherwise, the error
853 	 * originated from the PE might contribute to other
854 	 * PEs.
855 	 */
856 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
857 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
858 	if (rc) {
859 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
860 		return -ENXIO;
861 	}
862 
863 	/*
864 	 * Configure PELTV. NPUs don't have a PELTV table so skip
865 	 * configuration on them.
866 	 */
867 	if (phb->type != PNV_PHB_NPU)
868 		pnv_ioda_set_peltv(phb, pe, true);
869 
870 	/* Setup reverse map */
871 	for (rid = pe->rid; rid < rid_end; rid++)
872 		phb->ioda.pe_rmap[rid] = pe->pe_number;
873 
874 	/* Setup one MVTs on IODA1 */
875 	if (phb->type != PNV_PHB_IODA1) {
876 		pe->mve_number = 0;
877 		goto out;
878 	}
879 
880 	pe->mve_number = pe->pe_number;
881 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
882 	if (rc != OPAL_SUCCESS) {
883 		pe_err(pe, "OPAL error %ld setting up MVE %d\n",
884 		       rc, pe->mve_number);
885 		pe->mve_number = -1;
886 	} else {
887 		rc = opal_pci_set_mve_enable(phb->opal_id,
888 					     pe->mve_number, OPAL_ENABLE_MVE);
889 		if (rc) {
890 			pe_err(pe, "OPAL error %ld enabling MVE %d\n",
891 			       rc, pe->mve_number);
892 			pe->mve_number = -1;
893 		}
894 	}
895 
896 out:
897 	return 0;
898 }
899 
900 #ifdef CONFIG_PCI_IOV
901 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
902 {
903 	struct pci_dn *pdn = pci_get_pdn(dev);
904 	int i;
905 	struct resource *res, res2;
906 	resource_size_t size;
907 	u16 num_vfs;
908 
909 	if (!dev->is_physfn)
910 		return -EINVAL;
911 
912 	/*
913 	 * "offset" is in VFs.  The M64 windows are sized so that when they
914 	 * are segmented, each segment is the same size as the IOV BAR.
915 	 * Each segment is in a separate PE, and the high order bits of the
916 	 * address are the PE number.  Therefore, each VF's BAR is in a
917 	 * separate PE, and changing the IOV BAR start address changes the
918 	 * range of PEs the VFs are in.
919 	 */
920 	num_vfs = pdn->num_vfs;
921 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
922 		res = &dev->resource[i + PCI_IOV_RESOURCES];
923 		if (!res->flags || !res->parent)
924 			continue;
925 
926 		/*
927 		 * The actual IOV BAR range is determined by the start address
928 		 * and the actual size for num_vfs VFs BAR.  This check is to
929 		 * make sure that after shifting, the range will not overlap
930 		 * with another device.
931 		 */
932 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
933 		res2.flags = res->flags;
934 		res2.start = res->start + (size * offset);
935 		res2.end = res2.start + (size * num_vfs) - 1;
936 
937 		if (res2.end > res->end) {
938 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
939 				i, &res2, res, num_vfs, offset);
940 			return -EBUSY;
941 		}
942 	}
943 
944 	/*
945 	 * After doing so, there would be a "hole" in the /proc/iomem when
946 	 * offset is a positive value. It looks like the device return some
947 	 * mmio back to the system, which actually no one could use it.
948 	 */
949 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
950 		res = &dev->resource[i + PCI_IOV_RESOURCES];
951 		if (!res->flags || !res->parent)
952 			continue;
953 
954 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
955 		res2 = *res;
956 		res->start += size * offset;
957 
958 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
959 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
960 			 num_vfs, offset);
961 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
962 	}
963 	return 0;
964 }
965 #endif /* CONFIG_PCI_IOV */
966 
967 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
968 {
969 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
970 	struct pnv_phb *phb = hose->private_data;
971 	struct pci_dn *pdn = pci_get_pdn(dev);
972 	struct pnv_ioda_pe *pe;
973 
974 	if (!pdn) {
975 		pr_err("%s: Device tree node not associated properly\n",
976 			   pci_name(dev));
977 		return NULL;
978 	}
979 	if (pdn->pe_number != IODA_INVALID_PE)
980 		return NULL;
981 
982 	pe = pnv_ioda_alloc_pe(phb);
983 	if (!pe) {
984 		pr_warning("%s: Not enough PE# available, disabling device\n",
985 			   pci_name(dev));
986 		return NULL;
987 	}
988 
989 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
990 	 * pointer in the PE data structure, both should be destroyed at the
991 	 * same time. However, this needs to be looked at more closely again
992 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
993 	 *
994 	 * At some point we want to remove the PDN completely anyways
995 	 */
996 	pci_dev_get(dev);
997 	pdn->pcidev = dev;
998 	pdn->pe_number = pe->pe_number;
999 	pe->flags = PNV_IODA_PE_DEV;
1000 	pe->pdev = dev;
1001 	pe->pbus = NULL;
1002 	pe->mve_number = -1;
1003 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1004 
1005 	pe_info(pe, "Associated device to PE\n");
1006 
1007 	if (pnv_ioda_configure_pe(phb, pe)) {
1008 		/* XXX What do we do here ? */
1009 		pnv_ioda_free_pe(pe);
1010 		pdn->pe_number = IODA_INVALID_PE;
1011 		pe->pdev = NULL;
1012 		pci_dev_put(dev);
1013 		return NULL;
1014 	}
1015 
1016 	return pe;
1017 }
1018 
1019 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1020 {
1021 	struct pci_dev *dev;
1022 
1023 	list_for_each_entry(dev, &bus->devices, bus_list) {
1024 		struct pci_dn *pdn = pci_get_pdn(dev);
1025 
1026 		if (pdn == NULL) {
1027 			pr_warn("%s: No device node associated with device !\n",
1028 				pci_name(dev));
1029 			continue;
1030 		}
1031 		pdn->pcidev = dev;
1032 		pdn->pe_number = pe->pe_number;
1033 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1034 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1035 	}
1036 }
1037 
1038 /*
1039  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1040  * single PCI bus. Another one that contains the primary PCI bus and its
1041  * subordinate PCI devices and buses. The second type of PE is normally
1042  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1043  */
1044 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1045 {
1046 	struct pci_controller *hose = pci_bus_to_host(bus);
1047 	struct pnv_phb *phb = hose->private_data;
1048 	struct pnv_ioda_pe *pe = NULL;
1049 
1050 	/* Check if PE is determined by M64 */
1051 	if (phb->pick_m64_pe)
1052 		pe = phb->pick_m64_pe(bus, all);
1053 
1054 	/* The PE number isn't pinned by M64 */
1055 	if (!pe)
1056 		pe = pnv_ioda_alloc_pe(phb);
1057 
1058 	if (!pe) {
1059 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1060 			__func__, pci_domain_nr(bus), bus->number);
1061 		return NULL;
1062 	}
1063 
1064 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1065 	pe->pbus = bus;
1066 	pe->pdev = NULL;
1067 	pe->mve_number = -1;
1068 	pe->rid = bus->busn_res.start << 8;
1069 
1070 	if (all)
1071 		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1072 			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1073 	else
1074 		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1075 			bus->busn_res.start, pe->pe_number);
1076 
1077 	if (pnv_ioda_configure_pe(phb, pe)) {
1078 		/* XXX What do we do here ? */
1079 		pnv_ioda_free_pe(pe);
1080 		pe->pbus = NULL;
1081 		return NULL;
1082 	}
1083 
1084 	/* Associate it with all child devices */
1085 	pnv_ioda_setup_same_PE(bus, pe);
1086 
1087 	/* Put PE to the list */
1088 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1089 
1090 	return pe;
1091 }
1092 
1093 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1094 {
1095 	int pe_num, found_pe = false, rc;
1096 	long rid;
1097 	struct pnv_ioda_pe *pe;
1098 	struct pci_dev *gpu_pdev;
1099 	struct pci_dn *npu_pdn;
1100 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1101 	struct pnv_phb *phb = hose->private_data;
1102 
1103 	/*
1104 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1105 	 * error handling. This means we only have three PEs remaining
1106 	 * which need to be assigned to four links, implying some
1107 	 * links must share PEs.
1108 	 *
1109 	 * To achieve this we assign PEs such that NPUs linking the
1110 	 * same GPU get assigned the same PE.
1111 	 */
1112 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1113 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1114 		pe = &phb->ioda.pe_array[pe_num];
1115 		if (!pe->pdev)
1116 			continue;
1117 
1118 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1119 			/*
1120 			 * This device has the same peer GPU so should
1121 			 * be assigned the same PE as the existing
1122 			 * peer NPU.
1123 			 */
1124 			dev_info(&npu_pdev->dev,
1125 				"Associating to existing PE %d\n", pe_num);
1126 			pci_dev_get(npu_pdev);
1127 			npu_pdn = pci_get_pdn(npu_pdev);
1128 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1129 			npu_pdn->pcidev = npu_pdev;
1130 			npu_pdn->pe_number = pe_num;
1131 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1132 
1133 			/* Map the PE to this link */
1134 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1135 					OpalPciBusAll,
1136 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1137 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1138 					OPAL_MAP_PE);
1139 			WARN_ON(rc != OPAL_SUCCESS);
1140 			found_pe = true;
1141 			break;
1142 		}
1143 	}
1144 
1145 	if (!found_pe)
1146 		/*
1147 		 * Could not find an existing PE so allocate a new
1148 		 * one.
1149 		 */
1150 		return pnv_ioda_setup_dev_PE(npu_pdev);
1151 	else
1152 		return pe;
1153 }
1154 
1155 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1156 {
1157 	struct pci_dev *pdev;
1158 
1159 	list_for_each_entry(pdev, &bus->devices, bus_list)
1160 		pnv_ioda_setup_npu_PE(pdev);
1161 }
1162 
1163 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1164 {
1165 	struct pci_dev *dev;
1166 
1167 	pnv_ioda_setup_bus_PE(bus, false);
1168 
1169 	list_for_each_entry(dev, &bus->devices, bus_list) {
1170 		if (dev->subordinate) {
1171 			if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1172 				pnv_ioda_setup_bus_PE(dev->subordinate, true);
1173 			else
1174 				pnv_ioda_setup_PEs(dev->subordinate);
1175 		}
1176 	}
1177 }
1178 
1179 /*
1180  * Configure PEs so that the downstream PCI buses and devices
1181  * could have their associated PE#. Unfortunately, we didn't
1182  * figure out the way to identify the PLX bridge yet. So we
1183  * simply put the PCI bus and the subordinate behind the root
1184  * port to PE# here. The game rule here is expected to be changed
1185  * as soon as we can detected PLX bridge correctly.
1186  */
1187 static void pnv_pci_ioda_setup_PEs(void)
1188 {
1189 	struct pci_controller *hose, *tmp;
1190 	struct pnv_phb *phb;
1191 
1192 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1193 		phb = hose->private_data;
1194 
1195 		/* M64 layout might affect PE allocation */
1196 		if (phb->reserve_m64_pe)
1197 			phb->reserve_m64_pe(hose->bus, NULL, true);
1198 
1199 		/*
1200 		 * On NPU PHB, we expect separate PEs for individual PCI
1201 		 * functions. PCI bus dependent PEs are required for the
1202 		 * remaining types of PHBs.
1203 		 */
1204 		if (phb->type == PNV_PHB_NPU) {
1205 			/* PE#0 is needed for error reporting */
1206 			pnv_ioda_reserve_pe(phb, 0);
1207 			pnv_ioda_setup_npu_PEs(hose->bus);
1208 		} else
1209 			pnv_ioda_setup_PEs(hose->bus);
1210 	}
1211 }
1212 
1213 #ifdef CONFIG_PCI_IOV
1214 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1215 {
1216 	struct pci_bus        *bus;
1217 	struct pci_controller *hose;
1218 	struct pnv_phb        *phb;
1219 	struct pci_dn         *pdn;
1220 	int                    i, j;
1221 	int                    m64_bars;
1222 
1223 	bus = pdev->bus;
1224 	hose = pci_bus_to_host(bus);
1225 	phb = hose->private_data;
1226 	pdn = pci_get_pdn(pdev);
1227 
1228 	if (pdn->m64_single_mode)
1229 		m64_bars = num_vfs;
1230 	else
1231 		m64_bars = 1;
1232 
1233 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1234 		for (j = 0; j < m64_bars; j++) {
1235 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1236 				continue;
1237 			opal_pci_phb_mmio_enable(phb->opal_id,
1238 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1239 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1240 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1241 		}
1242 
1243 	kfree(pdn->m64_map);
1244 	return 0;
1245 }
1246 
1247 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1248 {
1249 	struct pci_bus        *bus;
1250 	struct pci_controller *hose;
1251 	struct pnv_phb        *phb;
1252 	struct pci_dn         *pdn;
1253 	unsigned int           win;
1254 	struct resource       *res;
1255 	int                    i, j;
1256 	int64_t                rc;
1257 	int                    total_vfs;
1258 	resource_size_t        size, start;
1259 	int                    pe_num;
1260 	int                    m64_bars;
1261 
1262 	bus = pdev->bus;
1263 	hose = pci_bus_to_host(bus);
1264 	phb = hose->private_data;
1265 	pdn = pci_get_pdn(pdev);
1266 	total_vfs = pci_sriov_get_totalvfs(pdev);
1267 
1268 	if (pdn->m64_single_mode)
1269 		m64_bars = num_vfs;
1270 	else
1271 		m64_bars = 1;
1272 
1273 	pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL);
1274 	if (!pdn->m64_map)
1275 		return -ENOMEM;
1276 	/* Initialize the m64_map to IODA_INVALID_M64 */
1277 	for (i = 0; i < m64_bars ; i++)
1278 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1279 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1280 
1281 
1282 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1283 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1284 		if (!res->flags || !res->parent)
1285 			continue;
1286 
1287 		for (j = 0; j < m64_bars; j++) {
1288 			do {
1289 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1290 						phb->ioda.m64_bar_idx + 1, 0);
1291 
1292 				if (win >= phb->ioda.m64_bar_idx + 1)
1293 					goto m64_failed;
1294 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1295 
1296 			pdn->m64_map[j][i] = win;
1297 
1298 			if (pdn->m64_single_mode) {
1299 				size = pci_iov_resource_size(pdev,
1300 							PCI_IOV_RESOURCES + i);
1301 				start = res->start + size * j;
1302 			} else {
1303 				size = resource_size(res);
1304 				start = res->start;
1305 			}
1306 
1307 			/* Map the M64 here */
1308 			if (pdn->m64_single_mode) {
1309 				pe_num = pdn->pe_num_map[j];
1310 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1311 						pe_num, OPAL_M64_WINDOW_TYPE,
1312 						pdn->m64_map[j][i], 0);
1313 			}
1314 
1315 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1316 						 OPAL_M64_WINDOW_TYPE,
1317 						 pdn->m64_map[j][i],
1318 						 start,
1319 						 0, /* unused */
1320 						 size);
1321 
1322 
1323 			if (rc != OPAL_SUCCESS) {
1324 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1325 					win, rc);
1326 				goto m64_failed;
1327 			}
1328 
1329 			if (pdn->m64_single_mode)
1330 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1331 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1332 			else
1333 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1334 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1335 
1336 			if (rc != OPAL_SUCCESS) {
1337 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1338 					win, rc);
1339 				goto m64_failed;
1340 			}
1341 		}
1342 	}
1343 	return 0;
1344 
1345 m64_failed:
1346 	pnv_pci_vf_release_m64(pdev, num_vfs);
1347 	return -EBUSY;
1348 }
1349 
1350 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1351 		int num);
1352 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1353 
1354 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1355 {
1356 	struct iommu_table    *tbl;
1357 	int64_t               rc;
1358 
1359 	tbl = pe->table_group.tables[0];
1360 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1361 	if (rc)
1362 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1363 
1364 	pnv_pci_ioda2_set_bypass(pe, false);
1365 	if (pe->table_group.group) {
1366 		iommu_group_put(pe->table_group.group);
1367 		BUG_ON(pe->table_group.group);
1368 	}
1369 	pnv_pci_ioda2_table_free_pages(tbl);
1370 	iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1371 }
1372 
1373 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1374 {
1375 	struct pci_bus        *bus;
1376 	struct pci_controller *hose;
1377 	struct pnv_phb        *phb;
1378 	struct pnv_ioda_pe    *pe, *pe_n;
1379 	struct pci_dn         *pdn;
1380 
1381 	bus = pdev->bus;
1382 	hose = pci_bus_to_host(bus);
1383 	phb = hose->private_data;
1384 	pdn = pci_get_pdn(pdev);
1385 
1386 	if (!pdev->is_physfn)
1387 		return;
1388 
1389 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1390 		if (pe->parent_dev != pdev)
1391 			continue;
1392 
1393 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1394 
1395 		/* Remove from list */
1396 		mutex_lock(&phb->ioda.pe_list_mutex);
1397 		list_del(&pe->list);
1398 		mutex_unlock(&phb->ioda.pe_list_mutex);
1399 
1400 		pnv_ioda_deconfigure_pe(phb, pe);
1401 
1402 		pnv_ioda_free_pe(pe);
1403 	}
1404 }
1405 
1406 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1407 {
1408 	struct pci_bus        *bus;
1409 	struct pci_controller *hose;
1410 	struct pnv_phb        *phb;
1411 	struct pnv_ioda_pe    *pe;
1412 	struct pci_dn         *pdn;
1413 	struct pci_sriov      *iov;
1414 	u16                    num_vfs, i;
1415 
1416 	bus = pdev->bus;
1417 	hose = pci_bus_to_host(bus);
1418 	phb = hose->private_data;
1419 	pdn = pci_get_pdn(pdev);
1420 	iov = pdev->sriov;
1421 	num_vfs = pdn->num_vfs;
1422 
1423 	/* Release VF PEs */
1424 	pnv_ioda_release_vf_PE(pdev);
1425 
1426 	if (phb->type == PNV_PHB_IODA2) {
1427 		if (!pdn->m64_single_mode)
1428 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1429 
1430 		/* Release M64 windows */
1431 		pnv_pci_vf_release_m64(pdev, num_vfs);
1432 
1433 		/* Release PE numbers */
1434 		if (pdn->m64_single_mode) {
1435 			for (i = 0; i < num_vfs; i++) {
1436 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1437 					continue;
1438 
1439 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1440 				pnv_ioda_free_pe(pe);
1441 			}
1442 		} else
1443 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1444 		/* Releasing pe_num_map */
1445 		kfree(pdn->pe_num_map);
1446 	}
1447 }
1448 
1449 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1450 				       struct pnv_ioda_pe *pe);
1451 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1452 {
1453 	struct pci_bus        *bus;
1454 	struct pci_controller *hose;
1455 	struct pnv_phb        *phb;
1456 	struct pnv_ioda_pe    *pe;
1457 	int                    pe_num;
1458 	u16                    vf_index;
1459 	struct pci_dn         *pdn;
1460 
1461 	bus = pdev->bus;
1462 	hose = pci_bus_to_host(bus);
1463 	phb = hose->private_data;
1464 	pdn = pci_get_pdn(pdev);
1465 
1466 	if (!pdev->is_physfn)
1467 		return;
1468 
1469 	/* Reserve PE for each VF */
1470 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1471 		if (pdn->m64_single_mode)
1472 			pe_num = pdn->pe_num_map[vf_index];
1473 		else
1474 			pe_num = *pdn->pe_num_map + vf_index;
1475 
1476 		pe = &phb->ioda.pe_array[pe_num];
1477 		pe->pe_number = pe_num;
1478 		pe->phb = phb;
1479 		pe->flags = PNV_IODA_PE_VF;
1480 		pe->pbus = NULL;
1481 		pe->parent_dev = pdev;
1482 		pe->mve_number = -1;
1483 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1484 			   pci_iov_virtfn_devfn(pdev, vf_index);
1485 
1486 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1487 			hose->global_number, pdev->bus->number,
1488 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1489 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1490 
1491 		if (pnv_ioda_configure_pe(phb, pe)) {
1492 			/* XXX What do we do here ? */
1493 			pnv_ioda_free_pe(pe);
1494 			pe->pdev = NULL;
1495 			continue;
1496 		}
1497 
1498 		/* Put PE to the list */
1499 		mutex_lock(&phb->ioda.pe_list_mutex);
1500 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1501 		mutex_unlock(&phb->ioda.pe_list_mutex);
1502 
1503 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1504 	}
1505 }
1506 
1507 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1508 {
1509 	struct pci_bus        *bus;
1510 	struct pci_controller *hose;
1511 	struct pnv_phb        *phb;
1512 	struct pnv_ioda_pe    *pe;
1513 	struct pci_dn         *pdn;
1514 	int                    ret;
1515 	u16                    i;
1516 
1517 	bus = pdev->bus;
1518 	hose = pci_bus_to_host(bus);
1519 	phb = hose->private_data;
1520 	pdn = pci_get_pdn(pdev);
1521 
1522 	if (phb->type == PNV_PHB_IODA2) {
1523 		if (!pdn->vfs_expanded) {
1524 			dev_info(&pdev->dev, "don't support this SRIOV device"
1525 				" with non 64bit-prefetchable IOV BAR\n");
1526 			return -ENOSPC;
1527 		}
1528 
1529 		/*
1530 		 * When M64 BARs functions in Single PE mode, the number of VFs
1531 		 * could be enabled must be less than the number of M64 BARs.
1532 		 */
1533 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1534 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1535 			return -EBUSY;
1536 		}
1537 
1538 		/* Allocating pe_num_map */
1539 		if (pdn->m64_single_mode)
1540 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs,
1541 					GFP_KERNEL);
1542 		else
1543 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1544 
1545 		if (!pdn->pe_num_map)
1546 			return -ENOMEM;
1547 
1548 		if (pdn->m64_single_mode)
1549 			for (i = 0; i < num_vfs; i++)
1550 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1551 
1552 		/* Calculate available PE for required VFs */
1553 		if (pdn->m64_single_mode) {
1554 			for (i = 0; i < num_vfs; i++) {
1555 				pe = pnv_ioda_alloc_pe(phb);
1556 				if (!pe) {
1557 					ret = -EBUSY;
1558 					goto m64_failed;
1559 				}
1560 
1561 				pdn->pe_num_map[i] = pe->pe_number;
1562 			}
1563 		} else {
1564 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1565 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1566 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1567 				0, num_vfs, 0);
1568 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1569 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1570 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1571 				kfree(pdn->pe_num_map);
1572 				return -EBUSY;
1573 			}
1574 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1575 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1576 		}
1577 		pdn->num_vfs = num_vfs;
1578 
1579 		/* Assign M64 window accordingly */
1580 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1581 		if (ret) {
1582 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1583 			goto m64_failed;
1584 		}
1585 
1586 		/*
1587 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1588 		 * the IOV BAR according to the PE# allocated to the VFs.
1589 		 * Otherwise, the PE# for the VF will conflict with others.
1590 		 */
1591 		if (!pdn->m64_single_mode) {
1592 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1593 			if (ret)
1594 				goto m64_failed;
1595 		}
1596 	}
1597 
1598 	/* Setup VF PEs */
1599 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1600 
1601 	return 0;
1602 
1603 m64_failed:
1604 	if (pdn->m64_single_mode) {
1605 		for (i = 0; i < num_vfs; i++) {
1606 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1607 				continue;
1608 
1609 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1610 			pnv_ioda_free_pe(pe);
1611 		}
1612 	} else
1613 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1614 
1615 	/* Releasing pe_num_map */
1616 	kfree(pdn->pe_num_map);
1617 
1618 	return ret;
1619 }
1620 
1621 int pcibios_sriov_disable(struct pci_dev *pdev)
1622 {
1623 	pnv_pci_sriov_disable(pdev);
1624 
1625 	/* Release PCI data */
1626 	remove_dev_pci_data(pdev);
1627 	return 0;
1628 }
1629 
1630 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1631 {
1632 	/* Allocate PCI data */
1633 	add_dev_pci_data(pdev);
1634 
1635 	return pnv_pci_sriov_enable(pdev, num_vfs);
1636 }
1637 #endif /* CONFIG_PCI_IOV */
1638 
1639 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1640 {
1641 	struct pci_dn *pdn = pci_get_pdn(pdev);
1642 	struct pnv_ioda_pe *pe;
1643 
1644 	/*
1645 	 * The function can be called while the PE#
1646 	 * hasn't been assigned. Do nothing for the
1647 	 * case.
1648 	 */
1649 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1650 		return;
1651 
1652 	pe = &phb->ioda.pe_array[pdn->pe_number];
1653 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1654 	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1655 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1656 	/*
1657 	 * Note: iommu_add_device() will fail here as
1658 	 * for physical PE: the device is already added by now;
1659 	 * for virtual PE: sysfs entries are not ready yet and
1660 	 * tce_iommu_bus_notifier will add the device to a group later.
1661 	 */
1662 }
1663 
1664 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1665 {
1666 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1667 	struct pnv_phb *phb = hose->private_data;
1668 	struct pci_dn *pdn = pci_get_pdn(pdev);
1669 	struct pnv_ioda_pe *pe;
1670 	uint64_t top;
1671 	bool bypass = false;
1672 
1673 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1674 		return -ENODEV;;
1675 
1676 	pe = &phb->ioda.pe_array[pdn->pe_number];
1677 	if (pe->tce_bypass_enabled) {
1678 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1679 		bypass = (dma_mask >= top);
1680 	}
1681 
1682 	if (bypass) {
1683 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1684 		set_dma_ops(&pdev->dev, &dma_direct_ops);
1685 	} else {
1686 		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1687 		set_dma_ops(&pdev->dev, &dma_iommu_ops);
1688 	}
1689 	*pdev->dev.dma_mask = dma_mask;
1690 
1691 	/* Update peer npu devices */
1692 	pnv_npu_try_dma_set_bypass(pdev, bypass);
1693 
1694 	return 0;
1695 }
1696 
1697 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1698 {
1699 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1700 	struct pnv_phb *phb = hose->private_data;
1701 	struct pci_dn *pdn = pci_get_pdn(pdev);
1702 	struct pnv_ioda_pe *pe;
1703 	u64 end, mask;
1704 
1705 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1706 		return 0;
1707 
1708 	pe = &phb->ioda.pe_array[pdn->pe_number];
1709 	if (!pe->tce_bypass_enabled)
1710 		return __dma_get_required_mask(&pdev->dev);
1711 
1712 
1713 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1714 	mask = 1ULL << (fls64(end) - 1);
1715 	mask += mask - 1;
1716 
1717 	return mask;
1718 }
1719 
1720 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1721 				   struct pci_bus *bus)
1722 {
1723 	struct pci_dev *dev;
1724 
1725 	list_for_each_entry(dev, &bus->devices, bus_list) {
1726 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1727 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1728 		iommu_add_device(&dev->dev);
1729 
1730 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1731 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1732 	}
1733 }
1734 
1735 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1736 		unsigned long index, unsigned long npages, bool rm)
1737 {
1738 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1739 			&tbl->it_group_list, struct iommu_table_group_link,
1740 			next);
1741 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1742 			struct pnv_ioda_pe, table_group);
1743 	__be64 __iomem *invalidate = rm ?
1744 		(__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1745 		pe->phb->ioda.tce_inval_reg;
1746 	unsigned long start, end, inc;
1747 	const unsigned shift = tbl->it_page_shift;
1748 
1749 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1750 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1751 			npages - 1);
1752 
1753 	/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1754 	if (tbl->it_busno) {
1755 		start <<= shift;
1756 		end <<= shift;
1757 		inc = 128ull << shift;
1758 		start |= tbl->it_busno;
1759 		end |= tbl->it_busno;
1760 	} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1761 		/* p7ioc-style invalidation, 2 TCEs per write */
1762 		start |= (1ull << 63);
1763 		end |= (1ull << 63);
1764 		inc = 16;
1765         } else {
1766 		/* Default (older HW) */
1767                 inc = 128;
1768 	}
1769 
1770         end |= inc - 1;	/* round up end to be different than start */
1771 
1772         mb(); /* Ensure above stores are visible */
1773         while (start <= end) {
1774 		if (rm)
1775 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1776 		else
1777 			__raw_writeq(cpu_to_be64(start), invalidate);
1778                 start += inc;
1779         }
1780 
1781 	/*
1782 	 * The iommu layer will do another mb() for us on build()
1783 	 * and we don't care on free()
1784 	 */
1785 }
1786 
1787 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1788 		long npages, unsigned long uaddr,
1789 		enum dma_data_direction direction,
1790 		struct dma_attrs *attrs)
1791 {
1792 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1793 			attrs);
1794 
1795 	if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1796 		pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1797 
1798 	return ret;
1799 }
1800 
1801 #ifdef CONFIG_IOMMU_API
1802 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1803 		unsigned long *hpa, enum dma_data_direction *direction)
1804 {
1805 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1806 
1807 	if (!ret && (tbl->it_type &
1808 			(TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1809 		pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
1810 
1811 	return ret;
1812 }
1813 #endif
1814 
1815 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1816 		long npages)
1817 {
1818 	pnv_tce_free(tbl, index, npages);
1819 
1820 	if (tbl->it_type & TCE_PCI_SWINV_FREE)
1821 		pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1822 }
1823 
1824 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1825 	.set = pnv_ioda1_tce_build,
1826 #ifdef CONFIG_IOMMU_API
1827 	.exchange = pnv_ioda1_tce_xchg,
1828 #endif
1829 	.clear = pnv_ioda1_tce_free,
1830 	.get = pnv_tce_get,
1831 };
1832 
1833 #define TCE_KILL_INVAL_ALL  PPC_BIT(0)
1834 #define TCE_KILL_INVAL_PE   PPC_BIT(1)
1835 #define TCE_KILL_INVAL_TCE  PPC_BIT(2)
1836 
1837 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1838 {
1839 	const unsigned long val = TCE_KILL_INVAL_ALL;
1840 
1841 	mb(); /* Ensure previous TCE table stores are visible */
1842 	if (rm)
1843 		__raw_rm_writeq(cpu_to_be64(val),
1844 				(__be64 __iomem *)
1845 				phb->ioda.tce_inval_reg_phys);
1846 	else
1847 		__raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1848 }
1849 
1850 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1851 {
1852 	/* 01xb - invalidate TCEs that match the specified PE# */
1853 	unsigned long val = TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1854 	struct pnv_phb *phb = pe->phb;
1855 	struct pnv_ioda_pe *npe;
1856 	int i;
1857 
1858 	if (!phb->ioda.tce_inval_reg)
1859 		return;
1860 
1861 	mb(); /* Ensure above stores are visible */
1862 	__raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1863 
1864 	if (pe->flags & PNV_IODA_PE_PEER)
1865 		for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
1866 			npe = pe->peers[i];
1867 			if (!npe || npe->phb->type != PNV_PHB_NPU)
1868 				continue;
1869 
1870 			pnv_pci_ioda2_tce_invalidate_entire(npe->phb, false);
1871 		}
1872 }
1873 
1874 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1875 		__be64 __iomem *invalidate, unsigned shift,
1876 		unsigned long index, unsigned long npages)
1877 {
1878 	unsigned long start, end, inc;
1879 
1880 	/* We'll invalidate DMA address in PE scope */
1881 	start = TCE_KILL_INVAL_TCE;
1882 	start |= (pe_number & 0xFF);
1883 	end = start;
1884 
1885 	/* Figure out the start, end and step */
1886 	start |= (index << shift);
1887 	end |= ((index + npages - 1) << shift);
1888 	inc = (0x1ull << shift);
1889 	mb();
1890 
1891 	while (start <= end) {
1892 		if (rm)
1893 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1894 		else
1895 			__raw_writeq(cpu_to_be64(start), invalidate);
1896 		start += inc;
1897 	}
1898 }
1899 
1900 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1901 		unsigned long index, unsigned long npages, bool rm)
1902 {
1903 	struct iommu_table_group_link *tgl;
1904 
1905 	list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1906 		struct pnv_ioda_pe *npe;
1907 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1908 				struct pnv_ioda_pe, table_group);
1909 		__be64 __iomem *invalidate = rm ?
1910 			(__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1911 			pe->phb->ioda.tce_inval_reg;
1912 		int i;
1913 
1914 		pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1915 			invalidate, tbl->it_page_shift,
1916 			index, npages);
1917 
1918 		if (pe->flags & PNV_IODA_PE_PEER)
1919 			/*
1920 			 * The NVLink hardware does not support TCE kill
1921 			 * per TCE entry so we have to invalidate
1922 			 * the entire cache for it.
1923 			 */
1924 			for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
1925 				npe = pe->peers[i];
1926 				if (!npe || npe->phb->type != PNV_PHB_NPU ||
1927 						!npe->phb->ioda.tce_inval_reg)
1928 					continue;
1929 
1930 				pnv_pci_ioda2_tce_invalidate_entire(npe->phb,
1931 						rm);
1932 			}
1933 	}
1934 }
1935 
1936 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1937 		long npages, unsigned long uaddr,
1938 		enum dma_data_direction direction,
1939 		struct dma_attrs *attrs)
1940 {
1941 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1942 			attrs);
1943 
1944 	if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1945 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1946 
1947 	return ret;
1948 }
1949 
1950 #ifdef CONFIG_IOMMU_API
1951 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1952 		unsigned long *hpa, enum dma_data_direction *direction)
1953 {
1954 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1955 
1956 	if (!ret && (tbl->it_type &
1957 			(TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1958 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1959 
1960 	return ret;
1961 }
1962 #endif
1963 
1964 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1965 		long npages)
1966 {
1967 	pnv_tce_free(tbl, index, npages);
1968 
1969 	if (tbl->it_type & TCE_PCI_SWINV_FREE)
1970 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1971 }
1972 
1973 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1974 {
1975 	pnv_pci_ioda2_table_free_pages(tbl);
1976 	iommu_free_table(tbl, "pnv");
1977 }
1978 
1979 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1980 	.set = pnv_ioda2_tce_build,
1981 #ifdef CONFIG_IOMMU_API
1982 	.exchange = pnv_ioda2_tce_xchg,
1983 #endif
1984 	.clear = pnv_ioda2_tce_free,
1985 	.get = pnv_tce_get,
1986 	.free = pnv_ioda2_table_free,
1987 };
1988 
1989 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
1990 {
1991 	unsigned int *weight = (unsigned int *)data;
1992 
1993 	/* This is quite simplistic. The "base" weight of a device
1994 	 * is 10. 0 means no DMA is to be accounted for it.
1995 	 */
1996 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
1997 		return 0;
1998 
1999 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2000 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2001 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2002 		*weight += 3;
2003 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2004 		*weight += 15;
2005 	else
2006 		*weight += 10;
2007 
2008 	return 0;
2009 }
2010 
2011 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2012 {
2013 	unsigned int weight = 0;
2014 
2015 	/* SRIOV VF has same DMA32 weight as its PF */
2016 #ifdef CONFIG_PCI_IOV
2017 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2018 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2019 		return weight;
2020 	}
2021 #endif
2022 
2023 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2024 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2025 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2026 		struct pci_dev *pdev;
2027 
2028 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2029 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2030 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2031 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2032 	}
2033 
2034 	return weight;
2035 }
2036 
2037 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2038 				       struct pnv_ioda_pe *pe)
2039 {
2040 
2041 	struct page *tce_mem = NULL;
2042 	struct iommu_table *tbl;
2043 	unsigned int weight, total_weight = 0;
2044 	unsigned int tce32_segsz, base, segs, avail, i;
2045 	int64_t rc;
2046 	void *addr;
2047 
2048 	/* XXX FIXME: Handle 64-bit only DMA devices */
2049 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2050 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2051 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2052 	if (!weight)
2053 		return;
2054 
2055 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2056 		     &total_weight);
2057 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2058 	if (!segs)
2059 		segs = 1;
2060 
2061 	/*
2062 	 * Allocate contiguous DMA32 segments. We begin with the expected
2063 	 * number of segments. With one more attempt, the number of DMA32
2064 	 * segments to be allocated is decreased by one until one segment
2065 	 * is allocated successfully.
2066 	 */
2067 	do {
2068 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2069 			for (avail = 0, i = base; i < base + segs; i++) {
2070 				if (phb->ioda.dma32_segmap[i] ==
2071 				    IODA_INVALID_PE)
2072 					avail++;
2073 			}
2074 
2075 			if (avail == segs)
2076 				goto found;
2077 		}
2078 	} while (--segs);
2079 
2080 	if (!segs) {
2081 		pe_warn(pe, "No available DMA32 segments\n");
2082 		return;
2083 	}
2084 
2085 found:
2086 	tbl = pnv_pci_table_alloc(phb->hose->node);
2087 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2088 			pe->pe_number);
2089 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2090 
2091 	/* Grab a 32-bit TCE table */
2092 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2093 		weight, total_weight, base, segs);
2094 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2095 		base * PNV_IODA1_DMA32_SEGSIZE,
2096 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2097 
2098 	/* XXX Currently, we allocate one big contiguous table for the
2099 	 * TCEs. We only really need one chunk per 256M of TCE space
2100 	 * (ie per segment) but that's an optimization for later, it
2101 	 * requires some added smarts with our get/put_tce implementation
2102 	 *
2103 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2104 	 * bytes
2105 	 */
2106 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2107 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2108 				   get_order(tce32_segsz * segs));
2109 	if (!tce_mem) {
2110 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2111 		goto fail;
2112 	}
2113 	addr = page_address(tce_mem);
2114 	memset(addr, 0, tce32_segsz * segs);
2115 
2116 	/* Configure HW */
2117 	for (i = 0; i < segs; i++) {
2118 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2119 					      pe->pe_number,
2120 					      base + i, 1,
2121 					      __pa(addr) + tce32_segsz * i,
2122 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2123 		if (rc) {
2124 			pe_err(pe, " Failed to configure 32-bit TCE table,"
2125 			       " err %ld\n", rc);
2126 			goto fail;
2127 		}
2128 	}
2129 
2130 	/* Setup DMA32 segment mapping */
2131 	for (i = base; i < base + segs; i++)
2132 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2133 
2134 	/* Setup linux iommu table */
2135 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2136 				  base * PNV_IODA1_DMA32_SEGSIZE,
2137 				  IOMMU_PAGE_SHIFT_4K);
2138 
2139 	/* OPAL variant of P7IOC SW invalidated TCEs */
2140 	if (phb->ioda.tce_inval_reg)
2141 		tbl->it_type |= (TCE_PCI_SWINV_CREATE |
2142 				 TCE_PCI_SWINV_FREE   |
2143 				 TCE_PCI_SWINV_PAIR);
2144 
2145 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2146 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2147 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2148 	iommu_init_table(tbl, phb->hose->node);
2149 
2150 	if (pe->flags & PNV_IODA_PE_DEV) {
2151 		/*
2152 		 * Setting table base here only for carrying iommu_group
2153 		 * further down to let iommu_add_device() do the job.
2154 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2155 		 */
2156 		set_iommu_table_base(&pe->pdev->dev, tbl);
2157 		iommu_add_device(&pe->pdev->dev);
2158 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2159 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2160 
2161 	return;
2162  fail:
2163 	/* XXX Failure: Try to fallback to 64-bit only ? */
2164 	if (tce_mem)
2165 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2166 	if (tbl) {
2167 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2168 		iommu_free_table(tbl, "pnv");
2169 	}
2170 }
2171 
2172 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2173 		int num, struct iommu_table *tbl)
2174 {
2175 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2176 			table_group);
2177 	struct pnv_phb *phb = pe->phb;
2178 	int64_t rc;
2179 	const unsigned long size = tbl->it_indirect_levels ?
2180 			tbl->it_level_size : tbl->it_size;
2181 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2182 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2183 
2184 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2185 			start_addr, start_addr + win_size - 1,
2186 			IOMMU_PAGE_SIZE(tbl));
2187 
2188 	/*
2189 	 * Map TCE table through TVT. The TVE index is the PE number
2190 	 * shifted by 1 bit for 32-bits DMA space.
2191 	 */
2192 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2193 			pe->pe_number,
2194 			(pe->pe_number << 1) + num,
2195 			tbl->it_indirect_levels + 1,
2196 			__pa(tbl->it_base),
2197 			size << 3,
2198 			IOMMU_PAGE_SIZE(tbl));
2199 	if (rc) {
2200 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2201 		return rc;
2202 	}
2203 
2204 	pnv_pci_link_table_and_group(phb->hose->node, num,
2205 			tbl, &pe->table_group);
2206 	pnv_pci_ioda2_tce_invalidate_pe(pe);
2207 
2208 	return 0;
2209 }
2210 
2211 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2212 {
2213 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2214 	int64_t rc;
2215 
2216 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2217 	if (enable) {
2218 		phys_addr_t top = memblock_end_of_DRAM();
2219 
2220 		top = roundup_pow_of_two(top);
2221 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2222 						     pe->pe_number,
2223 						     window_id,
2224 						     pe->tce_bypass_base,
2225 						     top);
2226 	} else {
2227 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2228 						     pe->pe_number,
2229 						     window_id,
2230 						     pe->tce_bypass_base,
2231 						     0);
2232 	}
2233 	if (rc)
2234 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2235 	else
2236 		pe->tce_bypass_enabled = enable;
2237 }
2238 
2239 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2240 		__u32 page_shift, __u64 window_size, __u32 levels,
2241 		struct iommu_table *tbl);
2242 
2243 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2244 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2245 		struct iommu_table **ptbl)
2246 {
2247 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2248 			table_group);
2249 	int nid = pe->phb->hose->node;
2250 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2251 	long ret;
2252 	struct iommu_table *tbl;
2253 
2254 	tbl = pnv_pci_table_alloc(nid);
2255 	if (!tbl)
2256 		return -ENOMEM;
2257 
2258 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2259 			bus_offset, page_shift, window_size,
2260 			levels, tbl);
2261 	if (ret) {
2262 		iommu_free_table(tbl, "pnv");
2263 		return ret;
2264 	}
2265 
2266 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2267 	if (pe->phb->ioda.tce_inval_reg)
2268 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2269 
2270 	*ptbl = tbl;
2271 
2272 	return 0;
2273 }
2274 
2275 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2276 {
2277 	struct iommu_table *tbl = NULL;
2278 	long rc;
2279 
2280 	/*
2281 	 * crashkernel= specifies the kdump kernel's maximum memory at
2282 	 * some offset and there is no guaranteed the result is a power
2283 	 * of 2, which will cause errors later.
2284 	 */
2285 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2286 
2287 	/*
2288 	 * In memory constrained environments, e.g. kdump kernel, the
2289 	 * DMA window can be larger than available memory, which will
2290 	 * cause errors later.
2291 	 */
2292 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2293 
2294 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2295 			IOMMU_PAGE_SHIFT_4K,
2296 			window_size,
2297 			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2298 	if (rc) {
2299 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2300 				rc);
2301 		return rc;
2302 	}
2303 
2304 	iommu_init_table(tbl, pe->phb->hose->node);
2305 
2306 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2307 	if (rc) {
2308 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2309 				rc);
2310 		pnv_ioda2_table_free(tbl);
2311 		return rc;
2312 	}
2313 
2314 	if (!pnv_iommu_bypass_disabled)
2315 		pnv_pci_ioda2_set_bypass(pe, true);
2316 
2317 	/* OPAL variant of PHB3 invalidated TCEs */
2318 	if (pe->phb->ioda.tce_inval_reg)
2319 		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2320 
2321 	/*
2322 	 * Setting table base here only for carrying iommu_group
2323 	 * further down to let iommu_add_device() do the job.
2324 	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2325 	 */
2326 	if (pe->flags & PNV_IODA_PE_DEV)
2327 		set_iommu_table_base(&pe->pdev->dev, tbl);
2328 
2329 	return 0;
2330 }
2331 
2332 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2333 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2334 		int num)
2335 {
2336 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2337 			table_group);
2338 	struct pnv_phb *phb = pe->phb;
2339 	long ret;
2340 
2341 	pe_info(pe, "Removing DMA window #%d\n", num);
2342 
2343 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2344 			(pe->pe_number << 1) + num,
2345 			0/* levels */, 0/* table address */,
2346 			0/* table size */, 0/* page size */);
2347 	if (ret)
2348 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2349 	else
2350 		pnv_pci_ioda2_tce_invalidate_pe(pe);
2351 
2352 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2353 
2354 	return ret;
2355 }
2356 #endif
2357 
2358 #ifdef CONFIG_IOMMU_API
2359 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2360 		__u64 window_size, __u32 levels)
2361 {
2362 	unsigned long bytes = 0;
2363 	const unsigned window_shift = ilog2(window_size);
2364 	unsigned entries_shift = window_shift - page_shift;
2365 	unsigned table_shift = entries_shift + 3;
2366 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2367 	unsigned long direct_table_size;
2368 
2369 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2370 			(window_size > memory_hotplug_max()) ||
2371 			!is_power_of_2(window_size))
2372 		return 0;
2373 
2374 	/* Calculate a direct table size from window_size and levels */
2375 	entries_shift = (entries_shift + levels - 1) / levels;
2376 	table_shift = entries_shift + 3;
2377 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2378 	direct_table_size =  1UL << table_shift;
2379 
2380 	for ( ; levels; --levels) {
2381 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2382 
2383 		tce_table_size /= direct_table_size;
2384 		tce_table_size <<= 3;
2385 		tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2386 	}
2387 
2388 	return bytes;
2389 }
2390 
2391 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2392 {
2393 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2394 						table_group);
2395 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2396 	struct iommu_table *tbl = pe->table_group.tables[0];
2397 
2398 	pnv_pci_ioda2_set_bypass(pe, false);
2399 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2400 	pnv_ioda2_table_free(tbl);
2401 }
2402 
2403 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2404 {
2405 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2406 						table_group);
2407 
2408 	pnv_pci_ioda2_setup_default_config(pe);
2409 }
2410 
2411 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2412 	.get_table_size = pnv_pci_ioda2_get_table_size,
2413 	.create_table = pnv_pci_ioda2_create_table,
2414 	.set_window = pnv_pci_ioda2_set_window,
2415 	.unset_window = pnv_pci_ioda2_unset_window,
2416 	.take_ownership = pnv_ioda2_take_ownership,
2417 	.release_ownership = pnv_ioda2_release_ownership,
2418 };
2419 #endif
2420 
2421 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
2422 {
2423 	const __be64 *swinvp;
2424 
2425 	/* OPAL variant of PHB3 invalidated TCEs */
2426 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2427 	if (!swinvp)
2428 		return;
2429 
2430 	phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
2431 	phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2432 }
2433 
2434 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2435 		unsigned levels, unsigned long limit,
2436 		unsigned long *current_offset, unsigned long *total_allocated)
2437 {
2438 	struct page *tce_mem = NULL;
2439 	__be64 *addr, *tmp;
2440 	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2441 	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2442 	unsigned entries = 1UL << (shift - 3);
2443 	long i;
2444 
2445 	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2446 	if (!tce_mem) {
2447 		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2448 		return NULL;
2449 	}
2450 	addr = page_address(tce_mem);
2451 	memset(addr, 0, allocated);
2452 	*total_allocated += allocated;
2453 
2454 	--levels;
2455 	if (!levels) {
2456 		*current_offset += allocated;
2457 		return addr;
2458 	}
2459 
2460 	for (i = 0; i < entries; ++i) {
2461 		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2462 				levels, limit, current_offset, total_allocated);
2463 		if (!tmp)
2464 			break;
2465 
2466 		addr[i] = cpu_to_be64(__pa(tmp) |
2467 				TCE_PCI_READ | TCE_PCI_WRITE);
2468 
2469 		if (*current_offset >= limit)
2470 			break;
2471 	}
2472 
2473 	return addr;
2474 }
2475 
2476 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2477 		unsigned long size, unsigned level);
2478 
2479 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2480 		__u32 page_shift, __u64 window_size, __u32 levels,
2481 		struct iommu_table *tbl)
2482 {
2483 	void *addr;
2484 	unsigned long offset = 0, level_shift, total_allocated = 0;
2485 	const unsigned window_shift = ilog2(window_size);
2486 	unsigned entries_shift = window_shift - page_shift;
2487 	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2488 	const unsigned long tce_table_size = 1UL << table_shift;
2489 
2490 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2491 		return -EINVAL;
2492 
2493 	if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2494 		return -EINVAL;
2495 
2496 	/* Adjust direct table size from window_size and levels */
2497 	entries_shift = (entries_shift + levels - 1) / levels;
2498 	level_shift = entries_shift + 3;
2499 	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2500 
2501 	/* Allocate TCE table */
2502 	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2503 			levels, tce_table_size, &offset, &total_allocated);
2504 
2505 	/* addr==NULL means that the first level allocation failed */
2506 	if (!addr)
2507 		return -ENOMEM;
2508 
2509 	/*
2510 	 * First level was allocated but some lower level failed as
2511 	 * we did not allocate as much as we wanted,
2512 	 * release partially allocated table.
2513 	 */
2514 	if (offset < tce_table_size) {
2515 		pnv_pci_ioda2_table_do_free_pages(addr,
2516 				1ULL << (level_shift - 3), levels - 1);
2517 		return -ENOMEM;
2518 	}
2519 
2520 	/* Setup linux iommu table */
2521 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2522 			page_shift);
2523 	tbl->it_level_size = 1ULL << (level_shift - 3);
2524 	tbl->it_indirect_levels = levels - 1;
2525 	tbl->it_allocated_size = total_allocated;
2526 
2527 	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2528 			window_size, tce_table_size, bus_offset);
2529 
2530 	return 0;
2531 }
2532 
2533 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2534 		unsigned long size, unsigned level)
2535 {
2536 	const unsigned long addr_ul = (unsigned long) addr &
2537 			~(TCE_PCI_READ | TCE_PCI_WRITE);
2538 
2539 	if (level) {
2540 		long i;
2541 		u64 *tmp = (u64 *) addr_ul;
2542 
2543 		for (i = 0; i < size; ++i) {
2544 			unsigned long hpa = be64_to_cpu(tmp[i]);
2545 
2546 			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2547 				continue;
2548 
2549 			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2550 					level - 1);
2551 		}
2552 	}
2553 
2554 	free_pages(addr_ul, get_order(size << 3));
2555 }
2556 
2557 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2558 {
2559 	const unsigned long size = tbl->it_indirect_levels ?
2560 			tbl->it_level_size : tbl->it_size;
2561 
2562 	if (!tbl->it_size)
2563 		return;
2564 
2565 	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2566 			tbl->it_indirect_levels);
2567 }
2568 
2569 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2570 				       struct pnv_ioda_pe *pe)
2571 {
2572 	int64_t rc;
2573 
2574 	/* TVE #1 is selected by PCI address bit 59 */
2575 	pe->tce_bypass_base = 1ull << 59;
2576 
2577 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2578 			pe->pe_number);
2579 
2580 	/* The PE will reserve all possible 32-bits space */
2581 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2582 		phb->ioda.m32_pci_base);
2583 
2584 	/* Setup linux iommu table */
2585 	pe->table_group.tce32_start = 0;
2586 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2587 	pe->table_group.max_dynamic_windows_supported =
2588 			IOMMU_TABLE_GROUP_MAX_TABLES;
2589 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2590 	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2591 #ifdef CONFIG_IOMMU_API
2592 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2593 #endif
2594 
2595 	rc = pnv_pci_ioda2_setup_default_config(pe);
2596 	if (rc)
2597 		return;
2598 
2599 	if (pe->flags & PNV_IODA_PE_DEV)
2600 		iommu_add_device(&pe->pdev->dev);
2601 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2602 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2603 }
2604 
2605 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2606 {
2607 	struct pci_controller *hose = phb->hose;
2608 	struct pnv_ioda_pe *pe;
2609 	unsigned int weight;
2610 
2611 	/* If we have more PE# than segments available, hand out one
2612 	 * per PE until we run out and let the rest fail. If not,
2613 	 * then we assign at least one segment per PE, plus more based
2614 	 * on the amount of devices under that PE
2615 	 */
2616 	pr_info("PCI: Domain %04x has %d available 32-bit DMA segments\n",
2617 		hose->global_number, phb->ioda.dma32_count);
2618 
2619 	pnv_pci_ioda_setup_opal_tce_kill(phb);
2620 
2621 	/* Walk our PE list and configure their DMA segments */
2622 	list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2623 		weight = pnv_pci_ioda_pe_dma_weight(pe);
2624 		if (!weight)
2625 			continue;
2626 
2627 		/*
2628 		 * For IODA2 compliant PHB3, we needn't care about the weight.
2629 		 * The all available 32-bits DMA space will be assigned to
2630 		 * the specific PE.
2631 		 */
2632 		if (phb->type == PNV_PHB_IODA1) {
2633 			pnv_pci_ioda1_setup_dma_pe(phb, pe);
2634 		} else if (phb->type == PNV_PHB_IODA2) {
2635 			pe_info(pe, "Assign DMA32 space\n");
2636 			pnv_pci_ioda2_setup_dma_pe(phb, pe);
2637 		} else if (phb->type == PNV_PHB_NPU) {
2638 			/*
2639 			 * We initialise the DMA space for an NPU PHB
2640 			 * after setup of the PHB is complete as we
2641 			 * point the NPU TVT to the the same location
2642 			 * as the PHB3 TVT.
2643 			 */
2644 		}
2645 	}
2646 }
2647 
2648 #ifdef CONFIG_PCI_MSI
2649 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2650 {
2651 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2652 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2653 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2654 					   ioda.irq_chip);
2655 	int64_t rc;
2656 
2657 	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2658 	WARN_ON_ONCE(rc);
2659 
2660 	icp_native_eoi(d);
2661 }
2662 
2663 
2664 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2665 {
2666 	struct irq_data *idata;
2667 	struct irq_chip *ichip;
2668 
2669 	if (phb->type != PNV_PHB_IODA2)
2670 		return;
2671 
2672 	if (!phb->ioda.irq_chip_init) {
2673 		/*
2674 		 * First time we setup an MSI IRQ, we need to setup the
2675 		 * corresponding IRQ chip to route correctly.
2676 		 */
2677 		idata = irq_get_irq_data(virq);
2678 		ichip = irq_data_get_irq_chip(idata);
2679 		phb->ioda.irq_chip_init = 1;
2680 		phb->ioda.irq_chip = *ichip;
2681 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2682 	}
2683 	irq_set_chip(virq, &phb->ioda.irq_chip);
2684 }
2685 
2686 #ifdef CONFIG_CXL_BASE
2687 
2688 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2689 {
2690 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2691 
2692 	return of_node_get(hose->dn);
2693 }
2694 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2695 
2696 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2697 {
2698 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2699 	struct pnv_phb *phb = hose->private_data;
2700 	struct pnv_ioda_pe *pe;
2701 	int rc;
2702 
2703 	pe = pnv_ioda_get_pe(dev);
2704 	if (!pe)
2705 		return -ENODEV;
2706 
2707 	pe_info(pe, "Switching PHB to CXL\n");
2708 
2709 	rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2710 	if (rc)
2711 		dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2712 
2713 	return rc;
2714 }
2715 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2716 
2717 /* Find PHB for cxl dev and allocate MSI hwirqs?
2718  * Returns the absolute hardware IRQ number
2719  */
2720 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2721 {
2722 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2723 	struct pnv_phb *phb = hose->private_data;
2724 	int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2725 
2726 	if (hwirq < 0) {
2727 		dev_warn(&dev->dev, "Failed to find a free MSI\n");
2728 		return -ENOSPC;
2729 	}
2730 
2731 	return phb->msi_base + hwirq;
2732 }
2733 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2734 
2735 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2736 {
2737 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2738 	struct pnv_phb *phb = hose->private_data;
2739 
2740 	msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2741 }
2742 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2743 
2744 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2745 				  struct pci_dev *dev)
2746 {
2747 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2748 	struct pnv_phb *phb = hose->private_data;
2749 	int i, hwirq;
2750 
2751 	for (i = 1; i < CXL_IRQ_RANGES; i++) {
2752 		if (!irqs->range[i])
2753 			continue;
2754 		pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
2755 			 i, irqs->offset[i],
2756 			 irqs->range[i]);
2757 		hwirq = irqs->offset[i] - phb->msi_base;
2758 		msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2759 				       irqs->range[i]);
2760 	}
2761 }
2762 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2763 
2764 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2765 			       struct pci_dev *dev, int num)
2766 {
2767 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2768 	struct pnv_phb *phb = hose->private_data;
2769 	int i, hwirq, try;
2770 
2771 	memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2772 
2773 	/* 0 is reserved for the multiplexed PSL DSI interrupt */
2774 	for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2775 		try = num;
2776 		while (try) {
2777 			hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2778 			if (hwirq >= 0)
2779 				break;
2780 			try /= 2;
2781 		}
2782 		if (!try)
2783 			goto fail;
2784 
2785 		irqs->offset[i] = phb->msi_base + hwirq;
2786 		irqs->range[i] = try;
2787 		pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
2788 			 i, irqs->offset[i], irqs->range[i]);
2789 		num -= try;
2790 	}
2791 	if (num)
2792 		goto fail;
2793 
2794 	return 0;
2795 fail:
2796 	pnv_cxl_release_hwirq_ranges(irqs, dev);
2797 	return -ENOSPC;
2798 }
2799 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2800 
2801 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2802 {
2803 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2804 	struct pnv_phb *phb = hose->private_data;
2805 
2806 	return phb->msi_bmp.irq_count;
2807 }
2808 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2809 
2810 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2811 			   unsigned int virq)
2812 {
2813 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2814 	struct pnv_phb *phb = hose->private_data;
2815 	unsigned int xive_num = hwirq - phb->msi_base;
2816 	struct pnv_ioda_pe *pe;
2817 	int rc;
2818 
2819 	if (!(pe = pnv_ioda_get_pe(dev)))
2820 		return -ENODEV;
2821 
2822 	/* Assign XIVE to PE */
2823 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2824 	if (rc) {
2825 		pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2826 			"hwirq 0x%x XIVE 0x%x PE\n",
2827 			pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2828 		return -EIO;
2829 	}
2830 	set_msi_irq_chip(phb, virq);
2831 
2832 	return 0;
2833 }
2834 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2835 #endif
2836 
2837 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2838 				  unsigned int hwirq, unsigned int virq,
2839 				  unsigned int is_64, struct msi_msg *msg)
2840 {
2841 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2842 	unsigned int xive_num = hwirq - phb->msi_base;
2843 	__be32 data;
2844 	int rc;
2845 
2846 	/* No PE assigned ? bail out ... no MSI for you ! */
2847 	if (pe == NULL)
2848 		return -ENXIO;
2849 
2850 	/* Check if we have an MVE */
2851 	if (pe->mve_number < 0)
2852 		return -ENXIO;
2853 
2854 	/* Force 32-bit MSI on some broken devices */
2855 	if (dev->no_64bit_msi)
2856 		is_64 = 0;
2857 
2858 	/* Assign XIVE to PE */
2859 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2860 	if (rc) {
2861 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2862 			pci_name(dev), rc, xive_num);
2863 		return -EIO;
2864 	}
2865 
2866 	if (is_64) {
2867 		__be64 addr64;
2868 
2869 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2870 				     &addr64, &data);
2871 		if (rc) {
2872 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2873 				pci_name(dev), rc);
2874 			return -EIO;
2875 		}
2876 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2877 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2878 	} else {
2879 		__be32 addr32;
2880 
2881 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2882 				     &addr32, &data);
2883 		if (rc) {
2884 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2885 				pci_name(dev), rc);
2886 			return -EIO;
2887 		}
2888 		msg->address_hi = 0;
2889 		msg->address_lo = be32_to_cpu(addr32);
2890 	}
2891 	msg->data = be32_to_cpu(data);
2892 
2893 	set_msi_irq_chip(phb, virq);
2894 
2895 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2896 		 " address=%x_%08x data=%x PE# %d\n",
2897 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2898 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2899 
2900 	return 0;
2901 }
2902 
2903 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2904 {
2905 	unsigned int count;
2906 	const __be32 *prop = of_get_property(phb->hose->dn,
2907 					     "ibm,opal-msi-ranges", NULL);
2908 	if (!prop) {
2909 		/* BML Fallback */
2910 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2911 	}
2912 	if (!prop)
2913 		return;
2914 
2915 	phb->msi_base = be32_to_cpup(prop);
2916 	count = be32_to_cpup(prop + 1);
2917 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2918 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2919 		       phb->hose->global_number);
2920 		return;
2921 	}
2922 
2923 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2924 	phb->msi32_support = 1;
2925 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2926 		count, phb->msi_base);
2927 }
2928 #else
2929 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2930 #endif /* CONFIG_PCI_MSI */
2931 
2932 #ifdef CONFIG_PCI_IOV
2933 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2934 {
2935 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2936 	struct pnv_phb *phb = hose->private_data;
2937 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2938 	struct resource *res;
2939 	int i;
2940 	resource_size_t size, total_vf_bar_sz;
2941 	struct pci_dn *pdn;
2942 	int mul, total_vfs;
2943 
2944 	if (!pdev->is_physfn || pdev->is_added)
2945 		return;
2946 
2947 	pdn = pci_get_pdn(pdev);
2948 	pdn->vfs_expanded = 0;
2949 	pdn->m64_single_mode = false;
2950 
2951 	total_vfs = pci_sriov_get_totalvfs(pdev);
2952 	mul = phb->ioda.total_pe_num;
2953 	total_vf_bar_sz = 0;
2954 
2955 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2956 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2957 		if (!res->flags || res->parent)
2958 			continue;
2959 		if (!pnv_pci_is_mem_pref_64(res->flags)) {
2960 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
2961 					" non M64 VF BAR%d: %pR. \n",
2962 				 i, res);
2963 			goto truncate_iov;
2964 		}
2965 
2966 		total_vf_bar_sz += pci_iov_resource_size(pdev,
2967 				i + PCI_IOV_RESOURCES);
2968 
2969 		/*
2970 		 * If bigger than quarter of M64 segment size, just round up
2971 		 * power of two.
2972 		 *
2973 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2974 		 * with other devices, IOV BAR size is expanded to be
2975 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2976 		 * segment size , the expanded size would equal to half of the
2977 		 * whole M64 space size, which will exhaust the M64 Space and
2978 		 * limit the system flexibility.  This is a design decision to
2979 		 * set the boundary to quarter of the M64 segment size.
2980 		 */
2981 		if (total_vf_bar_sz > gate) {
2982 			mul = roundup_pow_of_two(total_vfs);
2983 			dev_info(&pdev->dev,
2984 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2985 				total_vf_bar_sz, gate, mul);
2986 			pdn->m64_single_mode = true;
2987 			break;
2988 		}
2989 	}
2990 
2991 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2992 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2993 		if (!res->flags || res->parent)
2994 			continue;
2995 
2996 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2997 		/*
2998 		 * On PHB3, the minimum size alignment of M64 BAR in single
2999 		 * mode is 32MB.
3000 		 */
3001 		if (pdn->m64_single_mode && (size < SZ_32M))
3002 			goto truncate_iov;
3003 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
3004 		res->end = res->start + size * mul - 1;
3005 		dev_dbg(&pdev->dev, "                       %pR\n", res);
3006 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
3007 			 i, res, mul);
3008 	}
3009 	pdn->vfs_expanded = mul;
3010 
3011 	return;
3012 
3013 truncate_iov:
3014 	/* To save MMIO space, IOV BAR is truncated. */
3015 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3016 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3017 		res->flags = 0;
3018 		res->end = res->start - 1;
3019 	}
3020 }
3021 #endif /* CONFIG_PCI_IOV */
3022 
3023 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3024 				  struct resource *res)
3025 {
3026 	struct pnv_phb *phb = pe->phb;
3027 	struct pci_bus_region region;
3028 	int index;
3029 	int64_t rc;
3030 
3031 	if (!res || !res->flags || res->start > res->end)
3032 		return;
3033 
3034 	if (res->flags & IORESOURCE_IO) {
3035 		region.start = res->start - phb->ioda.io_pci_base;
3036 		region.end   = res->end - phb->ioda.io_pci_base;
3037 		index = region.start / phb->ioda.io_segsize;
3038 
3039 		while (index < phb->ioda.total_pe_num &&
3040 		       region.start <= region.end) {
3041 			phb->ioda.io_segmap[index] = pe->pe_number;
3042 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3043 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3044 			if (rc != OPAL_SUCCESS) {
3045 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%d\n",
3046 				       __func__, rc, index, pe->pe_number);
3047 				break;
3048 			}
3049 
3050 			region.start += phb->ioda.io_segsize;
3051 			index++;
3052 		}
3053 	} else if ((res->flags & IORESOURCE_MEM) &&
3054 		   !pnv_pci_is_mem_pref_64(res->flags)) {
3055 		region.start = res->start -
3056 			       phb->hose->mem_offset[0] -
3057 			       phb->ioda.m32_pci_base;
3058 		region.end   = res->end -
3059 			       phb->hose->mem_offset[0] -
3060 			       phb->ioda.m32_pci_base;
3061 		index = region.start / phb->ioda.m32_segsize;
3062 
3063 		while (index < phb->ioda.total_pe_num &&
3064 		       region.start <= region.end) {
3065 			phb->ioda.m32_segmap[index] = pe->pe_number;
3066 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3067 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3068 			if (rc != OPAL_SUCCESS) {
3069 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%d",
3070 				       __func__, rc, index, pe->pe_number);
3071 				break;
3072 			}
3073 
3074 			region.start += phb->ioda.m32_segsize;
3075 			index++;
3076 		}
3077 	}
3078 }
3079 
3080 /*
3081  * This function is supposed to be called on basis of PE from top
3082  * to bottom style. So the the I/O or MMIO segment assigned to
3083  * parent PE could be overrided by its child PEs if necessary.
3084  */
3085 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3086 {
3087 	struct pci_dev *pdev;
3088 	int i;
3089 
3090 	/*
3091 	 * NOTE: We only care PCI bus based PE for now. For PCI
3092 	 * device based PE, for example SRIOV sensitive VF should
3093 	 * be figured out later.
3094 	 */
3095 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3096 
3097 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3098 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3099 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3100 
3101 		/*
3102 		 * If the PE contains all subordinate PCI buses, the
3103 		 * windows of the child bridges should be mapped to
3104 		 * the PE as well.
3105 		 */
3106 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3107 			continue;
3108 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3109 			pnv_ioda_setup_pe_res(pe,
3110 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3111 	}
3112 }
3113 
3114 static void pnv_pci_ioda_setup_seg(void)
3115 {
3116 	struct pci_controller *tmp, *hose;
3117 	struct pnv_phb *phb;
3118 	struct pnv_ioda_pe *pe;
3119 
3120 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3121 		phb = hose->private_data;
3122 
3123 		/* NPU PHB does not support IO or MMIO segmentation */
3124 		if (phb->type == PNV_PHB_NPU)
3125 			continue;
3126 
3127 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
3128 			pnv_ioda_setup_pe_seg(pe);
3129 		}
3130 	}
3131 }
3132 
3133 static void pnv_pci_ioda_setup_DMA(void)
3134 {
3135 	struct pci_controller *hose, *tmp;
3136 	struct pnv_phb *phb;
3137 
3138 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3139 		pnv_ioda_setup_dma(hose->private_data);
3140 
3141 		/* Mark the PHB initialization done */
3142 		phb = hose->private_data;
3143 		phb->initialized = 1;
3144 	}
3145 }
3146 
3147 static void pnv_pci_ioda_create_dbgfs(void)
3148 {
3149 #ifdef CONFIG_DEBUG_FS
3150 	struct pci_controller *hose, *tmp;
3151 	struct pnv_phb *phb;
3152 	char name[16];
3153 
3154 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3155 		phb = hose->private_data;
3156 
3157 		sprintf(name, "PCI%04x", hose->global_number);
3158 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3159 		if (!phb->dbgfs)
3160 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3161 				__func__, hose->global_number);
3162 	}
3163 #endif /* CONFIG_DEBUG_FS */
3164 }
3165 
3166 static void pnv_npu_ioda_fixup(void)
3167 {
3168 	bool enable_bypass;
3169 	struct pci_controller *hose, *tmp;
3170 	struct pnv_phb *phb;
3171 	struct pnv_ioda_pe *pe;
3172 	unsigned int weight;
3173 
3174 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3175 		phb = hose->private_data;
3176 		if (phb->type != PNV_PHB_NPU)
3177 			continue;
3178 
3179 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
3180 			weight = pnv_pci_ioda_pe_dma_weight(pe);
3181 			if (WARN_ON(!weight))
3182 				continue;
3183 
3184 			enable_bypass = dma_get_mask(&pe->pdev->dev) ==
3185 				DMA_BIT_MASK(64);
3186 			pnv_npu_init_dma_pe(pe);
3187 		}
3188 	}
3189 }
3190 
3191 static void pnv_pci_ioda_fixup(void)
3192 {
3193 	pnv_pci_ioda_setup_PEs();
3194 	pnv_pci_ioda_setup_seg();
3195 	pnv_pci_ioda_setup_DMA();
3196 
3197 	pnv_pci_ioda_create_dbgfs();
3198 
3199 #ifdef CONFIG_EEH
3200 	eeh_init();
3201 	eeh_addr_cache_build();
3202 #endif
3203 
3204 	/* Link NPU IODA tables to their PCI devices. */
3205 	pnv_npu_ioda_fixup();
3206 }
3207 
3208 /*
3209  * Returns the alignment for I/O or memory windows for P2P
3210  * bridges. That actually depends on how PEs are segmented.
3211  * For now, we return I/O or M32 segment size for PE sensitive
3212  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3213  * 1MiB for memory) will be returned.
3214  *
3215  * The current PCI bus might be put into one PE, which was
3216  * create against the parent PCI bridge. For that case, we
3217  * needn't enlarge the alignment so that we can save some
3218  * resources.
3219  */
3220 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3221 						unsigned long type)
3222 {
3223 	struct pci_dev *bridge;
3224 	struct pci_controller *hose = pci_bus_to_host(bus);
3225 	struct pnv_phb *phb = hose->private_data;
3226 	int num_pci_bridges = 0;
3227 
3228 	bridge = bus->self;
3229 	while (bridge) {
3230 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3231 			num_pci_bridges++;
3232 			if (num_pci_bridges >= 2)
3233 				return 1;
3234 		}
3235 
3236 		bridge = bridge->bus->self;
3237 	}
3238 
3239 	/* We fail back to M32 if M64 isn't supported */
3240 	if (phb->ioda.m64_segsize &&
3241 	    pnv_pci_is_mem_pref_64(type))
3242 		return phb->ioda.m64_segsize;
3243 	if (type & IORESOURCE_MEM)
3244 		return phb->ioda.m32_segsize;
3245 
3246 	return phb->ioda.io_segsize;
3247 }
3248 
3249 #ifdef CONFIG_PCI_IOV
3250 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3251 						      int resno)
3252 {
3253 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3254 	struct pnv_phb *phb = hose->private_data;
3255 	struct pci_dn *pdn = pci_get_pdn(pdev);
3256 	resource_size_t align;
3257 
3258 	/*
3259 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3260 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3261 	 * BAR should be size aligned.
3262 	 *
3263 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3264 	 * powernv-specific hardware restriction is gone. But if just use the
3265 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3266 	 * in one segment of M64 #15, which introduces the PE conflict between
3267 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3268 	 * m64_segsize.
3269 	 *
3270 	 * This function returns the total IOV BAR size if M64 BAR is in
3271 	 * Shared PE mode or just VF BAR size if not.
3272 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3273 	 * M64 segment size if IOV BAR size is less.
3274 	 */
3275 	align = pci_iov_resource_size(pdev, resno);
3276 	if (!pdn->vfs_expanded)
3277 		return align;
3278 	if (pdn->m64_single_mode)
3279 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3280 
3281 	return pdn->vfs_expanded * align;
3282 }
3283 #endif /* CONFIG_PCI_IOV */
3284 
3285 /* Prevent enabling devices for which we couldn't properly
3286  * assign a PE
3287  */
3288 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3289 {
3290 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3291 	struct pnv_phb *phb = hose->private_data;
3292 	struct pci_dn *pdn;
3293 
3294 	/* The function is probably called while the PEs have
3295 	 * not be created yet. For example, resource reassignment
3296 	 * during PCI probe period. We just skip the check if
3297 	 * PEs isn't ready.
3298 	 */
3299 	if (!phb->initialized)
3300 		return true;
3301 
3302 	pdn = pci_get_pdn(dev);
3303 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3304 		return false;
3305 
3306 	return true;
3307 }
3308 
3309 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3310 {
3311 	struct pnv_phb *phb = hose->private_data;
3312 
3313 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3314 		       OPAL_ASSERT_RESET);
3315 }
3316 
3317 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3318 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3319 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3320 #ifdef CONFIG_PCI_MSI
3321 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3322 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3323 #endif
3324 	.enable_device_hook	= pnv_pci_enable_device_hook,
3325 	.window_alignment	= pnv_pci_window_alignment,
3326 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3327 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3328 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3329 	.shutdown		= pnv_pci_ioda_shutdown,
3330 };
3331 
3332 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3333 {
3334 	dev_err_once(&npdev->dev,
3335 			"%s operation unsupported for NVLink devices\n",
3336 			__func__);
3337 	return -EPERM;
3338 }
3339 
3340 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3341 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3342 #ifdef CONFIG_PCI_MSI
3343 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3344 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3345 #endif
3346 	.enable_device_hook	= pnv_pci_enable_device_hook,
3347 	.window_alignment	= pnv_pci_window_alignment,
3348 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3349 	.dma_set_mask		= pnv_npu_dma_set_mask,
3350 	.shutdown		= pnv_pci_ioda_shutdown,
3351 };
3352 
3353 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3354 					 u64 hub_id, int ioda_type)
3355 {
3356 	struct pci_controller *hose;
3357 	struct pnv_phb *phb;
3358 	unsigned long size, m64map_off, m32map_off, pemap_off;
3359 	unsigned long iomap_off = 0, dma32map_off = 0;
3360 	const __be64 *prop64;
3361 	const __be32 *prop32;
3362 	int len;
3363 	unsigned int segno;
3364 	u64 phb_id;
3365 	void *aux;
3366 	long rc;
3367 
3368 	pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
3369 
3370 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3371 	if (!prop64) {
3372 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3373 		return;
3374 	}
3375 	phb_id = be64_to_cpup(prop64);
3376 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3377 
3378 	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3379 
3380 	/* Allocate PCI controller */
3381 	phb->hose = hose = pcibios_alloc_controller(np);
3382 	if (!phb->hose) {
3383 		pr_err("  Can't allocate PCI controller for %s\n",
3384 		       np->full_name);
3385 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3386 		return;
3387 	}
3388 
3389 	spin_lock_init(&phb->lock);
3390 	prop32 = of_get_property(np, "bus-range", &len);
3391 	if (prop32 && len == 8) {
3392 		hose->first_busno = be32_to_cpu(prop32[0]);
3393 		hose->last_busno = be32_to_cpu(prop32[1]);
3394 	} else {
3395 		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3396 		hose->first_busno = 0;
3397 		hose->last_busno = 0xff;
3398 	}
3399 	hose->private_data = phb;
3400 	phb->hub_id = hub_id;
3401 	phb->opal_id = phb_id;
3402 	phb->type = ioda_type;
3403 	mutex_init(&phb->ioda.pe_alloc_mutex);
3404 
3405 	/* Detect specific models for error handling */
3406 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3407 		phb->model = PNV_PHB_MODEL_P7IOC;
3408 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3409 		phb->model = PNV_PHB_MODEL_PHB3;
3410 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3411 		phb->model = PNV_PHB_MODEL_NPU;
3412 	else
3413 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3414 
3415 	/* Parse 32-bit and IO ranges (if any) */
3416 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3417 
3418 	/* Get registers */
3419 	phb->regs = of_iomap(np, 0);
3420 	if (phb->regs == NULL)
3421 		pr_err("  Failed to map registers !\n");
3422 
3423 	/* Initialize more IODA stuff */
3424 	phb->ioda.total_pe_num = 1;
3425 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3426 	if (prop32)
3427 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3428 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3429 	if (prop32)
3430 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3431 
3432 	/* Parse 64-bit MMIO range */
3433 	pnv_ioda_parse_m64_window(phb);
3434 
3435 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3436 	/* FW Has already off top 64k of M32 space (MSI space) */
3437 	phb->ioda.m32_size += 0x10000;
3438 
3439 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3440 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3441 	phb->ioda.io_size = hose->pci_io_size;
3442 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3443 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3444 
3445 	/* Calculate how many 32-bit TCE segments we have */
3446 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3447 				PNV_IODA1_DMA32_SEGSIZE;
3448 
3449 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3450 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
3451 	m64map_off = size;
3452 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3453 	m32map_off = size;
3454 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3455 	if (phb->type == PNV_PHB_IODA1) {
3456 		iomap_off = size;
3457 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3458 		dma32map_off = size;
3459 		size += phb->ioda.dma32_count *
3460 			sizeof(phb->ioda.dma32_segmap[0]);
3461 	}
3462 	pemap_off = size;
3463 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3464 	aux = memblock_virt_alloc(size, 0);
3465 	phb->ioda.pe_alloc = aux;
3466 	phb->ioda.m64_segmap = aux + m64map_off;
3467 	phb->ioda.m32_segmap = aux + m32map_off;
3468 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3469 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3470 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3471 	}
3472 	if (phb->type == PNV_PHB_IODA1) {
3473 		phb->ioda.io_segmap = aux + iomap_off;
3474 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3475 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3476 
3477 		phb->ioda.dma32_segmap = aux + dma32map_off;
3478 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3479 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3480 	}
3481 	phb->ioda.pe_array = aux + pemap_off;
3482 	set_bit(phb->ioda.reserved_pe_idx, phb->ioda.pe_alloc);
3483 
3484 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3485 	mutex_init(&phb->ioda.pe_list_mutex);
3486 
3487 	/* Calculate how many 32-bit TCE segments we have */
3488 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3489 				PNV_IODA1_DMA32_SEGSIZE;
3490 
3491 #if 0 /* We should really do that ... */
3492 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3493 					 window_type,
3494 					 window_num,
3495 					 starting_real_address,
3496 					 starting_pci_address,
3497 					 segment_size);
3498 #endif
3499 
3500 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3501 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3502 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3503 	if (phb->ioda.m64_size)
3504 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3505 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3506 	if (phb->ioda.io_size)
3507 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3508 			phb->ioda.io_size, phb->ioda.io_segsize);
3509 
3510 
3511 	phb->hose->ops = &pnv_pci_ops;
3512 	phb->get_pe_state = pnv_ioda_get_pe_state;
3513 	phb->freeze_pe = pnv_ioda_freeze_pe;
3514 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3515 
3516 	/* Setup MSI support */
3517 	pnv_pci_init_ioda_msis(phb);
3518 
3519 	/*
3520 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3521 	 * to let the PCI core do resource assignment. It's supposed
3522 	 * that the PCI core will do correct I/O and MMIO alignment
3523 	 * for the P2P bridge bars so that each PCI bus (excluding
3524 	 * the child P2P bridges) can form individual PE.
3525 	 */
3526 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3527 
3528 	if (phb->type == PNV_PHB_NPU) {
3529 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3530 	} else {
3531 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3532 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3533 	}
3534 
3535 #ifdef CONFIG_PCI_IOV
3536 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3537 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3538 #endif
3539 
3540 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3541 
3542 	/* Reset IODA tables to a clean state */
3543 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3544 	if (rc)
3545 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3546 
3547 	/* If we're running in kdump kerenl, the previous kerenl never
3548 	 * shutdown PCI devices correctly. We already got IODA table
3549 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3550 	 * transactions from previous kerenl.
3551 	 */
3552 	if (is_kdump_kernel()) {
3553 		pr_info("  Issue PHB reset ...\n");
3554 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3555 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3556 	}
3557 
3558 	/* Remove M64 resource if we can't configure it successfully */
3559 	if (!phb->init_m64 || phb->init_m64(phb))
3560 		hose->mem_resources[1].flags = 0;
3561 }
3562 
3563 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3564 {
3565 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3566 }
3567 
3568 void __init pnv_pci_init_npu_phb(struct device_node *np)
3569 {
3570 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3571 }
3572 
3573 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3574 {
3575 	struct device_node *phbn;
3576 	const __be64 *prop64;
3577 	u64 hub_id;
3578 
3579 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3580 
3581 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3582 	if (!prop64) {
3583 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3584 		return;
3585 	}
3586 	hub_id = be64_to_cpup(prop64);
3587 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3588 
3589 	/* Count child PHBs */
3590 	for_each_child_of_node(np, phbn) {
3591 		/* Look for IODA1 PHBs */
3592 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3593 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3594 	}
3595 }
3596