xref: /openbmc/linux/arch/powerpc/platforms/powernv/pci-ioda.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/bootmem.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 #include <linux/memblock.h>
25 #include <linux/iommu.h>
26 #include <linux/rculist.h>
27 #include <linux/sizes.h>
28 
29 #include <asm/sections.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/pci-bridge.h>
33 #include <asm/machdep.h>
34 #include <asm/msi_bitmap.h>
35 #include <asm/ppc-pci.h>
36 #include <asm/opal.h>
37 #include <asm/iommu.h>
38 #include <asm/tce.h>
39 #include <asm/xics.h>
40 #include <asm/debugfs.h>
41 #include <asm/firmware.h>
42 #include <asm/pnv-pci.h>
43 #include <asm/mmzone.h>
44 
45 #include <misc/cxl-base.h>
46 
47 #include "powernv.h"
48 #include "pci.h"
49 #include "../../../../drivers/pci/pci.h"
50 
51 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
52 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
53 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
54 
55 #define POWERNV_IOMMU_DEFAULT_LEVELS	1
56 #define POWERNV_IOMMU_MAX_LEVELS	5
57 
58 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
59 					      "NPU_OCAPI" };
60 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
61 
62 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
63 			    const char *fmt, ...)
64 {
65 	struct va_format vaf;
66 	va_list args;
67 	char pfix[32];
68 
69 	va_start(args, fmt);
70 
71 	vaf.fmt = fmt;
72 	vaf.va = &args;
73 
74 	if (pe->flags & PNV_IODA_PE_DEV)
75 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
76 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
77 		sprintf(pfix, "%04x:%02x     ",
78 			pci_domain_nr(pe->pbus), pe->pbus->number);
79 #ifdef CONFIG_PCI_IOV
80 	else if (pe->flags & PNV_IODA_PE_VF)
81 		sprintf(pfix, "%04x:%02x:%2x.%d",
82 			pci_domain_nr(pe->parent_dev->bus),
83 			(pe->rid & 0xff00) >> 8,
84 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
85 #endif /* CONFIG_PCI_IOV*/
86 
87 	printk("%spci %s: [PE# %.2x] %pV",
88 	       level, pfix, pe->pe_number, &vaf);
89 
90 	va_end(args);
91 }
92 
93 static bool pnv_iommu_bypass_disabled __read_mostly;
94 static bool pci_reset_phbs __read_mostly;
95 
96 static int __init iommu_setup(char *str)
97 {
98 	if (!str)
99 		return -EINVAL;
100 
101 	while (*str) {
102 		if (!strncmp(str, "nobypass", 8)) {
103 			pnv_iommu_bypass_disabled = true;
104 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
105 			break;
106 		}
107 		str += strcspn(str, ",");
108 		if (*str == ',')
109 			str++;
110 	}
111 
112 	return 0;
113 }
114 early_param("iommu", iommu_setup);
115 
116 static int __init pci_reset_phbs_setup(char *str)
117 {
118 	pci_reset_phbs = true;
119 	return 0;
120 }
121 
122 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
123 
124 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
125 {
126 	/*
127 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
128 	 * allocation code sometimes decides to put a 64-bit prefetchable
129 	 * BAR in the 32-bit window, so we have to compare the addresses.
130 	 *
131 	 * For simplicity we only test resource start.
132 	 */
133 	return (r->start >= phb->ioda.m64_base &&
134 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
135 }
136 
137 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
138 {
139 	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
140 
141 	return (resource_flags & flags) == flags;
142 }
143 
144 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
145 {
146 	s64 rc;
147 
148 	phb->ioda.pe_array[pe_no].phb = phb;
149 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
150 
151 	/*
152 	 * Clear the PE frozen state as it might be put into frozen state
153 	 * in the last PCI remove path. It's not harmful to do so when the
154 	 * PE is already in unfrozen state.
155 	 */
156 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
157 				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
158 	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
159 		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
160 			__func__, rc, phb->hose->global_number, pe_no);
161 
162 	return &phb->ioda.pe_array[pe_no];
163 }
164 
165 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
166 {
167 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
168 		pr_warn("%s: Invalid PE %x on PHB#%x\n",
169 			__func__, pe_no, phb->hose->global_number);
170 		return;
171 	}
172 
173 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
174 		pr_debug("%s: PE %x was reserved on PHB#%x\n",
175 			 __func__, pe_no, phb->hose->global_number);
176 
177 	pnv_ioda_init_pe(phb, pe_no);
178 }
179 
180 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
181 {
182 	long pe;
183 
184 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
185 		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
186 			return pnv_ioda_init_pe(phb, pe);
187 	}
188 
189 	return NULL;
190 }
191 
192 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
193 {
194 	struct pnv_phb *phb = pe->phb;
195 	unsigned int pe_num = pe->pe_number;
196 
197 	WARN_ON(pe->pdev);
198 
199 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
200 	clear_bit(pe_num, phb->ioda.pe_alloc);
201 }
202 
203 /* The default M64 BAR is shared by all PEs */
204 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
205 {
206 	const char *desc;
207 	struct resource *r;
208 	s64 rc;
209 
210 	/* Configure the default M64 BAR */
211 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
212 					 OPAL_M64_WINDOW_TYPE,
213 					 phb->ioda.m64_bar_idx,
214 					 phb->ioda.m64_base,
215 					 0, /* unused */
216 					 phb->ioda.m64_size);
217 	if (rc != OPAL_SUCCESS) {
218 		desc = "configuring";
219 		goto fail;
220 	}
221 
222 	/* Enable the default M64 BAR */
223 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
224 				      OPAL_M64_WINDOW_TYPE,
225 				      phb->ioda.m64_bar_idx,
226 				      OPAL_ENABLE_M64_SPLIT);
227 	if (rc != OPAL_SUCCESS) {
228 		desc = "enabling";
229 		goto fail;
230 	}
231 
232 	/*
233 	 * Exclude the segments for reserved and root bus PE, which
234 	 * are first or last two PEs.
235 	 */
236 	r = &phb->hose->mem_resources[1];
237 	if (phb->ioda.reserved_pe_idx == 0)
238 		r->start += (2 * phb->ioda.m64_segsize);
239 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
240 		r->end -= (2 * phb->ioda.m64_segsize);
241 	else
242 		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
243 			phb->ioda.reserved_pe_idx);
244 
245 	return 0;
246 
247 fail:
248 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
249 		rc, desc, phb->ioda.m64_bar_idx);
250 	opal_pci_phb_mmio_enable(phb->opal_id,
251 				 OPAL_M64_WINDOW_TYPE,
252 				 phb->ioda.m64_bar_idx,
253 				 OPAL_DISABLE_M64);
254 	return -EIO;
255 }
256 
257 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
258 					 unsigned long *pe_bitmap)
259 {
260 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
261 	struct pnv_phb *phb = hose->private_data;
262 	struct resource *r;
263 	resource_size_t base, sgsz, start, end;
264 	int segno, i;
265 
266 	base = phb->ioda.m64_base;
267 	sgsz = phb->ioda.m64_segsize;
268 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
269 		r = &pdev->resource[i];
270 		if (!r->parent || !pnv_pci_is_m64(phb, r))
271 			continue;
272 
273 		start = _ALIGN_DOWN(r->start - base, sgsz);
274 		end = _ALIGN_UP(r->end - base, sgsz);
275 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
276 			if (pe_bitmap)
277 				set_bit(segno, pe_bitmap);
278 			else
279 				pnv_ioda_reserve_pe(phb, segno);
280 		}
281 	}
282 }
283 
284 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
285 {
286 	struct resource *r;
287 	int index;
288 
289 	/*
290 	 * There are 16 M64 BARs, each of which has 8 segments. So
291 	 * there are as many M64 segments as the maximum number of
292 	 * PEs, which is 128.
293 	 */
294 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
295 		unsigned long base, segsz = phb->ioda.m64_segsize;
296 		int64_t rc;
297 
298 		base = phb->ioda.m64_base +
299 		       index * PNV_IODA1_M64_SEGS * segsz;
300 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
301 				OPAL_M64_WINDOW_TYPE, index, base, 0,
302 				PNV_IODA1_M64_SEGS * segsz);
303 		if (rc != OPAL_SUCCESS) {
304 			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
305 				rc, phb->hose->global_number, index);
306 			goto fail;
307 		}
308 
309 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
310 				OPAL_M64_WINDOW_TYPE, index,
311 				OPAL_ENABLE_M64_SPLIT);
312 		if (rc != OPAL_SUCCESS) {
313 			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
314 				rc, phb->hose->global_number, index);
315 			goto fail;
316 		}
317 	}
318 
319 	/*
320 	 * Exclude the segments for reserved and root bus PE, which
321 	 * are first or last two PEs.
322 	 */
323 	r = &phb->hose->mem_resources[1];
324 	if (phb->ioda.reserved_pe_idx == 0)
325 		r->start += (2 * phb->ioda.m64_segsize);
326 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
327 		r->end -= (2 * phb->ioda.m64_segsize);
328 	else
329 		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
330 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
331 
332 	return 0;
333 
334 fail:
335 	for ( ; index >= 0; index--)
336 		opal_pci_phb_mmio_enable(phb->opal_id,
337 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
338 
339 	return -EIO;
340 }
341 
342 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
343 				    unsigned long *pe_bitmap,
344 				    bool all)
345 {
346 	struct pci_dev *pdev;
347 
348 	list_for_each_entry(pdev, &bus->devices, bus_list) {
349 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
350 
351 		if (all && pdev->subordinate)
352 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
353 						pe_bitmap, all);
354 	}
355 }
356 
357 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
358 {
359 	struct pci_controller *hose = pci_bus_to_host(bus);
360 	struct pnv_phb *phb = hose->private_data;
361 	struct pnv_ioda_pe *master_pe, *pe;
362 	unsigned long size, *pe_alloc;
363 	int i;
364 
365 	/* Root bus shouldn't use M64 */
366 	if (pci_is_root_bus(bus))
367 		return NULL;
368 
369 	/* Allocate bitmap */
370 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
371 	pe_alloc = kzalloc(size, GFP_KERNEL);
372 	if (!pe_alloc) {
373 		pr_warn("%s: Out of memory !\n",
374 			__func__);
375 		return NULL;
376 	}
377 
378 	/* Figure out reserved PE numbers by the PE */
379 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
380 
381 	/*
382 	 * the current bus might not own M64 window and that's all
383 	 * contributed by its child buses. For the case, we needn't
384 	 * pick M64 dependent PE#.
385 	 */
386 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
387 		kfree(pe_alloc);
388 		return NULL;
389 	}
390 
391 	/*
392 	 * Figure out the master PE and put all slave PEs to master
393 	 * PE's list to form compound PE.
394 	 */
395 	master_pe = NULL;
396 	i = -1;
397 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
398 		phb->ioda.total_pe_num) {
399 		pe = &phb->ioda.pe_array[i];
400 
401 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
402 		if (!master_pe) {
403 			pe->flags |= PNV_IODA_PE_MASTER;
404 			INIT_LIST_HEAD(&pe->slaves);
405 			master_pe = pe;
406 		} else {
407 			pe->flags |= PNV_IODA_PE_SLAVE;
408 			pe->master = master_pe;
409 			list_add_tail(&pe->list, &master_pe->slaves);
410 		}
411 
412 		/*
413 		 * P7IOC supports M64DT, which helps mapping M64 segment
414 		 * to one particular PE#. However, PHB3 has fixed mapping
415 		 * between M64 segment and PE#. In order to have same logic
416 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
417 		 * segment and PE# on P7IOC.
418 		 */
419 		if (phb->type == PNV_PHB_IODA1) {
420 			int64_t rc;
421 
422 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
423 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
424 					pe->pe_number / PNV_IODA1_M64_SEGS,
425 					pe->pe_number % PNV_IODA1_M64_SEGS);
426 			if (rc != OPAL_SUCCESS)
427 				pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
428 					__func__, rc, phb->hose->global_number,
429 					pe->pe_number);
430 		}
431 	}
432 
433 	kfree(pe_alloc);
434 	return master_pe;
435 }
436 
437 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
438 {
439 	struct pci_controller *hose = phb->hose;
440 	struct device_node *dn = hose->dn;
441 	struct resource *res;
442 	u32 m64_range[2], i;
443 	const __be32 *r;
444 	u64 pci_addr;
445 
446 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
447 		pr_info("  Not support M64 window\n");
448 		return;
449 	}
450 
451 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
452 		pr_info("  Firmware too old to support M64 window\n");
453 		return;
454 	}
455 
456 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
457 	if (!r) {
458 		pr_info("  No <ibm,opal-m64-window> on %pOF\n",
459 			dn);
460 		return;
461 	}
462 
463 	/*
464 	 * Find the available M64 BAR range and pickup the last one for
465 	 * covering the whole 64-bits space. We support only one range.
466 	 */
467 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
468 				       m64_range, 2)) {
469 		/* In absence of the property, assume 0..15 */
470 		m64_range[0] = 0;
471 		m64_range[1] = 16;
472 	}
473 	/* We only support 64 bits in our allocator */
474 	if (m64_range[1] > 63) {
475 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
476 			__func__, m64_range[1], phb->hose->global_number);
477 		m64_range[1] = 63;
478 	}
479 	/* Empty range, no m64 */
480 	if (m64_range[1] <= m64_range[0]) {
481 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
482 			__func__, phb->hose->global_number);
483 		return;
484 	}
485 
486 	/* Configure M64 informations */
487 	res = &hose->mem_resources[1];
488 	res->name = dn->full_name;
489 	res->start = of_translate_address(dn, r + 2);
490 	res->end = res->start + of_read_number(r + 4, 2) - 1;
491 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
492 	pci_addr = of_read_number(r, 2);
493 	hose->mem_offset[1] = res->start - pci_addr;
494 
495 	phb->ioda.m64_size = resource_size(res);
496 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
497 	phb->ioda.m64_base = pci_addr;
498 
499 	/* This lines up nicely with the display from processing OF ranges */
500 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
501 		res->start, res->end, pci_addr, m64_range[0],
502 		m64_range[0] + m64_range[1] - 1);
503 
504 	/* Mark all M64 used up by default */
505 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
506 
507 	/* Use last M64 BAR to cover M64 window */
508 	m64_range[1]--;
509 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
510 
511 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
512 
513 	/* Mark remaining ones free */
514 	for (i = m64_range[0]; i < m64_range[1]; i++)
515 		clear_bit(i, &phb->ioda.m64_bar_alloc);
516 
517 	/*
518 	 * Setup init functions for M64 based on IODA version, IODA3 uses
519 	 * the IODA2 code.
520 	 */
521 	if (phb->type == PNV_PHB_IODA1)
522 		phb->init_m64 = pnv_ioda1_init_m64;
523 	else
524 		phb->init_m64 = pnv_ioda2_init_m64;
525 	phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
526 	phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
527 }
528 
529 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
530 {
531 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
532 	struct pnv_ioda_pe *slave;
533 	s64 rc;
534 
535 	/* Fetch master PE */
536 	if (pe->flags & PNV_IODA_PE_SLAVE) {
537 		pe = pe->master;
538 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
539 			return;
540 
541 		pe_no = pe->pe_number;
542 	}
543 
544 	/* Freeze master PE */
545 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
546 				     pe_no,
547 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
548 	if (rc != OPAL_SUCCESS) {
549 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
550 			__func__, rc, phb->hose->global_number, pe_no);
551 		return;
552 	}
553 
554 	/* Freeze slave PEs */
555 	if (!(pe->flags & PNV_IODA_PE_MASTER))
556 		return;
557 
558 	list_for_each_entry(slave, &pe->slaves, list) {
559 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
560 					     slave->pe_number,
561 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
562 		if (rc != OPAL_SUCCESS)
563 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
564 				__func__, rc, phb->hose->global_number,
565 				slave->pe_number);
566 	}
567 }
568 
569 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
570 {
571 	struct pnv_ioda_pe *pe, *slave;
572 	s64 rc;
573 
574 	/* Find master PE */
575 	pe = &phb->ioda.pe_array[pe_no];
576 	if (pe->flags & PNV_IODA_PE_SLAVE) {
577 		pe = pe->master;
578 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
579 		pe_no = pe->pe_number;
580 	}
581 
582 	/* Clear frozen state for master PE */
583 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
584 	if (rc != OPAL_SUCCESS) {
585 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
586 			__func__, rc, opt, phb->hose->global_number, pe_no);
587 		return -EIO;
588 	}
589 
590 	if (!(pe->flags & PNV_IODA_PE_MASTER))
591 		return 0;
592 
593 	/* Clear frozen state for slave PEs */
594 	list_for_each_entry(slave, &pe->slaves, list) {
595 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
596 					     slave->pe_number,
597 					     opt);
598 		if (rc != OPAL_SUCCESS) {
599 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
600 				__func__, rc, opt, phb->hose->global_number,
601 				slave->pe_number);
602 			return -EIO;
603 		}
604 	}
605 
606 	return 0;
607 }
608 
609 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
610 {
611 	struct pnv_ioda_pe *slave, *pe;
612 	u8 fstate, state;
613 	__be16 pcierr;
614 	s64 rc;
615 
616 	/* Sanity check on PE number */
617 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
618 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
619 
620 	/*
621 	 * Fetch the master PE and the PE instance might be
622 	 * not initialized yet.
623 	 */
624 	pe = &phb->ioda.pe_array[pe_no];
625 	if (pe->flags & PNV_IODA_PE_SLAVE) {
626 		pe = pe->master;
627 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
628 		pe_no = pe->pe_number;
629 	}
630 
631 	/* Check the master PE */
632 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
633 					&state, &pcierr, NULL);
634 	if (rc != OPAL_SUCCESS) {
635 		pr_warn("%s: Failure %lld getting "
636 			"PHB#%x-PE#%x state\n",
637 			__func__, rc,
638 			phb->hose->global_number, pe_no);
639 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
640 	}
641 
642 	/* Check the slave PE */
643 	if (!(pe->flags & PNV_IODA_PE_MASTER))
644 		return state;
645 
646 	list_for_each_entry(slave, &pe->slaves, list) {
647 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
648 						slave->pe_number,
649 						&fstate,
650 						&pcierr,
651 						NULL);
652 		if (rc != OPAL_SUCCESS) {
653 			pr_warn("%s: Failure %lld getting "
654 				"PHB#%x-PE#%x state\n",
655 				__func__, rc,
656 				phb->hose->global_number, slave->pe_number);
657 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
658 		}
659 
660 		/*
661 		 * Override the result based on the ascending
662 		 * priority.
663 		 */
664 		if (fstate > state)
665 			state = fstate;
666 	}
667 
668 	return state;
669 }
670 
671 /* Currently those 2 are only used when MSIs are enabled, this will change
672  * but in the meantime, we need to protect them to avoid warnings
673  */
674 #ifdef CONFIG_PCI_MSI
675 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
676 {
677 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
678 	struct pnv_phb *phb = hose->private_data;
679 	struct pci_dn *pdn = pci_get_pdn(dev);
680 
681 	if (!pdn)
682 		return NULL;
683 	if (pdn->pe_number == IODA_INVALID_PE)
684 		return NULL;
685 	return &phb->ioda.pe_array[pdn->pe_number];
686 }
687 #endif /* CONFIG_PCI_MSI */
688 
689 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
690 				  struct pnv_ioda_pe *parent,
691 				  struct pnv_ioda_pe *child,
692 				  bool is_add)
693 {
694 	const char *desc = is_add ? "adding" : "removing";
695 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
696 			      OPAL_REMOVE_PE_FROM_DOMAIN;
697 	struct pnv_ioda_pe *slave;
698 	long rc;
699 
700 	/* Parent PE affects child PE */
701 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
702 				child->pe_number, op);
703 	if (rc != OPAL_SUCCESS) {
704 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
705 			rc, desc);
706 		return -ENXIO;
707 	}
708 
709 	if (!(child->flags & PNV_IODA_PE_MASTER))
710 		return 0;
711 
712 	/* Compound case: parent PE affects slave PEs */
713 	list_for_each_entry(slave, &child->slaves, list) {
714 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
715 					slave->pe_number, op);
716 		if (rc != OPAL_SUCCESS) {
717 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
718 				rc, desc);
719 			return -ENXIO;
720 		}
721 	}
722 
723 	return 0;
724 }
725 
726 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
727 			      struct pnv_ioda_pe *pe,
728 			      bool is_add)
729 {
730 	struct pnv_ioda_pe *slave;
731 	struct pci_dev *pdev = NULL;
732 	int ret;
733 
734 	/*
735 	 * Clear PE frozen state. If it's master PE, we need
736 	 * clear slave PE frozen state as well.
737 	 */
738 	if (is_add) {
739 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
740 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
741 		if (pe->flags & PNV_IODA_PE_MASTER) {
742 			list_for_each_entry(slave, &pe->slaves, list)
743 				opal_pci_eeh_freeze_clear(phb->opal_id,
744 							  slave->pe_number,
745 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
746 		}
747 	}
748 
749 	/*
750 	 * Associate PE in PELT. We need add the PE into the
751 	 * corresponding PELT-V as well. Otherwise, the error
752 	 * originated from the PE might contribute to other
753 	 * PEs.
754 	 */
755 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
756 	if (ret)
757 		return ret;
758 
759 	/* For compound PEs, any one affects all of them */
760 	if (pe->flags & PNV_IODA_PE_MASTER) {
761 		list_for_each_entry(slave, &pe->slaves, list) {
762 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
763 			if (ret)
764 				return ret;
765 		}
766 	}
767 
768 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
769 		pdev = pe->pbus->self;
770 	else if (pe->flags & PNV_IODA_PE_DEV)
771 		pdev = pe->pdev->bus->self;
772 #ifdef CONFIG_PCI_IOV
773 	else if (pe->flags & PNV_IODA_PE_VF)
774 		pdev = pe->parent_dev;
775 #endif /* CONFIG_PCI_IOV */
776 	while (pdev) {
777 		struct pci_dn *pdn = pci_get_pdn(pdev);
778 		struct pnv_ioda_pe *parent;
779 
780 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
781 			parent = &phb->ioda.pe_array[pdn->pe_number];
782 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
783 			if (ret)
784 				return ret;
785 		}
786 
787 		pdev = pdev->bus->self;
788 	}
789 
790 	return 0;
791 }
792 
793 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
794 {
795 	struct pci_dev *parent;
796 	uint8_t bcomp, dcomp, fcomp;
797 	int64_t rc;
798 	long rid_end, rid;
799 
800 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
801 	if (pe->pbus) {
802 		int count;
803 
804 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
805 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
806 		parent = pe->pbus->self;
807 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
808 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
809 		else
810 			count = 1;
811 
812 		switch(count) {
813 		case  1: bcomp = OpalPciBusAll;         break;
814 		case  2: bcomp = OpalPciBus7Bits;       break;
815 		case  4: bcomp = OpalPciBus6Bits;       break;
816 		case  8: bcomp = OpalPciBus5Bits;       break;
817 		case 16: bcomp = OpalPciBus4Bits;       break;
818 		case 32: bcomp = OpalPciBus3Bits;       break;
819 		default:
820 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
821 			        count);
822 			/* Do an exact match only */
823 			bcomp = OpalPciBusAll;
824 		}
825 		rid_end = pe->rid + (count << 8);
826 	} else {
827 #ifdef CONFIG_PCI_IOV
828 		if (pe->flags & PNV_IODA_PE_VF)
829 			parent = pe->parent_dev;
830 		else
831 #endif
832 			parent = pe->pdev->bus->self;
833 		bcomp = OpalPciBusAll;
834 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
835 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
836 		rid_end = pe->rid + 1;
837 	}
838 
839 	/* Clear the reverse map */
840 	for (rid = pe->rid; rid < rid_end; rid++)
841 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
842 
843 	/* Release from all parents PELT-V */
844 	while (parent) {
845 		struct pci_dn *pdn = pci_get_pdn(parent);
846 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
847 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
848 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
849 			/* XXX What to do in case of error ? */
850 		}
851 		parent = parent->bus->self;
852 	}
853 
854 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
855 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
856 
857 	/* Disassociate PE in PELT */
858 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
859 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
860 	if (rc)
861 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
862 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
863 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
864 	if (rc)
865 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
866 
867 	pe->pbus = NULL;
868 	pe->pdev = NULL;
869 #ifdef CONFIG_PCI_IOV
870 	pe->parent_dev = NULL;
871 #endif
872 
873 	return 0;
874 }
875 
876 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
877 {
878 	struct pci_dev *parent;
879 	uint8_t bcomp, dcomp, fcomp;
880 	long rc, rid_end, rid;
881 
882 	/* Bus validation ? */
883 	if (pe->pbus) {
884 		int count;
885 
886 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
887 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
888 		parent = pe->pbus->self;
889 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
890 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
891 		else
892 			count = 1;
893 
894 		switch(count) {
895 		case  1: bcomp = OpalPciBusAll;		break;
896 		case  2: bcomp = OpalPciBus7Bits;	break;
897 		case  4: bcomp = OpalPciBus6Bits;	break;
898 		case  8: bcomp = OpalPciBus5Bits;	break;
899 		case 16: bcomp = OpalPciBus4Bits;	break;
900 		case 32: bcomp = OpalPciBus3Bits;	break;
901 		default:
902 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
903 			        count);
904 			/* Do an exact match only */
905 			bcomp = OpalPciBusAll;
906 		}
907 		rid_end = pe->rid + (count << 8);
908 	} else {
909 #ifdef CONFIG_PCI_IOV
910 		if (pe->flags & PNV_IODA_PE_VF)
911 			parent = pe->parent_dev;
912 		else
913 #endif /* CONFIG_PCI_IOV */
914 			parent = pe->pdev->bus->self;
915 		bcomp = OpalPciBusAll;
916 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
917 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
918 		rid_end = pe->rid + 1;
919 	}
920 
921 	/*
922 	 * Associate PE in PELT. We need add the PE into the
923 	 * corresponding PELT-V as well. Otherwise, the error
924 	 * originated from the PE might contribute to other
925 	 * PEs.
926 	 */
927 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
928 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
929 	if (rc) {
930 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
931 		return -ENXIO;
932 	}
933 
934 	/*
935 	 * Configure PELTV. NPUs don't have a PELTV table so skip
936 	 * configuration on them.
937 	 */
938 	if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
939 		pnv_ioda_set_peltv(phb, pe, true);
940 
941 	/* Setup reverse map */
942 	for (rid = pe->rid; rid < rid_end; rid++)
943 		phb->ioda.pe_rmap[rid] = pe->pe_number;
944 
945 	/* Setup one MVTs on IODA1 */
946 	if (phb->type != PNV_PHB_IODA1) {
947 		pe->mve_number = 0;
948 		goto out;
949 	}
950 
951 	pe->mve_number = pe->pe_number;
952 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
953 	if (rc != OPAL_SUCCESS) {
954 		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
955 		       rc, pe->mve_number);
956 		pe->mve_number = -1;
957 	} else {
958 		rc = opal_pci_set_mve_enable(phb->opal_id,
959 					     pe->mve_number, OPAL_ENABLE_MVE);
960 		if (rc) {
961 			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
962 			       rc, pe->mve_number);
963 			pe->mve_number = -1;
964 		}
965 	}
966 
967 out:
968 	return 0;
969 }
970 
971 #ifdef CONFIG_PCI_IOV
972 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
973 {
974 	struct pci_dn *pdn = pci_get_pdn(dev);
975 	int i;
976 	struct resource *res, res2;
977 	resource_size_t size;
978 	u16 num_vfs;
979 
980 	if (!dev->is_physfn)
981 		return -EINVAL;
982 
983 	/*
984 	 * "offset" is in VFs.  The M64 windows are sized so that when they
985 	 * are segmented, each segment is the same size as the IOV BAR.
986 	 * Each segment is in a separate PE, and the high order bits of the
987 	 * address are the PE number.  Therefore, each VF's BAR is in a
988 	 * separate PE, and changing the IOV BAR start address changes the
989 	 * range of PEs the VFs are in.
990 	 */
991 	num_vfs = pdn->num_vfs;
992 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
993 		res = &dev->resource[i + PCI_IOV_RESOURCES];
994 		if (!res->flags || !res->parent)
995 			continue;
996 
997 		/*
998 		 * The actual IOV BAR range is determined by the start address
999 		 * and the actual size for num_vfs VFs BAR.  This check is to
1000 		 * make sure that after shifting, the range will not overlap
1001 		 * with another device.
1002 		 */
1003 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1004 		res2.flags = res->flags;
1005 		res2.start = res->start + (size * offset);
1006 		res2.end = res2.start + (size * num_vfs) - 1;
1007 
1008 		if (res2.end > res->end) {
1009 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
1010 				i, &res2, res, num_vfs, offset);
1011 			return -EBUSY;
1012 		}
1013 	}
1014 
1015 	/*
1016 	 * Since M64 BAR shares segments among all possible 256 PEs,
1017 	 * we have to shift the beginning of PF IOV BAR to make it start from
1018 	 * the segment which belongs to the PE number assigned to the first VF.
1019 	 * This creates a "hole" in the /proc/iomem which could be used for
1020 	 * allocating other resources so we reserve this area below and
1021 	 * release when IOV is released.
1022 	 */
1023 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1024 		res = &dev->resource[i + PCI_IOV_RESOURCES];
1025 		if (!res->flags || !res->parent)
1026 			continue;
1027 
1028 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1029 		res2 = *res;
1030 		res->start += size * offset;
1031 
1032 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1033 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
1034 			 num_vfs, offset);
1035 
1036 		if (offset < 0) {
1037 			devm_release_resource(&dev->dev, &pdn->holes[i]);
1038 			memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1039 		}
1040 
1041 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1042 
1043 		if (offset > 0) {
1044 			pdn->holes[i].start = res2.start;
1045 			pdn->holes[i].end = res2.start + size * offset - 1;
1046 			pdn->holes[i].flags = IORESOURCE_BUS;
1047 			pdn->holes[i].name = "pnv_iov_reserved";
1048 			devm_request_resource(&dev->dev, res->parent,
1049 					&pdn->holes[i]);
1050 		}
1051 	}
1052 	return 0;
1053 }
1054 #endif /* CONFIG_PCI_IOV */
1055 
1056 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1057 {
1058 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1059 	struct pnv_phb *phb = hose->private_data;
1060 	struct pci_dn *pdn = pci_get_pdn(dev);
1061 	struct pnv_ioda_pe *pe;
1062 
1063 	if (!pdn) {
1064 		pr_err("%s: Device tree node not associated properly\n",
1065 			   pci_name(dev));
1066 		return NULL;
1067 	}
1068 	if (pdn->pe_number != IODA_INVALID_PE)
1069 		return NULL;
1070 
1071 	pe = pnv_ioda_alloc_pe(phb);
1072 	if (!pe) {
1073 		pr_warn("%s: Not enough PE# available, disabling device\n",
1074 			pci_name(dev));
1075 		return NULL;
1076 	}
1077 
1078 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1079 	 * pointer in the PE data structure, both should be destroyed at the
1080 	 * same time. However, this needs to be looked at more closely again
1081 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
1082 	 *
1083 	 * At some point we want to remove the PDN completely anyways
1084 	 */
1085 	pci_dev_get(dev);
1086 	pdn->pe_number = pe->pe_number;
1087 	pe->flags = PNV_IODA_PE_DEV;
1088 	pe->pdev = dev;
1089 	pe->pbus = NULL;
1090 	pe->mve_number = -1;
1091 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1092 
1093 	pe_info(pe, "Associated device to PE\n");
1094 
1095 	if (pnv_ioda_configure_pe(phb, pe)) {
1096 		/* XXX What do we do here ? */
1097 		pnv_ioda_free_pe(pe);
1098 		pdn->pe_number = IODA_INVALID_PE;
1099 		pe->pdev = NULL;
1100 		pci_dev_put(dev);
1101 		return NULL;
1102 	}
1103 
1104 	/* Put PE to the list */
1105 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1106 
1107 	return pe;
1108 }
1109 
1110 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1111 {
1112 	struct pci_dev *dev;
1113 
1114 	list_for_each_entry(dev, &bus->devices, bus_list) {
1115 		struct pci_dn *pdn = pci_get_pdn(dev);
1116 
1117 		if (pdn == NULL) {
1118 			pr_warn("%s: No device node associated with device !\n",
1119 				pci_name(dev));
1120 			continue;
1121 		}
1122 
1123 		/*
1124 		 * In partial hotplug case, the PCI device might be still
1125 		 * associated with the PE and needn't attach it to the PE
1126 		 * again.
1127 		 */
1128 		if (pdn->pe_number != IODA_INVALID_PE)
1129 			continue;
1130 
1131 		pe->device_count++;
1132 		pdn->pe_number = pe->pe_number;
1133 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1134 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1135 	}
1136 }
1137 
1138 /*
1139  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1140  * single PCI bus. Another one that contains the primary PCI bus and its
1141  * subordinate PCI devices and buses. The second type of PE is normally
1142  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1143  */
1144 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1145 {
1146 	struct pci_controller *hose = pci_bus_to_host(bus);
1147 	struct pnv_phb *phb = hose->private_data;
1148 	struct pnv_ioda_pe *pe = NULL;
1149 	unsigned int pe_num;
1150 
1151 	/*
1152 	 * In partial hotplug case, the PE instance might be still alive.
1153 	 * We should reuse it instead of allocating a new one.
1154 	 */
1155 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1156 	if (pe_num != IODA_INVALID_PE) {
1157 		pe = &phb->ioda.pe_array[pe_num];
1158 		pnv_ioda_setup_same_PE(bus, pe);
1159 		return NULL;
1160 	}
1161 
1162 	/* PE number for root bus should have been reserved */
1163 	if (pci_is_root_bus(bus) &&
1164 	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
1165 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1166 
1167 	/* Check if PE is determined by M64 */
1168 	if (!pe && phb->pick_m64_pe)
1169 		pe = phb->pick_m64_pe(bus, all);
1170 
1171 	/* The PE number isn't pinned by M64 */
1172 	if (!pe)
1173 		pe = pnv_ioda_alloc_pe(phb);
1174 
1175 	if (!pe) {
1176 		pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1177 			__func__, pci_domain_nr(bus), bus->number);
1178 		return NULL;
1179 	}
1180 
1181 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1182 	pe->pbus = bus;
1183 	pe->pdev = NULL;
1184 	pe->mve_number = -1;
1185 	pe->rid = bus->busn_res.start << 8;
1186 
1187 	if (all)
1188 		pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1189 			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1190 	else
1191 		pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1192 			bus->busn_res.start, pe->pe_number);
1193 
1194 	if (pnv_ioda_configure_pe(phb, pe)) {
1195 		/* XXX What do we do here ? */
1196 		pnv_ioda_free_pe(pe);
1197 		pe->pbus = NULL;
1198 		return NULL;
1199 	}
1200 
1201 	/* Associate it with all child devices */
1202 	pnv_ioda_setup_same_PE(bus, pe);
1203 
1204 	/* Put PE to the list */
1205 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1206 
1207 	return pe;
1208 }
1209 
1210 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1211 {
1212 	int pe_num, found_pe = false, rc;
1213 	long rid;
1214 	struct pnv_ioda_pe *pe;
1215 	struct pci_dev *gpu_pdev;
1216 	struct pci_dn *npu_pdn;
1217 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1218 	struct pnv_phb *phb = hose->private_data;
1219 
1220 	/*
1221 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1222 	 * error handling. This means we only have three PEs remaining
1223 	 * which need to be assigned to four links, implying some
1224 	 * links must share PEs.
1225 	 *
1226 	 * To achieve this we assign PEs such that NPUs linking the
1227 	 * same GPU get assigned the same PE.
1228 	 */
1229 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1230 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1231 		pe = &phb->ioda.pe_array[pe_num];
1232 		if (!pe->pdev)
1233 			continue;
1234 
1235 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1236 			/*
1237 			 * This device has the same peer GPU so should
1238 			 * be assigned the same PE as the existing
1239 			 * peer NPU.
1240 			 */
1241 			dev_info(&npu_pdev->dev,
1242 				"Associating to existing PE %x\n", pe_num);
1243 			pci_dev_get(npu_pdev);
1244 			npu_pdn = pci_get_pdn(npu_pdev);
1245 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1246 			npu_pdn->pe_number = pe_num;
1247 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1248 
1249 			/* Map the PE to this link */
1250 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1251 					OpalPciBusAll,
1252 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1253 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1254 					OPAL_MAP_PE);
1255 			WARN_ON(rc != OPAL_SUCCESS);
1256 			found_pe = true;
1257 			break;
1258 		}
1259 	}
1260 
1261 	if (!found_pe)
1262 		/*
1263 		 * Could not find an existing PE so allocate a new
1264 		 * one.
1265 		 */
1266 		return pnv_ioda_setup_dev_PE(npu_pdev);
1267 	else
1268 		return pe;
1269 }
1270 
1271 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1272 {
1273 	struct pci_dev *pdev;
1274 
1275 	list_for_each_entry(pdev, &bus->devices, bus_list)
1276 		pnv_ioda_setup_npu_PE(pdev);
1277 }
1278 
1279 static void pnv_pci_ioda_setup_PEs(void)
1280 {
1281 	struct pci_controller *hose, *tmp;
1282 	struct pnv_phb *phb;
1283 	struct pci_bus *bus;
1284 	struct pci_dev *pdev;
1285 
1286 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1287 		phb = hose->private_data;
1288 		if (phb->type == PNV_PHB_NPU_NVLINK) {
1289 			/* PE#0 is needed for error reporting */
1290 			pnv_ioda_reserve_pe(phb, 0);
1291 			pnv_ioda_setup_npu_PEs(hose->bus);
1292 			if (phb->model == PNV_PHB_MODEL_NPU2)
1293 				pnv_npu2_init(phb);
1294 		}
1295 		if (phb->type == PNV_PHB_NPU_OCAPI) {
1296 			bus = hose->bus;
1297 			list_for_each_entry(pdev, &bus->devices, bus_list)
1298 				pnv_ioda_setup_dev_PE(pdev);
1299 		}
1300 	}
1301 }
1302 
1303 #ifdef CONFIG_PCI_IOV
1304 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1305 {
1306 	struct pci_bus        *bus;
1307 	struct pci_controller *hose;
1308 	struct pnv_phb        *phb;
1309 	struct pci_dn         *pdn;
1310 	int                    i, j;
1311 	int                    m64_bars;
1312 
1313 	bus = pdev->bus;
1314 	hose = pci_bus_to_host(bus);
1315 	phb = hose->private_data;
1316 	pdn = pci_get_pdn(pdev);
1317 
1318 	if (pdn->m64_single_mode)
1319 		m64_bars = num_vfs;
1320 	else
1321 		m64_bars = 1;
1322 
1323 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1324 		for (j = 0; j < m64_bars; j++) {
1325 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1326 				continue;
1327 			opal_pci_phb_mmio_enable(phb->opal_id,
1328 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1329 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1330 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1331 		}
1332 
1333 	kfree(pdn->m64_map);
1334 	return 0;
1335 }
1336 
1337 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1338 {
1339 	struct pci_bus        *bus;
1340 	struct pci_controller *hose;
1341 	struct pnv_phb        *phb;
1342 	struct pci_dn         *pdn;
1343 	unsigned int           win;
1344 	struct resource       *res;
1345 	int                    i, j;
1346 	int64_t                rc;
1347 	int                    total_vfs;
1348 	resource_size_t        size, start;
1349 	int                    pe_num;
1350 	int                    m64_bars;
1351 
1352 	bus = pdev->bus;
1353 	hose = pci_bus_to_host(bus);
1354 	phb = hose->private_data;
1355 	pdn = pci_get_pdn(pdev);
1356 	total_vfs = pci_sriov_get_totalvfs(pdev);
1357 
1358 	if (pdn->m64_single_mode)
1359 		m64_bars = num_vfs;
1360 	else
1361 		m64_bars = 1;
1362 
1363 	pdn->m64_map = kmalloc_array(m64_bars,
1364 				     sizeof(*pdn->m64_map),
1365 				     GFP_KERNEL);
1366 	if (!pdn->m64_map)
1367 		return -ENOMEM;
1368 	/* Initialize the m64_map to IODA_INVALID_M64 */
1369 	for (i = 0; i < m64_bars ; i++)
1370 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1371 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1372 
1373 
1374 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1375 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1376 		if (!res->flags || !res->parent)
1377 			continue;
1378 
1379 		for (j = 0; j < m64_bars; j++) {
1380 			do {
1381 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1382 						phb->ioda.m64_bar_idx + 1, 0);
1383 
1384 				if (win >= phb->ioda.m64_bar_idx + 1)
1385 					goto m64_failed;
1386 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1387 
1388 			pdn->m64_map[j][i] = win;
1389 
1390 			if (pdn->m64_single_mode) {
1391 				size = pci_iov_resource_size(pdev,
1392 							PCI_IOV_RESOURCES + i);
1393 				start = res->start + size * j;
1394 			} else {
1395 				size = resource_size(res);
1396 				start = res->start;
1397 			}
1398 
1399 			/* Map the M64 here */
1400 			if (pdn->m64_single_mode) {
1401 				pe_num = pdn->pe_num_map[j];
1402 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1403 						pe_num, OPAL_M64_WINDOW_TYPE,
1404 						pdn->m64_map[j][i], 0);
1405 			}
1406 
1407 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1408 						 OPAL_M64_WINDOW_TYPE,
1409 						 pdn->m64_map[j][i],
1410 						 start,
1411 						 0, /* unused */
1412 						 size);
1413 
1414 
1415 			if (rc != OPAL_SUCCESS) {
1416 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1417 					win, rc);
1418 				goto m64_failed;
1419 			}
1420 
1421 			if (pdn->m64_single_mode)
1422 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1423 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1424 			else
1425 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1426 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1427 
1428 			if (rc != OPAL_SUCCESS) {
1429 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1430 					win, rc);
1431 				goto m64_failed;
1432 			}
1433 		}
1434 	}
1435 	return 0;
1436 
1437 m64_failed:
1438 	pnv_pci_vf_release_m64(pdev, num_vfs);
1439 	return -EBUSY;
1440 }
1441 
1442 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1443 		int num);
1444 
1445 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1446 {
1447 	struct iommu_table    *tbl;
1448 	int64_t               rc;
1449 
1450 	tbl = pe->table_group.tables[0];
1451 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1452 	if (rc)
1453 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1454 
1455 	pnv_pci_ioda2_set_bypass(pe, false);
1456 	if (pe->table_group.group) {
1457 		iommu_group_put(pe->table_group.group);
1458 		BUG_ON(pe->table_group.group);
1459 	}
1460 	iommu_tce_table_put(tbl);
1461 }
1462 
1463 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1464 {
1465 	struct pci_bus        *bus;
1466 	struct pci_controller *hose;
1467 	struct pnv_phb        *phb;
1468 	struct pnv_ioda_pe    *pe, *pe_n;
1469 	struct pci_dn         *pdn;
1470 
1471 	bus = pdev->bus;
1472 	hose = pci_bus_to_host(bus);
1473 	phb = hose->private_data;
1474 	pdn = pci_get_pdn(pdev);
1475 
1476 	if (!pdev->is_physfn)
1477 		return;
1478 
1479 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1480 		if (pe->parent_dev != pdev)
1481 			continue;
1482 
1483 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1484 
1485 		/* Remove from list */
1486 		mutex_lock(&phb->ioda.pe_list_mutex);
1487 		list_del(&pe->list);
1488 		mutex_unlock(&phb->ioda.pe_list_mutex);
1489 
1490 		pnv_ioda_deconfigure_pe(phb, pe);
1491 
1492 		pnv_ioda_free_pe(pe);
1493 	}
1494 }
1495 
1496 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1497 {
1498 	struct pci_bus        *bus;
1499 	struct pci_controller *hose;
1500 	struct pnv_phb        *phb;
1501 	struct pnv_ioda_pe    *pe;
1502 	struct pci_dn         *pdn;
1503 	u16                    num_vfs, i;
1504 
1505 	bus = pdev->bus;
1506 	hose = pci_bus_to_host(bus);
1507 	phb = hose->private_data;
1508 	pdn = pci_get_pdn(pdev);
1509 	num_vfs = pdn->num_vfs;
1510 
1511 	/* Release VF PEs */
1512 	pnv_ioda_release_vf_PE(pdev);
1513 
1514 	if (phb->type == PNV_PHB_IODA2) {
1515 		if (!pdn->m64_single_mode)
1516 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1517 
1518 		/* Release M64 windows */
1519 		pnv_pci_vf_release_m64(pdev, num_vfs);
1520 
1521 		/* Release PE numbers */
1522 		if (pdn->m64_single_mode) {
1523 			for (i = 0; i < num_vfs; i++) {
1524 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1525 					continue;
1526 
1527 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1528 				pnv_ioda_free_pe(pe);
1529 			}
1530 		} else
1531 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1532 		/* Releasing pe_num_map */
1533 		kfree(pdn->pe_num_map);
1534 	}
1535 }
1536 
1537 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1538 				       struct pnv_ioda_pe *pe);
1539 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1540 {
1541 	struct pci_bus        *bus;
1542 	struct pci_controller *hose;
1543 	struct pnv_phb        *phb;
1544 	struct pnv_ioda_pe    *pe;
1545 	int                    pe_num;
1546 	u16                    vf_index;
1547 	struct pci_dn         *pdn;
1548 
1549 	bus = pdev->bus;
1550 	hose = pci_bus_to_host(bus);
1551 	phb = hose->private_data;
1552 	pdn = pci_get_pdn(pdev);
1553 
1554 	if (!pdev->is_physfn)
1555 		return;
1556 
1557 	/* Reserve PE for each VF */
1558 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1559 		if (pdn->m64_single_mode)
1560 			pe_num = pdn->pe_num_map[vf_index];
1561 		else
1562 			pe_num = *pdn->pe_num_map + vf_index;
1563 
1564 		pe = &phb->ioda.pe_array[pe_num];
1565 		pe->pe_number = pe_num;
1566 		pe->phb = phb;
1567 		pe->flags = PNV_IODA_PE_VF;
1568 		pe->pbus = NULL;
1569 		pe->parent_dev = pdev;
1570 		pe->mve_number = -1;
1571 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1572 			   pci_iov_virtfn_devfn(pdev, vf_index);
1573 
1574 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1575 			hose->global_number, pdev->bus->number,
1576 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1577 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1578 
1579 		if (pnv_ioda_configure_pe(phb, pe)) {
1580 			/* XXX What do we do here ? */
1581 			pnv_ioda_free_pe(pe);
1582 			pe->pdev = NULL;
1583 			continue;
1584 		}
1585 
1586 		/* Put PE to the list */
1587 		mutex_lock(&phb->ioda.pe_list_mutex);
1588 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1589 		mutex_unlock(&phb->ioda.pe_list_mutex);
1590 
1591 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1592 	}
1593 }
1594 
1595 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1596 {
1597 	struct pci_bus        *bus;
1598 	struct pci_controller *hose;
1599 	struct pnv_phb        *phb;
1600 	struct pnv_ioda_pe    *pe;
1601 	struct pci_dn         *pdn;
1602 	int                    ret;
1603 	u16                    i;
1604 
1605 	bus = pdev->bus;
1606 	hose = pci_bus_to_host(bus);
1607 	phb = hose->private_data;
1608 	pdn = pci_get_pdn(pdev);
1609 
1610 	if (phb->type == PNV_PHB_IODA2) {
1611 		if (!pdn->vfs_expanded) {
1612 			dev_info(&pdev->dev, "don't support this SRIOV device"
1613 				" with non 64bit-prefetchable IOV BAR\n");
1614 			return -ENOSPC;
1615 		}
1616 
1617 		/*
1618 		 * When M64 BARs functions in Single PE mode, the number of VFs
1619 		 * could be enabled must be less than the number of M64 BARs.
1620 		 */
1621 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1622 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1623 			return -EBUSY;
1624 		}
1625 
1626 		/* Allocating pe_num_map */
1627 		if (pdn->m64_single_mode)
1628 			pdn->pe_num_map = kmalloc_array(num_vfs,
1629 							sizeof(*pdn->pe_num_map),
1630 							GFP_KERNEL);
1631 		else
1632 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1633 
1634 		if (!pdn->pe_num_map)
1635 			return -ENOMEM;
1636 
1637 		if (pdn->m64_single_mode)
1638 			for (i = 0; i < num_vfs; i++)
1639 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1640 
1641 		/* Calculate available PE for required VFs */
1642 		if (pdn->m64_single_mode) {
1643 			for (i = 0; i < num_vfs; i++) {
1644 				pe = pnv_ioda_alloc_pe(phb);
1645 				if (!pe) {
1646 					ret = -EBUSY;
1647 					goto m64_failed;
1648 				}
1649 
1650 				pdn->pe_num_map[i] = pe->pe_number;
1651 			}
1652 		} else {
1653 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1654 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1655 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1656 				0, num_vfs, 0);
1657 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1658 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1659 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1660 				kfree(pdn->pe_num_map);
1661 				return -EBUSY;
1662 			}
1663 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1664 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1665 		}
1666 		pdn->num_vfs = num_vfs;
1667 
1668 		/* Assign M64 window accordingly */
1669 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1670 		if (ret) {
1671 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1672 			goto m64_failed;
1673 		}
1674 
1675 		/*
1676 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1677 		 * the IOV BAR according to the PE# allocated to the VFs.
1678 		 * Otherwise, the PE# for the VF will conflict with others.
1679 		 */
1680 		if (!pdn->m64_single_mode) {
1681 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1682 			if (ret)
1683 				goto m64_failed;
1684 		}
1685 	}
1686 
1687 	/* Setup VF PEs */
1688 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1689 
1690 	return 0;
1691 
1692 m64_failed:
1693 	if (pdn->m64_single_mode) {
1694 		for (i = 0; i < num_vfs; i++) {
1695 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1696 				continue;
1697 
1698 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1699 			pnv_ioda_free_pe(pe);
1700 		}
1701 	} else
1702 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1703 
1704 	/* Releasing pe_num_map */
1705 	kfree(pdn->pe_num_map);
1706 
1707 	return ret;
1708 }
1709 
1710 int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
1711 {
1712 	pnv_pci_sriov_disable(pdev);
1713 
1714 	/* Release PCI data */
1715 	remove_dev_pci_data(pdev);
1716 	return 0;
1717 }
1718 
1719 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1720 {
1721 	/* Allocate PCI data */
1722 	add_dev_pci_data(pdev);
1723 
1724 	return pnv_pci_sriov_enable(pdev, num_vfs);
1725 }
1726 #endif /* CONFIG_PCI_IOV */
1727 
1728 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1729 {
1730 	struct pci_dn *pdn = pci_get_pdn(pdev);
1731 	struct pnv_ioda_pe *pe;
1732 
1733 	/*
1734 	 * The function can be called while the PE#
1735 	 * hasn't been assigned. Do nothing for the
1736 	 * case.
1737 	 */
1738 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1739 		return;
1740 
1741 	pe = &phb->ioda.pe_array[pdn->pe_number];
1742 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1743 	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1744 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1745 	/*
1746 	 * Note: iommu_add_device() will fail here as
1747 	 * for physical PE: the device is already added by now;
1748 	 * for virtual PE: sysfs entries are not ready yet and
1749 	 * tce_iommu_bus_notifier will add the device to a group later.
1750 	 */
1751 }
1752 
1753 static bool pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe *pe)
1754 {
1755 	unsigned short vendor = 0;
1756 	struct pci_dev *pdev;
1757 
1758 	if (pe->device_count == 1)
1759 		return true;
1760 
1761 	/* pe->pdev should be set if it's a single device, pe->pbus if not */
1762 	if (!pe->pbus)
1763 		return true;
1764 
1765 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
1766 		if (!vendor) {
1767 			vendor = pdev->vendor;
1768 			continue;
1769 		}
1770 
1771 		if (pdev->vendor != vendor)
1772 			return false;
1773 	}
1774 
1775 	return true;
1776 }
1777 
1778 /*
1779  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1780  *
1781  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1782  * Devices can only access more than that if bit 59 of the PCI address is set
1783  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1784  * Many PCI devices are not capable of addressing that many bits, and as a
1785  * result are limited to the 4GB of virtual memory made available to 32-bit
1786  * devices in TVE#0.
1787  *
1788  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1789  * devices by configuring the virtual memory past the first 4GB inaccessible
1790  * by 64-bit DMAs.  This should only be used by devices that want more than
1791  * 4GB, and only on PEs that have no 32-bit devices.
1792  *
1793  * Currently this will only work on PHB3 (POWER8).
1794  */
1795 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1796 {
1797 	u64 window_size, table_size, tce_count, addr;
1798 	struct page *table_pages;
1799 	u64 tce_order = 28; /* 256MB TCEs */
1800 	__be64 *tces;
1801 	s64 rc;
1802 
1803 	/*
1804 	 * Window size needs to be a power of two, but needs to account for
1805 	 * shifting memory by the 4GB offset required to skip 32bit space.
1806 	 */
1807 	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1808 	tce_count = window_size >> tce_order;
1809 	table_size = tce_count << 3;
1810 
1811 	if (table_size < PAGE_SIZE)
1812 		table_size = PAGE_SIZE;
1813 
1814 	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1815 				       get_order(table_size));
1816 	if (!table_pages)
1817 		goto err;
1818 
1819 	tces = page_address(table_pages);
1820 	if (!tces)
1821 		goto err;
1822 
1823 	memset(tces, 0, table_size);
1824 
1825 	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1826 		tces[(addr + (1ULL << 32)) >> tce_order] =
1827 			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1828 	}
1829 
1830 	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1831 					pe->pe_number,
1832 					/* reconfigure window 0 */
1833 					(pe->pe_number << 1) + 0,
1834 					1,
1835 					__pa(tces),
1836 					table_size,
1837 					1 << tce_order);
1838 	if (rc == OPAL_SUCCESS) {
1839 		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1840 		return 0;
1841 	}
1842 err:
1843 	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1844 	return -EIO;
1845 }
1846 
1847 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1848 {
1849 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1850 	struct pnv_phb *phb = hose->private_data;
1851 	struct pci_dn *pdn = pci_get_pdn(pdev);
1852 	struct pnv_ioda_pe *pe;
1853 	uint64_t top;
1854 	bool bypass = false;
1855 	s64 rc;
1856 
1857 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1858 		return -ENODEV;
1859 
1860 	pe = &phb->ioda.pe_array[pdn->pe_number];
1861 	if (pe->tce_bypass_enabled) {
1862 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1863 		bypass = (dma_mask >= top);
1864 	}
1865 
1866 	if (bypass) {
1867 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1868 		set_dma_ops(&pdev->dev, &dma_nommu_ops);
1869 	} else {
1870 		/*
1871 		 * If the device can't set the TCE bypass bit but still wants
1872 		 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1873 		 * bypass the 32-bit region and be usable for 64-bit DMAs.
1874 		 * The device needs to be able to address all of this space.
1875 		 */
1876 		if (dma_mask >> 32 &&
1877 		    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1878 		    pnv_pci_ioda_pe_single_vendor(pe) &&
1879 		    phb->model == PNV_PHB_MODEL_PHB3) {
1880 			/* Configure the bypass mode */
1881 			rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1882 			if (rc)
1883 				return rc;
1884 			/* 4GB offset bypasses 32-bit space */
1885 			set_dma_offset(&pdev->dev, (1ULL << 32));
1886 			set_dma_ops(&pdev->dev, &dma_nommu_ops);
1887 		} else if (dma_mask >> 32 && dma_mask != DMA_BIT_MASK(64)) {
1888 			/*
1889 			 * Fail the request if a DMA mask between 32 and 64 bits
1890 			 * was requested but couldn't be fulfilled. Ideally we
1891 			 * would do this for 64-bits but historically we have
1892 			 * always fallen back to 32-bits.
1893 			 */
1894 			return -ENOMEM;
1895 		} else {
1896 			dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1897 			set_dma_ops(&pdev->dev, &dma_iommu_ops);
1898 		}
1899 	}
1900 	*pdev->dev.dma_mask = dma_mask;
1901 
1902 	/* Update peer npu devices */
1903 	pnv_npu_try_dma_set_bypass(pdev, bypass);
1904 
1905 	return 0;
1906 }
1907 
1908 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1909 {
1910 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1911 	struct pnv_phb *phb = hose->private_data;
1912 	struct pci_dn *pdn = pci_get_pdn(pdev);
1913 	struct pnv_ioda_pe *pe;
1914 	u64 end, mask;
1915 
1916 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1917 		return 0;
1918 
1919 	pe = &phb->ioda.pe_array[pdn->pe_number];
1920 	if (!pe->tce_bypass_enabled)
1921 		return __dma_get_required_mask(&pdev->dev);
1922 
1923 
1924 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1925 	mask = 1ULL << (fls64(end) - 1);
1926 	mask += mask - 1;
1927 
1928 	return mask;
1929 }
1930 
1931 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1932 				   struct pci_bus *bus,
1933 				   bool add_to_group)
1934 {
1935 	struct pci_dev *dev;
1936 
1937 	list_for_each_entry(dev, &bus->devices, bus_list) {
1938 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1939 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1940 		if (add_to_group)
1941 			iommu_add_device(&dev->dev);
1942 
1943 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1944 			pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1945 					add_to_group);
1946 	}
1947 }
1948 
1949 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1950 						     bool real_mode)
1951 {
1952 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1953 		(phb->regs + 0x210);
1954 }
1955 
1956 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1957 		unsigned long index, unsigned long npages, bool rm)
1958 {
1959 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1960 			&tbl->it_group_list, struct iommu_table_group_link,
1961 			next);
1962 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1963 			struct pnv_ioda_pe, table_group);
1964 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1965 	unsigned long start, end, inc;
1966 
1967 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1968 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1969 			npages - 1);
1970 
1971 	/* p7ioc-style invalidation, 2 TCEs per write */
1972 	start |= (1ull << 63);
1973 	end |= (1ull << 63);
1974 	inc = 16;
1975         end |= inc - 1;	/* round up end to be different than start */
1976 
1977         mb(); /* Ensure above stores are visible */
1978         while (start <= end) {
1979 		if (rm)
1980 			__raw_rm_writeq_be(start, invalidate);
1981 		else
1982 			__raw_writeq_be(start, invalidate);
1983 
1984                 start += inc;
1985         }
1986 
1987 	/*
1988 	 * The iommu layer will do another mb() for us on build()
1989 	 * and we don't care on free()
1990 	 */
1991 }
1992 
1993 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1994 		long npages, unsigned long uaddr,
1995 		enum dma_data_direction direction,
1996 		unsigned long attrs)
1997 {
1998 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1999 			attrs);
2000 
2001 	if (!ret)
2002 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2003 
2004 	return ret;
2005 }
2006 
2007 #ifdef CONFIG_IOMMU_API
2008 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
2009 		unsigned long *hpa, enum dma_data_direction *direction)
2010 {
2011 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2012 
2013 	if (!ret)
2014 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
2015 
2016 	return ret;
2017 }
2018 
2019 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
2020 		unsigned long *hpa, enum dma_data_direction *direction)
2021 {
2022 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2023 
2024 	if (!ret)
2025 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
2026 
2027 	return ret;
2028 }
2029 #endif
2030 
2031 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
2032 		long npages)
2033 {
2034 	pnv_tce_free(tbl, index, npages);
2035 
2036 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2037 }
2038 
2039 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
2040 	.set = pnv_ioda1_tce_build,
2041 #ifdef CONFIG_IOMMU_API
2042 	.exchange = pnv_ioda1_tce_xchg,
2043 	.exchange_rm = pnv_ioda1_tce_xchg_rm,
2044 #endif
2045 	.clear = pnv_ioda1_tce_free,
2046 	.get = pnv_tce_get,
2047 };
2048 
2049 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
2050 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
2051 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
2052 
2053 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2054 {
2055 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
2056 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
2057 
2058 	mb(); /* Ensure previous TCE table stores are visible */
2059 	if (rm)
2060 		__raw_rm_writeq_be(val, invalidate);
2061 	else
2062 		__raw_writeq_be(val, invalidate);
2063 }
2064 
2065 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2066 {
2067 	/* 01xb - invalidate TCEs that match the specified PE# */
2068 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2069 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2070 
2071 	mb(); /* Ensure above stores are visible */
2072 	__raw_writeq_be(val, invalidate);
2073 }
2074 
2075 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2076 					unsigned shift, unsigned long index,
2077 					unsigned long npages)
2078 {
2079 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2080 	unsigned long start, end, inc;
2081 
2082 	/* We'll invalidate DMA address in PE scope */
2083 	start = PHB3_TCE_KILL_INVAL_ONE;
2084 	start |= (pe->pe_number & 0xFF);
2085 	end = start;
2086 
2087 	/* Figure out the start, end and step */
2088 	start |= (index << shift);
2089 	end |= ((index + npages - 1) << shift);
2090 	inc = (0x1ull << shift);
2091 	mb();
2092 
2093 	while (start <= end) {
2094 		if (rm)
2095 			__raw_rm_writeq_be(start, invalidate);
2096 		else
2097 			__raw_writeq_be(start, invalidate);
2098 		start += inc;
2099 	}
2100 }
2101 
2102 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2103 {
2104 	struct pnv_phb *phb = pe->phb;
2105 
2106 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2107 		pnv_pci_phb3_tce_invalidate_pe(pe);
2108 	else
2109 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2110 				  pe->pe_number, 0, 0, 0);
2111 }
2112 
2113 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2114 		unsigned long index, unsigned long npages, bool rm)
2115 {
2116 	struct iommu_table_group_link *tgl;
2117 
2118 	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2119 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2120 				struct pnv_ioda_pe, table_group);
2121 		struct pnv_phb *phb = pe->phb;
2122 		unsigned int shift = tbl->it_page_shift;
2123 
2124 		/*
2125 		 * NVLink1 can use the TCE kill register directly as
2126 		 * it's the same as PHB3. NVLink2 is different and
2127 		 * should go via the OPAL call.
2128 		 */
2129 		if (phb->model == PNV_PHB_MODEL_NPU) {
2130 			/*
2131 			 * The NVLink hardware does not support TCE kill
2132 			 * per TCE entry so we have to invalidate
2133 			 * the entire cache for it.
2134 			 */
2135 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2136 			continue;
2137 		}
2138 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2139 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2140 						    index, npages);
2141 		else
2142 			opal_pci_tce_kill(phb->opal_id,
2143 					  OPAL_PCI_TCE_KILL_PAGES,
2144 					  pe->pe_number, 1u << shift,
2145 					  index << shift, npages);
2146 	}
2147 }
2148 
2149 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2150 {
2151 	if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2152 		pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2153 	else
2154 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2155 }
2156 
2157 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2158 		long npages, unsigned long uaddr,
2159 		enum dma_data_direction direction,
2160 		unsigned long attrs)
2161 {
2162 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2163 			attrs);
2164 
2165 	if (!ret)
2166 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2167 
2168 	return ret;
2169 }
2170 
2171 #ifdef CONFIG_IOMMU_API
2172 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2173 		unsigned long *hpa, enum dma_data_direction *direction)
2174 {
2175 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2176 
2177 	if (!ret)
2178 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2179 
2180 	return ret;
2181 }
2182 
2183 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2184 		unsigned long *hpa, enum dma_data_direction *direction)
2185 {
2186 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2187 
2188 	if (!ret)
2189 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2190 
2191 	return ret;
2192 }
2193 #endif
2194 
2195 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2196 		long npages)
2197 {
2198 	pnv_tce_free(tbl, index, npages);
2199 
2200 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2201 }
2202 
2203 static void pnv_ioda2_table_free(struct iommu_table *tbl)
2204 {
2205 	pnv_pci_ioda2_table_free_pages(tbl);
2206 }
2207 
2208 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2209 	.set = pnv_ioda2_tce_build,
2210 #ifdef CONFIG_IOMMU_API
2211 	.exchange = pnv_ioda2_tce_xchg,
2212 	.exchange_rm = pnv_ioda2_tce_xchg_rm,
2213 #endif
2214 	.clear = pnv_ioda2_tce_free,
2215 	.get = pnv_tce_get,
2216 	.free = pnv_ioda2_table_free,
2217 };
2218 
2219 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2220 {
2221 	unsigned int *weight = (unsigned int *)data;
2222 
2223 	/* This is quite simplistic. The "base" weight of a device
2224 	 * is 10. 0 means no DMA is to be accounted for it.
2225 	 */
2226 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2227 		return 0;
2228 
2229 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2230 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2231 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2232 		*weight += 3;
2233 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2234 		*weight += 15;
2235 	else
2236 		*weight += 10;
2237 
2238 	return 0;
2239 }
2240 
2241 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2242 {
2243 	unsigned int weight = 0;
2244 
2245 	/* SRIOV VF has same DMA32 weight as its PF */
2246 #ifdef CONFIG_PCI_IOV
2247 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2248 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2249 		return weight;
2250 	}
2251 #endif
2252 
2253 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2254 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2255 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2256 		struct pci_dev *pdev;
2257 
2258 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2259 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2260 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2261 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2262 	}
2263 
2264 	return weight;
2265 }
2266 
2267 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2268 				       struct pnv_ioda_pe *pe)
2269 {
2270 
2271 	struct page *tce_mem = NULL;
2272 	struct iommu_table *tbl;
2273 	unsigned int weight, total_weight = 0;
2274 	unsigned int tce32_segsz, base, segs, avail, i;
2275 	int64_t rc;
2276 	void *addr;
2277 
2278 	/* XXX FIXME: Handle 64-bit only DMA devices */
2279 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2280 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2281 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2282 	if (!weight)
2283 		return;
2284 
2285 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2286 		     &total_weight);
2287 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2288 	if (!segs)
2289 		segs = 1;
2290 
2291 	/*
2292 	 * Allocate contiguous DMA32 segments. We begin with the expected
2293 	 * number of segments. With one more attempt, the number of DMA32
2294 	 * segments to be allocated is decreased by one until one segment
2295 	 * is allocated successfully.
2296 	 */
2297 	do {
2298 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2299 			for (avail = 0, i = base; i < base + segs; i++) {
2300 				if (phb->ioda.dma32_segmap[i] ==
2301 				    IODA_INVALID_PE)
2302 					avail++;
2303 			}
2304 
2305 			if (avail == segs)
2306 				goto found;
2307 		}
2308 	} while (--segs);
2309 
2310 	if (!segs) {
2311 		pe_warn(pe, "No available DMA32 segments\n");
2312 		return;
2313 	}
2314 
2315 found:
2316 	tbl = pnv_pci_table_alloc(phb->hose->node);
2317 	if (WARN_ON(!tbl))
2318 		return;
2319 
2320 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2321 			pe->pe_number);
2322 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2323 
2324 	/* Grab a 32-bit TCE table */
2325 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2326 		weight, total_weight, base, segs);
2327 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2328 		base * PNV_IODA1_DMA32_SEGSIZE,
2329 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2330 
2331 	/* XXX Currently, we allocate one big contiguous table for the
2332 	 * TCEs. We only really need one chunk per 256M of TCE space
2333 	 * (ie per segment) but that's an optimization for later, it
2334 	 * requires some added smarts with our get/put_tce implementation
2335 	 *
2336 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2337 	 * bytes
2338 	 */
2339 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2340 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2341 				   get_order(tce32_segsz * segs));
2342 	if (!tce_mem) {
2343 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2344 		goto fail;
2345 	}
2346 	addr = page_address(tce_mem);
2347 	memset(addr, 0, tce32_segsz * segs);
2348 
2349 	/* Configure HW */
2350 	for (i = 0; i < segs; i++) {
2351 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2352 					      pe->pe_number,
2353 					      base + i, 1,
2354 					      __pa(addr) + tce32_segsz * i,
2355 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2356 		if (rc) {
2357 			pe_err(pe, " Failed to configure 32-bit TCE table,"
2358 			       " err %ld\n", rc);
2359 			goto fail;
2360 		}
2361 	}
2362 
2363 	/* Setup DMA32 segment mapping */
2364 	for (i = base; i < base + segs; i++)
2365 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2366 
2367 	/* Setup linux iommu table */
2368 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2369 				  base * PNV_IODA1_DMA32_SEGSIZE,
2370 				  IOMMU_PAGE_SHIFT_4K);
2371 
2372 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2373 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2374 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2375 	iommu_init_table(tbl, phb->hose->node);
2376 
2377 	if (pe->flags & PNV_IODA_PE_DEV) {
2378 		/*
2379 		 * Setting table base here only for carrying iommu_group
2380 		 * further down to let iommu_add_device() do the job.
2381 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2382 		 */
2383 		set_iommu_table_base(&pe->pdev->dev, tbl);
2384 		iommu_add_device(&pe->pdev->dev);
2385 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2386 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2387 
2388 	return;
2389  fail:
2390 	/* XXX Failure: Try to fallback to 64-bit only ? */
2391 	if (tce_mem)
2392 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2393 	if (tbl) {
2394 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2395 		iommu_tce_table_put(tbl);
2396 	}
2397 }
2398 
2399 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2400 		int num, struct iommu_table *tbl)
2401 {
2402 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2403 			table_group);
2404 	struct pnv_phb *phb = pe->phb;
2405 	int64_t rc;
2406 	const unsigned long size = tbl->it_indirect_levels ?
2407 			tbl->it_level_size : tbl->it_size;
2408 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2409 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2410 
2411 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2412 			start_addr, start_addr + win_size - 1,
2413 			IOMMU_PAGE_SIZE(tbl));
2414 
2415 	/*
2416 	 * Map TCE table through TVT. The TVE index is the PE number
2417 	 * shifted by 1 bit for 32-bits DMA space.
2418 	 */
2419 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2420 			pe->pe_number,
2421 			(pe->pe_number << 1) + num,
2422 			tbl->it_indirect_levels + 1,
2423 			__pa(tbl->it_base),
2424 			size << 3,
2425 			IOMMU_PAGE_SIZE(tbl));
2426 	if (rc) {
2427 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2428 		return rc;
2429 	}
2430 
2431 	pnv_pci_link_table_and_group(phb->hose->node, num,
2432 			tbl, &pe->table_group);
2433 	pnv_pci_ioda2_tce_invalidate_pe(pe);
2434 
2435 	return 0;
2436 }
2437 
2438 void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2439 {
2440 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2441 	int64_t rc;
2442 
2443 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2444 	if (enable) {
2445 		phys_addr_t top = memblock_end_of_DRAM();
2446 
2447 		top = roundup_pow_of_two(top);
2448 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2449 						     pe->pe_number,
2450 						     window_id,
2451 						     pe->tce_bypass_base,
2452 						     top);
2453 	} else {
2454 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2455 						     pe->pe_number,
2456 						     window_id,
2457 						     pe->tce_bypass_base,
2458 						     0);
2459 	}
2460 	if (rc)
2461 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2462 	else
2463 		pe->tce_bypass_enabled = enable;
2464 }
2465 
2466 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2467 		__u32 page_shift, __u64 window_size, __u32 levels,
2468 		struct iommu_table *tbl);
2469 
2470 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2471 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2472 		struct iommu_table **ptbl)
2473 {
2474 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2475 			table_group);
2476 	int nid = pe->phb->hose->node;
2477 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2478 	long ret;
2479 	struct iommu_table *tbl;
2480 
2481 	tbl = pnv_pci_table_alloc(nid);
2482 	if (!tbl)
2483 		return -ENOMEM;
2484 
2485 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2486 
2487 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2488 			bus_offset, page_shift, window_size,
2489 			levels, tbl);
2490 	if (ret) {
2491 		iommu_tce_table_put(tbl);
2492 		return ret;
2493 	}
2494 
2495 	*ptbl = tbl;
2496 
2497 	return 0;
2498 }
2499 
2500 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2501 {
2502 	struct iommu_table *tbl = NULL;
2503 	long rc;
2504 
2505 	/*
2506 	 * crashkernel= specifies the kdump kernel's maximum memory at
2507 	 * some offset and there is no guaranteed the result is a power
2508 	 * of 2, which will cause errors later.
2509 	 */
2510 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2511 
2512 	/*
2513 	 * In memory constrained environments, e.g. kdump kernel, the
2514 	 * DMA window can be larger than available memory, which will
2515 	 * cause errors later.
2516 	 */
2517 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2518 
2519 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2520 			IOMMU_PAGE_SHIFT_4K,
2521 			window_size,
2522 			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2523 	if (rc) {
2524 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2525 				rc);
2526 		return rc;
2527 	}
2528 
2529 	iommu_init_table(tbl, pe->phb->hose->node);
2530 
2531 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2532 	if (rc) {
2533 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2534 				rc);
2535 		iommu_tce_table_put(tbl);
2536 		return rc;
2537 	}
2538 
2539 	if (!pnv_iommu_bypass_disabled)
2540 		pnv_pci_ioda2_set_bypass(pe, true);
2541 
2542 	/*
2543 	 * Setting table base here only for carrying iommu_group
2544 	 * further down to let iommu_add_device() do the job.
2545 	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2546 	 */
2547 	if (pe->flags & PNV_IODA_PE_DEV)
2548 		set_iommu_table_base(&pe->pdev->dev, tbl);
2549 
2550 	return 0;
2551 }
2552 
2553 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2554 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2555 		int num)
2556 {
2557 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2558 			table_group);
2559 	struct pnv_phb *phb = pe->phb;
2560 	long ret;
2561 
2562 	pe_info(pe, "Removing DMA window #%d\n", num);
2563 
2564 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2565 			(pe->pe_number << 1) + num,
2566 			0/* levels */, 0/* table address */,
2567 			0/* table size */, 0/* page size */);
2568 	if (ret)
2569 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2570 	else
2571 		pnv_pci_ioda2_tce_invalidate_pe(pe);
2572 
2573 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2574 
2575 	return ret;
2576 }
2577 #endif
2578 
2579 #ifdef CONFIG_IOMMU_API
2580 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2581 		__u64 window_size, __u32 levels)
2582 {
2583 	unsigned long bytes = 0;
2584 	const unsigned window_shift = ilog2(window_size);
2585 	unsigned entries_shift = window_shift - page_shift;
2586 	unsigned table_shift = entries_shift + 3;
2587 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2588 	unsigned long direct_table_size;
2589 
2590 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2591 			!is_power_of_2(window_size))
2592 		return 0;
2593 
2594 	/* Calculate a direct table size from window_size and levels */
2595 	entries_shift = (entries_shift + levels - 1) / levels;
2596 	table_shift = entries_shift + 3;
2597 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2598 	direct_table_size =  1UL << table_shift;
2599 
2600 	for ( ; levels; --levels) {
2601 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2602 
2603 		tce_table_size /= direct_table_size;
2604 		tce_table_size <<= 3;
2605 		tce_table_size = max_t(unsigned long,
2606 				tce_table_size, direct_table_size);
2607 	}
2608 
2609 	return bytes;
2610 }
2611 
2612 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2613 {
2614 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2615 						table_group);
2616 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2617 	struct iommu_table *tbl = pe->table_group.tables[0];
2618 
2619 	pnv_pci_ioda2_set_bypass(pe, false);
2620 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2621 	if (pe->pbus)
2622 		pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2623 	iommu_tce_table_put(tbl);
2624 }
2625 
2626 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2627 {
2628 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2629 						table_group);
2630 
2631 	pnv_pci_ioda2_setup_default_config(pe);
2632 	if (pe->pbus)
2633 		pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2634 }
2635 
2636 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2637 	.get_table_size = pnv_pci_ioda2_get_table_size,
2638 	.create_table = pnv_pci_ioda2_create_table,
2639 	.set_window = pnv_pci_ioda2_set_window,
2640 	.unset_window = pnv_pci_ioda2_unset_window,
2641 	.take_ownership = pnv_ioda2_take_ownership,
2642 	.release_ownership = pnv_ioda2_release_ownership,
2643 };
2644 
2645 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2646 {
2647 	struct pci_controller *hose;
2648 	struct pnv_phb *phb;
2649 	struct pnv_ioda_pe **ptmppe = opaque;
2650 	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2651 	struct pci_dn *pdn = pci_get_pdn(pdev);
2652 
2653 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2654 		return 0;
2655 
2656 	hose = pci_bus_to_host(pdev->bus);
2657 	phb = hose->private_data;
2658 	if (phb->type != PNV_PHB_NPU_NVLINK)
2659 		return 0;
2660 
2661 	*ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2662 
2663 	return 1;
2664 }
2665 
2666 /*
2667  * This returns PE of associated NPU.
2668  * This assumes that NPU is in the same IOMMU group with GPU and there is
2669  * no other PEs.
2670  */
2671 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2672 		struct iommu_table_group *table_group)
2673 {
2674 	struct pnv_ioda_pe *npe = NULL;
2675 	int ret = iommu_group_for_each_dev(table_group->group, &npe,
2676 			gpe_table_group_to_npe_cb);
2677 
2678 	BUG_ON(!ret || !npe);
2679 
2680 	return npe;
2681 }
2682 
2683 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2684 		int num, struct iommu_table *tbl)
2685 {
2686 	struct pnv_ioda_pe *npe = gpe_table_group_to_npe(table_group);
2687 	int num2 = (num == 0) ? 1 : 0;
2688 	long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2689 
2690 	if (ret)
2691 		return ret;
2692 
2693 	if (table_group->tables[num2])
2694 		pnv_npu_unset_window(npe, num2);
2695 
2696 	ret = pnv_npu_set_window(npe, num, tbl);
2697 	if (ret) {
2698 		pnv_pci_ioda2_unset_window(table_group, num);
2699 		if (table_group->tables[num2])
2700 			pnv_npu_set_window(npe, num2,
2701 					table_group->tables[num2]);
2702 	}
2703 
2704 	return ret;
2705 }
2706 
2707 static long pnv_pci_ioda2_npu_unset_window(
2708 		struct iommu_table_group *table_group,
2709 		int num)
2710 {
2711 	struct pnv_ioda_pe *npe = gpe_table_group_to_npe(table_group);
2712 	int num2 = (num == 0) ? 1 : 0;
2713 	long ret = pnv_pci_ioda2_unset_window(table_group, num);
2714 
2715 	if (ret)
2716 		return ret;
2717 
2718 	if (!npe->table_group.tables[num])
2719 		return 0;
2720 
2721 	ret = pnv_npu_unset_window(npe, num);
2722 	if (ret)
2723 		return ret;
2724 
2725 	if (table_group->tables[num2])
2726 		ret = pnv_npu_set_window(npe, num2, table_group->tables[num2]);
2727 
2728 	return ret;
2729 }
2730 
2731 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2732 {
2733 	/*
2734 	 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2735 	 * the iommu_table if 32bit DMA is enabled.
2736 	 */
2737 	pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2738 	pnv_ioda2_take_ownership(table_group);
2739 }
2740 
2741 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2742 	.get_table_size = pnv_pci_ioda2_get_table_size,
2743 	.create_table = pnv_pci_ioda2_create_table,
2744 	.set_window = pnv_pci_ioda2_npu_set_window,
2745 	.unset_window = pnv_pci_ioda2_npu_unset_window,
2746 	.take_ownership = pnv_ioda2_npu_take_ownership,
2747 	.release_ownership = pnv_ioda2_release_ownership,
2748 };
2749 
2750 static void pnv_pci_ioda_setup_iommu_api(void)
2751 {
2752 	struct pci_controller *hose, *tmp;
2753 	struct pnv_phb *phb;
2754 	struct pnv_ioda_pe *pe, *gpe;
2755 
2756 	/*
2757 	 * Now we have all PHBs discovered, time to add NPU devices to
2758 	 * the corresponding IOMMU groups.
2759 	 */
2760 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2761 		phb = hose->private_data;
2762 
2763 		if (phb->type != PNV_PHB_NPU_NVLINK)
2764 			continue;
2765 
2766 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2767 			gpe = pnv_pci_npu_setup_iommu(pe);
2768 			if (gpe)
2769 				gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2770 		}
2771 	}
2772 }
2773 #else /* !CONFIG_IOMMU_API */
2774 static void pnv_pci_ioda_setup_iommu_api(void) { };
2775 #endif
2776 
2777 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2778 		unsigned levels, unsigned long limit,
2779 		unsigned long *current_offset, unsigned long *total_allocated)
2780 {
2781 	struct page *tce_mem = NULL;
2782 	__be64 *addr, *tmp;
2783 	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2784 	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2785 	unsigned entries = 1UL << (shift - 3);
2786 	long i;
2787 
2788 	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2789 	if (!tce_mem) {
2790 		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2791 		return NULL;
2792 	}
2793 	addr = page_address(tce_mem);
2794 	memset(addr, 0, allocated);
2795 	*total_allocated += allocated;
2796 
2797 	--levels;
2798 	if (!levels) {
2799 		*current_offset += allocated;
2800 		return addr;
2801 	}
2802 
2803 	for (i = 0; i < entries; ++i) {
2804 		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2805 				levels, limit, current_offset, total_allocated);
2806 		if (!tmp)
2807 			break;
2808 
2809 		addr[i] = cpu_to_be64(__pa(tmp) |
2810 				TCE_PCI_READ | TCE_PCI_WRITE);
2811 
2812 		if (*current_offset >= limit)
2813 			break;
2814 	}
2815 
2816 	return addr;
2817 }
2818 
2819 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2820 		unsigned long size, unsigned level);
2821 
2822 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2823 		__u32 page_shift, __u64 window_size, __u32 levels,
2824 		struct iommu_table *tbl)
2825 {
2826 	void *addr;
2827 	unsigned long offset = 0, level_shift, total_allocated = 0;
2828 	const unsigned window_shift = ilog2(window_size);
2829 	unsigned entries_shift = window_shift - page_shift;
2830 	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2831 	const unsigned long tce_table_size = 1UL << table_shift;
2832 
2833 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2834 		return -EINVAL;
2835 
2836 	if (!is_power_of_2(window_size))
2837 		return -EINVAL;
2838 
2839 	/* Adjust direct table size from window_size and levels */
2840 	entries_shift = (entries_shift + levels - 1) / levels;
2841 	level_shift = entries_shift + 3;
2842 	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2843 
2844 	if ((level_shift - 3) * levels + page_shift >= 60)
2845 		return -EINVAL;
2846 
2847 	/* Allocate TCE table */
2848 	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2849 			levels, tce_table_size, &offset, &total_allocated);
2850 
2851 	/* addr==NULL means that the first level allocation failed */
2852 	if (!addr)
2853 		return -ENOMEM;
2854 
2855 	/*
2856 	 * First level was allocated but some lower level failed as
2857 	 * we did not allocate as much as we wanted,
2858 	 * release partially allocated table.
2859 	 */
2860 	if (offset < tce_table_size) {
2861 		pnv_pci_ioda2_table_do_free_pages(addr,
2862 				1ULL << (level_shift - 3), levels - 1);
2863 		return -ENOMEM;
2864 	}
2865 
2866 	/* Setup linux iommu table */
2867 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2868 			page_shift);
2869 	tbl->it_level_size = 1ULL << (level_shift - 3);
2870 	tbl->it_indirect_levels = levels - 1;
2871 	tbl->it_allocated_size = total_allocated;
2872 
2873 	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2874 			window_size, tce_table_size, bus_offset);
2875 
2876 	return 0;
2877 }
2878 
2879 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2880 		unsigned long size, unsigned level)
2881 {
2882 	const unsigned long addr_ul = (unsigned long) addr &
2883 			~(TCE_PCI_READ | TCE_PCI_WRITE);
2884 
2885 	if (level) {
2886 		long i;
2887 		u64 *tmp = (u64 *) addr_ul;
2888 
2889 		for (i = 0; i < size; ++i) {
2890 			unsigned long hpa = be64_to_cpu(tmp[i]);
2891 
2892 			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2893 				continue;
2894 
2895 			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2896 					level - 1);
2897 		}
2898 	}
2899 
2900 	free_pages(addr_ul, get_order(size << 3));
2901 }
2902 
2903 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2904 {
2905 	const unsigned long size = tbl->it_indirect_levels ?
2906 			tbl->it_level_size : tbl->it_size;
2907 
2908 	if (!tbl->it_size)
2909 		return;
2910 
2911 	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2912 			tbl->it_indirect_levels);
2913 }
2914 
2915 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb)
2916 {
2917 	struct pci_controller *hose = phb->hose;
2918 	struct device_node *dn = hose->dn;
2919 	unsigned long mask = 0;
2920 	int i, rc, count;
2921 	u32 val;
2922 
2923 	count = of_property_count_u32_elems(dn, "ibm,supported-tce-sizes");
2924 	if (count <= 0) {
2925 		mask = SZ_4K | SZ_64K;
2926 		/* Add 16M for POWER8 by default */
2927 		if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2928 				!cpu_has_feature(CPU_FTR_ARCH_300))
2929 			mask |= SZ_16M;
2930 		return mask;
2931 	}
2932 
2933 	for (i = 0; i < count; i++) {
2934 		rc = of_property_read_u32_index(dn, "ibm,supported-tce-sizes",
2935 						i, &val);
2936 		if (rc == 0)
2937 			mask |= 1ULL << val;
2938 	}
2939 
2940 	return mask;
2941 }
2942 
2943 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2944 				       struct pnv_ioda_pe *pe)
2945 {
2946 	int64_t rc;
2947 
2948 	if (!pnv_pci_ioda_pe_dma_weight(pe))
2949 		return;
2950 
2951 	/* TVE #1 is selected by PCI address bit 59 */
2952 	pe->tce_bypass_base = 1ull << 59;
2953 
2954 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2955 			pe->pe_number);
2956 
2957 	/* The PE will reserve all possible 32-bits space */
2958 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2959 		phb->ioda.m32_pci_base);
2960 
2961 	/* Setup linux iommu table */
2962 	pe->table_group.tce32_start = 0;
2963 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2964 	pe->table_group.max_dynamic_windows_supported =
2965 			IOMMU_TABLE_GROUP_MAX_TABLES;
2966 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2967 	pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2968 #ifdef CONFIG_IOMMU_API
2969 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2970 #endif
2971 
2972 	rc = pnv_pci_ioda2_setup_default_config(pe);
2973 	if (rc)
2974 		return;
2975 
2976 	if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2977 		pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2978 }
2979 
2980 #ifdef CONFIG_PCI_MSI
2981 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2982 {
2983 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2984 					   ioda.irq_chip);
2985 
2986 	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2987 }
2988 
2989 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2990 {
2991 	int64_t rc;
2992 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2993 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2994 
2995 	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2996 	WARN_ON_ONCE(rc);
2997 
2998 	icp_native_eoi(d);
2999 }
3000 
3001 
3002 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
3003 {
3004 	struct irq_data *idata;
3005 	struct irq_chip *ichip;
3006 
3007 	/* The MSI EOI OPAL call is only needed on PHB3 */
3008 	if (phb->model != PNV_PHB_MODEL_PHB3)
3009 		return;
3010 
3011 	if (!phb->ioda.irq_chip_init) {
3012 		/*
3013 		 * First time we setup an MSI IRQ, we need to setup the
3014 		 * corresponding IRQ chip to route correctly.
3015 		 */
3016 		idata = irq_get_irq_data(virq);
3017 		ichip = irq_data_get_irq_chip(idata);
3018 		phb->ioda.irq_chip_init = 1;
3019 		phb->ioda.irq_chip = *ichip;
3020 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
3021 	}
3022 	irq_set_chip(virq, &phb->ioda.irq_chip);
3023 }
3024 
3025 /*
3026  * Returns true iff chip is something that we could call
3027  * pnv_opal_pci_msi_eoi for.
3028  */
3029 bool is_pnv_opal_msi(struct irq_chip *chip)
3030 {
3031 	return chip->irq_eoi == pnv_ioda2_msi_eoi;
3032 }
3033 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
3034 
3035 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
3036 				  unsigned int hwirq, unsigned int virq,
3037 				  unsigned int is_64, struct msi_msg *msg)
3038 {
3039 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
3040 	unsigned int xive_num = hwirq - phb->msi_base;
3041 	__be32 data;
3042 	int rc;
3043 
3044 	/* No PE assigned ? bail out ... no MSI for you ! */
3045 	if (pe == NULL)
3046 		return -ENXIO;
3047 
3048 	/* Check if we have an MVE */
3049 	if (pe->mve_number < 0)
3050 		return -ENXIO;
3051 
3052 	/* Force 32-bit MSI on some broken devices */
3053 	if (dev->no_64bit_msi)
3054 		is_64 = 0;
3055 
3056 	/* Assign XIVE to PE */
3057 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
3058 	if (rc) {
3059 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
3060 			pci_name(dev), rc, xive_num);
3061 		return -EIO;
3062 	}
3063 
3064 	if (is_64) {
3065 		__be64 addr64;
3066 
3067 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
3068 				     &addr64, &data);
3069 		if (rc) {
3070 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
3071 				pci_name(dev), rc);
3072 			return -EIO;
3073 		}
3074 		msg->address_hi = be64_to_cpu(addr64) >> 32;
3075 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
3076 	} else {
3077 		__be32 addr32;
3078 
3079 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
3080 				     &addr32, &data);
3081 		if (rc) {
3082 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
3083 				pci_name(dev), rc);
3084 			return -EIO;
3085 		}
3086 		msg->address_hi = 0;
3087 		msg->address_lo = be32_to_cpu(addr32);
3088 	}
3089 	msg->data = be32_to_cpu(data);
3090 
3091 	pnv_set_msi_irq_chip(phb, virq);
3092 
3093 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
3094 		 " address=%x_%08x data=%x PE# %x\n",
3095 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
3096 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
3097 
3098 	return 0;
3099 }
3100 
3101 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
3102 {
3103 	unsigned int count;
3104 	const __be32 *prop = of_get_property(phb->hose->dn,
3105 					     "ibm,opal-msi-ranges", NULL);
3106 	if (!prop) {
3107 		/* BML Fallback */
3108 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
3109 	}
3110 	if (!prop)
3111 		return;
3112 
3113 	phb->msi_base = be32_to_cpup(prop);
3114 	count = be32_to_cpup(prop + 1);
3115 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
3116 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
3117 		       phb->hose->global_number);
3118 		return;
3119 	}
3120 
3121 	phb->msi_setup = pnv_pci_ioda_msi_setup;
3122 	phb->msi32_support = 1;
3123 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
3124 		count, phb->msi_base);
3125 }
3126 #else
3127 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
3128 #endif /* CONFIG_PCI_MSI */
3129 
3130 #ifdef CONFIG_PCI_IOV
3131 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
3132 {
3133 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3134 	struct pnv_phb *phb = hose->private_data;
3135 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
3136 	struct resource *res;
3137 	int i;
3138 	resource_size_t size, total_vf_bar_sz;
3139 	struct pci_dn *pdn;
3140 	int mul, total_vfs;
3141 
3142 	if (!pdev->is_physfn || pci_dev_is_added(pdev))
3143 		return;
3144 
3145 	pdn = pci_get_pdn(pdev);
3146 	pdn->vfs_expanded = 0;
3147 	pdn->m64_single_mode = false;
3148 
3149 	total_vfs = pci_sriov_get_totalvfs(pdev);
3150 	mul = phb->ioda.total_pe_num;
3151 	total_vf_bar_sz = 0;
3152 
3153 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3154 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3155 		if (!res->flags || res->parent)
3156 			continue;
3157 		if (!pnv_pci_is_m64_flags(res->flags)) {
3158 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
3159 					" non M64 VF BAR%d: %pR. \n",
3160 				 i, res);
3161 			goto truncate_iov;
3162 		}
3163 
3164 		total_vf_bar_sz += pci_iov_resource_size(pdev,
3165 				i + PCI_IOV_RESOURCES);
3166 
3167 		/*
3168 		 * If bigger than quarter of M64 segment size, just round up
3169 		 * power of two.
3170 		 *
3171 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
3172 		 * with other devices, IOV BAR size is expanded to be
3173 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
3174 		 * segment size , the expanded size would equal to half of the
3175 		 * whole M64 space size, which will exhaust the M64 Space and
3176 		 * limit the system flexibility.  This is a design decision to
3177 		 * set the boundary to quarter of the M64 segment size.
3178 		 */
3179 		if (total_vf_bar_sz > gate) {
3180 			mul = roundup_pow_of_two(total_vfs);
3181 			dev_info(&pdev->dev,
3182 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
3183 				total_vf_bar_sz, gate, mul);
3184 			pdn->m64_single_mode = true;
3185 			break;
3186 		}
3187 	}
3188 
3189 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3190 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3191 		if (!res->flags || res->parent)
3192 			continue;
3193 
3194 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
3195 		/*
3196 		 * On PHB3, the minimum size alignment of M64 BAR in single
3197 		 * mode is 32MB.
3198 		 */
3199 		if (pdn->m64_single_mode && (size < SZ_32M))
3200 			goto truncate_iov;
3201 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
3202 		res->end = res->start + size * mul - 1;
3203 		dev_dbg(&pdev->dev, "                       %pR\n", res);
3204 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
3205 			 i, res, mul);
3206 	}
3207 	pdn->vfs_expanded = mul;
3208 
3209 	return;
3210 
3211 truncate_iov:
3212 	/* To save MMIO space, IOV BAR is truncated. */
3213 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3214 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
3215 		res->flags = 0;
3216 		res->end = res->start - 1;
3217 	}
3218 }
3219 #endif /* CONFIG_PCI_IOV */
3220 
3221 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3222 				  struct resource *res)
3223 {
3224 	struct pnv_phb *phb = pe->phb;
3225 	struct pci_bus_region region;
3226 	int index;
3227 	int64_t rc;
3228 
3229 	if (!res || !res->flags || res->start > res->end)
3230 		return;
3231 
3232 	if (res->flags & IORESOURCE_IO) {
3233 		region.start = res->start - phb->ioda.io_pci_base;
3234 		region.end   = res->end - phb->ioda.io_pci_base;
3235 		index = region.start / phb->ioda.io_segsize;
3236 
3237 		while (index < phb->ioda.total_pe_num &&
3238 		       region.start <= region.end) {
3239 			phb->ioda.io_segmap[index] = pe->pe_number;
3240 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3241 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3242 			if (rc != OPAL_SUCCESS) {
3243 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3244 				       __func__, rc, index, pe->pe_number);
3245 				break;
3246 			}
3247 
3248 			region.start += phb->ioda.io_segsize;
3249 			index++;
3250 		}
3251 	} else if ((res->flags & IORESOURCE_MEM) &&
3252 		   !pnv_pci_is_m64(phb, res)) {
3253 		region.start = res->start -
3254 			       phb->hose->mem_offset[0] -
3255 			       phb->ioda.m32_pci_base;
3256 		region.end   = res->end -
3257 			       phb->hose->mem_offset[0] -
3258 			       phb->ioda.m32_pci_base;
3259 		index = region.start / phb->ioda.m32_segsize;
3260 
3261 		while (index < phb->ioda.total_pe_num &&
3262 		       region.start <= region.end) {
3263 			phb->ioda.m32_segmap[index] = pe->pe_number;
3264 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3265 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3266 			if (rc != OPAL_SUCCESS) {
3267 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3268 				       __func__, rc, index, pe->pe_number);
3269 				break;
3270 			}
3271 
3272 			region.start += phb->ioda.m32_segsize;
3273 			index++;
3274 		}
3275 	}
3276 }
3277 
3278 /*
3279  * This function is supposed to be called on basis of PE from top
3280  * to bottom style. So the the I/O or MMIO segment assigned to
3281  * parent PE could be overridden by its child PEs if necessary.
3282  */
3283 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3284 {
3285 	struct pci_dev *pdev;
3286 	int i;
3287 
3288 	/*
3289 	 * NOTE: We only care PCI bus based PE for now. For PCI
3290 	 * device based PE, for example SRIOV sensitive VF should
3291 	 * be figured out later.
3292 	 */
3293 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3294 
3295 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3296 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3297 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3298 
3299 		/*
3300 		 * If the PE contains all subordinate PCI buses, the
3301 		 * windows of the child bridges should be mapped to
3302 		 * the PE as well.
3303 		 */
3304 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3305 			continue;
3306 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3307 			pnv_ioda_setup_pe_res(pe,
3308 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3309 	}
3310 }
3311 
3312 #ifdef CONFIG_DEBUG_FS
3313 static int pnv_pci_diag_data_set(void *data, u64 val)
3314 {
3315 	struct pci_controller *hose;
3316 	struct pnv_phb *phb;
3317 	s64 ret;
3318 
3319 	if (val != 1ULL)
3320 		return -EINVAL;
3321 
3322 	hose = (struct pci_controller *)data;
3323 	if (!hose || !hose->private_data)
3324 		return -ENODEV;
3325 
3326 	phb = hose->private_data;
3327 
3328 	/* Retrieve the diag data from firmware */
3329 	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3330 					  phb->diag_data_size);
3331 	if (ret != OPAL_SUCCESS)
3332 		return -EIO;
3333 
3334 	/* Print the diag data to the kernel log */
3335 	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3336 	return 0;
3337 }
3338 
3339 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3340 			pnv_pci_diag_data_set, "%llu\n");
3341 
3342 #endif /* CONFIG_DEBUG_FS */
3343 
3344 static void pnv_pci_ioda_create_dbgfs(void)
3345 {
3346 #ifdef CONFIG_DEBUG_FS
3347 	struct pci_controller *hose, *tmp;
3348 	struct pnv_phb *phb;
3349 	char name[16];
3350 
3351 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3352 		phb = hose->private_data;
3353 
3354 		/* Notify initialization of PHB done */
3355 		phb->initialized = 1;
3356 
3357 		sprintf(name, "PCI%04x", hose->global_number);
3358 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3359 		if (!phb->dbgfs) {
3360 			pr_warn("%s: Error on creating debugfs on PHB#%x\n",
3361 				__func__, hose->global_number);
3362 			continue;
3363 		}
3364 
3365 		debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3366 				    &pnv_pci_diag_data_fops);
3367 	}
3368 #endif /* CONFIG_DEBUG_FS */
3369 }
3370 
3371 static void pnv_pci_ioda_fixup(void)
3372 {
3373 	pnv_pci_ioda_setup_PEs();
3374 	pnv_pci_ioda_setup_iommu_api();
3375 	pnv_pci_ioda_create_dbgfs();
3376 
3377 #ifdef CONFIG_EEH
3378 	pnv_eeh_post_init();
3379 #endif
3380 }
3381 
3382 /*
3383  * Returns the alignment for I/O or memory windows for P2P
3384  * bridges. That actually depends on how PEs are segmented.
3385  * For now, we return I/O or M32 segment size for PE sensitive
3386  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3387  * 1MiB for memory) will be returned.
3388  *
3389  * The current PCI bus might be put into one PE, which was
3390  * create against the parent PCI bridge. For that case, we
3391  * needn't enlarge the alignment so that we can save some
3392  * resources.
3393  */
3394 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3395 						unsigned long type)
3396 {
3397 	struct pci_dev *bridge;
3398 	struct pci_controller *hose = pci_bus_to_host(bus);
3399 	struct pnv_phb *phb = hose->private_data;
3400 	int num_pci_bridges = 0;
3401 
3402 	bridge = bus->self;
3403 	while (bridge) {
3404 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3405 			num_pci_bridges++;
3406 			if (num_pci_bridges >= 2)
3407 				return 1;
3408 		}
3409 
3410 		bridge = bridge->bus->self;
3411 	}
3412 
3413 	/*
3414 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
3415 	 * alignment for any 64-bit resource, PCIe doesn't care and
3416 	 * bridges only do 64-bit prefetchable anyway.
3417 	 */
3418 	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3419 		return phb->ioda.m64_segsize;
3420 	if (type & IORESOURCE_MEM)
3421 		return phb->ioda.m32_segsize;
3422 
3423 	return phb->ioda.io_segsize;
3424 }
3425 
3426 /*
3427  * We are updating root port or the upstream port of the
3428  * bridge behind the root port with PHB's windows in order
3429  * to accommodate the changes on required resources during
3430  * PCI (slot) hotplug, which is connected to either root
3431  * port or the downstream ports of PCIe switch behind the
3432  * root port.
3433  */
3434 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3435 					   unsigned long type)
3436 {
3437 	struct pci_controller *hose = pci_bus_to_host(bus);
3438 	struct pnv_phb *phb = hose->private_data;
3439 	struct pci_dev *bridge = bus->self;
3440 	struct resource *r, *w;
3441 	bool msi_region = false;
3442 	int i;
3443 
3444 	/* Check if we need apply fixup to the bridge's windows */
3445 	if (!pci_is_root_bus(bridge->bus) &&
3446 	    !pci_is_root_bus(bridge->bus->self->bus))
3447 		return;
3448 
3449 	/* Fixup the resources */
3450 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3451 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3452 		if (!r->flags || !r->parent)
3453 			continue;
3454 
3455 		w = NULL;
3456 		if (r->flags & type & IORESOURCE_IO)
3457 			w = &hose->io_resource;
3458 		else if (pnv_pci_is_m64(phb, r) &&
3459 			 (type & IORESOURCE_PREFETCH) &&
3460 			 phb->ioda.m64_segsize)
3461 			w = &hose->mem_resources[1];
3462 		else if (r->flags & type & IORESOURCE_MEM) {
3463 			w = &hose->mem_resources[0];
3464 			msi_region = true;
3465 		}
3466 
3467 		r->start = w->start;
3468 		r->end = w->end;
3469 
3470 		/* The 64KB 32-bits MSI region shouldn't be included in
3471 		 * the 32-bits bridge window. Otherwise, we can see strange
3472 		 * issues. One of them is EEH error observed on Garrison.
3473 		 *
3474 		 * Exclude top 1MB region which is the minimal alignment of
3475 		 * 32-bits bridge window.
3476 		 */
3477 		if (msi_region) {
3478 			r->end += 0x10000;
3479 			r->end -= 0x100000;
3480 		}
3481 	}
3482 }
3483 
3484 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3485 {
3486 	struct pci_controller *hose = pci_bus_to_host(bus);
3487 	struct pnv_phb *phb = hose->private_data;
3488 	struct pci_dev *bridge = bus->self;
3489 	struct pnv_ioda_pe *pe;
3490 	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3491 
3492 	/* Extend bridge's windows if necessary */
3493 	pnv_pci_fixup_bridge_resources(bus, type);
3494 
3495 	/* The PE for root bus should be realized before any one else */
3496 	if (!phb->ioda.root_pe_populated) {
3497 		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3498 		if (pe) {
3499 			phb->ioda.root_pe_idx = pe->pe_number;
3500 			phb->ioda.root_pe_populated = true;
3501 		}
3502 	}
3503 
3504 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3505 	if (list_empty(&bus->devices))
3506 		return;
3507 
3508 	/* Reserve PEs according to used M64 resources */
3509 	if (phb->reserve_m64_pe)
3510 		phb->reserve_m64_pe(bus, NULL, all);
3511 
3512 	/*
3513 	 * Assign PE. We might run here because of partial hotplug.
3514 	 * For the case, we just pick up the existing PE and should
3515 	 * not allocate resources again.
3516 	 */
3517 	pe = pnv_ioda_setup_bus_PE(bus, all);
3518 	if (!pe)
3519 		return;
3520 
3521 	pnv_ioda_setup_pe_seg(pe);
3522 	switch (phb->type) {
3523 	case PNV_PHB_IODA1:
3524 		pnv_pci_ioda1_setup_dma_pe(phb, pe);
3525 		break;
3526 	case PNV_PHB_IODA2:
3527 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
3528 		break;
3529 	default:
3530 		pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3531 			__func__, phb->hose->global_number, phb->type);
3532 	}
3533 }
3534 
3535 static resource_size_t pnv_pci_default_alignment(void)
3536 {
3537 	return PAGE_SIZE;
3538 }
3539 
3540 #ifdef CONFIG_PCI_IOV
3541 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3542 						      int resno)
3543 {
3544 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3545 	struct pnv_phb *phb = hose->private_data;
3546 	struct pci_dn *pdn = pci_get_pdn(pdev);
3547 	resource_size_t align;
3548 
3549 	/*
3550 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3551 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3552 	 * BAR should be size aligned.
3553 	 *
3554 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3555 	 * powernv-specific hardware restriction is gone. But if just use the
3556 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3557 	 * in one segment of M64 #15, which introduces the PE conflict between
3558 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3559 	 * m64_segsize.
3560 	 *
3561 	 * This function returns the total IOV BAR size if M64 BAR is in
3562 	 * Shared PE mode or just VF BAR size if not.
3563 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3564 	 * M64 segment size if IOV BAR size is less.
3565 	 */
3566 	align = pci_iov_resource_size(pdev, resno);
3567 	if (!pdn->vfs_expanded)
3568 		return align;
3569 	if (pdn->m64_single_mode)
3570 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3571 
3572 	return pdn->vfs_expanded * align;
3573 }
3574 #endif /* CONFIG_PCI_IOV */
3575 
3576 /* Prevent enabling devices for which we couldn't properly
3577  * assign a PE
3578  */
3579 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3580 {
3581 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3582 	struct pnv_phb *phb = hose->private_data;
3583 	struct pci_dn *pdn;
3584 
3585 	/* The function is probably called while the PEs have
3586 	 * not be created yet. For example, resource reassignment
3587 	 * during PCI probe period. We just skip the check if
3588 	 * PEs isn't ready.
3589 	 */
3590 	if (!phb->initialized)
3591 		return true;
3592 
3593 	pdn = pci_get_pdn(dev);
3594 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3595 		return false;
3596 
3597 	return true;
3598 }
3599 
3600 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3601 				       int num)
3602 {
3603 	struct pnv_ioda_pe *pe = container_of(table_group,
3604 					      struct pnv_ioda_pe, table_group);
3605 	struct pnv_phb *phb = pe->phb;
3606 	unsigned int idx;
3607 	long rc;
3608 
3609 	pe_info(pe, "Removing DMA window #%d\n", num);
3610 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3611 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3612 			continue;
3613 
3614 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3615 						idx, 0, 0ul, 0ul, 0ul);
3616 		if (rc != OPAL_SUCCESS) {
3617 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3618 				rc, idx);
3619 			return rc;
3620 		}
3621 
3622 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3623 	}
3624 
3625 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3626 	return OPAL_SUCCESS;
3627 }
3628 
3629 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3630 {
3631 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3632 	struct iommu_table *tbl = pe->table_group.tables[0];
3633 	int64_t rc;
3634 
3635 	if (!weight)
3636 		return;
3637 
3638 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3639 	if (rc != OPAL_SUCCESS)
3640 		return;
3641 
3642 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3643 	if (pe->table_group.group) {
3644 		iommu_group_put(pe->table_group.group);
3645 		WARN_ON(pe->table_group.group);
3646 	}
3647 
3648 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3649 	iommu_tce_table_put(tbl);
3650 }
3651 
3652 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3653 {
3654 	struct iommu_table *tbl = pe->table_group.tables[0];
3655 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3656 #ifdef CONFIG_IOMMU_API
3657 	int64_t rc;
3658 #endif
3659 
3660 	if (!weight)
3661 		return;
3662 
3663 #ifdef CONFIG_IOMMU_API
3664 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3665 	if (rc)
3666 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3667 #endif
3668 
3669 	pnv_pci_ioda2_set_bypass(pe, false);
3670 	if (pe->table_group.group) {
3671 		iommu_group_put(pe->table_group.group);
3672 		WARN_ON(pe->table_group.group);
3673 	}
3674 
3675 	iommu_tce_table_put(tbl);
3676 }
3677 
3678 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3679 				 unsigned short win,
3680 				 unsigned int *map)
3681 {
3682 	struct pnv_phb *phb = pe->phb;
3683 	int idx;
3684 	int64_t rc;
3685 
3686 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3687 		if (map[idx] != pe->pe_number)
3688 			continue;
3689 
3690 		if (win == OPAL_M64_WINDOW_TYPE)
3691 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3692 					phb->ioda.reserved_pe_idx, win,
3693 					idx / PNV_IODA1_M64_SEGS,
3694 					idx % PNV_IODA1_M64_SEGS);
3695 		else
3696 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3697 					phb->ioda.reserved_pe_idx, win, 0, idx);
3698 
3699 		if (rc != OPAL_SUCCESS)
3700 			pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3701 				rc, win, idx);
3702 
3703 		map[idx] = IODA_INVALID_PE;
3704 	}
3705 }
3706 
3707 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3708 {
3709 	struct pnv_phb *phb = pe->phb;
3710 
3711 	if (phb->type == PNV_PHB_IODA1) {
3712 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3713 				     phb->ioda.io_segmap);
3714 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3715 				     phb->ioda.m32_segmap);
3716 		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3717 				     phb->ioda.m64_segmap);
3718 	} else if (phb->type == PNV_PHB_IODA2) {
3719 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3720 				     phb->ioda.m32_segmap);
3721 	}
3722 }
3723 
3724 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3725 {
3726 	struct pnv_phb *phb = pe->phb;
3727 	struct pnv_ioda_pe *slave, *tmp;
3728 
3729 	list_del(&pe->list);
3730 	switch (phb->type) {
3731 	case PNV_PHB_IODA1:
3732 		pnv_pci_ioda1_release_pe_dma(pe);
3733 		break;
3734 	case PNV_PHB_IODA2:
3735 		pnv_pci_ioda2_release_pe_dma(pe);
3736 		break;
3737 	default:
3738 		WARN_ON(1);
3739 	}
3740 
3741 	pnv_ioda_release_pe_seg(pe);
3742 	pnv_ioda_deconfigure_pe(pe->phb, pe);
3743 
3744 	/* Release slave PEs in the compound PE */
3745 	if (pe->flags & PNV_IODA_PE_MASTER) {
3746 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3747 			list_del(&slave->list);
3748 			pnv_ioda_free_pe(slave);
3749 		}
3750 	}
3751 
3752 	/*
3753 	 * The PE for root bus can be removed because of hotplug in EEH
3754 	 * recovery for fenced PHB error. We need to mark the PE dead so
3755 	 * that it can be populated again in PCI hot add path. The PE
3756 	 * shouldn't be destroyed as it's the global reserved resource.
3757 	 */
3758 	if (phb->ioda.root_pe_populated &&
3759 	    phb->ioda.root_pe_idx == pe->pe_number)
3760 		phb->ioda.root_pe_populated = false;
3761 	else
3762 		pnv_ioda_free_pe(pe);
3763 }
3764 
3765 static void pnv_pci_release_device(struct pci_dev *pdev)
3766 {
3767 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3768 	struct pnv_phb *phb = hose->private_data;
3769 	struct pci_dn *pdn = pci_get_pdn(pdev);
3770 	struct pnv_ioda_pe *pe;
3771 
3772 	if (pdev->is_virtfn)
3773 		return;
3774 
3775 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3776 		return;
3777 
3778 	/*
3779 	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3780 	 * isn't removed and added afterwards in this scenario. We should
3781 	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3782 	 * device count is decreased on removing devices while failing to
3783 	 * be increased on adding devices. It leads to unbalanced PE's device
3784 	 * count and eventually make normal PCI hotplug path broken.
3785 	 */
3786 	pe = &phb->ioda.pe_array[pdn->pe_number];
3787 	pdn->pe_number = IODA_INVALID_PE;
3788 
3789 	WARN_ON(--pe->device_count < 0);
3790 	if (pe->device_count == 0)
3791 		pnv_ioda_release_pe(pe);
3792 }
3793 
3794 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3795 {
3796 	struct pnv_phb *phb = hose->private_data;
3797 
3798 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3799 		       OPAL_ASSERT_RESET);
3800 }
3801 
3802 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3803 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3804 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3805 #ifdef CONFIG_PCI_MSI
3806 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3807 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3808 #endif
3809 	.enable_device_hook	= pnv_pci_enable_device_hook,
3810 	.release_device		= pnv_pci_release_device,
3811 	.window_alignment	= pnv_pci_window_alignment,
3812 	.setup_bridge		= pnv_pci_setup_bridge,
3813 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3814 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3815 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3816 	.shutdown		= pnv_pci_ioda_shutdown,
3817 };
3818 
3819 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3820 {
3821 	dev_err_once(&npdev->dev,
3822 			"%s operation unsupported for NVLink devices\n",
3823 			__func__);
3824 	return -EPERM;
3825 }
3826 
3827 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3828 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3829 #ifdef CONFIG_PCI_MSI
3830 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3831 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3832 #endif
3833 	.enable_device_hook	= pnv_pci_enable_device_hook,
3834 	.window_alignment	= pnv_pci_window_alignment,
3835 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3836 	.dma_set_mask		= pnv_npu_dma_set_mask,
3837 	.shutdown		= pnv_pci_ioda_shutdown,
3838 };
3839 
3840 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
3841 	.enable_device_hook	= pnv_pci_enable_device_hook,
3842 	.window_alignment	= pnv_pci_window_alignment,
3843 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3844 	.shutdown		= pnv_pci_ioda_shutdown,
3845 };
3846 
3847 #ifdef CONFIG_CXL_BASE
3848 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3849 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3850 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3851 #ifdef CONFIG_PCI_MSI
3852 	.setup_msi_irqs		= pnv_cxl_cx4_setup_msi_irqs,
3853 	.teardown_msi_irqs	= pnv_cxl_cx4_teardown_msi_irqs,
3854 #endif
3855 	.enable_device_hook	= pnv_cxl_enable_device_hook,
3856 	.disable_device		= pnv_cxl_disable_device,
3857 	.release_device		= pnv_pci_release_device,
3858 	.window_alignment	= pnv_pci_window_alignment,
3859 	.setup_bridge		= pnv_pci_setup_bridge,
3860 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3861 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3862 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3863 	.shutdown		= pnv_pci_ioda_shutdown,
3864 };
3865 #endif
3866 
3867 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3868 					 u64 hub_id, int ioda_type)
3869 {
3870 	struct pci_controller *hose;
3871 	struct pnv_phb *phb;
3872 	unsigned long size, m64map_off, m32map_off, pemap_off;
3873 	unsigned long iomap_off = 0, dma32map_off = 0;
3874 	struct resource r;
3875 	const __be64 *prop64;
3876 	const __be32 *prop32;
3877 	int len;
3878 	unsigned int segno;
3879 	u64 phb_id;
3880 	void *aux;
3881 	long rc;
3882 
3883 	if (!of_device_is_available(np))
3884 		return;
3885 
3886 	pr_info("Initializing %s PHB (%pOF)\n",	pnv_phb_names[ioda_type], np);
3887 
3888 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3889 	if (!prop64) {
3890 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3891 		return;
3892 	}
3893 	phb_id = be64_to_cpup(prop64);
3894 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3895 
3896 	phb = memblock_virt_alloc(sizeof(*phb), 0);
3897 
3898 	/* Allocate PCI controller */
3899 	phb->hose = hose = pcibios_alloc_controller(np);
3900 	if (!phb->hose) {
3901 		pr_err("  Can't allocate PCI controller for %pOF\n",
3902 		       np);
3903 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3904 		return;
3905 	}
3906 
3907 	spin_lock_init(&phb->lock);
3908 	prop32 = of_get_property(np, "bus-range", &len);
3909 	if (prop32 && len == 8) {
3910 		hose->first_busno = be32_to_cpu(prop32[0]);
3911 		hose->last_busno = be32_to_cpu(prop32[1]);
3912 	} else {
3913 		pr_warn("  Broken <bus-range> on %pOF\n", np);
3914 		hose->first_busno = 0;
3915 		hose->last_busno = 0xff;
3916 	}
3917 	hose->private_data = phb;
3918 	phb->hub_id = hub_id;
3919 	phb->opal_id = phb_id;
3920 	phb->type = ioda_type;
3921 	mutex_init(&phb->ioda.pe_alloc_mutex);
3922 
3923 	/* Detect specific models for error handling */
3924 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3925 		phb->model = PNV_PHB_MODEL_P7IOC;
3926 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3927 		phb->model = PNV_PHB_MODEL_PHB3;
3928 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3929 		phb->model = PNV_PHB_MODEL_NPU;
3930 	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3931 		phb->model = PNV_PHB_MODEL_NPU2;
3932 	else
3933 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3934 
3935 	/* Initialize diagnostic data buffer */
3936 	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3937 	if (prop32)
3938 		phb->diag_data_size = be32_to_cpup(prop32);
3939 	else
3940 		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3941 
3942 	phb->diag_data = memblock_virt_alloc(phb->diag_data_size, 0);
3943 
3944 	/* Parse 32-bit and IO ranges (if any) */
3945 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3946 
3947 	/* Get registers */
3948 	if (!of_address_to_resource(np, 0, &r)) {
3949 		phb->regs_phys = r.start;
3950 		phb->regs = ioremap(r.start, resource_size(&r));
3951 		if (phb->regs == NULL)
3952 			pr_err("  Failed to map registers !\n");
3953 	}
3954 
3955 	/* Initialize more IODA stuff */
3956 	phb->ioda.total_pe_num = 1;
3957 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3958 	if (prop32)
3959 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3960 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3961 	if (prop32)
3962 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3963 
3964 	/* Invalidate RID to PE# mapping */
3965 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3966 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3967 
3968 	/* Parse 64-bit MMIO range */
3969 	pnv_ioda_parse_m64_window(phb);
3970 
3971 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3972 	/* FW Has already off top 64k of M32 space (MSI space) */
3973 	phb->ioda.m32_size += 0x10000;
3974 
3975 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3976 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3977 	phb->ioda.io_size = hose->pci_io_size;
3978 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3979 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3980 
3981 	/* Calculate how many 32-bit TCE segments we have */
3982 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3983 				PNV_IODA1_DMA32_SEGSIZE;
3984 
3985 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3986 	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3987 			sizeof(unsigned long));
3988 	m64map_off = size;
3989 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3990 	m32map_off = size;
3991 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3992 	if (phb->type == PNV_PHB_IODA1) {
3993 		iomap_off = size;
3994 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3995 		dma32map_off = size;
3996 		size += phb->ioda.dma32_count *
3997 			sizeof(phb->ioda.dma32_segmap[0]);
3998 	}
3999 	pemap_off = size;
4000 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
4001 	aux = memblock_virt_alloc(size, 0);
4002 	phb->ioda.pe_alloc = aux;
4003 	phb->ioda.m64_segmap = aux + m64map_off;
4004 	phb->ioda.m32_segmap = aux + m32map_off;
4005 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
4006 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
4007 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
4008 	}
4009 	if (phb->type == PNV_PHB_IODA1) {
4010 		phb->ioda.io_segmap = aux + iomap_off;
4011 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
4012 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
4013 
4014 		phb->ioda.dma32_segmap = aux + dma32map_off;
4015 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
4016 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
4017 	}
4018 	phb->ioda.pe_array = aux + pemap_off;
4019 
4020 	/*
4021 	 * Choose PE number for root bus, which shouldn't have
4022 	 * M64 resources consumed by its child devices. To pick
4023 	 * the PE number adjacent to the reserved one if possible.
4024 	 */
4025 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
4026 	if (phb->ioda.reserved_pe_idx == 0) {
4027 		phb->ioda.root_pe_idx = 1;
4028 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
4029 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
4030 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
4031 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
4032 	} else {
4033 		phb->ioda.root_pe_idx = IODA_INVALID_PE;
4034 	}
4035 
4036 	INIT_LIST_HEAD(&phb->ioda.pe_list);
4037 	mutex_init(&phb->ioda.pe_list_mutex);
4038 
4039 	/* Calculate how many 32-bit TCE segments we have */
4040 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
4041 				PNV_IODA1_DMA32_SEGSIZE;
4042 
4043 #if 0 /* We should really do that ... */
4044 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
4045 					 window_type,
4046 					 window_num,
4047 					 starting_real_address,
4048 					 starting_pci_address,
4049 					 segment_size);
4050 #endif
4051 
4052 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
4053 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
4054 		phb->ioda.m32_size, phb->ioda.m32_segsize);
4055 	if (phb->ioda.m64_size)
4056 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
4057 			phb->ioda.m64_size, phb->ioda.m64_segsize);
4058 	if (phb->ioda.io_size)
4059 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
4060 			phb->ioda.io_size, phb->ioda.io_segsize);
4061 
4062 
4063 	phb->hose->ops = &pnv_pci_ops;
4064 	phb->get_pe_state = pnv_ioda_get_pe_state;
4065 	phb->freeze_pe = pnv_ioda_freeze_pe;
4066 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
4067 
4068 	/* Setup MSI support */
4069 	pnv_pci_init_ioda_msis(phb);
4070 
4071 	/*
4072 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
4073 	 * to let the PCI core do resource assignment. It's supposed
4074 	 * that the PCI core will do correct I/O and MMIO alignment
4075 	 * for the P2P bridge bars so that each PCI bus (excluding
4076 	 * the child P2P bridges) can form individual PE.
4077 	 */
4078 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
4079 
4080 	switch (phb->type) {
4081 	case PNV_PHB_NPU_NVLINK:
4082 		hose->controller_ops = pnv_npu_ioda_controller_ops;
4083 		break;
4084 	case PNV_PHB_NPU_OCAPI:
4085 		hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
4086 		break;
4087 	default:
4088 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
4089 		hose->controller_ops = pnv_pci_ioda_controller_ops;
4090 	}
4091 
4092 	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
4093 
4094 #ifdef CONFIG_PCI_IOV
4095 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
4096 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
4097 	ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
4098 	ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
4099 #endif
4100 
4101 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
4102 
4103 	/* Reset IODA tables to a clean state */
4104 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
4105 	if (rc)
4106 		pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
4107 
4108 	/*
4109 	 * If we're running in kdump kernel, the previous kernel never
4110 	 * shutdown PCI devices correctly. We already got IODA table
4111 	 * cleaned out. So we have to issue PHB reset to stop all PCI
4112 	 * transactions from previous kernel. The ppc_pci_reset_phbs
4113 	 * kernel parameter will force this reset too.
4114 	 */
4115 	if (is_kdump_kernel() || pci_reset_phbs) {
4116 		pr_info("  Issue PHB reset ...\n");
4117 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
4118 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
4119 	}
4120 
4121 	/* Remove M64 resource if we can't configure it successfully */
4122 	if (!phb->init_m64 || phb->init_m64(phb))
4123 		hose->mem_resources[1].flags = 0;
4124 }
4125 
4126 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
4127 {
4128 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
4129 }
4130 
4131 void __init pnv_pci_init_npu_phb(struct device_node *np)
4132 {
4133 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
4134 }
4135 
4136 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
4137 {
4138 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
4139 }
4140 
4141 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
4142 {
4143 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
4144 	struct pnv_phb *phb = hose->private_data;
4145 
4146 	if (!machine_is(powernv))
4147 		return;
4148 
4149 	if (phb->type == PNV_PHB_NPU_OCAPI)
4150 		dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
4151 }
4152 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
4153 
4154 void __init pnv_pci_init_ioda_hub(struct device_node *np)
4155 {
4156 	struct device_node *phbn;
4157 	const __be64 *prop64;
4158 	u64 hub_id;
4159 
4160 	pr_info("Probing IODA IO-Hub %pOF\n", np);
4161 
4162 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
4163 	if (!prop64) {
4164 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
4165 		return;
4166 	}
4167 	hub_id = be64_to_cpup(prop64);
4168 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
4169 
4170 	/* Count child PHBs */
4171 	for_each_child_of_node(np, phbn) {
4172 		/* Look for IODA1 PHBs */
4173 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
4174 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
4175 	}
4176 }
4177