xref: /openbmc/linux/arch/powerpc/platforms/powernv/pci-ioda.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Support PCI/PCIe on PowerNV platforms
4  *
5  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6  */
7 
8 #undef DEBUG
9 
10 #include <linux/kernel.h>
11 #include <linux/pci.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/string.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/msi.h>
20 #include <linux/iommu.h>
21 #include <linux/rculist.h>
22 #include <linux/sizes.h>
23 
24 #include <asm/sections.h>
25 #include <asm/io.h>
26 #include <asm/prom.h>
27 #include <asm/pci-bridge.h>
28 #include <asm/machdep.h>
29 #include <asm/msi_bitmap.h>
30 #include <asm/ppc-pci.h>
31 #include <asm/opal.h>
32 #include <asm/iommu.h>
33 #include <asm/tce.h>
34 #include <asm/xics.h>
35 #include <asm/debugfs.h>
36 #include <asm/firmware.h>
37 #include <asm/pnv-pci.h>
38 #include <asm/mmzone.h>
39 
40 #include <misc/cxl-base.h>
41 
42 #include "powernv.h"
43 #include "pci.h"
44 #include "../../../../drivers/pci/pci.h"
45 
46 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
47 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
48 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
49 
50 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
51 					      "NPU_OCAPI" };
52 
53 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
54 static void pnv_pci_configure_bus(struct pci_bus *bus);
55 
56 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
57 			    const char *fmt, ...)
58 {
59 	struct va_format vaf;
60 	va_list args;
61 	char pfix[32];
62 
63 	va_start(args, fmt);
64 
65 	vaf.fmt = fmt;
66 	vaf.va = &args;
67 
68 	if (pe->flags & PNV_IODA_PE_DEV)
69 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
70 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
71 		sprintf(pfix, "%04x:%02x     ",
72 			pci_domain_nr(pe->pbus), pe->pbus->number);
73 #ifdef CONFIG_PCI_IOV
74 	else if (pe->flags & PNV_IODA_PE_VF)
75 		sprintf(pfix, "%04x:%02x:%2x.%d",
76 			pci_domain_nr(pe->parent_dev->bus),
77 			(pe->rid & 0xff00) >> 8,
78 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
79 #endif /* CONFIG_PCI_IOV*/
80 
81 	printk("%spci %s: [PE# %.2x] %pV",
82 	       level, pfix, pe->pe_number, &vaf);
83 
84 	va_end(args);
85 }
86 
87 static bool pnv_iommu_bypass_disabled __read_mostly;
88 static bool pci_reset_phbs __read_mostly;
89 
90 static int __init iommu_setup(char *str)
91 {
92 	if (!str)
93 		return -EINVAL;
94 
95 	while (*str) {
96 		if (!strncmp(str, "nobypass", 8)) {
97 			pnv_iommu_bypass_disabled = true;
98 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
99 			break;
100 		}
101 		str += strcspn(str, ",");
102 		if (*str == ',')
103 			str++;
104 	}
105 
106 	return 0;
107 }
108 early_param("iommu", iommu_setup);
109 
110 static int __init pci_reset_phbs_setup(char *str)
111 {
112 	pci_reset_phbs = true;
113 	return 0;
114 }
115 
116 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
117 
118 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
119 {
120 	/*
121 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
122 	 * allocation code sometimes decides to put a 64-bit prefetchable
123 	 * BAR in the 32-bit window, so we have to compare the addresses.
124 	 *
125 	 * For simplicity we only test resource start.
126 	 */
127 	return (r->start >= phb->ioda.m64_base &&
128 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
129 }
130 
131 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
132 {
133 	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
134 
135 	return (resource_flags & flags) == flags;
136 }
137 
138 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
139 {
140 	s64 rc;
141 
142 	phb->ioda.pe_array[pe_no].phb = phb;
143 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
144 
145 	/*
146 	 * Clear the PE frozen state as it might be put into frozen state
147 	 * in the last PCI remove path. It's not harmful to do so when the
148 	 * PE is already in unfrozen state.
149 	 */
150 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
151 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
152 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
153 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
154 			__func__, rc, phb->hose->global_number, pe_no);
155 
156 	return &phb->ioda.pe_array[pe_no];
157 }
158 
159 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
160 {
161 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
162 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
163 			__func__, pe_no, phb->hose->global_number);
164 		return;
165 	}
166 
167 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
168 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
169 			 __func__, pe_no, phb->hose->global_number);
170 
171 	pnv_ioda_init_pe(phb, pe_no);
172 }
173 
174 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
175 {
176 	long pe;
177 
178 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
179 		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
180 			return pnv_ioda_init_pe(phb, pe);
181 	}
182 
183 	return NULL;
184 }
185 
186 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
187 {
188 	struct pnv_phb *phb = pe->phb;
189 	unsigned int pe_num = pe->pe_number;
190 
191 	WARN_ON(pe->pdev);
192 	WARN_ON(pe->npucomp); /* NPUs for nvlink are not supposed to be freed */
193 	kfree(pe->npucomp);
194 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
195 	clear_bit(pe_num, phb->ioda.pe_alloc);
196 }
197 
198 /* The default M64 BAR is shared by all PEs */
199 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
200 {
201 	const char *desc;
202 	struct resource *r;
203 	s64 rc;
204 
205 	/* Configure the default M64 BAR */
206 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
207 					 OPAL_M64_WINDOW_TYPE,
208 					 phb->ioda.m64_bar_idx,
209 					 phb->ioda.m64_base,
210 					 0, /* unused */
211 					 phb->ioda.m64_size);
212 	if (rc != OPAL_SUCCESS) {
213 		desc = "configuring";
214 		goto fail;
215 	}
216 
217 	/* Enable the default M64 BAR */
218 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
219 				      OPAL_M64_WINDOW_TYPE,
220 				      phb->ioda.m64_bar_idx,
221 				      OPAL_ENABLE_M64_SPLIT);
222 	if (rc != OPAL_SUCCESS) {
223 		desc = "enabling";
224 		goto fail;
225 	}
226 
227 	/*
228 	 * Exclude the segments for reserved and root bus PE, which
229 	 * are first or last two PEs.
230 	 */
231 	r = &phb->hose->mem_resources[1];
232 	if (phb->ioda.reserved_pe_idx == 0)
233 		r->start += (2 * phb->ioda.m64_segsize);
234 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
235 		r->end -= (2 * phb->ioda.m64_segsize);
236 	else
237 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
238 			phb->ioda.reserved_pe_idx);
239 
240 	return 0;
241 
242 fail:
243 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
244 		rc, desc, phb->ioda.m64_bar_idx);
245 	opal_pci_phb_mmio_enable(phb->opal_id,
246 				 OPAL_M64_WINDOW_TYPE,
247 				 phb->ioda.m64_bar_idx,
248 				 OPAL_DISABLE_M64);
249 	return -EIO;
250 }
251 
252 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
253 					 unsigned long *pe_bitmap)
254 {
255 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
256 	struct pnv_phb *phb = hose->private_data;
257 	struct resource *r;
258 	resource_size_t base, sgsz, start, end;
259 	int segno, i;
260 
261 	base = phb->ioda.m64_base;
262 	sgsz = phb->ioda.m64_segsize;
263 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
264 		r = &pdev->resource[i];
265 		if (!r->parent || !pnv_pci_is_m64(phb, r))
266 			continue;
267 
268 		start = ALIGN_DOWN(r->start - base, sgsz);
269 		end = ALIGN(r->end - base, sgsz);
270 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
271 			if (pe_bitmap)
272 				set_bit(segno, pe_bitmap);
273 			else
274 				pnv_ioda_reserve_pe(phb, segno);
275 		}
276 	}
277 }
278 
279 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
280 {
281 	struct resource *r;
282 	int index;
283 
284 	/*
285 	 * There are 16 M64 BARs, each of which has 8 segments. So
286 	 * there are as many M64 segments as the maximum number of
287 	 * PEs, which is 128.
288 	 */
289 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
290 		unsigned long base, segsz = phb->ioda.m64_segsize;
291 		int64_t rc;
292 
293 		base = phb->ioda.m64_base +
294 		       index * PNV_IODA1_M64_SEGS * segsz;
295 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
296 				OPAL_M64_WINDOW_TYPE, index, base, 0,
297 				PNV_IODA1_M64_SEGS * segsz);
298 		if (rc != OPAL_SUCCESS) {
299 			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
300 				rc, phb->hose->global_number, index);
301 			goto fail;
302 		}
303 
304 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
305 				OPAL_M64_WINDOW_TYPE, index,
306 				OPAL_ENABLE_M64_SPLIT);
307 		if (rc != OPAL_SUCCESS) {
308 			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
309 				rc, phb->hose->global_number, index);
310 			goto fail;
311 		}
312 	}
313 
314 	/*
315 	 * Exclude the segments for reserved and root bus PE, which
316 	 * are first or last two PEs.
317 	 */
318 	r = &phb->hose->mem_resources[1];
319 	if (phb->ioda.reserved_pe_idx == 0)
320 		r->start += (2 * phb->ioda.m64_segsize);
321 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
322 		r->end -= (2 * phb->ioda.m64_segsize);
323 	else
324 		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
325 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
326 
327 	return 0;
328 
329 fail:
330 	for ( ; index >= 0; index--)
331 		opal_pci_phb_mmio_enable(phb->opal_id,
332 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
333 
334 	return -EIO;
335 }
336 
337 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
338 				    unsigned long *pe_bitmap,
339 				    bool all)
340 {
341 	struct pci_dev *pdev;
342 
343 	list_for_each_entry(pdev, &bus->devices, bus_list) {
344 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
345 
346 		if (all && pdev->subordinate)
347 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
348 						pe_bitmap, all);
349 	}
350 }
351 
352 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
353 {
354 	struct pci_controller *hose = pci_bus_to_host(bus);
355 	struct pnv_phb *phb = hose->private_data;
356 	struct pnv_ioda_pe *master_pe, *pe;
357 	unsigned long size, *pe_alloc;
358 	int i;
359 
360 	/* Root bus shouldn't use M64 */
361 	if (pci_is_root_bus(bus))
362 		return NULL;
363 
364 	/* Allocate bitmap */
365 	size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
366 	pe_alloc = kzalloc(size, GFP_KERNEL);
367 	if (!pe_alloc) {
368 		pr_warn("%s: Out of memory !\n",
369 			__func__);
370 		return NULL;
371 	}
372 
373 	/* Figure out reserved PE numbers by the PE */
374 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
375 
376 	/*
377 	 * the current bus might not own M64 window and that's all
378 	 * contributed by its child buses. For the case, we needn't
379 	 * pick M64 dependent PE#.
380 	 */
381 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
382 		kfree(pe_alloc);
383 		return NULL;
384 	}
385 
386 	/*
387 	 * Figure out the master PE and put all slave PEs to master
388 	 * PE's list to form compound PE.
389 	 */
390 	master_pe = NULL;
391 	i = -1;
392 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
393 		phb->ioda.total_pe_num) {
394 		pe = &phb->ioda.pe_array[i];
395 
396 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
397 		if (!master_pe) {
398 			pe->flags |= PNV_IODA_PE_MASTER;
399 			INIT_LIST_HEAD(&pe->slaves);
400 			master_pe = pe;
401 		} else {
402 			pe->flags |= PNV_IODA_PE_SLAVE;
403 			pe->master = master_pe;
404 			list_add_tail(&pe->list, &master_pe->slaves);
405 		}
406 
407 		/*
408 		 * P7IOC supports M64DT, which helps mapping M64 segment
409 		 * to one particular PE#. However, PHB3 has fixed mapping
410 		 * between M64 segment and PE#. In order to have same logic
411 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
412 		 * segment and PE# on P7IOC.
413 		 */
414 		if (phb->type == PNV_PHB_IODA1) {
415 			int64_t rc;
416 
417 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
418 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
419 					pe->pe_number / PNV_IODA1_M64_SEGS,
420 					pe->pe_number % PNV_IODA1_M64_SEGS);
421 			if (rc != OPAL_SUCCESS)
422 				pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
423 					__func__, rc, phb->hose->global_number,
424 					pe->pe_number);
425 		}
426 	}
427 
428 	kfree(pe_alloc);
429 	return master_pe;
430 }
431 
432 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
433 {
434 	struct pci_controller *hose = phb->hose;
435 	struct device_node *dn = hose->dn;
436 	struct resource *res;
437 	u32 m64_range[2], i;
438 	const __be32 *r;
439 	u64 pci_addr;
440 
441 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
442 		pr_info("  Not support M64 window\n");
443 		return;
444 	}
445 
446 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
447 		pr_info("  Firmware too old to support M64 window\n");
448 		return;
449 	}
450 
451 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
452 	if (!r) {
453 		pr_info("  No <ibm,opal-m64-window> on %pOF\n",
454 			dn);
455 		return;
456 	}
457 
458 	/*
459 	 * Find the available M64 BAR range and pickup the last one for
460 	 * covering the whole 64-bits space. We support only one range.
461 	 */
462 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
463 				       m64_range, 2)) {
464 		/* In absence of the property, assume 0..15 */
465 		m64_range[0] = 0;
466 		m64_range[1] = 16;
467 	}
468 	/* We only support 64 bits in our allocator */
469 	if (m64_range[1] > 63) {
470 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
471 			__func__, m64_range[1], phb->hose->global_number);
472 		m64_range[1] = 63;
473 	}
474 	/* Empty range, no m64 */
475 	if (m64_range[1] <= m64_range[0]) {
476 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
477 			__func__, phb->hose->global_number);
478 		return;
479 	}
480 
481 	/* Configure M64 informations */
482 	res = &hose->mem_resources[1];
483 	res->name = dn->full_name;
484 	res->start = of_translate_address(dn, r + 2);
485 	res->end = res->start + of_read_number(r + 4, 2) - 1;
486 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
487 	pci_addr = of_read_number(r, 2);
488 	hose->mem_offset[1] = res->start - pci_addr;
489 
490 	phb->ioda.m64_size = resource_size(res);
491 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
492 	phb->ioda.m64_base = pci_addr;
493 
494 	/* This lines up nicely with the display from processing OF ranges */
495 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
496 		res->start, res->end, pci_addr, m64_range[0],
497 		m64_range[0] + m64_range[1] - 1);
498 
499 	/* Mark all M64 used up by default */
500 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
501 
502 	/* Use last M64 BAR to cover M64 window */
503 	m64_range[1]--;
504 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
505 
506 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
507 
508 	/* Mark remaining ones free */
509 	for (i = m64_range[0]; i < m64_range[1]; i++)
510 		clear_bit(i, &phb->ioda.m64_bar_alloc);
511 
512 	/*
513 	 * Setup init functions for M64 based on IODA version, IODA3 uses
514 	 * the IODA2 code.
515 	 */
516 	if (phb->type == PNV_PHB_IODA1)
517 		phb->init_m64 = pnv_ioda1_init_m64;
518 	else
519 		phb->init_m64 = pnv_ioda2_init_m64;
520 }
521 
522 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
523 {
524 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
525 	struct pnv_ioda_pe *slave;
526 	s64 rc;
527 
528 	/* Fetch master PE */
529 	if (pe->flags & PNV_IODA_PE_SLAVE) {
530 		pe = pe->master;
531 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
532 			return;
533 
534 		pe_no = pe->pe_number;
535 	}
536 
537 	/* Freeze master PE */
538 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
539 				     pe_no,
540 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
541 	if (rc != OPAL_SUCCESS) {
542 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
543 			__func__, rc, phb->hose->global_number, pe_no);
544 		return;
545 	}
546 
547 	/* Freeze slave PEs */
548 	if (!(pe->flags & PNV_IODA_PE_MASTER))
549 		return;
550 
551 	list_for_each_entry(slave, &pe->slaves, list) {
552 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
553 					     slave->pe_number,
554 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
555 		if (rc != OPAL_SUCCESS)
556 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
557 				__func__, rc, phb->hose->global_number,
558 				slave->pe_number);
559 	}
560 }
561 
562 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
563 {
564 	struct pnv_ioda_pe *pe, *slave;
565 	s64 rc;
566 
567 	/* Find master PE */
568 	pe = &phb->ioda.pe_array[pe_no];
569 	if (pe->flags & PNV_IODA_PE_SLAVE) {
570 		pe = pe->master;
571 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
572 		pe_no = pe->pe_number;
573 	}
574 
575 	/* Clear frozen state for master PE */
576 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
577 	if (rc != OPAL_SUCCESS) {
578 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
579 			__func__, rc, opt, phb->hose->global_number, pe_no);
580 		return -EIO;
581 	}
582 
583 	if (!(pe->flags & PNV_IODA_PE_MASTER))
584 		return 0;
585 
586 	/* Clear frozen state for slave PEs */
587 	list_for_each_entry(slave, &pe->slaves, list) {
588 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
589 					     slave->pe_number,
590 					     opt);
591 		if (rc != OPAL_SUCCESS) {
592 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
593 				__func__, rc, opt, phb->hose->global_number,
594 				slave->pe_number);
595 			return -EIO;
596 		}
597 	}
598 
599 	return 0;
600 }
601 
602 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
603 {
604 	struct pnv_ioda_pe *slave, *pe;
605 	u8 fstate = 0, state;
606 	__be16 pcierr = 0;
607 	s64 rc;
608 
609 	/* Sanity check on PE number */
610 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
611 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
612 
613 	/*
614 	 * Fetch the master PE and the PE instance might be
615 	 * not initialized yet.
616 	 */
617 	pe = &phb->ioda.pe_array[pe_no];
618 	if (pe->flags & PNV_IODA_PE_SLAVE) {
619 		pe = pe->master;
620 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
621 		pe_no = pe->pe_number;
622 	}
623 
624 	/* Check the master PE */
625 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
626 					&state, &pcierr, NULL);
627 	if (rc != OPAL_SUCCESS) {
628 		pr_warn("%s: Failure %lld getting "
629 			"PHB#%x-PE#%x state\n",
630 			__func__, rc,
631 			phb->hose->global_number, pe_no);
632 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
633 	}
634 
635 	/* Check the slave PE */
636 	if (!(pe->flags & PNV_IODA_PE_MASTER))
637 		return state;
638 
639 	list_for_each_entry(slave, &pe->slaves, list) {
640 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
641 						slave->pe_number,
642 						&fstate,
643 						&pcierr,
644 						NULL);
645 		if (rc != OPAL_SUCCESS) {
646 			pr_warn("%s: Failure %lld getting "
647 				"PHB#%x-PE#%x state\n",
648 				__func__, rc,
649 				phb->hose->global_number, slave->pe_number);
650 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
651 		}
652 
653 		/*
654 		 * Override the result based on the ascending
655 		 * priority.
656 		 */
657 		if (fstate > state)
658 			state = fstate;
659 	}
660 
661 	return state;
662 }
663 
664 struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn)
665 {
666 	int pe_number = phb->ioda.pe_rmap[bdfn];
667 
668 	if (pe_number == IODA_INVALID_PE)
669 		return NULL;
670 
671 	return &phb->ioda.pe_array[pe_number];
672 }
673 
674 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
675 {
676 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
677 	struct pnv_phb *phb = hose->private_data;
678 	struct pci_dn *pdn = pci_get_pdn(dev);
679 
680 	if (!pdn)
681 		return NULL;
682 	if (pdn->pe_number == IODA_INVALID_PE)
683 		return NULL;
684 	return &phb->ioda.pe_array[pdn->pe_number];
685 }
686 
687 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
688 				  struct pnv_ioda_pe *parent,
689 				  struct pnv_ioda_pe *child,
690 				  bool is_add)
691 {
692 	const char *desc = is_add ? "adding" : "removing";
693 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
694 			      OPAL_REMOVE_PE_FROM_DOMAIN;
695 	struct pnv_ioda_pe *slave;
696 	long rc;
697 
698 	/* Parent PE affects child PE */
699 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
700 				child->pe_number, op);
701 	if (rc != OPAL_SUCCESS) {
702 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
703 			rc, desc);
704 		return -ENXIO;
705 	}
706 
707 	if (!(child->flags & PNV_IODA_PE_MASTER))
708 		return 0;
709 
710 	/* Compound case: parent PE affects slave PEs */
711 	list_for_each_entry(slave, &child->slaves, list) {
712 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
713 					slave->pe_number, op);
714 		if (rc != OPAL_SUCCESS) {
715 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
716 				rc, desc);
717 			return -ENXIO;
718 		}
719 	}
720 
721 	return 0;
722 }
723 
724 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
725 			      struct pnv_ioda_pe *pe,
726 			      bool is_add)
727 {
728 	struct pnv_ioda_pe *slave;
729 	struct pci_dev *pdev = NULL;
730 	int ret;
731 
732 	/*
733 	 * Clear PE frozen state. If it's master PE, we need
734 	 * clear slave PE frozen state as well.
735 	 */
736 	if (is_add) {
737 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
738 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
739 		if (pe->flags & PNV_IODA_PE_MASTER) {
740 			list_for_each_entry(slave, &pe->slaves, list)
741 				opal_pci_eeh_freeze_clear(phb->opal_id,
742 							  slave->pe_number,
743 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
744 		}
745 	}
746 
747 	/*
748 	 * Associate PE in PELT. We need add the PE into the
749 	 * corresponding PELT-V as well. Otherwise, the error
750 	 * originated from the PE might contribute to other
751 	 * PEs.
752 	 */
753 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
754 	if (ret)
755 		return ret;
756 
757 	/* For compound PEs, any one affects all of them */
758 	if (pe->flags & PNV_IODA_PE_MASTER) {
759 		list_for_each_entry(slave, &pe->slaves, list) {
760 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
761 			if (ret)
762 				return ret;
763 		}
764 	}
765 
766 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
767 		pdev = pe->pbus->self;
768 	else if (pe->flags & PNV_IODA_PE_DEV)
769 		pdev = pe->pdev->bus->self;
770 #ifdef CONFIG_PCI_IOV
771 	else if (pe->flags & PNV_IODA_PE_VF)
772 		pdev = pe->parent_dev;
773 #endif /* CONFIG_PCI_IOV */
774 	while (pdev) {
775 		struct pci_dn *pdn = pci_get_pdn(pdev);
776 		struct pnv_ioda_pe *parent;
777 
778 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
779 			parent = &phb->ioda.pe_array[pdn->pe_number];
780 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
781 			if (ret)
782 				return ret;
783 		}
784 
785 		pdev = pdev->bus->self;
786 	}
787 
788 	return 0;
789 }
790 
791 static void pnv_ioda_unset_peltv(struct pnv_phb *phb,
792 				 struct pnv_ioda_pe *pe,
793 				 struct pci_dev *parent)
794 {
795 	int64_t rc;
796 
797 	while (parent) {
798 		struct pci_dn *pdn = pci_get_pdn(parent);
799 
800 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
801 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
802 						pe->pe_number,
803 						OPAL_REMOVE_PE_FROM_DOMAIN);
804 			/* XXX What to do in case of error ? */
805 		}
806 		parent = parent->bus->self;
807 	}
808 
809 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
810 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
811 
812 	/* Disassociate PE in PELT */
813 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
814 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
815 	if (rc)
816 		pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
817 }
818 
819 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
820 {
821 	struct pci_dev *parent;
822 	uint8_t bcomp, dcomp, fcomp;
823 	int64_t rc;
824 	long rid_end, rid;
825 
826 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
827 	if (pe->pbus) {
828 		int count;
829 
830 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
831 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
832 		parent = pe->pbus->self;
833 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
834 			count = resource_size(&pe->pbus->busn_res);
835 		else
836 			count = 1;
837 
838 		switch(count) {
839 		case  1: bcomp = OpalPciBusAll;         break;
840 		case  2: bcomp = OpalPciBus7Bits;       break;
841 		case  4: bcomp = OpalPciBus6Bits;       break;
842 		case  8: bcomp = OpalPciBus5Bits;       break;
843 		case 16: bcomp = OpalPciBus4Bits;       break;
844 		case 32: bcomp = OpalPciBus3Bits;       break;
845 		default:
846 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
847 			        count);
848 			/* Do an exact match only */
849 			bcomp = OpalPciBusAll;
850 		}
851 		rid_end = pe->rid + (count << 8);
852 	} else {
853 #ifdef CONFIG_PCI_IOV
854 		if (pe->flags & PNV_IODA_PE_VF)
855 			parent = pe->parent_dev;
856 		else
857 #endif
858 			parent = pe->pdev->bus->self;
859 		bcomp = OpalPciBusAll;
860 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
861 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
862 		rid_end = pe->rid + 1;
863 	}
864 
865 	/* Clear the reverse map */
866 	for (rid = pe->rid; rid < rid_end; rid++)
867 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
868 
869 	/*
870 	 * Release from all parents PELT-V. NPUs don't have a PELTV
871 	 * table
872 	 */
873 	if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
874 		pnv_ioda_unset_peltv(phb, pe, parent);
875 
876 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
877 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
878 	if (rc)
879 		pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
880 
881 	pe->pbus = NULL;
882 	pe->pdev = NULL;
883 #ifdef CONFIG_PCI_IOV
884 	pe->parent_dev = NULL;
885 #endif
886 
887 	return 0;
888 }
889 
890 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
891 {
892 	struct pci_dev *parent;
893 	uint8_t bcomp, dcomp, fcomp;
894 	long rc, rid_end, rid;
895 
896 	/* Bus validation ? */
897 	if (pe->pbus) {
898 		int count;
899 
900 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
901 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
902 		parent = pe->pbus->self;
903 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
904 			count = resource_size(&pe->pbus->busn_res);
905 		else
906 			count = 1;
907 
908 		switch(count) {
909 		case  1: bcomp = OpalPciBusAll;		break;
910 		case  2: bcomp = OpalPciBus7Bits;	break;
911 		case  4: bcomp = OpalPciBus6Bits;	break;
912 		case  8: bcomp = OpalPciBus5Bits;	break;
913 		case 16: bcomp = OpalPciBus4Bits;	break;
914 		case 32: bcomp = OpalPciBus3Bits;	break;
915 		default:
916 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
917 			        count);
918 			/* Do an exact match only */
919 			bcomp = OpalPciBusAll;
920 		}
921 		rid_end = pe->rid + (count << 8);
922 	} else {
923 #ifdef CONFIG_PCI_IOV
924 		if (pe->flags & PNV_IODA_PE_VF)
925 			parent = pe->parent_dev;
926 		else
927 #endif /* CONFIG_PCI_IOV */
928 			parent = pe->pdev->bus->self;
929 		bcomp = OpalPciBusAll;
930 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
931 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
932 		rid_end = pe->rid + 1;
933 	}
934 
935 	/*
936 	 * Associate PE in PELT. We need add the PE into the
937 	 * corresponding PELT-V as well. Otherwise, the error
938 	 * originated from the PE might contribute to other
939 	 * PEs.
940 	 */
941 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
942 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
943 	if (rc) {
944 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
945 		return -ENXIO;
946 	}
947 
948 	/*
949 	 * Configure PELTV. NPUs don't have a PELTV table so skip
950 	 * configuration on them.
951 	 */
952 	if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
953 		pnv_ioda_set_peltv(phb, pe, true);
954 
955 	/* Setup reverse map */
956 	for (rid = pe->rid; rid < rid_end; rid++)
957 		phb->ioda.pe_rmap[rid] = pe->pe_number;
958 
959 	/* Setup one MVTs on IODA1 */
960 	if (phb->type != PNV_PHB_IODA1) {
961 		pe->mve_number = 0;
962 		goto out;
963 	}
964 
965 	pe->mve_number = pe->pe_number;
966 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
967 	if (rc != OPAL_SUCCESS) {
968 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
969 		       rc, pe->mve_number);
970 		pe->mve_number = -1;
971 	} else {
972 		rc = opal_pci_set_mve_enable(phb->opal_id,
973 					     pe->mve_number, OPAL_ENABLE_MVE);
974 		if (rc) {
975 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
976 			       rc, pe->mve_number);
977 			pe->mve_number = -1;
978 		}
979 	}
980 
981 out:
982 	return 0;
983 }
984 
985 #ifdef CONFIG_PCI_IOV
986 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
987 {
988 	struct pci_dn *pdn = pci_get_pdn(dev);
989 	int i;
990 	struct resource *res, res2;
991 	resource_size_t size;
992 	u16 num_vfs;
993 
994 	if (!dev->is_physfn)
995 		return -EINVAL;
996 
997 	/*
998 	 * "offset" is in VFs.  The M64 windows are sized so that when they
999 	 * are segmented, each segment is the same size as the IOV BAR.
1000 	 * Each segment is in a separate PE, and the high order bits of the
1001 	 * address are the PE number.  Therefore, each VF's BAR is in a
1002 	 * separate PE, and changing the IOV BAR start address changes the
1003 	 * range of PEs the VFs are in.
1004 	 */
1005 	num_vfs = pdn->num_vfs;
1006 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1007 		res = &dev->resource[i + PCI_IOV_RESOURCES];
1008 		if (!res->flags || !res->parent)
1009 			continue;
1010 
1011 		/*
1012 		 * The actual IOV BAR range is determined by the start address
1013 		 * and the actual size for num_vfs VFs BAR.  This check is to
1014 		 * make sure that after shifting, the range will not overlap
1015 		 * with another device.
1016 		 */
1017 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1018 		res2.flags = res->flags;
1019 		res2.start = res->start + (size * offset);
1020 		res2.end = res2.start + (size * num_vfs) - 1;
1021 
1022 		if (res2.end > res->end) {
1023 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
1024 				i, &res2, res, num_vfs, offset);
1025 			return -EBUSY;
1026 		}
1027 	}
1028 
1029 	/*
1030 	 * Since M64 BAR shares segments among all possible 256 PEs,
1031 	 * we have to shift the beginning of PF IOV BAR to make it start from
1032 	 * the segment which belongs to the PE number assigned to the first VF.
1033 	 * This creates a "hole" in the /proc/iomem which could be used for
1034 	 * allocating other resources so we reserve this area below and
1035 	 * release when IOV is released.
1036 	 */
1037 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1038 		res = &dev->resource[i + PCI_IOV_RESOURCES];
1039 		if (!res->flags || !res->parent)
1040 			continue;
1041 
1042 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1043 		res2 = *res;
1044 		res->start += size * offset;
1045 
1046 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1047 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
1048 			 num_vfs, offset);
1049 
1050 		if (offset < 0) {
1051 			devm_release_resource(&dev->dev, &pdn->holes[i]);
1052 			memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1053 		}
1054 
1055 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1056 
1057 		if (offset > 0) {
1058 			pdn->holes[i].start = res2.start;
1059 			pdn->holes[i].end = res2.start + size * offset - 1;
1060 			pdn->holes[i].flags = IORESOURCE_BUS;
1061 			pdn->holes[i].name = "pnv_iov_reserved";
1062 			devm_request_resource(&dev->dev, res->parent,
1063 					&pdn->holes[i]);
1064 		}
1065 	}
1066 	return 0;
1067 }
1068 #endif /* CONFIG_PCI_IOV */
1069 
1070 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1071 {
1072 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1073 	struct pnv_phb *phb = hose->private_data;
1074 	struct pci_dn *pdn = pci_get_pdn(dev);
1075 	struct pnv_ioda_pe *pe;
1076 
1077 	if (!pdn) {
1078 		pr_err("%s: Device tree node not associated properly\n",
1079 			   pci_name(dev));
1080 		return NULL;
1081 	}
1082 	if (pdn->pe_number != IODA_INVALID_PE)
1083 		return NULL;
1084 
1085 	pe = pnv_ioda_alloc_pe(phb);
1086 	if (!pe) {
1087 		pr_warn("%s: Not enough PE# available, disabling device\n",
1088 			pci_name(dev));
1089 		return NULL;
1090 	}
1091 
1092 	/* NOTE: We don't get a reference for the pointer in the PE
1093 	 * data structure, both the device and PE structures should be
1094 	 * destroyed at the same time. However, removing nvlink
1095 	 * devices will need some work.
1096 	 *
1097 	 * At some point we want to remove the PDN completely anyways
1098 	 */
1099 	pdn->pe_number = pe->pe_number;
1100 	pe->flags = PNV_IODA_PE_DEV;
1101 	pe->pdev = dev;
1102 	pe->pbus = NULL;
1103 	pe->mve_number = -1;
1104 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1105 	pe->device_count++;
1106 
1107 	pe_info(pe, "Associated device to PE\n");
1108 
1109 	if (pnv_ioda_configure_pe(phb, pe)) {
1110 		/* XXX What do we do here ? */
1111 		pnv_ioda_free_pe(pe);
1112 		pdn->pe_number = IODA_INVALID_PE;
1113 		pe->pdev = NULL;
1114 		return NULL;
1115 	}
1116 
1117 	/* Put PE to the list */
1118 	mutex_lock(&phb->ioda.pe_list_mutex);
1119 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1120 	mutex_unlock(&phb->ioda.pe_list_mutex);
1121 	return pe;
1122 }
1123 
1124 /*
1125  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1126  * single PCI bus. Another one that contains the primary PCI bus and its
1127  * subordinate PCI devices and buses. The second type of PE is normally
1128  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1129  */
1130 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1131 {
1132 	struct pci_controller *hose = pci_bus_to_host(bus);
1133 	struct pnv_phb *phb = hose->private_data;
1134 	struct pnv_ioda_pe *pe = NULL;
1135 	unsigned int pe_num;
1136 
1137 	/*
1138 	 * In partial hotplug case, the PE instance might be still alive.
1139 	 * We should reuse it instead of allocating a new one.
1140 	 */
1141 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1142 	if (WARN_ON(pe_num != IODA_INVALID_PE)) {
1143 		pe = &phb->ioda.pe_array[pe_num];
1144 		return NULL;
1145 	}
1146 
1147 	/* PE number for root bus should have been reserved */
1148 	if (pci_is_root_bus(bus))
1149 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1150 
1151 	/* Check if PE is determined by M64 */
1152 	if (!pe)
1153 		pe = pnv_ioda_pick_m64_pe(bus, all);
1154 
1155 	/* The PE number isn't pinned by M64 */
1156 	if (!pe)
1157 		pe = pnv_ioda_alloc_pe(phb);
1158 
1159 	if (!pe) {
1160 		pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1161 			__func__, pci_domain_nr(bus), bus->number);
1162 		return NULL;
1163 	}
1164 
1165 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1166 	pe->pbus = bus;
1167 	pe->pdev = NULL;
1168 	pe->mve_number = -1;
1169 	pe->rid = bus->busn_res.start << 8;
1170 
1171 	if (all)
1172 		pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
1173 			&bus->busn_res.start, &bus->busn_res.end,
1174 			pe->pe_number);
1175 	else
1176 		pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
1177 			&bus->busn_res.start, pe->pe_number);
1178 
1179 	if (pnv_ioda_configure_pe(phb, pe)) {
1180 		/* XXX What do we do here ? */
1181 		pnv_ioda_free_pe(pe);
1182 		pe->pbus = NULL;
1183 		return NULL;
1184 	}
1185 
1186 	/* Put PE to the list */
1187 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1188 
1189 	return pe;
1190 }
1191 
1192 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1193 {
1194 	int pe_num, found_pe = false, rc;
1195 	long rid;
1196 	struct pnv_ioda_pe *pe;
1197 	struct pci_dev *gpu_pdev;
1198 	struct pci_dn *npu_pdn;
1199 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1200 	struct pnv_phb *phb = hose->private_data;
1201 
1202 	/*
1203 	 * Intentionally leak a reference on the npu device (for
1204 	 * nvlink only; this is not an opencapi path) to make sure it
1205 	 * never goes away, as it's been the case all along and some
1206 	 * work is needed otherwise.
1207 	 */
1208 	pci_dev_get(npu_pdev);
1209 
1210 	/*
1211 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1212 	 * error handling. This means we only have three PEs remaining
1213 	 * which need to be assigned to four links, implying some
1214 	 * links must share PEs.
1215 	 *
1216 	 * To achieve this we assign PEs such that NPUs linking the
1217 	 * same GPU get assigned the same PE.
1218 	 */
1219 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1220 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1221 		pe = &phb->ioda.pe_array[pe_num];
1222 		if (!pe->pdev)
1223 			continue;
1224 
1225 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1226 			/*
1227 			 * This device has the same peer GPU so should
1228 			 * be assigned the same PE as the existing
1229 			 * peer NPU.
1230 			 */
1231 			dev_info(&npu_pdev->dev,
1232 				"Associating to existing PE %x\n", pe_num);
1233 			npu_pdn = pci_get_pdn(npu_pdev);
1234 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1235 			npu_pdn->pe_number = pe_num;
1236 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1237 			pe->device_count++;
1238 
1239 			/* Map the PE to this link */
1240 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1241 					OpalPciBusAll,
1242 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1243 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1244 					OPAL_MAP_PE);
1245 			WARN_ON(rc != OPAL_SUCCESS);
1246 			found_pe = true;
1247 			break;
1248 		}
1249 	}
1250 
1251 	if (!found_pe)
1252 		/*
1253 		 * Could not find an existing PE so allocate a new
1254 		 * one.
1255 		 */
1256 		return pnv_ioda_setup_dev_PE(npu_pdev);
1257 	else
1258 		return pe;
1259 }
1260 
1261 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1262 {
1263 	struct pci_dev *pdev;
1264 
1265 	list_for_each_entry(pdev, &bus->devices, bus_list)
1266 		pnv_ioda_setup_npu_PE(pdev);
1267 }
1268 
1269 static void pnv_pci_ioda_setup_nvlink(void)
1270 {
1271 	struct pci_controller *hose;
1272 	struct pnv_phb *phb;
1273 	struct pnv_ioda_pe *pe;
1274 
1275 	list_for_each_entry(hose, &hose_list, list_node) {
1276 		phb = hose->private_data;
1277 		if (phb->type == PNV_PHB_NPU_NVLINK) {
1278 			/* PE#0 is needed for error reporting */
1279 			pnv_ioda_reserve_pe(phb, 0);
1280 			pnv_ioda_setup_npu_PEs(hose->bus);
1281 			if (phb->model == PNV_PHB_MODEL_NPU2)
1282 				WARN_ON_ONCE(pnv_npu2_init(hose));
1283 		}
1284 	}
1285 	list_for_each_entry(hose, &hose_list, list_node) {
1286 		phb = hose->private_data;
1287 		if (phb->type != PNV_PHB_IODA2)
1288 			continue;
1289 
1290 		list_for_each_entry(pe, &phb->ioda.pe_list, list)
1291 			pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV);
1292 	}
1293 
1294 #ifdef CONFIG_IOMMU_API
1295 	/* setup iommu groups so we can do nvlink pass-thru */
1296 	pnv_pci_npu_setup_iommu_groups();
1297 #endif
1298 }
1299 
1300 #ifdef CONFIG_PCI_IOV
1301 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1302 {
1303 	struct pci_bus        *bus;
1304 	struct pci_controller *hose;
1305 	struct pnv_phb        *phb;
1306 	struct pci_dn         *pdn;
1307 	int                    i, j;
1308 	int                    m64_bars;
1309 
1310 	bus = pdev->bus;
1311 	hose = pci_bus_to_host(bus);
1312 	phb = hose->private_data;
1313 	pdn = pci_get_pdn(pdev);
1314 
1315 	if (pdn->m64_single_mode)
1316 		m64_bars = num_vfs;
1317 	else
1318 		m64_bars = 1;
1319 
1320 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1321 		for (j = 0; j < m64_bars; j++) {
1322 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1323 				continue;
1324 			opal_pci_phb_mmio_enable(phb->opal_id,
1325 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1326 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1327 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1328 		}
1329 
1330 	kfree(pdn->m64_map);
1331 	return 0;
1332 }
1333 
1334 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1335 {
1336 	struct pci_bus        *bus;
1337 	struct pci_controller *hose;
1338 	struct pnv_phb        *phb;
1339 	struct pci_dn         *pdn;
1340 	unsigned int           win;
1341 	struct resource       *res;
1342 	int                    i, j;
1343 	int64_t                rc;
1344 	int                    total_vfs;
1345 	resource_size_t        size, start;
1346 	int                    pe_num;
1347 	int                    m64_bars;
1348 
1349 	bus = pdev->bus;
1350 	hose = pci_bus_to_host(bus);
1351 	phb = hose->private_data;
1352 	pdn = pci_get_pdn(pdev);
1353 	total_vfs = pci_sriov_get_totalvfs(pdev);
1354 
1355 	if (pdn->m64_single_mode)
1356 		m64_bars = num_vfs;
1357 	else
1358 		m64_bars = 1;
1359 
1360 	pdn->m64_map = kmalloc_array(m64_bars,
1361 				     sizeof(*pdn->m64_map),
1362 				     GFP_KERNEL);
1363 	if (!pdn->m64_map)
1364 		return -ENOMEM;
1365 	/* Initialize the m64_map to IODA_INVALID_M64 */
1366 	for (i = 0; i < m64_bars ; i++)
1367 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1368 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1369 
1370 
1371 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1372 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1373 		if (!res->flags || !res->parent)
1374 			continue;
1375 
1376 		for (j = 0; j < m64_bars; j++) {
1377 			do {
1378 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1379 						phb->ioda.m64_bar_idx + 1, 0);
1380 
1381 				if (win >= phb->ioda.m64_bar_idx + 1)
1382 					goto m64_failed;
1383 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1384 
1385 			pdn->m64_map[j][i] = win;
1386 
1387 			if (pdn->m64_single_mode) {
1388 				size = pci_iov_resource_size(pdev,
1389 							PCI_IOV_RESOURCES + i);
1390 				start = res->start + size * j;
1391 			} else {
1392 				size = resource_size(res);
1393 				start = res->start;
1394 			}
1395 
1396 			/* Map the M64 here */
1397 			if (pdn->m64_single_mode) {
1398 				pe_num = pdn->pe_num_map[j];
1399 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1400 						pe_num, OPAL_M64_WINDOW_TYPE,
1401 						pdn->m64_map[j][i], 0);
1402 			}
1403 
1404 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1405 						 OPAL_M64_WINDOW_TYPE,
1406 						 pdn->m64_map[j][i],
1407 						 start,
1408 						 0, /* unused */
1409 						 size);
1410 
1411 
1412 			if (rc != OPAL_SUCCESS) {
1413 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1414 					win, rc);
1415 				goto m64_failed;
1416 			}
1417 
1418 			if (pdn->m64_single_mode)
1419 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1420 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1421 			else
1422 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1423 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1424 
1425 			if (rc != OPAL_SUCCESS) {
1426 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1427 					win, rc);
1428 				goto m64_failed;
1429 			}
1430 		}
1431 	}
1432 	return 0;
1433 
1434 m64_failed:
1435 	pnv_pci_vf_release_m64(pdev, num_vfs);
1436 	return -EBUSY;
1437 }
1438 
1439 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1440 		int num);
1441 
1442 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1443 {
1444 	struct iommu_table    *tbl;
1445 	int64_t               rc;
1446 
1447 	tbl = pe->table_group.tables[0];
1448 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1449 	if (rc)
1450 		pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
1451 
1452 	pnv_pci_ioda2_set_bypass(pe, false);
1453 	if (pe->table_group.group) {
1454 		iommu_group_put(pe->table_group.group);
1455 		BUG_ON(pe->table_group.group);
1456 	}
1457 	iommu_tce_table_put(tbl);
1458 }
1459 
1460 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1461 {
1462 	struct pci_bus        *bus;
1463 	struct pci_controller *hose;
1464 	struct pnv_phb        *phb;
1465 	struct pnv_ioda_pe    *pe, *pe_n;
1466 	struct pci_dn         *pdn;
1467 
1468 	bus = pdev->bus;
1469 	hose = pci_bus_to_host(bus);
1470 	phb = hose->private_data;
1471 	pdn = pci_get_pdn(pdev);
1472 
1473 	if (!pdev->is_physfn)
1474 		return;
1475 
1476 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1477 		if (pe->parent_dev != pdev)
1478 			continue;
1479 
1480 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1481 
1482 		/* Remove from list */
1483 		mutex_lock(&phb->ioda.pe_list_mutex);
1484 		list_del(&pe->list);
1485 		mutex_unlock(&phb->ioda.pe_list_mutex);
1486 
1487 		pnv_ioda_deconfigure_pe(phb, pe);
1488 
1489 		pnv_ioda_free_pe(pe);
1490 	}
1491 }
1492 
1493 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1494 {
1495 	struct pci_bus        *bus;
1496 	struct pci_controller *hose;
1497 	struct pnv_phb        *phb;
1498 	struct pnv_ioda_pe    *pe;
1499 	struct pci_dn         *pdn;
1500 	u16                    num_vfs, i;
1501 
1502 	bus = pdev->bus;
1503 	hose = pci_bus_to_host(bus);
1504 	phb = hose->private_data;
1505 	pdn = pci_get_pdn(pdev);
1506 	num_vfs = pdn->num_vfs;
1507 
1508 	/* Release VF PEs */
1509 	pnv_ioda_release_vf_PE(pdev);
1510 
1511 	if (phb->type == PNV_PHB_IODA2) {
1512 		if (!pdn->m64_single_mode)
1513 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1514 
1515 		/* Release M64 windows */
1516 		pnv_pci_vf_release_m64(pdev, num_vfs);
1517 
1518 		/* Release PE numbers */
1519 		if (pdn->m64_single_mode) {
1520 			for (i = 0; i < num_vfs; i++) {
1521 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1522 					continue;
1523 
1524 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1525 				pnv_ioda_free_pe(pe);
1526 			}
1527 		} else
1528 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1529 		/* Releasing pe_num_map */
1530 		kfree(pdn->pe_num_map);
1531 	}
1532 }
1533 
1534 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1535 				       struct pnv_ioda_pe *pe);
1536 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1537 {
1538 	struct pci_bus        *bus;
1539 	struct pci_controller *hose;
1540 	struct pnv_phb        *phb;
1541 	struct pnv_ioda_pe    *pe;
1542 	int                    pe_num;
1543 	u16                    vf_index;
1544 	struct pci_dn         *pdn;
1545 
1546 	bus = pdev->bus;
1547 	hose = pci_bus_to_host(bus);
1548 	phb = hose->private_data;
1549 	pdn = pci_get_pdn(pdev);
1550 
1551 	if (!pdev->is_physfn)
1552 		return;
1553 
1554 	/* Reserve PE for each VF */
1555 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1556 		int vf_devfn = pci_iov_virtfn_devfn(pdev, vf_index);
1557 		int vf_bus = pci_iov_virtfn_bus(pdev, vf_index);
1558 		struct pci_dn *vf_pdn;
1559 
1560 		if (pdn->m64_single_mode)
1561 			pe_num = pdn->pe_num_map[vf_index];
1562 		else
1563 			pe_num = *pdn->pe_num_map + vf_index;
1564 
1565 		pe = &phb->ioda.pe_array[pe_num];
1566 		pe->pe_number = pe_num;
1567 		pe->phb = phb;
1568 		pe->flags = PNV_IODA_PE_VF;
1569 		pe->pbus = NULL;
1570 		pe->parent_dev = pdev;
1571 		pe->mve_number = -1;
1572 		pe->rid = (vf_bus << 8) | vf_devfn;
1573 
1574 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1575 			hose->global_number, pdev->bus->number,
1576 			PCI_SLOT(vf_devfn), PCI_FUNC(vf_devfn), pe_num);
1577 
1578 		if (pnv_ioda_configure_pe(phb, pe)) {
1579 			/* XXX What do we do here ? */
1580 			pnv_ioda_free_pe(pe);
1581 			pe->pdev = NULL;
1582 			continue;
1583 		}
1584 
1585 		/* Put PE to the list */
1586 		mutex_lock(&phb->ioda.pe_list_mutex);
1587 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1588 		mutex_unlock(&phb->ioda.pe_list_mutex);
1589 
1590 		/* associate this pe to it's pdn */
1591 		list_for_each_entry(vf_pdn, &pdn->parent->child_list, list) {
1592 			if (vf_pdn->busno == vf_bus &&
1593 			    vf_pdn->devfn == vf_devfn) {
1594 				vf_pdn->pe_number = pe_num;
1595 				break;
1596 			}
1597 		}
1598 
1599 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1600 	}
1601 }
1602 
1603 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1604 {
1605 	struct pci_bus        *bus;
1606 	struct pci_controller *hose;
1607 	struct pnv_phb        *phb;
1608 	struct pnv_ioda_pe    *pe;
1609 	struct pci_dn         *pdn;
1610 	int                    ret;
1611 	u16                    i;
1612 
1613 	bus = pdev->bus;
1614 	hose = pci_bus_to_host(bus);
1615 	phb = hose->private_data;
1616 	pdn = pci_get_pdn(pdev);
1617 
1618 	if (phb->type == PNV_PHB_IODA2) {
1619 		if (!pdn->vfs_expanded) {
1620 			dev_info(&pdev->dev, "don't support this SRIOV device"
1621 				" with non 64bit-prefetchable IOV BAR\n");
1622 			return -ENOSPC;
1623 		}
1624 
1625 		/*
1626 		 * When M64 BARs functions in Single PE mode, the number of VFs
1627 		 * could be enabled must be less than the number of M64 BARs.
1628 		 */
1629 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1630 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1631 			return -EBUSY;
1632 		}
1633 
1634 		/* Allocating pe_num_map */
1635 		if (pdn->m64_single_mode)
1636 			pdn->pe_num_map = kmalloc_array(num_vfs,
1637 							sizeof(*pdn->pe_num_map),
1638 							GFP_KERNEL);
1639 		else
1640 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1641 
1642 		if (!pdn->pe_num_map)
1643 			return -ENOMEM;
1644 
1645 		if (pdn->m64_single_mode)
1646 			for (i = 0; i < num_vfs; i++)
1647 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1648 
1649 		/* Calculate available PE for required VFs */
1650 		if (pdn->m64_single_mode) {
1651 			for (i = 0; i < num_vfs; i++) {
1652 				pe = pnv_ioda_alloc_pe(phb);
1653 				if (!pe) {
1654 					ret = -EBUSY;
1655 					goto m64_failed;
1656 				}
1657 
1658 				pdn->pe_num_map[i] = pe->pe_number;
1659 			}
1660 		} else {
1661 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1662 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1663 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1664 				0, num_vfs, 0);
1665 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1666 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1667 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1668 				kfree(pdn->pe_num_map);
1669 				return -EBUSY;
1670 			}
1671 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1672 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1673 		}
1674 		pdn->num_vfs = num_vfs;
1675 
1676 		/* Assign M64 window accordingly */
1677 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1678 		if (ret) {
1679 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1680 			goto m64_failed;
1681 		}
1682 
1683 		/*
1684 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1685 		 * the IOV BAR according to the PE# allocated to the VFs.
1686 		 * Otherwise, the PE# for the VF will conflict with others.
1687 		 */
1688 		if (!pdn->m64_single_mode) {
1689 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1690 			if (ret)
1691 				goto m64_failed;
1692 		}
1693 	}
1694 
1695 	/* Setup VF PEs */
1696 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1697 
1698 	return 0;
1699 
1700 m64_failed:
1701 	if (pdn->m64_single_mode) {
1702 		for (i = 0; i < num_vfs; i++) {
1703 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1704 				continue;
1705 
1706 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1707 			pnv_ioda_free_pe(pe);
1708 		}
1709 	} else
1710 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1711 
1712 	/* Releasing pe_num_map */
1713 	kfree(pdn->pe_num_map);
1714 
1715 	return ret;
1716 }
1717 
1718 int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
1719 {
1720 	pnv_pci_sriov_disable(pdev);
1721 
1722 	/* Release PCI data */
1723 	remove_sriov_vf_pdns(pdev);
1724 	return 0;
1725 }
1726 
1727 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1728 {
1729 	/* Allocate PCI data */
1730 	add_sriov_vf_pdns(pdev);
1731 
1732 	return pnv_pci_sriov_enable(pdev, num_vfs);
1733 }
1734 #endif /* CONFIG_PCI_IOV */
1735 
1736 static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev)
1737 {
1738 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1739 	struct pnv_phb *phb = hose->private_data;
1740 	struct pci_dn *pdn = pci_get_pdn(pdev);
1741 	struct pnv_ioda_pe *pe;
1742 
1743 	/* Check if the BDFN for this device is associated with a PE yet */
1744 	pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1745 	if (!pe) {
1746 		/* VF PEs should be pre-configured in pnv_pci_sriov_enable() */
1747 		if (WARN_ON(pdev->is_virtfn))
1748 			return;
1749 
1750 		pnv_pci_configure_bus(pdev->bus);
1751 		pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1752 		pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff);
1753 
1754 
1755 		/*
1756 		 * If we can't setup the IODA PE something has gone horribly
1757 		 * wrong and we can't enable DMA for the device.
1758 		 */
1759 		if (WARN_ON(!pe))
1760 			return;
1761 	} else {
1762 		pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number);
1763 	}
1764 
1765 	if (pdn)
1766 		pdn->pe_number = pe->pe_number;
1767 	pe->device_count++;
1768 
1769 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1770 	pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1771 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1772 
1773 	/* PEs with a DMA weight of zero won't have a group */
1774 	if (pe->table_group.group)
1775 		iommu_add_device(&pe->table_group, &pdev->dev);
1776 }
1777 
1778 /*
1779  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1780  *
1781  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1782  * Devices can only access more than that if bit 59 of the PCI address is set
1783  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1784  * Many PCI devices are not capable of addressing that many bits, and as a
1785  * result are limited to the 4GB of virtual memory made available to 32-bit
1786  * devices in TVE#0.
1787  *
1788  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1789  * devices by configuring the virtual memory past the first 4GB inaccessible
1790  * by 64-bit DMAs.  This should only be used by devices that want more than
1791  * 4GB, and only on PEs that have no 32-bit devices.
1792  *
1793  * Currently this will only work on PHB3 (POWER8).
1794  */
1795 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1796 {
1797 	u64 window_size, table_size, tce_count, addr;
1798 	struct page *table_pages;
1799 	u64 tce_order = 28; /* 256MB TCEs */
1800 	__be64 *tces;
1801 	s64 rc;
1802 
1803 	/*
1804 	 * Window size needs to be a power of two, but needs to account for
1805 	 * shifting memory by the 4GB offset required to skip 32bit space.
1806 	 */
1807 	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1808 	tce_count = window_size >> tce_order;
1809 	table_size = tce_count << 3;
1810 
1811 	if (table_size < PAGE_SIZE)
1812 		table_size = PAGE_SIZE;
1813 
1814 	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1815 				       get_order(table_size));
1816 	if (!table_pages)
1817 		goto err;
1818 
1819 	tces = page_address(table_pages);
1820 	if (!tces)
1821 		goto err;
1822 
1823 	memset(tces, 0, table_size);
1824 
1825 	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1826 		tces[(addr + (1ULL << 32)) >> tce_order] =
1827 			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1828 	}
1829 
1830 	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1831 					pe->pe_number,
1832 					/* reconfigure window 0 */
1833 					(pe->pe_number << 1) + 0,
1834 					1,
1835 					__pa(tces),
1836 					table_size,
1837 					1 << tce_order);
1838 	if (rc == OPAL_SUCCESS) {
1839 		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1840 		return 0;
1841 	}
1842 err:
1843 	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1844 	return -EIO;
1845 }
1846 
1847 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1848 		u64 dma_mask)
1849 {
1850 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1851 	struct pnv_phb *phb = hose->private_data;
1852 	struct pci_dn *pdn = pci_get_pdn(pdev);
1853 	struct pnv_ioda_pe *pe;
1854 
1855 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1856 		return false;
1857 
1858 	pe = &phb->ioda.pe_array[pdn->pe_number];
1859 	if (pe->tce_bypass_enabled) {
1860 		u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1861 		if (dma_mask >= top)
1862 			return true;
1863 	}
1864 
1865 	/*
1866 	 * If the device can't set the TCE bypass bit but still wants
1867 	 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1868 	 * bypass the 32-bit region and be usable for 64-bit DMAs.
1869 	 * The device needs to be able to address all of this space.
1870 	 */
1871 	if (dma_mask >> 32 &&
1872 	    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1873 	    /* pe->pdev should be set if it's a single device, pe->pbus if not */
1874 	    (pe->device_count == 1 || !pe->pbus) &&
1875 	    phb->model == PNV_PHB_MODEL_PHB3) {
1876 		/* Configure the bypass mode */
1877 		s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1878 		if (rc)
1879 			return false;
1880 		/* 4GB offset bypasses 32-bit space */
1881 		pdev->dev.archdata.dma_offset = (1ULL << 32);
1882 		return true;
1883 	}
1884 
1885 	return false;
1886 }
1887 
1888 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
1889 {
1890 	struct pci_dev *dev;
1891 
1892 	list_for_each_entry(dev, &bus->devices, bus_list) {
1893 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1894 		dev->dev.archdata.dma_offset = pe->tce_bypass_base;
1895 
1896 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1897 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1898 	}
1899 }
1900 
1901 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1902 						     bool real_mode)
1903 {
1904 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1905 		(phb->regs + 0x210);
1906 }
1907 
1908 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1909 		unsigned long index, unsigned long npages, bool rm)
1910 {
1911 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1912 			&tbl->it_group_list, struct iommu_table_group_link,
1913 			next);
1914 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1915 			struct pnv_ioda_pe, table_group);
1916 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1917 	unsigned long start, end, inc;
1918 
1919 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1920 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1921 			npages - 1);
1922 
1923 	/* p7ioc-style invalidation, 2 TCEs per write */
1924 	start |= (1ull << 63);
1925 	end |= (1ull << 63);
1926 	inc = 16;
1927         end |= inc - 1;	/* round up end to be different than start */
1928 
1929         mb(); /* Ensure above stores are visible */
1930         while (start <= end) {
1931 		if (rm)
1932 			__raw_rm_writeq_be(start, invalidate);
1933 		else
1934 			__raw_writeq_be(start, invalidate);
1935 
1936                 start += inc;
1937         }
1938 
1939 	/*
1940 	 * The iommu layer will do another mb() for us on build()
1941 	 * and we don't care on free()
1942 	 */
1943 }
1944 
1945 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1946 		long npages, unsigned long uaddr,
1947 		enum dma_data_direction direction,
1948 		unsigned long attrs)
1949 {
1950 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1951 			attrs);
1952 
1953 	if (!ret)
1954 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1955 
1956 	return ret;
1957 }
1958 
1959 #ifdef CONFIG_IOMMU_API
1960 /* Common for IODA1 and IODA2 */
1961 static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
1962 		unsigned long *hpa, enum dma_data_direction *direction,
1963 		bool realmode)
1964 {
1965 	return pnv_tce_xchg(tbl, index, hpa, direction, !realmode);
1966 }
1967 #endif
1968 
1969 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1970 		long npages)
1971 {
1972 	pnv_tce_free(tbl, index, npages);
1973 
1974 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1975 }
1976 
1977 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1978 	.set = pnv_ioda1_tce_build,
1979 #ifdef CONFIG_IOMMU_API
1980 	.xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1981 	.tce_kill = pnv_pci_p7ioc_tce_invalidate,
1982 	.useraddrptr = pnv_tce_useraddrptr,
1983 #endif
1984 	.clear = pnv_ioda1_tce_free,
1985 	.get = pnv_tce_get,
1986 };
1987 
1988 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
1989 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
1990 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1991 
1992 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1993 {
1994 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1995 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1996 
1997 	mb(); /* Ensure previous TCE table stores are visible */
1998 	if (rm)
1999 		__raw_rm_writeq_be(val, invalidate);
2000 	else
2001 		__raw_writeq_be(val, invalidate);
2002 }
2003 
2004 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2005 {
2006 	/* 01xb - invalidate TCEs that match the specified PE# */
2007 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2008 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2009 
2010 	mb(); /* Ensure above stores are visible */
2011 	__raw_writeq_be(val, invalidate);
2012 }
2013 
2014 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2015 					unsigned shift, unsigned long index,
2016 					unsigned long npages)
2017 {
2018 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2019 	unsigned long start, end, inc;
2020 
2021 	/* We'll invalidate DMA address in PE scope */
2022 	start = PHB3_TCE_KILL_INVAL_ONE;
2023 	start |= (pe->pe_number & 0xFF);
2024 	end = start;
2025 
2026 	/* Figure out the start, end and step */
2027 	start |= (index << shift);
2028 	end |= ((index + npages - 1) << shift);
2029 	inc = (0x1ull << shift);
2030 	mb();
2031 
2032 	while (start <= end) {
2033 		if (rm)
2034 			__raw_rm_writeq_be(start, invalidate);
2035 		else
2036 			__raw_writeq_be(start, invalidate);
2037 		start += inc;
2038 	}
2039 }
2040 
2041 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2042 {
2043 	struct pnv_phb *phb = pe->phb;
2044 
2045 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2046 		pnv_pci_phb3_tce_invalidate_pe(pe);
2047 	else
2048 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2049 				  pe->pe_number, 0, 0, 0);
2050 }
2051 
2052 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2053 		unsigned long index, unsigned long npages, bool rm)
2054 {
2055 	struct iommu_table_group_link *tgl;
2056 
2057 	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2058 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2059 				struct pnv_ioda_pe, table_group);
2060 		struct pnv_phb *phb = pe->phb;
2061 		unsigned int shift = tbl->it_page_shift;
2062 
2063 		/*
2064 		 * NVLink1 can use the TCE kill register directly as
2065 		 * it's the same as PHB3. NVLink2 is different and
2066 		 * should go via the OPAL call.
2067 		 */
2068 		if (phb->model == PNV_PHB_MODEL_NPU) {
2069 			/*
2070 			 * The NVLink hardware does not support TCE kill
2071 			 * per TCE entry so we have to invalidate
2072 			 * the entire cache for it.
2073 			 */
2074 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2075 			continue;
2076 		}
2077 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2078 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2079 						    index, npages);
2080 		else
2081 			opal_pci_tce_kill(phb->opal_id,
2082 					  OPAL_PCI_TCE_KILL_PAGES,
2083 					  pe->pe_number, 1u << shift,
2084 					  index << shift, npages);
2085 	}
2086 }
2087 
2088 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2089 {
2090 	if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2091 		pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2092 	else
2093 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2094 }
2095 
2096 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2097 		long npages, unsigned long uaddr,
2098 		enum dma_data_direction direction,
2099 		unsigned long attrs)
2100 {
2101 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2102 			attrs);
2103 
2104 	if (!ret)
2105 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2106 
2107 	return ret;
2108 }
2109 
2110 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2111 		long npages)
2112 {
2113 	pnv_tce_free(tbl, index, npages);
2114 
2115 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2116 }
2117 
2118 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2119 	.set = pnv_ioda2_tce_build,
2120 #ifdef CONFIG_IOMMU_API
2121 	.xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
2122 	.tce_kill = pnv_pci_ioda2_tce_invalidate,
2123 	.useraddrptr = pnv_tce_useraddrptr,
2124 #endif
2125 	.clear = pnv_ioda2_tce_free,
2126 	.get = pnv_tce_get,
2127 	.free = pnv_pci_ioda2_table_free_pages,
2128 };
2129 
2130 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2131 {
2132 	unsigned int *weight = (unsigned int *)data;
2133 
2134 	/* This is quite simplistic. The "base" weight of a device
2135 	 * is 10. 0 means no DMA is to be accounted for it.
2136 	 */
2137 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2138 		return 0;
2139 
2140 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2141 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2142 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2143 		*weight += 3;
2144 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2145 		*weight += 15;
2146 	else
2147 		*weight += 10;
2148 
2149 	return 0;
2150 }
2151 
2152 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2153 {
2154 	unsigned int weight = 0;
2155 
2156 	/* SRIOV VF has same DMA32 weight as its PF */
2157 #ifdef CONFIG_PCI_IOV
2158 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2159 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2160 		return weight;
2161 	}
2162 #endif
2163 
2164 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2165 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2166 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2167 		struct pci_dev *pdev;
2168 
2169 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2170 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2171 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2172 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2173 	}
2174 
2175 	return weight;
2176 }
2177 
2178 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2179 				       struct pnv_ioda_pe *pe)
2180 {
2181 
2182 	struct page *tce_mem = NULL;
2183 	struct iommu_table *tbl;
2184 	unsigned int weight, total_weight = 0;
2185 	unsigned int tce32_segsz, base, segs, avail, i;
2186 	int64_t rc;
2187 	void *addr;
2188 
2189 	/* XXX FIXME: Handle 64-bit only DMA devices */
2190 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2191 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2192 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2193 	if (!weight)
2194 		return;
2195 
2196 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2197 		     &total_weight);
2198 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2199 	if (!segs)
2200 		segs = 1;
2201 
2202 	/*
2203 	 * Allocate contiguous DMA32 segments. We begin with the expected
2204 	 * number of segments. With one more attempt, the number of DMA32
2205 	 * segments to be allocated is decreased by one until one segment
2206 	 * is allocated successfully.
2207 	 */
2208 	do {
2209 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2210 			for (avail = 0, i = base; i < base + segs; i++) {
2211 				if (phb->ioda.dma32_segmap[i] ==
2212 				    IODA_INVALID_PE)
2213 					avail++;
2214 			}
2215 
2216 			if (avail == segs)
2217 				goto found;
2218 		}
2219 	} while (--segs);
2220 
2221 	if (!segs) {
2222 		pe_warn(pe, "No available DMA32 segments\n");
2223 		return;
2224 	}
2225 
2226 found:
2227 	tbl = pnv_pci_table_alloc(phb->hose->node);
2228 	if (WARN_ON(!tbl))
2229 		return;
2230 
2231 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2232 			pe->pe_number);
2233 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2234 
2235 	/* Grab a 32-bit TCE table */
2236 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2237 		weight, total_weight, base, segs);
2238 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2239 		base * PNV_IODA1_DMA32_SEGSIZE,
2240 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2241 
2242 	/* XXX Currently, we allocate one big contiguous table for the
2243 	 * TCEs. We only really need one chunk per 256M of TCE space
2244 	 * (ie per segment) but that's an optimization for later, it
2245 	 * requires some added smarts with our get/put_tce implementation
2246 	 *
2247 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2248 	 * bytes
2249 	 */
2250 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2251 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2252 				   get_order(tce32_segsz * segs));
2253 	if (!tce_mem) {
2254 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2255 		goto fail;
2256 	}
2257 	addr = page_address(tce_mem);
2258 	memset(addr, 0, tce32_segsz * segs);
2259 
2260 	/* Configure HW */
2261 	for (i = 0; i < segs; i++) {
2262 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2263 					      pe->pe_number,
2264 					      base + i, 1,
2265 					      __pa(addr) + tce32_segsz * i,
2266 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2267 		if (rc) {
2268 			pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n",
2269 			       rc);
2270 			goto fail;
2271 		}
2272 	}
2273 
2274 	/* Setup DMA32 segment mapping */
2275 	for (i = base; i < base + segs; i++)
2276 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2277 
2278 	/* Setup linux iommu table */
2279 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2280 				  base * PNV_IODA1_DMA32_SEGSIZE,
2281 				  IOMMU_PAGE_SHIFT_4K);
2282 
2283 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2284 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2285 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2286 	iommu_init_table(tbl, phb->hose->node, 0, 0);
2287 
2288 	return;
2289  fail:
2290 	/* XXX Failure: Try to fallback to 64-bit only ? */
2291 	if (tce_mem)
2292 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2293 	if (tbl) {
2294 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2295 		iommu_tce_table_put(tbl);
2296 	}
2297 }
2298 
2299 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2300 		int num, struct iommu_table *tbl)
2301 {
2302 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2303 			table_group);
2304 	struct pnv_phb *phb = pe->phb;
2305 	int64_t rc;
2306 	const unsigned long size = tbl->it_indirect_levels ?
2307 			tbl->it_level_size : tbl->it_size;
2308 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2309 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2310 
2311 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
2312 		num, start_addr, start_addr + win_size - 1,
2313 		IOMMU_PAGE_SIZE(tbl));
2314 
2315 	/*
2316 	 * Map TCE table through TVT. The TVE index is the PE number
2317 	 * shifted by 1 bit for 32-bits DMA space.
2318 	 */
2319 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2320 			pe->pe_number,
2321 			(pe->pe_number << 1) + num,
2322 			tbl->it_indirect_levels + 1,
2323 			__pa(tbl->it_base),
2324 			size << 3,
2325 			IOMMU_PAGE_SIZE(tbl));
2326 	if (rc) {
2327 		pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
2328 		return rc;
2329 	}
2330 
2331 	pnv_pci_link_table_and_group(phb->hose->node, num,
2332 			tbl, &pe->table_group);
2333 	pnv_pci_ioda2_tce_invalidate_pe(pe);
2334 
2335 	return 0;
2336 }
2337 
2338 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2339 {
2340 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2341 	int64_t rc;
2342 
2343 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2344 	if (enable) {
2345 		phys_addr_t top = memblock_end_of_DRAM();
2346 
2347 		top = roundup_pow_of_two(top);
2348 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2349 						     pe->pe_number,
2350 						     window_id,
2351 						     pe->tce_bypass_base,
2352 						     top);
2353 	} else {
2354 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2355 						     pe->pe_number,
2356 						     window_id,
2357 						     pe->tce_bypass_base,
2358 						     0);
2359 	}
2360 	if (rc)
2361 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2362 	else
2363 		pe->tce_bypass_enabled = enable;
2364 }
2365 
2366 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2367 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2368 		bool alloc_userspace_copy, struct iommu_table **ptbl)
2369 {
2370 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2371 			table_group);
2372 	int nid = pe->phb->hose->node;
2373 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2374 	long ret;
2375 	struct iommu_table *tbl;
2376 
2377 	tbl = pnv_pci_table_alloc(nid);
2378 	if (!tbl)
2379 		return -ENOMEM;
2380 
2381 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2382 
2383 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2384 			bus_offset, page_shift, window_size,
2385 			levels, alloc_userspace_copy, tbl);
2386 	if (ret) {
2387 		iommu_tce_table_put(tbl);
2388 		return ret;
2389 	}
2390 
2391 	*ptbl = tbl;
2392 
2393 	return 0;
2394 }
2395 
2396 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2397 {
2398 	struct iommu_table *tbl = NULL;
2399 	long rc;
2400 	unsigned long res_start, res_end;
2401 
2402 	/*
2403 	 * crashkernel= specifies the kdump kernel's maximum memory at
2404 	 * some offset and there is no guaranteed the result is a power
2405 	 * of 2, which will cause errors later.
2406 	 */
2407 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2408 
2409 	/*
2410 	 * In memory constrained environments, e.g. kdump kernel, the
2411 	 * DMA window can be larger than available memory, which will
2412 	 * cause errors later.
2413 	 */
2414 	const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_ORDER - 1);
2415 
2416 	/*
2417 	 * We create the default window as big as we can. The constraint is
2418 	 * the max order of allocation possible. The TCE table is likely to
2419 	 * end up being multilevel and with on-demand allocation in place,
2420 	 * the initial use is not going to be huge as the default window aims
2421 	 * to support crippled devices (i.e. not fully 64bit DMAble) only.
2422 	 */
2423 	/* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
2424 	const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
2425 	/* Each TCE level cannot exceed maxblock so go multilevel if needed */
2426 	unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
2427 	unsigned long tcelevel_order = ilog2(maxblock >> 3);
2428 	unsigned int levels = tces_order / tcelevel_order;
2429 
2430 	if (tces_order % tcelevel_order)
2431 		levels += 1;
2432 	/*
2433 	 * We try to stick to default levels (which is >1 at the moment) in
2434 	 * order to save memory by relying on on-demain TCE level allocation.
2435 	 */
2436 	levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
2437 
2438 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
2439 			window_size, levels, false, &tbl);
2440 	if (rc) {
2441 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2442 				rc);
2443 		return rc;
2444 	}
2445 
2446 	/* We use top part of 32bit space for MMIO so exclude it from DMA */
2447 	res_start = 0;
2448 	res_end = 0;
2449 	if (window_size > pe->phb->ioda.m32_pci_base) {
2450 		res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
2451 		res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
2452 	}
2453 	iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end);
2454 
2455 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2456 	if (rc) {
2457 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2458 				rc);
2459 		iommu_tce_table_put(tbl);
2460 		return rc;
2461 	}
2462 
2463 	if (!pnv_iommu_bypass_disabled)
2464 		pnv_pci_ioda2_set_bypass(pe, true);
2465 
2466 	/*
2467 	 * Set table base for the case of IOMMU DMA use. Usually this is done
2468 	 * from dma_dev_setup() which is not called when a device is returned
2469 	 * from VFIO so do it here.
2470 	 */
2471 	if (pe->pdev)
2472 		set_iommu_table_base(&pe->pdev->dev, tbl);
2473 
2474 	return 0;
2475 }
2476 
2477 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2478 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2479 		int num)
2480 {
2481 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2482 			table_group);
2483 	struct pnv_phb *phb = pe->phb;
2484 	long ret;
2485 
2486 	pe_info(pe, "Removing DMA window #%d\n", num);
2487 
2488 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2489 			(pe->pe_number << 1) + num,
2490 			0/* levels */, 0/* table address */,
2491 			0/* table size */, 0/* page size */);
2492 	if (ret)
2493 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2494 	else
2495 		pnv_pci_ioda2_tce_invalidate_pe(pe);
2496 
2497 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2498 
2499 	return ret;
2500 }
2501 #endif
2502 
2503 #ifdef CONFIG_IOMMU_API
2504 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2505 		__u64 window_size, __u32 levels)
2506 {
2507 	unsigned long bytes = 0;
2508 	const unsigned window_shift = ilog2(window_size);
2509 	unsigned entries_shift = window_shift - page_shift;
2510 	unsigned table_shift = entries_shift + 3;
2511 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2512 	unsigned long direct_table_size;
2513 
2514 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2515 			!is_power_of_2(window_size))
2516 		return 0;
2517 
2518 	/* Calculate a direct table size from window_size and levels */
2519 	entries_shift = (entries_shift + levels - 1) / levels;
2520 	table_shift = entries_shift + 3;
2521 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2522 	direct_table_size =  1UL << table_shift;
2523 
2524 	for ( ; levels; --levels) {
2525 		bytes += ALIGN(tce_table_size, direct_table_size);
2526 
2527 		tce_table_size /= direct_table_size;
2528 		tce_table_size <<= 3;
2529 		tce_table_size = max_t(unsigned long,
2530 				tce_table_size, direct_table_size);
2531 	}
2532 
2533 	return bytes + bytes; /* one for HW table, one for userspace copy */
2534 }
2535 
2536 static long pnv_pci_ioda2_create_table_userspace(
2537 		struct iommu_table_group *table_group,
2538 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2539 		struct iommu_table **ptbl)
2540 {
2541 	long ret = pnv_pci_ioda2_create_table(table_group,
2542 			num, page_shift, window_size, levels, true, ptbl);
2543 
2544 	if (!ret)
2545 		(*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
2546 				page_shift, window_size, levels);
2547 	return ret;
2548 }
2549 
2550 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2551 {
2552 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2553 						table_group);
2554 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2555 	struct iommu_table *tbl = pe->table_group.tables[0];
2556 
2557 	pnv_pci_ioda2_set_bypass(pe, false);
2558 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2559 	if (pe->pbus)
2560 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2561 	else if (pe->pdev)
2562 		set_iommu_table_base(&pe->pdev->dev, NULL);
2563 	iommu_tce_table_put(tbl);
2564 }
2565 
2566 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2567 {
2568 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2569 						table_group);
2570 
2571 	pnv_pci_ioda2_setup_default_config(pe);
2572 	if (pe->pbus)
2573 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2574 }
2575 
2576 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2577 	.get_table_size = pnv_pci_ioda2_get_table_size,
2578 	.create_table = pnv_pci_ioda2_create_table_userspace,
2579 	.set_window = pnv_pci_ioda2_set_window,
2580 	.unset_window = pnv_pci_ioda2_unset_window,
2581 	.take_ownership = pnv_ioda2_take_ownership,
2582 	.release_ownership = pnv_ioda2_release_ownership,
2583 };
2584 #endif
2585 
2586 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2587 				       struct pnv_ioda_pe *pe)
2588 {
2589 	int64_t rc;
2590 
2591 	if (!pnv_pci_ioda_pe_dma_weight(pe))
2592 		return;
2593 
2594 	/* TVE #1 is selected by PCI address bit 59 */
2595 	pe->tce_bypass_base = 1ull << 59;
2596 
2597 	/* The PE will reserve all possible 32-bits space */
2598 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2599 		phb->ioda.m32_pci_base);
2600 
2601 	/* Setup linux iommu table */
2602 	pe->table_group.tce32_start = 0;
2603 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2604 	pe->table_group.max_dynamic_windows_supported =
2605 			IOMMU_TABLE_GROUP_MAX_TABLES;
2606 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2607 	pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2608 
2609 	rc = pnv_pci_ioda2_setup_default_config(pe);
2610 	if (rc)
2611 		return;
2612 
2613 #ifdef CONFIG_IOMMU_API
2614 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2615 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2616 			     pe->pe_number);
2617 #endif
2618 }
2619 
2620 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2621 {
2622 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2623 					   ioda.irq_chip);
2624 
2625 	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2626 }
2627 
2628 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2629 {
2630 	int64_t rc;
2631 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2632 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2633 
2634 	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2635 	WARN_ON_ONCE(rc);
2636 
2637 	icp_native_eoi(d);
2638 }
2639 
2640 
2641 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2642 {
2643 	struct irq_data *idata;
2644 	struct irq_chip *ichip;
2645 
2646 	/* The MSI EOI OPAL call is only needed on PHB3 */
2647 	if (phb->model != PNV_PHB_MODEL_PHB3)
2648 		return;
2649 
2650 	if (!phb->ioda.irq_chip_init) {
2651 		/*
2652 		 * First time we setup an MSI IRQ, we need to setup the
2653 		 * corresponding IRQ chip to route correctly.
2654 		 */
2655 		idata = irq_get_irq_data(virq);
2656 		ichip = irq_data_get_irq_chip(idata);
2657 		phb->ioda.irq_chip_init = 1;
2658 		phb->ioda.irq_chip = *ichip;
2659 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2660 	}
2661 	irq_set_chip(virq, &phb->ioda.irq_chip);
2662 }
2663 
2664 /*
2665  * Returns true iff chip is something that we could call
2666  * pnv_opal_pci_msi_eoi for.
2667  */
2668 bool is_pnv_opal_msi(struct irq_chip *chip)
2669 {
2670 	return chip->irq_eoi == pnv_ioda2_msi_eoi;
2671 }
2672 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2673 
2674 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2675 				  unsigned int hwirq, unsigned int virq,
2676 				  unsigned int is_64, struct msi_msg *msg)
2677 {
2678 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2679 	unsigned int xive_num = hwirq - phb->msi_base;
2680 	__be32 data;
2681 	int rc;
2682 
2683 	/* No PE assigned ? bail out ... no MSI for you ! */
2684 	if (pe == NULL)
2685 		return -ENXIO;
2686 
2687 	/* Check if we have an MVE */
2688 	if (pe->mve_number < 0)
2689 		return -ENXIO;
2690 
2691 	/* Force 32-bit MSI on some broken devices */
2692 	if (dev->no_64bit_msi)
2693 		is_64 = 0;
2694 
2695 	/* Assign XIVE to PE */
2696 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2697 	if (rc) {
2698 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2699 			pci_name(dev), rc, xive_num);
2700 		return -EIO;
2701 	}
2702 
2703 	if (is_64) {
2704 		__be64 addr64;
2705 
2706 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2707 				     &addr64, &data);
2708 		if (rc) {
2709 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2710 				pci_name(dev), rc);
2711 			return -EIO;
2712 		}
2713 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2714 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2715 	} else {
2716 		__be32 addr32;
2717 
2718 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2719 				     &addr32, &data);
2720 		if (rc) {
2721 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2722 				pci_name(dev), rc);
2723 			return -EIO;
2724 		}
2725 		msg->address_hi = 0;
2726 		msg->address_lo = be32_to_cpu(addr32);
2727 	}
2728 	msg->data = be32_to_cpu(data);
2729 
2730 	pnv_set_msi_irq_chip(phb, virq);
2731 
2732 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2733 		 " address=%x_%08x data=%x PE# %x\n",
2734 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2735 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2736 
2737 	return 0;
2738 }
2739 
2740 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2741 {
2742 	unsigned int count;
2743 	const __be32 *prop = of_get_property(phb->hose->dn,
2744 					     "ibm,opal-msi-ranges", NULL);
2745 	if (!prop) {
2746 		/* BML Fallback */
2747 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2748 	}
2749 	if (!prop)
2750 		return;
2751 
2752 	phb->msi_base = be32_to_cpup(prop);
2753 	count = be32_to_cpup(prop + 1);
2754 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2755 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2756 		       phb->hose->global_number);
2757 		return;
2758 	}
2759 
2760 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2761 	phb->msi32_support = 1;
2762 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2763 		count, phb->msi_base);
2764 }
2765 
2766 #ifdef CONFIG_PCI_IOV
2767 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2768 {
2769 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2770 	struct pnv_phb *phb = hose->private_data;
2771 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2772 	struct resource *res;
2773 	int i;
2774 	resource_size_t size, total_vf_bar_sz;
2775 	struct pci_dn *pdn;
2776 	int mul, total_vfs;
2777 
2778 	pdn = pci_get_pdn(pdev);
2779 	pdn->vfs_expanded = 0;
2780 	pdn->m64_single_mode = false;
2781 
2782 	total_vfs = pci_sriov_get_totalvfs(pdev);
2783 	mul = phb->ioda.total_pe_num;
2784 	total_vf_bar_sz = 0;
2785 
2786 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2787 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2788 		if (!res->flags || res->parent)
2789 			continue;
2790 		if (!pnv_pci_is_m64_flags(res->flags)) {
2791 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
2792 					" non M64 VF BAR%d: %pR. \n",
2793 				 i, res);
2794 			goto truncate_iov;
2795 		}
2796 
2797 		total_vf_bar_sz += pci_iov_resource_size(pdev,
2798 				i + PCI_IOV_RESOURCES);
2799 
2800 		/*
2801 		 * If bigger than quarter of M64 segment size, just round up
2802 		 * power of two.
2803 		 *
2804 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2805 		 * with other devices, IOV BAR size is expanded to be
2806 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2807 		 * segment size , the expanded size would equal to half of the
2808 		 * whole M64 space size, which will exhaust the M64 Space and
2809 		 * limit the system flexibility.  This is a design decision to
2810 		 * set the boundary to quarter of the M64 segment size.
2811 		 */
2812 		if (total_vf_bar_sz > gate) {
2813 			mul = roundup_pow_of_two(total_vfs);
2814 			dev_info(&pdev->dev,
2815 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2816 				total_vf_bar_sz, gate, mul);
2817 			pdn->m64_single_mode = true;
2818 			break;
2819 		}
2820 	}
2821 
2822 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2823 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2824 		if (!res->flags || res->parent)
2825 			continue;
2826 
2827 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2828 		/*
2829 		 * On PHB3, the minimum size alignment of M64 BAR in single
2830 		 * mode is 32MB.
2831 		 */
2832 		if (pdn->m64_single_mode && (size < SZ_32M))
2833 			goto truncate_iov;
2834 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2835 		res->end = res->start + size * mul - 1;
2836 		dev_dbg(&pdev->dev, "                       %pR\n", res);
2837 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2838 			 i, res, mul);
2839 	}
2840 	pdn->vfs_expanded = mul;
2841 
2842 	return;
2843 
2844 truncate_iov:
2845 	/* To save MMIO space, IOV BAR is truncated. */
2846 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2847 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2848 		res->flags = 0;
2849 		res->end = res->start - 1;
2850 	}
2851 }
2852 
2853 static void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev)
2854 {
2855 	if (WARN_ON(pci_dev_is_added(pdev)))
2856 		return;
2857 
2858 	if (pdev->is_virtfn) {
2859 		struct pnv_ioda_pe *pe = pnv_ioda_get_pe(pdev);
2860 
2861 		/*
2862 		 * VF PEs are single-device PEs so their pdev pointer needs to
2863 		 * be set. The pdev doesn't exist when the PE is allocated (in
2864 		 * (pcibios_sriov_enable()) so we fix it up here.
2865 		 */
2866 		pe->pdev = pdev;
2867 		WARN_ON(!(pe->flags & PNV_IODA_PE_VF));
2868 	} else if (pdev->is_physfn) {
2869 		/*
2870 		 * For PFs adjust their allocated IOV resources to match what
2871 		 * the PHB can support using it's M64 BAR table.
2872 		 */
2873 		pnv_pci_ioda_fixup_iov_resources(pdev);
2874 	}
2875 }
2876 #endif /* CONFIG_PCI_IOV */
2877 
2878 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2879 				  struct resource *res)
2880 {
2881 	struct pnv_phb *phb = pe->phb;
2882 	struct pci_bus_region region;
2883 	int index;
2884 	int64_t rc;
2885 
2886 	if (!res || !res->flags || res->start > res->end)
2887 		return;
2888 
2889 	if (res->flags & IORESOURCE_IO) {
2890 		region.start = res->start - phb->ioda.io_pci_base;
2891 		region.end   = res->end - phb->ioda.io_pci_base;
2892 		index = region.start / phb->ioda.io_segsize;
2893 
2894 		while (index < phb->ioda.total_pe_num &&
2895 		       region.start <= region.end) {
2896 			phb->ioda.io_segmap[index] = pe->pe_number;
2897 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2898 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2899 			if (rc != OPAL_SUCCESS) {
2900 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2901 				       __func__, rc, index, pe->pe_number);
2902 				break;
2903 			}
2904 
2905 			region.start += phb->ioda.io_segsize;
2906 			index++;
2907 		}
2908 	} else if ((res->flags & IORESOURCE_MEM) &&
2909 		   !pnv_pci_is_m64(phb, res)) {
2910 		region.start = res->start -
2911 			       phb->hose->mem_offset[0] -
2912 			       phb->ioda.m32_pci_base;
2913 		region.end   = res->end -
2914 			       phb->hose->mem_offset[0] -
2915 			       phb->ioda.m32_pci_base;
2916 		index = region.start / phb->ioda.m32_segsize;
2917 
2918 		while (index < phb->ioda.total_pe_num &&
2919 		       region.start <= region.end) {
2920 			phb->ioda.m32_segmap[index] = pe->pe_number;
2921 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2922 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2923 			if (rc != OPAL_SUCCESS) {
2924 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
2925 				       __func__, rc, index, pe->pe_number);
2926 				break;
2927 			}
2928 
2929 			region.start += phb->ioda.m32_segsize;
2930 			index++;
2931 		}
2932 	}
2933 }
2934 
2935 /*
2936  * This function is supposed to be called on basis of PE from top
2937  * to bottom style. So the the I/O or MMIO segment assigned to
2938  * parent PE could be overridden by its child PEs if necessary.
2939  */
2940 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
2941 {
2942 	struct pci_dev *pdev;
2943 	int i;
2944 
2945 	/*
2946 	 * NOTE: We only care PCI bus based PE for now. For PCI
2947 	 * device based PE, for example SRIOV sensitive VF should
2948 	 * be figured out later.
2949 	 */
2950 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2951 
2952 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
2953 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2954 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
2955 
2956 		/*
2957 		 * If the PE contains all subordinate PCI buses, the
2958 		 * windows of the child bridges should be mapped to
2959 		 * the PE as well.
2960 		 */
2961 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
2962 			continue;
2963 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
2964 			pnv_ioda_setup_pe_res(pe,
2965 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
2966 	}
2967 }
2968 
2969 #ifdef CONFIG_DEBUG_FS
2970 static int pnv_pci_diag_data_set(void *data, u64 val)
2971 {
2972 	struct pnv_phb *phb = data;
2973 	s64 ret;
2974 
2975 	/* Retrieve the diag data from firmware */
2976 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
2977 					  phb->diag_data_size);
2978 	if (ret != OPAL_SUCCESS)
2979 		return -EIO;
2980 
2981 	/* Print the diag data to the kernel log */
2982 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
2983 	return 0;
2984 }
2985 
2986 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set,
2987 			 "%llu\n");
2988 
2989 static int pnv_pci_ioda_pe_dump(void *data, u64 val)
2990 {
2991 	struct pnv_phb *phb = data;
2992 	int pe_num;
2993 
2994 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
2995 		struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num];
2996 
2997 		if (!test_bit(pe_num, phb->ioda.pe_alloc))
2998 			continue;
2999 
3000 		pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n",
3001 			pe->rid, pe->device_count,
3002 			(pe->flags & PNV_IODA_PE_DEV) ? "dev " : "",
3003 			(pe->flags & PNV_IODA_PE_BUS) ? "bus " : "",
3004 			(pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "",
3005 			(pe->flags & PNV_IODA_PE_MASTER) ? "master " : "",
3006 			(pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "",
3007 			(pe->flags & PNV_IODA_PE_VF) ? "vf " : "");
3008 	}
3009 
3010 	return 0;
3011 }
3012 
3013 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL,
3014 			 pnv_pci_ioda_pe_dump, "%llu\n");
3015 
3016 #endif /* CONFIG_DEBUG_FS */
3017 
3018 static void pnv_pci_ioda_create_dbgfs(void)
3019 {
3020 #ifdef CONFIG_DEBUG_FS
3021 	struct pci_controller *hose, *tmp;
3022 	struct pnv_phb *phb;
3023 	char name[16];
3024 
3025 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3026 		phb = hose->private_data;
3027 
3028 		/* Notify initialization of PHB done */
3029 		phb->initialized = 1;
3030 
3031 		sprintf(name, "PCI%04x", hose->global_number);
3032 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3033 
3034 		debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs,
3035 					   phb, &pnv_pci_diag_data_fops);
3036 		debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs,
3037 					   phb, &pnv_pci_ioda_pe_dump_fops);
3038 	}
3039 #endif /* CONFIG_DEBUG_FS */
3040 }
3041 
3042 static void pnv_pci_enable_bridge(struct pci_bus *bus)
3043 {
3044 	struct pci_dev *dev = bus->self;
3045 	struct pci_bus *child;
3046 
3047 	/* Empty bus ? bail */
3048 	if (list_empty(&bus->devices))
3049 		return;
3050 
3051 	/*
3052 	 * If there's a bridge associated with that bus enable it. This works
3053 	 * around races in the generic code if the enabling is done during
3054 	 * parallel probing. This can be removed once those races have been
3055 	 * fixed.
3056 	 */
3057 	if (dev) {
3058 		int rc = pci_enable_device(dev);
3059 		if (rc)
3060 			pci_err(dev, "Error enabling bridge (%d)\n", rc);
3061 		pci_set_master(dev);
3062 	}
3063 
3064 	/* Perform the same to child busses */
3065 	list_for_each_entry(child, &bus->children, node)
3066 		pnv_pci_enable_bridge(child);
3067 }
3068 
3069 static void pnv_pci_enable_bridges(void)
3070 {
3071 	struct pci_controller *hose;
3072 
3073 	list_for_each_entry(hose, &hose_list, list_node)
3074 		pnv_pci_enable_bridge(hose->bus);
3075 }
3076 
3077 static void pnv_pci_ioda_fixup(void)
3078 {
3079 	pnv_pci_ioda_setup_nvlink();
3080 	pnv_pci_ioda_create_dbgfs();
3081 
3082 	pnv_pci_enable_bridges();
3083 
3084 #ifdef CONFIG_EEH
3085 	pnv_eeh_post_init();
3086 #endif
3087 }
3088 
3089 /*
3090  * Returns the alignment for I/O or memory windows for P2P
3091  * bridges. That actually depends on how PEs are segmented.
3092  * For now, we return I/O or M32 segment size for PE sensitive
3093  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3094  * 1MiB for memory) will be returned.
3095  *
3096  * The current PCI bus might be put into one PE, which was
3097  * create against the parent PCI bridge. For that case, we
3098  * needn't enlarge the alignment so that we can save some
3099  * resources.
3100  */
3101 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3102 						unsigned long type)
3103 {
3104 	struct pci_dev *bridge;
3105 	struct pci_controller *hose = pci_bus_to_host(bus);
3106 	struct pnv_phb *phb = hose->private_data;
3107 	int num_pci_bridges = 0;
3108 
3109 	bridge = bus->self;
3110 	while (bridge) {
3111 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3112 			num_pci_bridges++;
3113 			if (num_pci_bridges >= 2)
3114 				return 1;
3115 		}
3116 
3117 		bridge = bridge->bus->self;
3118 	}
3119 
3120 	/*
3121 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
3122 	 * alignment for any 64-bit resource, PCIe doesn't care and
3123 	 * bridges only do 64-bit prefetchable anyway.
3124 	 */
3125 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3126 		return phb->ioda.m64_segsize;
3127 	if (type & IORESOURCE_MEM)
3128 		return phb->ioda.m32_segsize;
3129 
3130 	return phb->ioda.io_segsize;
3131 }
3132 
3133 /*
3134  * We are updating root port or the upstream port of the
3135  * bridge behind the root port with PHB's windows in order
3136  * to accommodate the changes on required resources during
3137  * PCI (slot) hotplug, which is connected to either root
3138  * port or the downstream ports of PCIe switch behind the
3139  * root port.
3140  */
3141 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3142 					   unsigned long type)
3143 {
3144 	struct pci_controller *hose = pci_bus_to_host(bus);
3145 	struct pnv_phb *phb = hose->private_data;
3146 	struct pci_dev *bridge = bus->self;
3147 	struct resource *r, *w;
3148 	bool msi_region = false;
3149 	int i;
3150 
3151 	/* Check if we need apply fixup to the bridge's windows */
3152 	if (!pci_is_root_bus(bridge->bus) &&
3153 	    !pci_is_root_bus(bridge->bus->self->bus))
3154 		return;
3155 
3156 	/* Fixup the resources */
3157 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3158 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3159 		if (!r->flags || !r->parent)
3160 			continue;
3161 
3162 		w = NULL;
3163 		if (r->flags & type & IORESOURCE_IO)
3164 			w = &hose->io_resource;
3165 		else if (pnv_pci_is_m64(phb, r) &&
3166 			 (type & IORESOURCE_PREFETCH) &&
3167 			 phb->ioda.m64_segsize)
3168 			w = &hose->mem_resources[1];
3169 		else if (r->flags & type & IORESOURCE_MEM) {
3170 			w = &hose->mem_resources[0];
3171 			msi_region = true;
3172 		}
3173 
3174 		r->start = w->start;
3175 		r->end = w->end;
3176 
3177 		/* The 64KB 32-bits MSI region shouldn't be included in
3178 		 * the 32-bits bridge window. Otherwise, we can see strange
3179 		 * issues. One of them is EEH error observed on Garrison.
3180 		 *
3181 		 * Exclude top 1MB region which is the minimal alignment of
3182 		 * 32-bits bridge window.
3183 		 */
3184 		if (msi_region) {
3185 			r->end += 0x10000;
3186 			r->end -= 0x100000;
3187 		}
3188 	}
3189 }
3190 
3191 static void pnv_pci_configure_bus(struct pci_bus *bus)
3192 {
3193 	struct pci_controller *hose = pci_bus_to_host(bus);
3194 	struct pnv_phb *phb = hose->private_data;
3195 	struct pci_dev *bridge = bus->self;
3196 	struct pnv_ioda_pe *pe;
3197 	bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3198 
3199 	dev_info(&bus->dev, "Configuring PE for bus\n");
3200 
3201 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3202 	if (WARN_ON(list_empty(&bus->devices)))
3203 		return;
3204 
3205 	/* Reserve PEs according to used M64 resources */
3206 	pnv_ioda_reserve_m64_pe(bus, NULL, all);
3207 
3208 	/*
3209 	 * Assign PE. We might run here because of partial hotplug.
3210 	 * For the case, we just pick up the existing PE and should
3211 	 * not allocate resources again.
3212 	 */
3213 	pe = pnv_ioda_setup_bus_PE(bus, all);
3214 	if (!pe)
3215 		return;
3216 
3217 	pnv_ioda_setup_pe_seg(pe);
3218 	switch (phb->type) {
3219 	case PNV_PHB_IODA1:
3220 		pnv_pci_ioda1_setup_dma_pe(phb, pe);
3221 		break;
3222 	case PNV_PHB_IODA2:
3223 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
3224 		break;
3225 	default:
3226 		pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3227 			__func__, phb->hose->global_number, phb->type);
3228 	}
3229 }
3230 
3231 static resource_size_t pnv_pci_default_alignment(void)
3232 {
3233 	return PAGE_SIZE;
3234 }
3235 
3236 #ifdef CONFIG_PCI_IOV
3237 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3238 						      int resno)
3239 {
3240 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3241 	struct pnv_phb *phb = hose->private_data;
3242 	struct pci_dn *pdn = pci_get_pdn(pdev);
3243 	resource_size_t align;
3244 
3245 	/*
3246 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3247 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3248 	 * BAR should be size aligned.
3249 	 *
3250 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3251 	 * powernv-specific hardware restriction is gone. But if just use the
3252 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3253 	 * in one segment of M64 #15, which introduces the PE conflict between
3254 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3255 	 * m64_segsize.
3256 	 *
3257 	 * This function returns the total IOV BAR size if M64 BAR is in
3258 	 * Shared PE mode or just VF BAR size if not.
3259 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3260 	 * M64 segment size if IOV BAR size is less.
3261 	 */
3262 	align = pci_iov_resource_size(pdev, resno);
3263 	if (!pdn->vfs_expanded)
3264 		return align;
3265 	if (pdn->m64_single_mode)
3266 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3267 
3268 	return pdn->vfs_expanded * align;
3269 }
3270 #endif /* CONFIG_PCI_IOV */
3271 
3272 /* Prevent enabling devices for which we couldn't properly
3273  * assign a PE
3274  */
3275 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3276 {
3277 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3278 	struct pnv_phb *phb = hose->private_data;
3279 	struct pci_dn *pdn;
3280 
3281 	/* The function is probably called while the PEs have
3282 	 * not be created yet. For example, resource reassignment
3283 	 * during PCI probe period. We just skip the check if
3284 	 * PEs isn't ready.
3285 	 */
3286 	if (!phb->initialized)
3287 		return true;
3288 
3289 	pdn = pci_get_pdn(dev);
3290 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3291 		return false;
3292 
3293 	return true;
3294 }
3295 
3296 static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev)
3297 {
3298 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3299 	struct pnv_phb *phb = hose->private_data;
3300 	struct pci_dn *pdn;
3301 	struct pnv_ioda_pe *pe;
3302 
3303 	if (!phb->initialized)
3304 		return true;
3305 
3306 	pdn = pci_get_pdn(dev);
3307 	if (!pdn)
3308 		return false;
3309 
3310 	if (pdn->pe_number == IODA_INVALID_PE) {
3311 		pe = pnv_ioda_setup_dev_PE(dev);
3312 		if (!pe)
3313 			return false;
3314 	}
3315 	return true;
3316 }
3317 
3318 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3319 				       int num)
3320 {
3321 	struct pnv_ioda_pe *pe = container_of(table_group,
3322 					      struct pnv_ioda_pe, table_group);
3323 	struct pnv_phb *phb = pe->phb;
3324 	unsigned int idx;
3325 	long rc;
3326 
3327 	pe_info(pe, "Removing DMA window #%d\n", num);
3328 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3329 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3330 			continue;
3331 
3332 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3333 						idx, 0, 0ul, 0ul, 0ul);
3334 		if (rc != OPAL_SUCCESS) {
3335 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3336 				rc, idx);
3337 			return rc;
3338 		}
3339 
3340 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3341 	}
3342 
3343 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3344 	return OPAL_SUCCESS;
3345 }
3346 
3347 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3348 {
3349 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3350 	struct iommu_table *tbl = pe->table_group.tables[0];
3351 	int64_t rc;
3352 
3353 	if (!weight)
3354 		return;
3355 
3356 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3357 	if (rc != OPAL_SUCCESS)
3358 		return;
3359 
3360 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3361 	if (pe->table_group.group) {
3362 		iommu_group_put(pe->table_group.group);
3363 		WARN_ON(pe->table_group.group);
3364 	}
3365 
3366 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3367 	iommu_tce_table_put(tbl);
3368 }
3369 
3370 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3371 {
3372 	struct iommu_table *tbl = pe->table_group.tables[0];
3373 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3374 #ifdef CONFIG_IOMMU_API
3375 	int64_t rc;
3376 #endif
3377 
3378 	if (!weight)
3379 		return;
3380 
3381 #ifdef CONFIG_IOMMU_API
3382 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3383 	if (rc)
3384 		pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
3385 #endif
3386 
3387 	pnv_pci_ioda2_set_bypass(pe, false);
3388 	if (pe->table_group.group) {
3389 		iommu_group_put(pe->table_group.group);
3390 		WARN_ON(pe->table_group.group);
3391 	}
3392 
3393 	iommu_tce_table_put(tbl);
3394 }
3395 
3396 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3397 				 unsigned short win,
3398 				 unsigned int *map)
3399 {
3400 	struct pnv_phb *phb = pe->phb;
3401 	int idx;
3402 	int64_t rc;
3403 
3404 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3405 		if (map[idx] != pe->pe_number)
3406 			continue;
3407 
3408 		if (win == OPAL_M64_WINDOW_TYPE)
3409 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3410 					phb->ioda.reserved_pe_idx, win,
3411 					idx / PNV_IODA1_M64_SEGS,
3412 					idx % PNV_IODA1_M64_SEGS);
3413 		else
3414 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3415 					phb->ioda.reserved_pe_idx, win, 0, idx);
3416 
3417 		if (rc != OPAL_SUCCESS)
3418 			pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
3419 				rc, win, idx);
3420 
3421 		map[idx] = IODA_INVALID_PE;
3422 	}
3423 }
3424 
3425 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3426 {
3427 	struct pnv_phb *phb = pe->phb;
3428 
3429 	if (phb->type == PNV_PHB_IODA1) {
3430 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3431 				     phb->ioda.io_segmap);
3432 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3433 				     phb->ioda.m32_segmap);
3434 		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3435 				     phb->ioda.m64_segmap);
3436 	} else if (phb->type == PNV_PHB_IODA2) {
3437 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3438 				     phb->ioda.m32_segmap);
3439 	}
3440 }
3441 
3442 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3443 {
3444 	struct pnv_phb *phb = pe->phb;
3445 	struct pnv_ioda_pe *slave, *tmp;
3446 
3447 	pe_info(pe, "Releasing PE\n");
3448 
3449 	mutex_lock(&phb->ioda.pe_list_mutex);
3450 	list_del(&pe->list);
3451 	mutex_unlock(&phb->ioda.pe_list_mutex);
3452 
3453 	switch (phb->type) {
3454 	case PNV_PHB_IODA1:
3455 		pnv_pci_ioda1_release_pe_dma(pe);
3456 		break;
3457 	case PNV_PHB_IODA2:
3458 		pnv_pci_ioda2_release_pe_dma(pe);
3459 		break;
3460 	case PNV_PHB_NPU_OCAPI:
3461 		break;
3462 	default:
3463 		WARN_ON(1);
3464 	}
3465 
3466 	pnv_ioda_release_pe_seg(pe);
3467 	pnv_ioda_deconfigure_pe(pe->phb, pe);
3468 
3469 	/* Release slave PEs in the compound PE */
3470 	if (pe->flags & PNV_IODA_PE_MASTER) {
3471 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3472 			list_del(&slave->list);
3473 			pnv_ioda_free_pe(slave);
3474 		}
3475 	}
3476 
3477 	/*
3478 	 * The PE for root bus can be removed because of hotplug in EEH
3479 	 * recovery for fenced PHB error. We need to mark the PE dead so
3480 	 * that it can be populated again in PCI hot add path. The PE
3481 	 * shouldn't be destroyed as it's the global reserved resource.
3482 	 */
3483 	if (phb->ioda.root_pe_idx == pe->pe_number)
3484 		return;
3485 
3486 	pnv_ioda_free_pe(pe);
3487 }
3488 
3489 static void pnv_pci_release_device(struct pci_dev *pdev)
3490 {
3491 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3492 	struct pnv_phb *phb = hose->private_data;
3493 	struct pci_dn *pdn = pci_get_pdn(pdev);
3494 	struct pnv_ioda_pe *pe;
3495 
3496 	if (pdev->is_virtfn)
3497 		return;
3498 
3499 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3500 		return;
3501 
3502 	/*
3503 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3504 	 * isn't removed and added afterwards in this scenario. We should
3505 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3506 	 * device count is decreased on removing devices while failing to
3507 	 * be increased on adding devices. It leads to unbalanced PE's device
3508 	 * count and eventually make normal PCI hotplug path broken.
3509 	 */
3510 	pe = &phb->ioda.pe_array[pdn->pe_number];
3511 	pdn->pe_number = IODA_INVALID_PE;
3512 
3513 	WARN_ON(--pe->device_count < 0);
3514 	if (pe->device_count == 0)
3515 		pnv_ioda_release_pe(pe);
3516 }
3517 
3518 static void pnv_npu_disable_device(struct pci_dev *pdev)
3519 {
3520 	struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev);
3521 	struct eeh_pe *eehpe = edev ? edev->pe : NULL;
3522 
3523 	if (eehpe && eeh_ops && eeh_ops->reset)
3524 		eeh_ops->reset(eehpe, EEH_RESET_HOT);
3525 }
3526 
3527 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3528 {
3529 	struct pnv_phb *phb = hose->private_data;
3530 
3531 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3532 		       OPAL_ASSERT_RESET);
3533 }
3534 
3535 static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus)
3536 {
3537 	struct pci_controller *hose = bus->sysdata;
3538 	struct pnv_phb *phb = hose->private_data;
3539 	struct pnv_ioda_pe *pe;
3540 
3541 	list_for_each_entry(pe, &phb->ioda.pe_list, list) {
3542 		if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)))
3543 			continue;
3544 
3545 		if (!pe->pbus)
3546 			continue;
3547 
3548 		if (bus->number == ((pe->rid >> 8) & 0xFF)) {
3549 			pe->pbus = bus;
3550 			break;
3551 		}
3552 	}
3553 }
3554 
3555 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3556 	.dma_dev_setup		= pnv_pci_ioda_dma_dev_setup,
3557 	.dma_bus_setup		= pnv_pci_ioda_dma_bus_setup,
3558 	.iommu_bypass_supported	= pnv_pci_ioda_iommu_bypass_supported,
3559 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3560 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3561 	.enable_device_hook	= pnv_pci_enable_device_hook,
3562 	.release_device		= pnv_pci_release_device,
3563 	.window_alignment	= pnv_pci_window_alignment,
3564 	.setup_bridge		= pnv_pci_fixup_bridge_resources,
3565 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3566 	.shutdown		= pnv_pci_ioda_shutdown,
3567 };
3568 
3569 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3570 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3571 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3572 	.enable_device_hook	= pnv_pci_enable_device_hook,
3573 	.window_alignment	= pnv_pci_window_alignment,
3574 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3575 	.shutdown		= pnv_pci_ioda_shutdown,
3576 	.disable_device		= pnv_npu_disable_device,
3577 };
3578 
3579 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
3580 	.enable_device_hook	= pnv_ocapi_enable_device_hook,
3581 	.release_device		= pnv_pci_release_device,
3582 	.window_alignment	= pnv_pci_window_alignment,
3583 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3584 	.shutdown		= pnv_pci_ioda_shutdown,
3585 };
3586 
3587 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3588 					 u64 hub_id, int ioda_type)
3589 {
3590 	struct pci_controller *hose;
3591 	struct pnv_phb *phb;
3592 	unsigned long size, m64map_off, m32map_off, pemap_off;
3593 	unsigned long iomap_off = 0, dma32map_off = 0;
3594 	struct pnv_ioda_pe *root_pe;
3595 	struct resource r;
3596 	const __be64 *prop64;
3597 	const __be32 *prop32;
3598 	int len;
3599 	unsigned int segno;
3600 	u64 phb_id;
3601 	void *aux;
3602 	long rc;
3603 
3604 	if (!of_device_is_available(np))
3605 		return;
3606 
3607 	pr_info("Initializing %s PHB (%pOF)\n",	pnv_phb_names[ioda_type], np);
3608 
3609 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3610 	if (!prop64) {
3611 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3612 		return;
3613 	}
3614 	phb_id = be64_to_cpup(prop64);
3615 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3616 
3617 	phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES);
3618 	if (!phb)
3619 		panic("%s: Failed to allocate %zu bytes\n", __func__,
3620 		      sizeof(*phb));
3621 
3622 	/* Allocate PCI controller */
3623 	phb->hose = hose = pcibios_alloc_controller(np);
3624 	if (!phb->hose) {
3625 		pr_err("  Can't allocate PCI controller for %pOF\n",
3626 		       np);
3627 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3628 		return;
3629 	}
3630 
3631 	spin_lock_init(&phb->lock);
3632 	prop32 = of_get_property(np, "bus-range", &len);
3633 	if (prop32 && len == 8) {
3634 		hose->first_busno = be32_to_cpu(prop32[0]);
3635 		hose->last_busno = be32_to_cpu(prop32[1]);
3636 	} else {
3637 		pr_warn("  Broken <bus-range> on %pOF\n", np);
3638 		hose->first_busno = 0;
3639 		hose->last_busno = 0xff;
3640 	}
3641 	hose->private_data = phb;
3642 	phb->hub_id = hub_id;
3643 	phb->opal_id = phb_id;
3644 	phb->type = ioda_type;
3645 	mutex_init(&phb->ioda.pe_alloc_mutex);
3646 
3647 	/* Detect specific models for error handling */
3648 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3649 		phb->model = PNV_PHB_MODEL_P7IOC;
3650 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3651 		phb->model = PNV_PHB_MODEL_PHB3;
3652 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3653 		phb->model = PNV_PHB_MODEL_NPU;
3654 	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3655 		phb->model = PNV_PHB_MODEL_NPU2;
3656 	else
3657 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3658 
3659 	/* Initialize diagnostic data buffer */
3660 	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3661 	if (prop32)
3662 		phb->diag_data_size = be32_to_cpup(prop32);
3663 	else
3664 		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3665 
3666 	phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES);
3667 	if (!phb->diag_data)
3668 		panic("%s: Failed to allocate %u bytes\n", __func__,
3669 		      phb->diag_data_size);
3670 
3671 	/* Parse 32-bit and IO ranges (if any) */
3672 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3673 
3674 	/* Get registers */
3675 	if (!of_address_to_resource(np, 0, &r)) {
3676 		phb->regs_phys = r.start;
3677 		phb->regs = ioremap(r.start, resource_size(&r));
3678 		if (phb->regs == NULL)
3679 			pr_err("  Failed to map registers !\n");
3680 	}
3681 
3682 	/* Initialize more IODA stuff */
3683 	phb->ioda.total_pe_num = 1;
3684 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3685 	if (prop32)
3686 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3687 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3688 	if (prop32)
3689 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3690 
3691 	/* Invalidate RID to PE# mapping */
3692 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3693 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3694 
3695 	/* Parse 64-bit MMIO range */
3696 	pnv_ioda_parse_m64_window(phb);
3697 
3698 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3699 	/* FW Has already off top 64k of M32 space (MSI space) */
3700 	phb->ioda.m32_size += 0x10000;
3701 
3702 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3703 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3704 	phb->ioda.io_size = hose->pci_io_size;
3705 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3706 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3707 
3708 	/* Calculate how many 32-bit TCE segments we have */
3709 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3710 				PNV_IODA1_DMA32_SEGSIZE;
3711 
3712 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3713 	size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3714 			sizeof(unsigned long));
3715 	m64map_off = size;
3716 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3717 	m32map_off = size;
3718 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3719 	if (phb->type == PNV_PHB_IODA1) {
3720 		iomap_off = size;
3721 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3722 		dma32map_off = size;
3723 		size += phb->ioda.dma32_count *
3724 			sizeof(phb->ioda.dma32_segmap[0]);
3725 	}
3726 	pemap_off = size;
3727 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3728 	aux = memblock_alloc(size, SMP_CACHE_BYTES);
3729 	if (!aux)
3730 		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
3731 	phb->ioda.pe_alloc = aux;
3732 	phb->ioda.m64_segmap = aux + m64map_off;
3733 	phb->ioda.m32_segmap = aux + m32map_off;
3734 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3735 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3736 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3737 	}
3738 	if (phb->type == PNV_PHB_IODA1) {
3739 		phb->ioda.io_segmap = aux + iomap_off;
3740 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3741 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3742 
3743 		phb->ioda.dma32_segmap = aux + dma32map_off;
3744 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3745 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3746 	}
3747 	phb->ioda.pe_array = aux + pemap_off;
3748 
3749 	/*
3750 	 * Choose PE number for root bus, which shouldn't have
3751 	 * M64 resources consumed by its child devices. To pick
3752 	 * the PE number adjacent to the reserved one if possible.
3753 	 */
3754 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3755 	if (phb->ioda.reserved_pe_idx == 0) {
3756 		phb->ioda.root_pe_idx = 1;
3757 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3758 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3759 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3760 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3761 	} else {
3762 		/* otherwise just allocate one */
3763 		root_pe = pnv_ioda_alloc_pe(phb);
3764 		phb->ioda.root_pe_idx = root_pe->pe_number;
3765 	}
3766 
3767 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3768 	mutex_init(&phb->ioda.pe_list_mutex);
3769 
3770 	/* Calculate how many 32-bit TCE segments we have */
3771 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3772 				PNV_IODA1_DMA32_SEGSIZE;
3773 
3774 #if 0 /* We should really do that ... */
3775 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3776 					 window_type,
3777 					 window_num,
3778 					 starting_real_address,
3779 					 starting_pci_address,
3780 					 segment_size);
3781 #endif
3782 
3783 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3784 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3785 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3786 	if (phb->ioda.m64_size)
3787 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3788 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3789 	if (phb->ioda.io_size)
3790 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3791 			phb->ioda.io_size, phb->ioda.io_segsize);
3792 
3793 
3794 	phb->hose->ops = &pnv_pci_ops;
3795 	phb->get_pe_state = pnv_ioda_get_pe_state;
3796 	phb->freeze_pe = pnv_ioda_freeze_pe;
3797 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3798 
3799 	/* Setup MSI support */
3800 	pnv_pci_init_ioda_msis(phb);
3801 
3802 	/*
3803 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3804 	 * to let the PCI core do resource assignment. It's supposed
3805 	 * that the PCI core will do correct I/O and MMIO alignment
3806 	 * for the P2P bridge bars so that each PCI bus (excluding
3807 	 * the child P2P bridges) can form individual PE.
3808 	 */
3809 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3810 
3811 	switch (phb->type) {
3812 	case PNV_PHB_NPU_NVLINK:
3813 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3814 		break;
3815 	case PNV_PHB_NPU_OCAPI:
3816 		hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3817 		break;
3818 	default:
3819 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3820 	}
3821 
3822 	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3823 
3824 #ifdef CONFIG_PCI_IOV
3825 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov;
3826 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3827 	ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3828 	ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3829 #endif
3830 
3831 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3832 
3833 	/* Reset IODA tables to a clean state */
3834 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3835 	if (rc)
3836 		pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
3837 
3838 	/*
3839 	 * If we're running in kdump kernel, the previous kernel never
3840 	 * shutdown PCI devices correctly. We already got IODA table
3841 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3842 	 * transactions from previous kernel. The ppc_pci_reset_phbs
3843 	 * kernel parameter will force this reset too. Additionally,
3844 	 * if the IODA reset above failed then use a bigger hammer.
3845 	 * This can happen if we get a PHB fatal error in very early
3846 	 * boot.
3847 	 */
3848 	if (is_kdump_kernel() || pci_reset_phbs || rc) {
3849 		pr_info("  Issue PHB reset ...\n");
3850 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3851 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3852 	}
3853 
3854 	/* Remove M64 resource if we can't configure it successfully */
3855 	if (!phb->init_m64 || phb->init_m64(phb))
3856 		hose->mem_resources[1].flags = 0;
3857 }
3858 
3859 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3860 {
3861 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3862 }
3863 
3864 void __init pnv_pci_init_npu_phb(struct device_node *np)
3865 {
3866 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
3867 }
3868 
3869 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
3870 {
3871 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
3872 }
3873 
3874 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
3875 {
3876 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3877 	struct pnv_phb *phb = hose->private_data;
3878 
3879 	if (!machine_is(powernv))
3880 		return;
3881 
3882 	if (phb->type == PNV_PHB_NPU_OCAPI)
3883 		dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
3884 }
3885 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
3886 
3887 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3888 {
3889 	struct device_node *phbn;
3890 	const __be64 *prop64;
3891 	u64 hub_id;
3892 
3893 	pr_info("Probing IODA IO-Hub %pOF\n", np);
3894 
3895 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3896 	if (!prop64) {
3897 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3898 		return;
3899 	}
3900 	hub_id = be64_to_cpup(prop64);
3901 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3902 
3903 	/* Count child PHBs */
3904 	for_each_child_of_node(np, phbn) {
3905 		/* Look for IODA1 PHBs */
3906 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3907 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3908 	}
3909 }
3910