1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29 
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45 
46 #include <misc/cxl-base.h>
47 
48 #include "powernv.h"
49 #include "pci.h"
50 
51 #define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
52 #define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
53 #define PNV_IODA1_DMA32_SEGSIZE	0x10000000
54 
55 #define POWERNV_IOMMU_DEFAULT_LEVELS	1
56 #define POWERNV_IOMMU_MAX_LEVELS	5
57 
58 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
59 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
60 
61 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
62 			    const char *fmt, ...)
63 {
64 	struct va_format vaf;
65 	va_list args;
66 	char pfix[32];
67 
68 	va_start(args, fmt);
69 
70 	vaf.fmt = fmt;
71 	vaf.va = &args;
72 
73 	if (pe->flags & PNV_IODA_PE_DEV)
74 		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
75 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
76 		sprintf(pfix, "%04x:%02x     ",
77 			pci_domain_nr(pe->pbus), pe->pbus->number);
78 #ifdef CONFIG_PCI_IOV
79 	else if (pe->flags & PNV_IODA_PE_VF)
80 		sprintf(pfix, "%04x:%02x:%2x.%d",
81 			pci_domain_nr(pe->parent_dev->bus),
82 			(pe->rid & 0xff00) >> 8,
83 			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
84 #endif /* CONFIG_PCI_IOV*/
85 
86 	printk("%spci %s: [PE# %.3d] %pV",
87 	       level, pfix, pe->pe_number, &vaf);
88 
89 	va_end(args);
90 }
91 
92 static bool pnv_iommu_bypass_disabled __read_mostly;
93 
94 static int __init iommu_setup(char *str)
95 {
96 	if (!str)
97 		return -EINVAL;
98 
99 	while (*str) {
100 		if (!strncmp(str, "nobypass", 8)) {
101 			pnv_iommu_bypass_disabled = true;
102 			pr_info("PowerNV: IOMMU bypass window disabled.\n");
103 			break;
104 		}
105 		str += strcspn(str, ",");
106 		if (*str == ',')
107 			str++;
108 	}
109 
110 	return 0;
111 }
112 early_param("iommu", iommu_setup);
113 
114 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
115 {
116 	/*
117 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
118 	 * allocation code sometimes decides to put a 64-bit prefetchable
119 	 * BAR in the 32-bit window, so we have to compare the addresses.
120 	 *
121 	 * For simplicity we only test resource start.
122 	 */
123 	return (r->start >= phb->ioda.m64_base &&
124 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
125 }
126 
127 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
128 {
129 	phb->ioda.pe_array[pe_no].phb = phb;
130 	phb->ioda.pe_array[pe_no].pe_number = pe_no;
131 
132 	return &phb->ioda.pe_array[pe_no];
133 }
134 
135 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
136 {
137 	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
138 		pr_warn("%s: Invalid PE %d on PHB#%x\n",
139 			__func__, pe_no, phb->hose->global_number);
140 		return;
141 	}
142 
143 	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
144 		pr_debug("%s: PE %d was reserved on PHB#%x\n",
145 			 __func__, pe_no, phb->hose->global_number);
146 
147 	pnv_ioda_init_pe(phb, pe_no);
148 }
149 
150 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
151 {
152 	unsigned long pe = phb->ioda.total_pe_num - 1;
153 
154 	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
155 		if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
156 			return pnv_ioda_init_pe(phb, pe);
157 	}
158 
159 	return NULL;
160 }
161 
162 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
163 {
164 	struct pnv_phb *phb = pe->phb;
165 
166 	WARN_ON(pe->pdev);
167 
168 	memset(pe, 0, sizeof(struct pnv_ioda_pe));
169 	clear_bit(pe->pe_number, phb->ioda.pe_alloc);
170 }
171 
172 /* The default M64 BAR is shared by all PEs */
173 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
174 {
175 	const char *desc;
176 	struct resource *r;
177 	s64 rc;
178 
179 	/* Configure the default M64 BAR */
180 	rc = opal_pci_set_phb_mem_window(phb->opal_id,
181 					 OPAL_M64_WINDOW_TYPE,
182 					 phb->ioda.m64_bar_idx,
183 					 phb->ioda.m64_base,
184 					 0, /* unused */
185 					 phb->ioda.m64_size);
186 	if (rc != OPAL_SUCCESS) {
187 		desc = "configuring";
188 		goto fail;
189 	}
190 
191 	/* Enable the default M64 BAR */
192 	rc = opal_pci_phb_mmio_enable(phb->opal_id,
193 				      OPAL_M64_WINDOW_TYPE,
194 				      phb->ioda.m64_bar_idx,
195 				      OPAL_ENABLE_M64_SPLIT);
196 	if (rc != OPAL_SUCCESS) {
197 		desc = "enabling";
198 		goto fail;
199 	}
200 
201 	/*
202 	 * Exclude the segments for reserved and root bus PE, which
203 	 * are first or last two PEs.
204 	 */
205 	r = &phb->hose->mem_resources[1];
206 	if (phb->ioda.reserved_pe_idx == 0)
207 		r->start += (2 * phb->ioda.m64_segsize);
208 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
209 		r->end -= (2 * phb->ioda.m64_segsize);
210 	else
211 		pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
212 			phb->ioda.reserved_pe_idx);
213 
214 	return 0;
215 
216 fail:
217 	pr_warn("  Failure %lld %s M64 BAR#%d\n",
218 		rc, desc, phb->ioda.m64_bar_idx);
219 	opal_pci_phb_mmio_enable(phb->opal_id,
220 				 OPAL_M64_WINDOW_TYPE,
221 				 phb->ioda.m64_bar_idx,
222 				 OPAL_DISABLE_M64);
223 	return -EIO;
224 }
225 
226 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
227 					 unsigned long *pe_bitmap)
228 {
229 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
230 	struct pnv_phb *phb = hose->private_data;
231 	struct resource *r;
232 	resource_size_t base, sgsz, start, end;
233 	int segno, i;
234 
235 	base = phb->ioda.m64_base;
236 	sgsz = phb->ioda.m64_segsize;
237 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
238 		r = &pdev->resource[i];
239 		if (!r->parent || !pnv_pci_is_m64(phb, r))
240 			continue;
241 
242 		start = _ALIGN_DOWN(r->start - base, sgsz);
243 		end = _ALIGN_UP(r->end - base, sgsz);
244 		for (segno = start / sgsz; segno < end / sgsz; segno++) {
245 			if (pe_bitmap)
246 				set_bit(segno, pe_bitmap);
247 			else
248 				pnv_ioda_reserve_pe(phb, segno);
249 		}
250 	}
251 }
252 
253 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
254 {
255 	struct resource *r;
256 	int index;
257 
258 	/*
259 	 * There are 16 M64 BARs, each of which has 8 segments. So
260 	 * there are as many M64 segments as the maximum number of
261 	 * PEs, which is 128.
262 	 */
263 	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
264 		unsigned long base, segsz = phb->ioda.m64_segsize;
265 		int64_t rc;
266 
267 		base = phb->ioda.m64_base +
268 		       index * PNV_IODA1_M64_SEGS * segsz;
269 		rc = opal_pci_set_phb_mem_window(phb->opal_id,
270 				OPAL_M64_WINDOW_TYPE, index, base, 0,
271 				PNV_IODA1_M64_SEGS * segsz);
272 		if (rc != OPAL_SUCCESS) {
273 			pr_warn("  Error %lld setting M64 PHB#%d-BAR#%d\n",
274 				rc, phb->hose->global_number, index);
275 			goto fail;
276 		}
277 
278 		rc = opal_pci_phb_mmio_enable(phb->opal_id,
279 				OPAL_M64_WINDOW_TYPE, index,
280 				OPAL_ENABLE_M64_SPLIT);
281 		if (rc != OPAL_SUCCESS) {
282 			pr_warn("  Error %lld enabling M64 PHB#%d-BAR#%d\n",
283 				rc, phb->hose->global_number, index);
284 			goto fail;
285 		}
286 	}
287 
288 	/*
289 	 * Exclude the segments for reserved and root bus PE, which
290 	 * are first or last two PEs.
291 	 */
292 	r = &phb->hose->mem_resources[1];
293 	if (phb->ioda.reserved_pe_idx == 0)
294 		r->start += (2 * phb->ioda.m64_segsize);
295 	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
296 		r->end -= (2 * phb->ioda.m64_segsize);
297 	else
298 		WARN(1, "Wrong reserved PE#%d on PHB#%d\n",
299 		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
300 
301 	return 0;
302 
303 fail:
304 	for ( ; index >= 0; index--)
305 		opal_pci_phb_mmio_enable(phb->opal_id,
306 			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
307 
308 	return -EIO;
309 }
310 
311 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
312 				    unsigned long *pe_bitmap,
313 				    bool all)
314 {
315 	struct pci_dev *pdev;
316 
317 	list_for_each_entry(pdev, &bus->devices, bus_list) {
318 		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
319 
320 		if (all && pdev->subordinate)
321 			pnv_ioda_reserve_m64_pe(pdev->subordinate,
322 						pe_bitmap, all);
323 	}
324 }
325 
326 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
327 {
328 	struct pci_controller *hose = pci_bus_to_host(bus);
329 	struct pnv_phb *phb = hose->private_data;
330 	struct pnv_ioda_pe *master_pe, *pe;
331 	unsigned long size, *pe_alloc;
332 	int i;
333 
334 	/* Root bus shouldn't use M64 */
335 	if (pci_is_root_bus(bus))
336 		return NULL;
337 
338 	/* Allocate bitmap */
339 	size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
340 	pe_alloc = kzalloc(size, GFP_KERNEL);
341 	if (!pe_alloc) {
342 		pr_warn("%s: Out of memory !\n",
343 			__func__);
344 		return NULL;
345 	}
346 
347 	/* Figure out reserved PE numbers by the PE */
348 	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
349 
350 	/*
351 	 * the current bus might not own M64 window and that's all
352 	 * contributed by its child buses. For the case, we needn't
353 	 * pick M64 dependent PE#.
354 	 */
355 	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
356 		kfree(pe_alloc);
357 		return NULL;
358 	}
359 
360 	/*
361 	 * Figure out the master PE and put all slave PEs to master
362 	 * PE's list to form compound PE.
363 	 */
364 	master_pe = NULL;
365 	i = -1;
366 	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
367 		phb->ioda.total_pe_num) {
368 		pe = &phb->ioda.pe_array[i];
369 
370 		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
371 		if (!master_pe) {
372 			pe->flags |= PNV_IODA_PE_MASTER;
373 			INIT_LIST_HEAD(&pe->slaves);
374 			master_pe = pe;
375 		} else {
376 			pe->flags |= PNV_IODA_PE_SLAVE;
377 			pe->master = master_pe;
378 			list_add_tail(&pe->list, &master_pe->slaves);
379 		}
380 
381 		/*
382 		 * P7IOC supports M64DT, which helps mapping M64 segment
383 		 * to one particular PE#. However, PHB3 has fixed mapping
384 		 * between M64 segment and PE#. In order to have same logic
385 		 * for P7IOC and PHB3, we enforce fixed mapping between M64
386 		 * segment and PE# on P7IOC.
387 		 */
388 		if (phb->type == PNV_PHB_IODA1) {
389 			int64_t rc;
390 
391 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
392 					pe->pe_number, OPAL_M64_WINDOW_TYPE,
393 					pe->pe_number / PNV_IODA1_M64_SEGS,
394 					pe->pe_number % PNV_IODA1_M64_SEGS);
395 			if (rc != OPAL_SUCCESS)
396 				pr_warn("%s: Error %lld mapping M64 for PHB#%d-PE#%d\n",
397 					__func__, rc, phb->hose->global_number,
398 					pe->pe_number);
399 		}
400 	}
401 
402 	kfree(pe_alloc);
403 	return master_pe;
404 }
405 
406 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
407 {
408 	struct pci_controller *hose = phb->hose;
409 	struct device_node *dn = hose->dn;
410 	struct resource *res;
411 	u32 m64_range[2], i;
412 	const u32 *r;
413 	u64 pci_addr;
414 
415 	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
416 		pr_info("  Not support M64 window\n");
417 		return;
418 	}
419 
420 	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
421 		pr_info("  Firmware too old to support M64 window\n");
422 		return;
423 	}
424 
425 	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
426 	if (!r) {
427 		pr_info("  No <ibm,opal-m64-window> on %s\n",
428 			dn->full_name);
429 		return;
430 	}
431 
432 	/*
433 	 * Find the available M64 BAR range and pickup the last one for
434 	 * covering the whole 64-bits space. We support only one range.
435 	 */
436 	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
437 				       m64_range, 2)) {
438 		/* In absence of the property, assume 0..15 */
439 		m64_range[0] = 0;
440 		m64_range[1] = 16;
441 	}
442 	/* We only support 64 bits in our allocator */
443 	if (m64_range[1] > 63) {
444 		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
445 			__func__, m64_range[1], phb->hose->global_number);
446 		m64_range[1] = 63;
447 	}
448 	/* Empty range, no m64 */
449 	if (m64_range[1] <= m64_range[0]) {
450 		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
451 			__func__, phb->hose->global_number);
452 		return;
453 	}
454 
455 	/* Configure M64 informations */
456 	res = &hose->mem_resources[1];
457 	res->name = dn->full_name;
458 	res->start = of_translate_address(dn, r + 2);
459 	res->end = res->start + of_read_number(r + 4, 2) - 1;
460 	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
461 	pci_addr = of_read_number(r, 2);
462 	hose->mem_offset[1] = res->start - pci_addr;
463 
464 	phb->ioda.m64_size = resource_size(res);
465 	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
466 	phb->ioda.m64_base = pci_addr;
467 
468 	/* This lines up nicely with the display from processing OF ranges */
469 	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
470 		res->start, res->end, pci_addr, m64_range[0],
471 		m64_range[0] + m64_range[1] - 1);
472 
473 	/* Mark all M64 used up by default */
474 	phb->ioda.m64_bar_alloc = (unsigned long)-1;
475 
476 	/* Use last M64 BAR to cover M64 window */
477 	m64_range[1]--;
478 	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
479 
480 	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
481 
482 	/* Mark remaining ones free */
483 	for (i = m64_range[0]; i < m64_range[1]; i++)
484 		clear_bit(i, &phb->ioda.m64_bar_alloc);
485 
486 	/*
487 	 * Setup init functions for M64 based on IODA version, IODA3 uses
488 	 * the IODA2 code.
489 	 */
490 	if (phb->type == PNV_PHB_IODA1)
491 		phb->init_m64 = pnv_ioda1_init_m64;
492 	else
493 		phb->init_m64 = pnv_ioda2_init_m64;
494 	phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
495 	phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
496 }
497 
498 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
499 {
500 	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
501 	struct pnv_ioda_pe *slave;
502 	s64 rc;
503 
504 	/* Fetch master PE */
505 	if (pe->flags & PNV_IODA_PE_SLAVE) {
506 		pe = pe->master;
507 		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
508 			return;
509 
510 		pe_no = pe->pe_number;
511 	}
512 
513 	/* Freeze master PE */
514 	rc = opal_pci_eeh_freeze_set(phb->opal_id,
515 				     pe_no,
516 				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
517 	if (rc != OPAL_SUCCESS) {
518 		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
519 			__func__, rc, phb->hose->global_number, pe_no);
520 		return;
521 	}
522 
523 	/* Freeze slave PEs */
524 	if (!(pe->flags & PNV_IODA_PE_MASTER))
525 		return;
526 
527 	list_for_each_entry(slave, &pe->slaves, list) {
528 		rc = opal_pci_eeh_freeze_set(phb->opal_id,
529 					     slave->pe_number,
530 					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
531 		if (rc != OPAL_SUCCESS)
532 			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
533 				__func__, rc, phb->hose->global_number,
534 				slave->pe_number);
535 	}
536 }
537 
538 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
539 {
540 	struct pnv_ioda_pe *pe, *slave;
541 	s64 rc;
542 
543 	/* Find master PE */
544 	pe = &phb->ioda.pe_array[pe_no];
545 	if (pe->flags & PNV_IODA_PE_SLAVE) {
546 		pe = pe->master;
547 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
548 		pe_no = pe->pe_number;
549 	}
550 
551 	/* Clear frozen state for master PE */
552 	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
553 	if (rc != OPAL_SUCCESS) {
554 		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
555 			__func__, rc, opt, phb->hose->global_number, pe_no);
556 		return -EIO;
557 	}
558 
559 	if (!(pe->flags & PNV_IODA_PE_MASTER))
560 		return 0;
561 
562 	/* Clear frozen state for slave PEs */
563 	list_for_each_entry(slave, &pe->slaves, list) {
564 		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
565 					     slave->pe_number,
566 					     opt);
567 		if (rc != OPAL_SUCCESS) {
568 			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
569 				__func__, rc, opt, phb->hose->global_number,
570 				slave->pe_number);
571 			return -EIO;
572 		}
573 	}
574 
575 	return 0;
576 }
577 
578 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
579 {
580 	struct pnv_ioda_pe *slave, *pe;
581 	u8 fstate, state;
582 	__be16 pcierr;
583 	s64 rc;
584 
585 	/* Sanity check on PE number */
586 	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
587 		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
588 
589 	/*
590 	 * Fetch the master PE and the PE instance might be
591 	 * not initialized yet.
592 	 */
593 	pe = &phb->ioda.pe_array[pe_no];
594 	if (pe->flags & PNV_IODA_PE_SLAVE) {
595 		pe = pe->master;
596 		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
597 		pe_no = pe->pe_number;
598 	}
599 
600 	/* Check the master PE */
601 	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
602 					&state, &pcierr, NULL);
603 	if (rc != OPAL_SUCCESS) {
604 		pr_warn("%s: Failure %lld getting "
605 			"PHB#%x-PE#%x state\n",
606 			__func__, rc,
607 			phb->hose->global_number, pe_no);
608 		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
609 	}
610 
611 	/* Check the slave PE */
612 	if (!(pe->flags & PNV_IODA_PE_MASTER))
613 		return state;
614 
615 	list_for_each_entry(slave, &pe->slaves, list) {
616 		rc = opal_pci_eeh_freeze_status(phb->opal_id,
617 						slave->pe_number,
618 						&fstate,
619 						&pcierr,
620 						NULL);
621 		if (rc != OPAL_SUCCESS) {
622 			pr_warn("%s: Failure %lld getting "
623 				"PHB#%x-PE#%x state\n",
624 				__func__, rc,
625 				phb->hose->global_number, slave->pe_number);
626 			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
627 		}
628 
629 		/*
630 		 * Override the result based on the ascending
631 		 * priority.
632 		 */
633 		if (fstate > state)
634 			state = fstate;
635 	}
636 
637 	return state;
638 }
639 
640 /* Currently those 2 are only used when MSIs are enabled, this will change
641  * but in the meantime, we need to protect them to avoid warnings
642  */
643 #ifdef CONFIG_PCI_MSI
644 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
645 {
646 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
647 	struct pnv_phb *phb = hose->private_data;
648 	struct pci_dn *pdn = pci_get_pdn(dev);
649 
650 	if (!pdn)
651 		return NULL;
652 	if (pdn->pe_number == IODA_INVALID_PE)
653 		return NULL;
654 	return &phb->ioda.pe_array[pdn->pe_number];
655 }
656 #endif /* CONFIG_PCI_MSI */
657 
658 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
659 				  struct pnv_ioda_pe *parent,
660 				  struct pnv_ioda_pe *child,
661 				  bool is_add)
662 {
663 	const char *desc = is_add ? "adding" : "removing";
664 	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
665 			      OPAL_REMOVE_PE_FROM_DOMAIN;
666 	struct pnv_ioda_pe *slave;
667 	long rc;
668 
669 	/* Parent PE affects child PE */
670 	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
671 				child->pe_number, op);
672 	if (rc != OPAL_SUCCESS) {
673 		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
674 			rc, desc);
675 		return -ENXIO;
676 	}
677 
678 	if (!(child->flags & PNV_IODA_PE_MASTER))
679 		return 0;
680 
681 	/* Compound case: parent PE affects slave PEs */
682 	list_for_each_entry(slave, &child->slaves, list) {
683 		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
684 					slave->pe_number, op);
685 		if (rc != OPAL_SUCCESS) {
686 			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
687 				rc, desc);
688 			return -ENXIO;
689 		}
690 	}
691 
692 	return 0;
693 }
694 
695 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
696 			      struct pnv_ioda_pe *pe,
697 			      bool is_add)
698 {
699 	struct pnv_ioda_pe *slave;
700 	struct pci_dev *pdev = NULL;
701 	int ret;
702 
703 	/*
704 	 * Clear PE frozen state. If it's master PE, we need
705 	 * clear slave PE frozen state as well.
706 	 */
707 	if (is_add) {
708 		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
709 					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
710 		if (pe->flags & PNV_IODA_PE_MASTER) {
711 			list_for_each_entry(slave, &pe->slaves, list)
712 				opal_pci_eeh_freeze_clear(phb->opal_id,
713 							  slave->pe_number,
714 							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
715 		}
716 	}
717 
718 	/*
719 	 * Associate PE in PELT. We need add the PE into the
720 	 * corresponding PELT-V as well. Otherwise, the error
721 	 * originated from the PE might contribute to other
722 	 * PEs.
723 	 */
724 	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
725 	if (ret)
726 		return ret;
727 
728 	/* For compound PEs, any one affects all of them */
729 	if (pe->flags & PNV_IODA_PE_MASTER) {
730 		list_for_each_entry(slave, &pe->slaves, list) {
731 			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
732 			if (ret)
733 				return ret;
734 		}
735 	}
736 
737 	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
738 		pdev = pe->pbus->self;
739 	else if (pe->flags & PNV_IODA_PE_DEV)
740 		pdev = pe->pdev->bus->self;
741 #ifdef CONFIG_PCI_IOV
742 	else if (pe->flags & PNV_IODA_PE_VF)
743 		pdev = pe->parent_dev;
744 #endif /* CONFIG_PCI_IOV */
745 	while (pdev) {
746 		struct pci_dn *pdn = pci_get_pdn(pdev);
747 		struct pnv_ioda_pe *parent;
748 
749 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
750 			parent = &phb->ioda.pe_array[pdn->pe_number];
751 			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
752 			if (ret)
753 				return ret;
754 		}
755 
756 		pdev = pdev->bus->self;
757 	}
758 
759 	return 0;
760 }
761 
762 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
763 {
764 	struct pci_dev *parent;
765 	uint8_t bcomp, dcomp, fcomp;
766 	int64_t rc;
767 	long rid_end, rid;
768 
769 	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
770 	if (pe->pbus) {
771 		int count;
772 
773 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
774 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
775 		parent = pe->pbus->self;
776 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
777 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
778 		else
779 			count = 1;
780 
781 		switch(count) {
782 		case  1: bcomp = OpalPciBusAll;         break;
783 		case  2: bcomp = OpalPciBus7Bits;       break;
784 		case  4: bcomp = OpalPciBus6Bits;       break;
785 		case  8: bcomp = OpalPciBus5Bits;       break;
786 		case 16: bcomp = OpalPciBus4Bits;       break;
787 		case 32: bcomp = OpalPciBus3Bits;       break;
788 		default:
789 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
790 			        count);
791 			/* Do an exact match only */
792 			bcomp = OpalPciBusAll;
793 		}
794 		rid_end = pe->rid + (count << 8);
795 	} else {
796 #ifdef CONFIG_PCI_IOV
797 		if (pe->flags & PNV_IODA_PE_VF)
798 			parent = pe->parent_dev;
799 		else
800 #endif
801 			parent = pe->pdev->bus->self;
802 		bcomp = OpalPciBusAll;
803 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
804 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
805 		rid_end = pe->rid + 1;
806 	}
807 
808 	/* Clear the reverse map */
809 	for (rid = pe->rid; rid < rid_end; rid++)
810 		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
811 
812 	/* Release from all parents PELT-V */
813 	while (parent) {
814 		struct pci_dn *pdn = pci_get_pdn(parent);
815 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
816 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
817 						pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
818 			/* XXX What to do in case of error ? */
819 		}
820 		parent = parent->bus->self;
821 	}
822 
823 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
824 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
825 
826 	/* Disassociate PE in PELT */
827 	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
828 				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
829 	if (rc)
830 		pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
831 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
832 			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
833 	if (rc)
834 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
835 
836 	pe->pbus = NULL;
837 	pe->pdev = NULL;
838 #ifdef CONFIG_PCI_IOV
839 	pe->parent_dev = NULL;
840 #endif
841 
842 	return 0;
843 }
844 
845 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
846 {
847 	struct pci_dev *parent;
848 	uint8_t bcomp, dcomp, fcomp;
849 	long rc, rid_end, rid;
850 
851 	/* Bus validation ? */
852 	if (pe->pbus) {
853 		int count;
854 
855 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
856 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
857 		parent = pe->pbus->self;
858 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
859 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
860 		else
861 			count = 1;
862 
863 		switch(count) {
864 		case  1: bcomp = OpalPciBusAll;		break;
865 		case  2: bcomp = OpalPciBus7Bits;	break;
866 		case  4: bcomp = OpalPciBus6Bits;	break;
867 		case  8: bcomp = OpalPciBus5Bits;	break;
868 		case 16: bcomp = OpalPciBus4Bits;	break;
869 		case 32: bcomp = OpalPciBus3Bits;	break;
870 		default:
871 			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
872 			        count);
873 			/* Do an exact match only */
874 			bcomp = OpalPciBusAll;
875 		}
876 		rid_end = pe->rid + (count << 8);
877 	} else {
878 #ifdef CONFIG_PCI_IOV
879 		if (pe->flags & PNV_IODA_PE_VF)
880 			parent = pe->parent_dev;
881 		else
882 #endif /* CONFIG_PCI_IOV */
883 			parent = pe->pdev->bus->self;
884 		bcomp = OpalPciBusAll;
885 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
886 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
887 		rid_end = pe->rid + 1;
888 	}
889 
890 	/*
891 	 * Associate PE in PELT. We need add the PE into the
892 	 * corresponding PELT-V as well. Otherwise, the error
893 	 * originated from the PE might contribute to other
894 	 * PEs.
895 	 */
896 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
897 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
898 	if (rc) {
899 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
900 		return -ENXIO;
901 	}
902 
903 	/*
904 	 * Configure PELTV. NPUs don't have a PELTV table so skip
905 	 * configuration on them.
906 	 */
907 	if (phb->type != PNV_PHB_NPU)
908 		pnv_ioda_set_peltv(phb, pe, true);
909 
910 	/* Setup reverse map */
911 	for (rid = pe->rid; rid < rid_end; rid++)
912 		phb->ioda.pe_rmap[rid] = pe->pe_number;
913 
914 	/* Setup one MVTs on IODA1 */
915 	if (phb->type != PNV_PHB_IODA1) {
916 		pe->mve_number = 0;
917 		goto out;
918 	}
919 
920 	pe->mve_number = pe->pe_number;
921 	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
922 	if (rc != OPAL_SUCCESS) {
923 		pe_err(pe, "OPAL error %ld setting up MVE %d\n",
924 		       rc, pe->mve_number);
925 		pe->mve_number = -1;
926 	} else {
927 		rc = opal_pci_set_mve_enable(phb->opal_id,
928 					     pe->mve_number, OPAL_ENABLE_MVE);
929 		if (rc) {
930 			pe_err(pe, "OPAL error %ld enabling MVE %d\n",
931 			       rc, pe->mve_number);
932 			pe->mve_number = -1;
933 		}
934 	}
935 
936 out:
937 	return 0;
938 }
939 
940 #ifdef CONFIG_PCI_IOV
941 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
942 {
943 	struct pci_dn *pdn = pci_get_pdn(dev);
944 	int i;
945 	struct resource *res, res2;
946 	resource_size_t size;
947 	u16 num_vfs;
948 
949 	if (!dev->is_physfn)
950 		return -EINVAL;
951 
952 	/*
953 	 * "offset" is in VFs.  The M64 windows are sized so that when they
954 	 * are segmented, each segment is the same size as the IOV BAR.
955 	 * Each segment is in a separate PE, and the high order bits of the
956 	 * address are the PE number.  Therefore, each VF's BAR is in a
957 	 * separate PE, and changing the IOV BAR start address changes the
958 	 * range of PEs the VFs are in.
959 	 */
960 	num_vfs = pdn->num_vfs;
961 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
962 		res = &dev->resource[i + PCI_IOV_RESOURCES];
963 		if (!res->flags || !res->parent)
964 			continue;
965 
966 		/*
967 		 * The actual IOV BAR range is determined by the start address
968 		 * and the actual size for num_vfs VFs BAR.  This check is to
969 		 * make sure that after shifting, the range will not overlap
970 		 * with another device.
971 		 */
972 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
973 		res2.flags = res->flags;
974 		res2.start = res->start + (size * offset);
975 		res2.end = res2.start + (size * num_vfs) - 1;
976 
977 		if (res2.end > res->end) {
978 			dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
979 				i, &res2, res, num_vfs, offset);
980 			return -EBUSY;
981 		}
982 	}
983 
984 	/*
985 	 * After doing so, there would be a "hole" in the /proc/iomem when
986 	 * offset is a positive value. It looks like the device return some
987 	 * mmio back to the system, which actually no one could use it.
988 	 */
989 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
990 		res = &dev->resource[i + PCI_IOV_RESOURCES];
991 		if (!res->flags || !res->parent)
992 			continue;
993 
994 		size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
995 		res2 = *res;
996 		res->start += size * offset;
997 
998 		dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
999 			 i, &res2, res, (offset > 0) ? "En" : "Dis",
1000 			 num_vfs, offset);
1001 		pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1002 	}
1003 	return 0;
1004 }
1005 #endif /* CONFIG_PCI_IOV */
1006 
1007 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1008 {
1009 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1010 	struct pnv_phb *phb = hose->private_data;
1011 	struct pci_dn *pdn = pci_get_pdn(dev);
1012 	struct pnv_ioda_pe *pe;
1013 
1014 	if (!pdn) {
1015 		pr_err("%s: Device tree node not associated properly\n",
1016 			   pci_name(dev));
1017 		return NULL;
1018 	}
1019 	if (pdn->pe_number != IODA_INVALID_PE)
1020 		return NULL;
1021 
1022 	pe = pnv_ioda_alloc_pe(phb);
1023 	if (!pe) {
1024 		pr_warning("%s: Not enough PE# available, disabling device\n",
1025 			   pci_name(dev));
1026 		return NULL;
1027 	}
1028 
1029 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1030 	 * pointer in the PE data structure, both should be destroyed at the
1031 	 * same time. However, this needs to be looked at more closely again
1032 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
1033 	 *
1034 	 * At some point we want to remove the PDN completely anyways
1035 	 */
1036 	pci_dev_get(dev);
1037 	pdn->pcidev = dev;
1038 	pdn->pe_number = pe->pe_number;
1039 	pe->flags = PNV_IODA_PE_DEV;
1040 	pe->pdev = dev;
1041 	pe->pbus = NULL;
1042 	pe->mve_number = -1;
1043 	pe->rid = dev->bus->number << 8 | pdn->devfn;
1044 
1045 	pe_info(pe, "Associated device to PE\n");
1046 
1047 	if (pnv_ioda_configure_pe(phb, pe)) {
1048 		/* XXX What do we do here ? */
1049 		pnv_ioda_free_pe(pe);
1050 		pdn->pe_number = IODA_INVALID_PE;
1051 		pe->pdev = NULL;
1052 		pci_dev_put(dev);
1053 		return NULL;
1054 	}
1055 
1056 	/* Put PE to the list */
1057 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1058 
1059 	return pe;
1060 }
1061 
1062 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1063 {
1064 	struct pci_dev *dev;
1065 
1066 	list_for_each_entry(dev, &bus->devices, bus_list) {
1067 		struct pci_dn *pdn = pci_get_pdn(dev);
1068 
1069 		if (pdn == NULL) {
1070 			pr_warn("%s: No device node associated with device !\n",
1071 				pci_name(dev));
1072 			continue;
1073 		}
1074 
1075 		/*
1076 		 * In partial hotplug case, the PCI device might be still
1077 		 * associated with the PE and needn't attach it to the PE
1078 		 * again.
1079 		 */
1080 		if (pdn->pe_number != IODA_INVALID_PE)
1081 			continue;
1082 
1083 		pe->device_count++;
1084 		pdn->pcidev = dev;
1085 		pdn->pe_number = pe->pe_number;
1086 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1087 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
1088 	}
1089 }
1090 
1091 /*
1092  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1093  * single PCI bus. Another one that contains the primary PCI bus and its
1094  * subordinate PCI devices and buses. The second type of PE is normally
1095  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1096  */
1097 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1098 {
1099 	struct pci_controller *hose = pci_bus_to_host(bus);
1100 	struct pnv_phb *phb = hose->private_data;
1101 	struct pnv_ioda_pe *pe = NULL;
1102 	unsigned int pe_num;
1103 
1104 	/*
1105 	 * In partial hotplug case, the PE instance might be still alive.
1106 	 * We should reuse it instead of allocating a new one.
1107 	 */
1108 	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1109 	if (pe_num != IODA_INVALID_PE) {
1110 		pe = &phb->ioda.pe_array[pe_num];
1111 		pnv_ioda_setup_same_PE(bus, pe);
1112 		return NULL;
1113 	}
1114 
1115 	/* PE number for root bus should have been reserved */
1116 	if (pci_is_root_bus(bus) &&
1117 	    phb->ioda.root_pe_idx != IODA_INVALID_PE)
1118 		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1119 
1120 	/* Check if PE is determined by M64 */
1121 	if (!pe && phb->pick_m64_pe)
1122 		pe = phb->pick_m64_pe(bus, all);
1123 
1124 	/* The PE number isn't pinned by M64 */
1125 	if (!pe)
1126 		pe = pnv_ioda_alloc_pe(phb);
1127 
1128 	if (!pe) {
1129 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1130 			__func__, pci_domain_nr(bus), bus->number);
1131 		return NULL;
1132 	}
1133 
1134 	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1135 	pe->pbus = bus;
1136 	pe->pdev = NULL;
1137 	pe->mve_number = -1;
1138 	pe->rid = bus->busn_res.start << 8;
1139 
1140 	if (all)
1141 		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1142 			bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1143 	else
1144 		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1145 			bus->busn_res.start, pe->pe_number);
1146 
1147 	if (pnv_ioda_configure_pe(phb, pe)) {
1148 		/* XXX What do we do here ? */
1149 		pnv_ioda_free_pe(pe);
1150 		pe->pbus = NULL;
1151 		return NULL;
1152 	}
1153 
1154 	/* Associate it with all child devices */
1155 	pnv_ioda_setup_same_PE(bus, pe);
1156 
1157 	/* Put PE to the list */
1158 	list_add_tail(&pe->list, &phb->ioda.pe_list);
1159 
1160 	return pe;
1161 }
1162 
1163 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1164 {
1165 	int pe_num, found_pe = false, rc;
1166 	long rid;
1167 	struct pnv_ioda_pe *pe;
1168 	struct pci_dev *gpu_pdev;
1169 	struct pci_dn *npu_pdn;
1170 	struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1171 	struct pnv_phb *phb = hose->private_data;
1172 
1173 	/*
1174 	 * Due to a hardware errata PE#0 on the NPU is reserved for
1175 	 * error handling. This means we only have three PEs remaining
1176 	 * which need to be assigned to four links, implying some
1177 	 * links must share PEs.
1178 	 *
1179 	 * To achieve this we assign PEs such that NPUs linking the
1180 	 * same GPU get assigned the same PE.
1181 	 */
1182 	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1183 	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1184 		pe = &phb->ioda.pe_array[pe_num];
1185 		if (!pe->pdev)
1186 			continue;
1187 
1188 		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1189 			/*
1190 			 * This device has the same peer GPU so should
1191 			 * be assigned the same PE as the existing
1192 			 * peer NPU.
1193 			 */
1194 			dev_info(&npu_pdev->dev,
1195 				"Associating to existing PE %d\n", pe_num);
1196 			pci_dev_get(npu_pdev);
1197 			npu_pdn = pci_get_pdn(npu_pdev);
1198 			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1199 			npu_pdn->pcidev = npu_pdev;
1200 			npu_pdn->pe_number = pe_num;
1201 			phb->ioda.pe_rmap[rid] = pe->pe_number;
1202 
1203 			/* Map the PE to this link */
1204 			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1205 					OpalPciBusAll,
1206 					OPAL_COMPARE_RID_DEVICE_NUMBER,
1207 					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1208 					OPAL_MAP_PE);
1209 			WARN_ON(rc != OPAL_SUCCESS);
1210 			found_pe = true;
1211 			break;
1212 		}
1213 	}
1214 
1215 	if (!found_pe)
1216 		/*
1217 		 * Could not find an existing PE so allocate a new
1218 		 * one.
1219 		 */
1220 		return pnv_ioda_setup_dev_PE(npu_pdev);
1221 	else
1222 		return pe;
1223 }
1224 
1225 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1226 {
1227 	struct pci_dev *pdev;
1228 
1229 	list_for_each_entry(pdev, &bus->devices, bus_list)
1230 		pnv_ioda_setup_npu_PE(pdev);
1231 }
1232 
1233 static void pnv_pci_ioda_setup_PEs(void)
1234 {
1235 	struct pci_controller *hose, *tmp;
1236 	struct pnv_phb *phb;
1237 
1238 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1239 		phb = hose->private_data;
1240 		if (phb->type == PNV_PHB_NPU) {
1241 			/* PE#0 is needed for error reporting */
1242 			pnv_ioda_reserve_pe(phb, 0);
1243 			pnv_ioda_setup_npu_PEs(hose->bus);
1244 		}
1245 	}
1246 }
1247 
1248 #ifdef CONFIG_PCI_IOV
1249 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1250 {
1251 	struct pci_bus        *bus;
1252 	struct pci_controller *hose;
1253 	struct pnv_phb        *phb;
1254 	struct pci_dn         *pdn;
1255 	int                    i, j;
1256 	int                    m64_bars;
1257 
1258 	bus = pdev->bus;
1259 	hose = pci_bus_to_host(bus);
1260 	phb = hose->private_data;
1261 	pdn = pci_get_pdn(pdev);
1262 
1263 	if (pdn->m64_single_mode)
1264 		m64_bars = num_vfs;
1265 	else
1266 		m64_bars = 1;
1267 
1268 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1269 		for (j = 0; j < m64_bars; j++) {
1270 			if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1271 				continue;
1272 			opal_pci_phb_mmio_enable(phb->opal_id,
1273 				OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1274 			clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1275 			pdn->m64_map[j][i] = IODA_INVALID_M64;
1276 		}
1277 
1278 	kfree(pdn->m64_map);
1279 	return 0;
1280 }
1281 
1282 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1283 {
1284 	struct pci_bus        *bus;
1285 	struct pci_controller *hose;
1286 	struct pnv_phb        *phb;
1287 	struct pci_dn         *pdn;
1288 	unsigned int           win;
1289 	struct resource       *res;
1290 	int                    i, j;
1291 	int64_t                rc;
1292 	int                    total_vfs;
1293 	resource_size_t        size, start;
1294 	int                    pe_num;
1295 	int                    m64_bars;
1296 
1297 	bus = pdev->bus;
1298 	hose = pci_bus_to_host(bus);
1299 	phb = hose->private_data;
1300 	pdn = pci_get_pdn(pdev);
1301 	total_vfs = pci_sriov_get_totalvfs(pdev);
1302 
1303 	if (pdn->m64_single_mode)
1304 		m64_bars = num_vfs;
1305 	else
1306 		m64_bars = 1;
1307 
1308 	pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL);
1309 	if (!pdn->m64_map)
1310 		return -ENOMEM;
1311 	/* Initialize the m64_map to IODA_INVALID_M64 */
1312 	for (i = 0; i < m64_bars ; i++)
1313 		for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1314 			pdn->m64_map[i][j] = IODA_INVALID_M64;
1315 
1316 
1317 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1318 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
1319 		if (!res->flags || !res->parent)
1320 			continue;
1321 
1322 		for (j = 0; j < m64_bars; j++) {
1323 			do {
1324 				win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1325 						phb->ioda.m64_bar_idx + 1, 0);
1326 
1327 				if (win >= phb->ioda.m64_bar_idx + 1)
1328 					goto m64_failed;
1329 			} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1330 
1331 			pdn->m64_map[j][i] = win;
1332 
1333 			if (pdn->m64_single_mode) {
1334 				size = pci_iov_resource_size(pdev,
1335 							PCI_IOV_RESOURCES + i);
1336 				start = res->start + size * j;
1337 			} else {
1338 				size = resource_size(res);
1339 				start = res->start;
1340 			}
1341 
1342 			/* Map the M64 here */
1343 			if (pdn->m64_single_mode) {
1344 				pe_num = pdn->pe_num_map[j];
1345 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1346 						pe_num, OPAL_M64_WINDOW_TYPE,
1347 						pdn->m64_map[j][i], 0);
1348 			}
1349 
1350 			rc = opal_pci_set_phb_mem_window(phb->opal_id,
1351 						 OPAL_M64_WINDOW_TYPE,
1352 						 pdn->m64_map[j][i],
1353 						 start,
1354 						 0, /* unused */
1355 						 size);
1356 
1357 
1358 			if (rc != OPAL_SUCCESS) {
1359 				dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1360 					win, rc);
1361 				goto m64_failed;
1362 			}
1363 
1364 			if (pdn->m64_single_mode)
1365 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1366 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1367 			else
1368 				rc = opal_pci_phb_mmio_enable(phb->opal_id,
1369 				     OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1370 
1371 			if (rc != OPAL_SUCCESS) {
1372 				dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1373 					win, rc);
1374 				goto m64_failed;
1375 			}
1376 		}
1377 	}
1378 	return 0;
1379 
1380 m64_failed:
1381 	pnv_pci_vf_release_m64(pdev, num_vfs);
1382 	return -EBUSY;
1383 }
1384 
1385 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1386 		int num);
1387 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1388 
1389 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1390 {
1391 	struct iommu_table    *tbl;
1392 	int64_t               rc;
1393 
1394 	tbl = pe->table_group.tables[0];
1395 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1396 	if (rc)
1397 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1398 
1399 	pnv_pci_ioda2_set_bypass(pe, false);
1400 	if (pe->table_group.group) {
1401 		iommu_group_put(pe->table_group.group);
1402 		BUG_ON(pe->table_group.group);
1403 	}
1404 	pnv_pci_ioda2_table_free_pages(tbl);
1405 	iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1406 }
1407 
1408 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1409 {
1410 	struct pci_bus        *bus;
1411 	struct pci_controller *hose;
1412 	struct pnv_phb        *phb;
1413 	struct pnv_ioda_pe    *pe, *pe_n;
1414 	struct pci_dn         *pdn;
1415 
1416 	bus = pdev->bus;
1417 	hose = pci_bus_to_host(bus);
1418 	phb = hose->private_data;
1419 	pdn = pci_get_pdn(pdev);
1420 
1421 	if (!pdev->is_physfn)
1422 		return;
1423 
1424 	list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1425 		if (pe->parent_dev != pdev)
1426 			continue;
1427 
1428 		pnv_pci_ioda2_release_dma_pe(pdev, pe);
1429 
1430 		/* Remove from list */
1431 		mutex_lock(&phb->ioda.pe_list_mutex);
1432 		list_del(&pe->list);
1433 		mutex_unlock(&phb->ioda.pe_list_mutex);
1434 
1435 		pnv_ioda_deconfigure_pe(phb, pe);
1436 
1437 		pnv_ioda_free_pe(pe);
1438 	}
1439 }
1440 
1441 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1442 {
1443 	struct pci_bus        *bus;
1444 	struct pci_controller *hose;
1445 	struct pnv_phb        *phb;
1446 	struct pnv_ioda_pe    *pe;
1447 	struct pci_dn         *pdn;
1448 	struct pci_sriov      *iov;
1449 	u16                    num_vfs, i;
1450 
1451 	bus = pdev->bus;
1452 	hose = pci_bus_to_host(bus);
1453 	phb = hose->private_data;
1454 	pdn = pci_get_pdn(pdev);
1455 	iov = pdev->sriov;
1456 	num_vfs = pdn->num_vfs;
1457 
1458 	/* Release VF PEs */
1459 	pnv_ioda_release_vf_PE(pdev);
1460 
1461 	if (phb->type == PNV_PHB_IODA2) {
1462 		if (!pdn->m64_single_mode)
1463 			pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1464 
1465 		/* Release M64 windows */
1466 		pnv_pci_vf_release_m64(pdev, num_vfs);
1467 
1468 		/* Release PE numbers */
1469 		if (pdn->m64_single_mode) {
1470 			for (i = 0; i < num_vfs; i++) {
1471 				if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1472 					continue;
1473 
1474 				pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1475 				pnv_ioda_free_pe(pe);
1476 			}
1477 		} else
1478 			bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1479 		/* Releasing pe_num_map */
1480 		kfree(pdn->pe_num_map);
1481 	}
1482 }
1483 
1484 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1485 				       struct pnv_ioda_pe *pe);
1486 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1487 {
1488 	struct pci_bus        *bus;
1489 	struct pci_controller *hose;
1490 	struct pnv_phb        *phb;
1491 	struct pnv_ioda_pe    *pe;
1492 	int                    pe_num;
1493 	u16                    vf_index;
1494 	struct pci_dn         *pdn;
1495 
1496 	bus = pdev->bus;
1497 	hose = pci_bus_to_host(bus);
1498 	phb = hose->private_data;
1499 	pdn = pci_get_pdn(pdev);
1500 
1501 	if (!pdev->is_physfn)
1502 		return;
1503 
1504 	/* Reserve PE for each VF */
1505 	for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1506 		if (pdn->m64_single_mode)
1507 			pe_num = pdn->pe_num_map[vf_index];
1508 		else
1509 			pe_num = *pdn->pe_num_map + vf_index;
1510 
1511 		pe = &phb->ioda.pe_array[pe_num];
1512 		pe->pe_number = pe_num;
1513 		pe->phb = phb;
1514 		pe->flags = PNV_IODA_PE_VF;
1515 		pe->pbus = NULL;
1516 		pe->parent_dev = pdev;
1517 		pe->mve_number = -1;
1518 		pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1519 			   pci_iov_virtfn_devfn(pdev, vf_index);
1520 
1521 		pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1522 			hose->global_number, pdev->bus->number,
1523 			PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1524 			PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1525 
1526 		if (pnv_ioda_configure_pe(phb, pe)) {
1527 			/* XXX What do we do here ? */
1528 			pnv_ioda_free_pe(pe);
1529 			pe->pdev = NULL;
1530 			continue;
1531 		}
1532 
1533 		/* Put PE to the list */
1534 		mutex_lock(&phb->ioda.pe_list_mutex);
1535 		list_add_tail(&pe->list, &phb->ioda.pe_list);
1536 		mutex_unlock(&phb->ioda.pe_list_mutex);
1537 
1538 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
1539 	}
1540 }
1541 
1542 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1543 {
1544 	struct pci_bus        *bus;
1545 	struct pci_controller *hose;
1546 	struct pnv_phb        *phb;
1547 	struct pnv_ioda_pe    *pe;
1548 	struct pci_dn         *pdn;
1549 	int                    ret;
1550 	u16                    i;
1551 
1552 	bus = pdev->bus;
1553 	hose = pci_bus_to_host(bus);
1554 	phb = hose->private_data;
1555 	pdn = pci_get_pdn(pdev);
1556 
1557 	if (phb->type == PNV_PHB_IODA2) {
1558 		if (!pdn->vfs_expanded) {
1559 			dev_info(&pdev->dev, "don't support this SRIOV device"
1560 				" with non 64bit-prefetchable IOV BAR\n");
1561 			return -ENOSPC;
1562 		}
1563 
1564 		/*
1565 		 * When M64 BARs functions in Single PE mode, the number of VFs
1566 		 * could be enabled must be less than the number of M64 BARs.
1567 		 */
1568 		if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1569 			dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1570 			return -EBUSY;
1571 		}
1572 
1573 		/* Allocating pe_num_map */
1574 		if (pdn->m64_single_mode)
1575 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs,
1576 					GFP_KERNEL);
1577 		else
1578 			pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1579 
1580 		if (!pdn->pe_num_map)
1581 			return -ENOMEM;
1582 
1583 		if (pdn->m64_single_mode)
1584 			for (i = 0; i < num_vfs; i++)
1585 				pdn->pe_num_map[i] = IODA_INVALID_PE;
1586 
1587 		/* Calculate available PE for required VFs */
1588 		if (pdn->m64_single_mode) {
1589 			for (i = 0; i < num_vfs; i++) {
1590 				pe = pnv_ioda_alloc_pe(phb);
1591 				if (!pe) {
1592 					ret = -EBUSY;
1593 					goto m64_failed;
1594 				}
1595 
1596 				pdn->pe_num_map[i] = pe->pe_number;
1597 			}
1598 		} else {
1599 			mutex_lock(&phb->ioda.pe_alloc_mutex);
1600 			*pdn->pe_num_map = bitmap_find_next_zero_area(
1601 				phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1602 				0, num_vfs, 0);
1603 			if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1604 				mutex_unlock(&phb->ioda.pe_alloc_mutex);
1605 				dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1606 				kfree(pdn->pe_num_map);
1607 				return -EBUSY;
1608 			}
1609 			bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1610 			mutex_unlock(&phb->ioda.pe_alloc_mutex);
1611 		}
1612 		pdn->num_vfs = num_vfs;
1613 
1614 		/* Assign M64 window accordingly */
1615 		ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1616 		if (ret) {
1617 			dev_info(&pdev->dev, "Not enough M64 window resources\n");
1618 			goto m64_failed;
1619 		}
1620 
1621 		/*
1622 		 * When using one M64 BAR to map one IOV BAR, we need to shift
1623 		 * the IOV BAR according to the PE# allocated to the VFs.
1624 		 * Otherwise, the PE# for the VF will conflict with others.
1625 		 */
1626 		if (!pdn->m64_single_mode) {
1627 			ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1628 			if (ret)
1629 				goto m64_failed;
1630 		}
1631 	}
1632 
1633 	/* Setup VF PEs */
1634 	pnv_ioda_setup_vf_PE(pdev, num_vfs);
1635 
1636 	return 0;
1637 
1638 m64_failed:
1639 	if (pdn->m64_single_mode) {
1640 		for (i = 0; i < num_vfs; i++) {
1641 			if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1642 				continue;
1643 
1644 			pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1645 			pnv_ioda_free_pe(pe);
1646 		}
1647 	} else
1648 		bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1649 
1650 	/* Releasing pe_num_map */
1651 	kfree(pdn->pe_num_map);
1652 
1653 	return ret;
1654 }
1655 
1656 int pcibios_sriov_disable(struct pci_dev *pdev)
1657 {
1658 	pnv_pci_sriov_disable(pdev);
1659 
1660 	/* Release PCI data */
1661 	remove_dev_pci_data(pdev);
1662 	return 0;
1663 }
1664 
1665 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1666 {
1667 	/* Allocate PCI data */
1668 	add_dev_pci_data(pdev);
1669 
1670 	return pnv_pci_sriov_enable(pdev, num_vfs);
1671 }
1672 #endif /* CONFIG_PCI_IOV */
1673 
1674 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1675 {
1676 	struct pci_dn *pdn = pci_get_pdn(pdev);
1677 	struct pnv_ioda_pe *pe;
1678 
1679 	/*
1680 	 * The function can be called while the PE#
1681 	 * hasn't been assigned. Do nothing for the
1682 	 * case.
1683 	 */
1684 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1685 		return;
1686 
1687 	pe = &phb->ioda.pe_array[pdn->pe_number];
1688 	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1689 	set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1690 	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1691 	/*
1692 	 * Note: iommu_add_device() will fail here as
1693 	 * for physical PE: the device is already added by now;
1694 	 * for virtual PE: sysfs entries are not ready yet and
1695 	 * tce_iommu_bus_notifier will add the device to a group later.
1696 	 */
1697 }
1698 
1699 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1700 {
1701 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1702 	struct pnv_phb *phb = hose->private_data;
1703 	struct pci_dn *pdn = pci_get_pdn(pdev);
1704 	struct pnv_ioda_pe *pe;
1705 	uint64_t top;
1706 	bool bypass = false;
1707 
1708 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1709 		return -ENODEV;;
1710 
1711 	pe = &phb->ioda.pe_array[pdn->pe_number];
1712 	if (pe->tce_bypass_enabled) {
1713 		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1714 		bypass = (dma_mask >= top);
1715 	}
1716 
1717 	if (bypass) {
1718 		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1719 		set_dma_ops(&pdev->dev, &dma_direct_ops);
1720 	} else {
1721 		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1722 		set_dma_ops(&pdev->dev, &dma_iommu_ops);
1723 	}
1724 	*pdev->dev.dma_mask = dma_mask;
1725 
1726 	/* Update peer npu devices */
1727 	pnv_npu_try_dma_set_bypass(pdev, bypass);
1728 
1729 	return 0;
1730 }
1731 
1732 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1733 {
1734 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1735 	struct pnv_phb *phb = hose->private_data;
1736 	struct pci_dn *pdn = pci_get_pdn(pdev);
1737 	struct pnv_ioda_pe *pe;
1738 	u64 end, mask;
1739 
1740 	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1741 		return 0;
1742 
1743 	pe = &phb->ioda.pe_array[pdn->pe_number];
1744 	if (!pe->tce_bypass_enabled)
1745 		return __dma_get_required_mask(&pdev->dev);
1746 
1747 
1748 	end = pe->tce_bypass_base + memblock_end_of_DRAM();
1749 	mask = 1ULL << (fls64(end) - 1);
1750 	mask += mask - 1;
1751 
1752 	return mask;
1753 }
1754 
1755 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1756 				   struct pci_bus *bus)
1757 {
1758 	struct pci_dev *dev;
1759 
1760 	list_for_each_entry(dev, &bus->devices, bus_list) {
1761 		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1762 		set_dma_offset(&dev->dev, pe->tce_bypass_base);
1763 		iommu_add_device(&dev->dev);
1764 
1765 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1766 			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1767 	}
1768 }
1769 
1770 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1771 						     bool real_mode)
1772 {
1773 	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1774 		(phb->regs + 0x210);
1775 }
1776 
1777 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1778 		unsigned long index, unsigned long npages, bool rm)
1779 {
1780 	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1781 			&tbl->it_group_list, struct iommu_table_group_link,
1782 			next);
1783 	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1784 			struct pnv_ioda_pe, table_group);
1785 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1786 	unsigned long start, end, inc;
1787 
1788 	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1789 	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1790 			npages - 1);
1791 
1792 	/* p7ioc-style invalidation, 2 TCEs per write */
1793 	start |= (1ull << 63);
1794 	end |= (1ull << 63);
1795 	inc = 16;
1796         end |= inc - 1;	/* round up end to be different than start */
1797 
1798         mb(); /* Ensure above stores are visible */
1799         while (start <= end) {
1800 		if (rm)
1801 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1802 		else
1803 			__raw_writeq(cpu_to_be64(start), invalidate);
1804                 start += inc;
1805         }
1806 
1807 	/*
1808 	 * The iommu layer will do another mb() for us on build()
1809 	 * and we don't care on free()
1810 	 */
1811 }
1812 
1813 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1814 		long npages, unsigned long uaddr,
1815 		enum dma_data_direction direction,
1816 		unsigned long attrs)
1817 {
1818 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1819 			attrs);
1820 
1821 	if (!ret)
1822 		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1823 
1824 	return ret;
1825 }
1826 
1827 #ifdef CONFIG_IOMMU_API
1828 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1829 		unsigned long *hpa, enum dma_data_direction *direction)
1830 {
1831 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1832 
1833 	if (!ret)
1834 		pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1835 
1836 	return ret;
1837 }
1838 #endif
1839 
1840 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1841 		long npages)
1842 {
1843 	pnv_tce_free(tbl, index, npages);
1844 
1845 	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1846 }
1847 
1848 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1849 	.set = pnv_ioda1_tce_build,
1850 #ifdef CONFIG_IOMMU_API
1851 	.exchange = pnv_ioda1_tce_xchg,
1852 #endif
1853 	.clear = pnv_ioda1_tce_free,
1854 	.get = pnv_tce_get,
1855 };
1856 
1857 #define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
1858 #define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
1859 #define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1860 
1861 void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1862 {
1863 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1864 	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1865 
1866 	mb(); /* Ensure previous TCE table stores are visible */
1867 	if (rm)
1868 		__raw_rm_writeq(cpu_to_be64(val), invalidate);
1869 	else
1870 		__raw_writeq(cpu_to_be64(val), invalidate);
1871 }
1872 
1873 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1874 {
1875 	/* 01xb - invalidate TCEs that match the specified PE# */
1876 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1877 	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1878 
1879 	mb(); /* Ensure above stores are visible */
1880 	__raw_writeq(cpu_to_be64(val), invalidate);
1881 }
1882 
1883 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
1884 					unsigned shift, unsigned long index,
1885 					unsigned long npages)
1886 {
1887 	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1888 	unsigned long start, end, inc;
1889 
1890 	/* We'll invalidate DMA address in PE scope */
1891 	start = PHB3_TCE_KILL_INVAL_ONE;
1892 	start |= (pe->pe_number & 0xFF);
1893 	end = start;
1894 
1895 	/* Figure out the start, end and step */
1896 	start |= (index << shift);
1897 	end |= ((index + npages - 1) << shift);
1898 	inc = (0x1ull << shift);
1899 	mb();
1900 
1901 	while (start <= end) {
1902 		if (rm)
1903 			__raw_rm_writeq(cpu_to_be64(start), invalidate);
1904 		else
1905 			__raw_writeq(cpu_to_be64(start), invalidate);
1906 		start += inc;
1907 	}
1908 }
1909 
1910 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1911 {
1912 	struct pnv_phb *phb = pe->phb;
1913 
1914 	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1915 		pnv_pci_phb3_tce_invalidate_pe(pe);
1916 	else
1917 		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1918 				  pe->pe_number, 0, 0, 0);
1919 }
1920 
1921 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1922 		unsigned long index, unsigned long npages, bool rm)
1923 {
1924 	struct iommu_table_group_link *tgl;
1925 
1926 	list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1927 		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1928 				struct pnv_ioda_pe, table_group);
1929 		struct pnv_phb *phb = pe->phb;
1930 		unsigned int shift = tbl->it_page_shift;
1931 
1932 		if (phb->type == PNV_PHB_NPU) {
1933 			/*
1934 			 * The NVLink hardware does not support TCE kill
1935 			 * per TCE entry so we have to invalidate
1936 			 * the entire cache for it.
1937 			 */
1938 			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1939 			continue;
1940 		}
1941 		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1942 			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
1943 						    index, npages);
1944 		else if (rm)
1945 			opal_rm_pci_tce_kill(phb->opal_id,
1946 					     OPAL_PCI_TCE_KILL_PAGES,
1947 					     pe->pe_number, 1u << shift,
1948 					     index << shift, npages);
1949 		else
1950 			opal_pci_tce_kill(phb->opal_id,
1951 					  OPAL_PCI_TCE_KILL_PAGES,
1952 					  pe->pe_number, 1u << shift,
1953 					  index << shift, npages);
1954 	}
1955 }
1956 
1957 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1958 		long npages, unsigned long uaddr,
1959 		enum dma_data_direction direction,
1960 		unsigned long attrs)
1961 {
1962 	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1963 			attrs);
1964 
1965 	if (!ret)
1966 		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1967 
1968 	return ret;
1969 }
1970 
1971 #ifdef CONFIG_IOMMU_API
1972 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1973 		unsigned long *hpa, enum dma_data_direction *direction)
1974 {
1975 	long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1976 
1977 	if (!ret)
1978 		pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1979 
1980 	return ret;
1981 }
1982 #endif
1983 
1984 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1985 		long npages)
1986 {
1987 	pnv_tce_free(tbl, index, npages);
1988 
1989 	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1990 }
1991 
1992 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1993 {
1994 	pnv_pci_ioda2_table_free_pages(tbl);
1995 	iommu_free_table(tbl, "pnv");
1996 }
1997 
1998 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1999 	.set = pnv_ioda2_tce_build,
2000 #ifdef CONFIG_IOMMU_API
2001 	.exchange = pnv_ioda2_tce_xchg,
2002 #endif
2003 	.clear = pnv_ioda2_tce_free,
2004 	.get = pnv_tce_get,
2005 	.free = pnv_ioda2_table_free,
2006 };
2007 
2008 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2009 {
2010 	unsigned int *weight = (unsigned int *)data;
2011 
2012 	/* This is quite simplistic. The "base" weight of a device
2013 	 * is 10. 0 means no DMA is to be accounted for it.
2014 	 */
2015 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2016 		return 0;
2017 
2018 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2019 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2020 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2021 		*weight += 3;
2022 	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2023 		*weight += 15;
2024 	else
2025 		*weight += 10;
2026 
2027 	return 0;
2028 }
2029 
2030 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2031 {
2032 	unsigned int weight = 0;
2033 
2034 	/* SRIOV VF has same DMA32 weight as its PF */
2035 #ifdef CONFIG_PCI_IOV
2036 	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2037 		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2038 		return weight;
2039 	}
2040 #endif
2041 
2042 	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2043 		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2044 	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2045 		struct pci_dev *pdev;
2046 
2047 		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2048 			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2049 	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2050 		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2051 	}
2052 
2053 	return weight;
2054 }
2055 
2056 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2057 				       struct pnv_ioda_pe *pe)
2058 {
2059 
2060 	struct page *tce_mem = NULL;
2061 	struct iommu_table *tbl;
2062 	unsigned int weight, total_weight = 0;
2063 	unsigned int tce32_segsz, base, segs, avail, i;
2064 	int64_t rc;
2065 	void *addr;
2066 
2067 	/* XXX FIXME: Handle 64-bit only DMA devices */
2068 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2069 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
2070 	weight = pnv_pci_ioda_pe_dma_weight(pe);
2071 	if (!weight)
2072 		return;
2073 
2074 	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2075 		     &total_weight);
2076 	segs = (weight * phb->ioda.dma32_count) / total_weight;
2077 	if (!segs)
2078 		segs = 1;
2079 
2080 	/*
2081 	 * Allocate contiguous DMA32 segments. We begin with the expected
2082 	 * number of segments. With one more attempt, the number of DMA32
2083 	 * segments to be allocated is decreased by one until one segment
2084 	 * is allocated successfully.
2085 	 */
2086 	do {
2087 		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2088 			for (avail = 0, i = base; i < base + segs; i++) {
2089 				if (phb->ioda.dma32_segmap[i] ==
2090 				    IODA_INVALID_PE)
2091 					avail++;
2092 			}
2093 
2094 			if (avail == segs)
2095 				goto found;
2096 		}
2097 	} while (--segs);
2098 
2099 	if (!segs) {
2100 		pe_warn(pe, "No available DMA32 segments\n");
2101 		return;
2102 	}
2103 
2104 found:
2105 	tbl = pnv_pci_table_alloc(phb->hose->node);
2106 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2107 			pe->pe_number);
2108 	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2109 
2110 	/* Grab a 32-bit TCE table */
2111 	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2112 		weight, total_weight, base, segs);
2113 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2114 		base * PNV_IODA1_DMA32_SEGSIZE,
2115 		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2116 
2117 	/* XXX Currently, we allocate one big contiguous table for the
2118 	 * TCEs. We only really need one chunk per 256M of TCE space
2119 	 * (ie per segment) but that's an optimization for later, it
2120 	 * requires some added smarts with our get/put_tce implementation
2121 	 *
2122 	 * Each TCE page is 4KB in size and each TCE entry occupies 8
2123 	 * bytes
2124 	 */
2125 	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2126 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2127 				   get_order(tce32_segsz * segs));
2128 	if (!tce_mem) {
2129 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2130 		goto fail;
2131 	}
2132 	addr = page_address(tce_mem);
2133 	memset(addr, 0, tce32_segsz * segs);
2134 
2135 	/* Configure HW */
2136 	for (i = 0; i < segs; i++) {
2137 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
2138 					      pe->pe_number,
2139 					      base + i, 1,
2140 					      __pa(addr) + tce32_segsz * i,
2141 					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
2142 		if (rc) {
2143 			pe_err(pe, " Failed to configure 32-bit TCE table,"
2144 			       " err %ld\n", rc);
2145 			goto fail;
2146 		}
2147 	}
2148 
2149 	/* Setup DMA32 segment mapping */
2150 	for (i = base; i < base + segs; i++)
2151 		phb->ioda.dma32_segmap[i] = pe->pe_number;
2152 
2153 	/* Setup linux iommu table */
2154 	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2155 				  base * PNV_IODA1_DMA32_SEGSIZE,
2156 				  IOMMU_PAGE_SHIFT_4K);
2157 
2158 	tbl->it_ops = &pnv_ioda1_iommu_ops;
2159 	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2160 	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2161 	iommu_init_table(tbl, phb->hose->node);
2162 
2163 	if (pe->flags & PNV_IODA_PE_DEV) {
2164 		/*
2165 		 * Setting table base here only for carrying iommu_group
2166 		 * further down to let iommu_add_device() do the job.
2167 		 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2168 		 */
2169 		set_iommu_table_base(&pe->pdev->dev, tbl);
2170 		iommu_add_device(&pe->pdev->dev);
2171 	} else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2172 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2173 
2174 	return;
2175  fail:
2176 	/* XXX Failure: Try to fallback to 64-bit only ? */
2177 	if (tce_mem)
2178 		__free_pages(tce_mem, get_order(tce32_segsz * segs));
2179 	if (tbl) {
2180 		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2181 		iommu_free_table(tbl, "pnv");
2182 	}
2183 }
2184 
2185 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2186 		int num, struct iommu_table *tbl)
2187 {
2188 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2189 			table_group);
2190 	struct pnv_phb *phb = pe->phb;
2191 	int64_t rc;
2192 	const unsigned long size = tbl->it_indirect_levels ?
2193 			tbl->it_level_size : tbl->it_size;
2194 	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2195 	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2196 
2197 	pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2198 			start_addr, start_addr + win_size - 1,
2199 			IOMMU_PAGE_SIZE(tbl));
2200 
2201 	/*
2202 	 * Map TCE table through TVT. The TVE index is the PE number
2203 	 * shifted by 1 bit for 32-bits DMA space.
2204 	 */
2205 	rc = opal_pci_map_pe_dma_window(phb->opal_id,
2206 			pe->pe_number,
2207 			(pe->pe_number << 1) + num,
2208 			tbl->it_indirect_levels + 1,
2209 			__pa(tbl->it_base),
2210 			size << 3,
2211 			IOMMU_PAGE_SIZE(tbl));
2212 	if (rc) {
2213 		pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2214 		return rc;
2215 	}
2216 
2217 	pnv_pci_link_table_and_group(phb->hose->node, num,
2218 			tbl, &pe->table_group);
2219 	pnv_pci_phb3_tce_invalidate_pe(pe);
2220 
2221 	return 0;
2222 }
2223 
2224 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2225 {
2226 	uint16_t window_id = (pe->pe_number << 1 ) + 1;
2227 	int64_t rc;
2228 
2229 	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2230 	if (enable) {
2231 		phys_addr_t top = memblock_end_of_DRAM();
2232 
2233 		top = roundup_pow_of_two(top);
2234 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2235 						     pe->pe_number,
2236 						     window_id,
2237 						     pe->tce_bypass_base,
2238 						     top);
2239 	} else {
2240 		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2241 						     pe->pe_number,
2242 						     window_id,
2243 						     pe->tce_bypass_base,
2244 						     0);
2245 	}
2246 	if (rc)
2247 		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2248 	else
2249 		pe->tce_bypass_enabled = enable;
2250 }
2251 
2252 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2253 		__u32 page_shift, __u64 window_size, __u32 levels,
2254 		struct iommu_table *tbl);
2255 
2256 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2257 		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2258 		struct iommu_table **ptbl)
2259 {
2260 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2261 			table_group);
2262 	int nid = pe->phb->hose->node;
2263 	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2264 	long ret;
2265 	struct iommu_table *tbl;
2266 
2267 	tbl = pnv_pci_table_alloc(nid);
2268 	if (!tbl)
2269 		return -ENOMEM;
2270 
2271 	ret = pnv_pci_ioda2_table_alloc_pages(nid,
2272 			bus_offset, page_shift, window_size,
2273 			levels, tbl);
2274 	if (ret) {
2275 		iommu_free_table(tbl, "pnv");
2276 		return ret;
2277 	}
2278 
2279 	tbl->it_ops = &pnv_ioda2_iommu_ops;
2280 
2281 	*ptbl = tbl;
2282 
2283 	return 0;
2284 }
2285 
2286 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2287 {
2288 	struct iommu_table *tbl = NULL;
2289 	long rc;
2290 
2291 	/*
2292 	 * crashkernel= specifies the kdump kernel's maximum memory at
2293 	 * some offset and there is no guaranteed the result is a power
2294 	 * of 2, which will cause errors later.
2295 	 */
2296 	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2297 
2298 	/*
2299 	 * In memory constrained environments, e.g. kdump kernel, the
2300 	 * DMA window can be larger than available memory, which will
2301 	 * cause errors later.
2302 	 */
2303 	const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2304 
2305 	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2306 			IOMMU_PAGE_SHIFT_4K,
2307 			window_size,
2308 			POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2309 	if (rc) {
2310 		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2311 				rc);
2312 		return rc;
2313 	}
2314 
2315 	iommu_init_table(tbl, pe->phb->hose->node);
2316 
2317 	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2318 	if (rc) {
2319 		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2320 				rc);
2321 		pnv_ioda2_table_free(tbl);
2322 		return rc;
2323 	}
2324 
2325 	if (!pnv_iommu_bypass_disabled)
2326 		pnv_pci_ioda2_set_bypass(pe, true);
2327 
2328 	/*
2329 	 * Setting table base here only for carrying iommu_group
2330 	 * further down to let iommu_add_device() do the job.
2331 	 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2332 	 */
2333 	if (pe->flags & PNV_IODA_PE_DEV)
2334 		set_iommu_table_base(&pe->pdev->dev, tbl);
2335 
2336 	return 0;
2337 }
2338 
2339 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2340 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2341 		int num)
2342 {
2343 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2344 			table_group);
2345 	struct pnv_phb *phb = pe->phb;
2346 	long ret;
2347 
2348 	pe_info(pe, "Removing DMA window #%d\n", num);
2349 
2350 	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2351 			(pe->pe_number << 1) + num,
2352 			0/* levels */, 0/* table address */,
2353 			0/* table size */, 0/* page size */);
2354 	if (ret)
2355 		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2356 	else
2357 		pnv_pci_phb3_tce_invalidate_pe(pe);
2358 
2359 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2360 
2361 	return ret;
2362 }
2363 #endif
2364 
2365 #ifdef CONFIG_IOMMU_API
2366 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2367 		__u64 window_size, __u32 levels)
2368 {
2369 	unsigned long bytes = 0;
2370 	const unsigned window_shift = ilog2(window_size);
2371 	unsigned entries_shift = window_shift - page_shift;
2372 	unsigned table_shift = entries_shift + 3;
2373 	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2374 	unsigned long direct_table_size;
2375 
2376 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2377 			(window_size > memory_hotplug_max()) ||
2378 			!is_power_of_2(window_size))
2379 		return 0;
2380 
2381 	/* Calculate a direct table size from window_size and levels */
2382 	entries_shift = (entries_shift + levels - 1) / levels;
2383 	table_shift = entries_shift + 3;
2384 	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2385 	direct_table_size =  1UL << table_shift;
2386 
2387 	for ( ; levels; --levels) {
2388 		bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2389 
2390 		tce_table_size /= direct_table_size;
2391 		tce_table_size <<= 3;
2392 		tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2393 	}
2394 
2395 	return bytes;
2396 }
2397 
2398 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2399 {
2400 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2401 						table_group);
2402 	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2403 	struct iommu_table *tbl = pe->table_group.tables[0];
2404 
2405 	pnv_pci_ioda2_set_bypass(pe, false);
2406 	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2407 	pnv_ioda2_table_free(tbl);
2408 }
2409 
2410 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2411 {
2412 	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2413 						table_group);
2414 
2415 	pnv_pci_ioda2_setup_default_config(pe);
2416 }
2417 
2418 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2419 	.get_table_size = pnv_pci_ioda2_get_table_size,
2420 	.create_table = pnv_pci_ioda2_create_table,
2421 	.set_window = pnv_pci_ioda2_set_window,
2422 	.unset_window = pnv_pci_ioda2_unset_window,
2423 	.take_ownership = pnv_ioda2_take_ownership,
2424 	.release_ownership = pnv_ioda2_release_ownership,
2425 };
2426 
2427 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2428 {
2429 	struct pci_controller *hose;
2430 	struct pnv_phb *phb;
2431 	struct pnv_ioda_pe **ptmppe = opaque;
2432 	struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2433 	struct pci_dn *pdn = pci_get_pdn(pdev);
2434 
2435 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2436 		return 0;
2437 
2438 	hose = pci_bus_to_host(pdev->bus);
2439 	phb = hose->private_data;
2440 	if (phb->type != PNV_PHB_NPU)
2441 		return 0;
2442 
2443 	*ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2444 
2445 	return 1;
2446 }
2447 
2448 /*
2449  * This returns PE of associated NPU.
2450  * This assumes that NPU is in the same IOMMU group with GPU and there is
2451  * no other PEs.
2452  */
2453 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2454 		struct iommu_table_group *table_group)
2455 {
2456 	struct pnv_ioda_pe *npe = NULL;
2457 	int ret = iommu_group_for_each_dev(table_group->group, &npe,
2458 			gpe_table_group_to_npe_cb);
2459 
2460 	BUG_ON(!ret || !npe);
2461 
2462 	return npe;
2463 }
2464 
2465 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2466 		int num, struct iommu_table *tbl)
2467 {
2468 	long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2469 
2470 	if (ret)
2471 		return ret;
2472 
2473 	ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2474 	if (ret)
2475 		pnv_pci_ioda2_unset_window(table_group, num);
2476 
2477 	return ret;
2478 }
2479 
2480 static long pnv_pci_ioda2_npu_unset_window(
2481 		struct iommu_table_group *table_group,
2482 		int num)
2483 {
2484 	long ret = pnv_pci_ioda2_unset_window(table_group, num);
2485 
2486 	if (ret)
2487 		return ret;
2488 
2489 	return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2490 }
2491 
2492 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2493 {
2494 	/*
2495 	 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2496 	 * the iommu_table if 32bit DMA is enabled.
2497 	 */
2498 	pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2499 	pnv_ioda2_take_ownership(table_group);
2500 }
2501 
2502 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2503 	.get_table_size = pnv_pci_ioda2_get_table_size,
2504 	.create_table = pnv_pci_ioda2_create_table,
2505 	.set_window = pnv_pci_ioda2_npu_set_window,
2506 	.unset_window = pnv_pci_ioda2_npu_unset_window,
2507 	.take_ownership = pnv_ioda2_npu_take_ownership,
2508 	.release_ownership = pnv_ioda2_release_ownership,
2509 };
2510 
2511 static void pnv_pci_ioda_setup_iommu_api(void)
2512 {
2513 	struct pci_controller *hose, *tmp;
2514 	struct pnv_phb *phb;
2515 	struct pnv_ioda_pe *pe, *gpe;
2516 
2517 	/*
2518 	 * Now we have all PHBs discovered, time to add NPU devices to
2519 	 * the corresponding IOMMU groups.
2520 	 */
2521 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2522 		phb = hose->private_data;
2523 
2524 		if (phb->type != PNV_PHB_NPU)
2525 			continue;
2526 
2527 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2528 			gpe = pnv_pci_npu_setup_iommu(pe);
2529 			if (gpe)
2530 				gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2531 		}
2532 	}
2533 }
2534 #else /* !CONFIG_IOMMU_API */
2535 static void pnv_pci_ioda_setup_iommu_api(void) { };
2536 #endif
2537 
2538 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2539 		unsigned levels, unsigned long limit,
2540 		unsigned long *current_offset, unsigned long *total_allocated)
2541 {
2542 	struct page *tce_mem = NULL;
2543 	__be64 *addr, *tmp;
2544 	unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2545 	unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2546 	unsigned entries = 1UL << (shift - 3);
2547 	long i;
2548 
2549 	tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2550 	if (!tce_mem) {
2551 		pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2552 		return NULL;
2553 	}
2554 	addr = page_address(tce_mem);
2555 	memset(addr, 0, allocated);
2556 	*total_allocated += allocated;
2557 
2558 	--levels;
2559 	if (!levels) {
2560 		*current_offset += allocated;
2561 		return addr;
2562 	}
2563 
2564 	for (i = 0; i < entries; ++i) {
2565 		tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2566 				levels, limit, current_offset, total_allocated);
2567 		if (!tmp)
2568 			break;
2569 
2570 		addr[i] = cpu_to_be64(__pa(tmp) |
2571 				TCE_PCI_READ | TCE_PCI_WRITE);
2572 
2573 		if (*current_offset >= limit)
2574 			break;
2575 	}
2576 
2577 	return addr;
2578 }
2579 
2580 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2581 		unsigned long size, unsigned level);
2582 
2583 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2584 		__u32 page_shift, __u64 window_size, __u32 levels,
2585 		struct iommu_table *tbl)
2586 {
2587 	void *addr;
2588 	unsigned long offset = 0, level_shift, total_allocated = 0;
2589 	const unsigned window_shift = ilog2(window_size);
2590 	unsigned entries_shift = window_shift - page_shift;
2591 	unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2592 	const unsigned long tce_table_size = 1UL << table_shift;
2593 
2594 	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2595 		return -EINVAL;
2596 
2597 	if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2598 		return -EINVAL;
2599 
2600 	/* Adjust direct table size from window_size and levels */
2601 	entries_shift = (entries_shift + levels - 1) / levels;
2602 	level_shift = entries_shift + 3;
2603 	level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2604 
2605 	/* Allocate TCE table */
2606 	addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2607 			levels, tce_table_size, &offset, &total_allocated);
2608 
2609 	/* addr==NULL means that the first level allocation failed */
2610 	if (!addr)
2611 		return -ENOMEM;
2612 
2613 	/*
2614 	 * First level was allocated but some lower level failed as
2615 	 * we did not allocate as much as we wanted,
2616 	 * release partially allocated table.
2617 	 */
2618 	if (offset < tce_table_size) {
2619 		pnv_pci_ioda2_table_do_free_pages(addr,
2620 				1ULL << (level_shift - 3), levels - 1);
2621 		return -ENOMEM;
2622 	}
2623 
2624 	/* Setup linux iommu table */
2625 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2626 			page_shift);
2627 	tbl->it_level_size = 1ULL << (level_shift - 3);
2628 	tbl->it_indirect_levels = levels - 1;
2629 	tbl->it_allocated_size = total_allocated;
2630 
2631 	pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2632 			window_size, tce_table_size, bus_offset);
2633 
2634 	return 0;
2635 }
2636 
2637 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2638 		unsigned long size, unsigned level)
2639 {
2640 	const unsigned long addr_ul = (unsigned long) addr &
2641 			~(TCE_PCI_READ | TCE_PCI_WRITE);
2642 
2643 	if (level) {
2644 		long i;
2645 		u64 *tmp = (u64 *) addr_ul;
2646 
2647 		for (i = 0; i < size; ++i) {
2648 			unsigned long hpa = be64_to_cpu(tmp[i]);
2649 
2650 			if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2651 				continue;
2652 
2653 			pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2654 					level - 1);
2655 		}
2656 	}
2657 
2658 	free_pages(addr_ul, get_order(size << 3));
2659 }
2660 
2661 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2662 {
2663 	const unsigned long size = tbl->it_indirect_levels ?
2664 			tbl->it_level_size : tbl->it_size;
2665 
2666 	if (!tbl->it_size)
2667 		return;
2668 
2669 	pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2670 			tbl->it_indirect_levels);
2671 }
2672 
2673 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2674 				       struct pnv_ioda_pe *pe)
2675 {
2676 	int64_t rc;
2677 
2678 	if (!pnv_pci_ioda_pe_dma_weight(pe))
2679 		return;
2680 
2681 	/* TVE #1 is selected by PCI address bit 59 */
2682 	pe->tce_bypass_base = 1ull << 59;
2683 
2684 	iommu_register_group(&pe->table_group, phb->hose->global_number,
2685 			pe->pe_number);
2686 
2687 	/* The PE will reserve all possible 32-bits space */
2688 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2689 		phb->ioda.m32_pci_base);
2690 
2691 	/* Setup linux iommu table */
2692 	pe->table_group.tce32_start = 0;
2693 	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2694 	pe->table_group.max_dynamic_windows_supported =
2695 			IOMMU_TABLE_GROUP_MAX_TABLES;
2696 	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2697 	pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2698 #ifdef CONFIG_IOMMU_API
2699 	pe->table_group.ops = &pnv_pci_ioda2_ops;
2700 #endif
2701 
2702 	rc = pnv_pci_ioda2_setup_default_config(pe);
2703 	if (rc)
2704 		return;
2705 
2706 	if (pe->flags & PNV_IODA_PE_DEV)
2707 		iommu_add_device(&pe->pdev->dev);
2708 	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2709 		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2710 }
2711 
2712 #ifdef CONFIG_PCI_MSI
2713 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2714 {
2715 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2716 	struct irq_chip *chip = irq_data_get_irq_chip(d);
2717 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2718 					   ioda.irq_chip);
2719 	int64_t rc;
2720 
2721 	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2722 	WARN_ON_ONCE(rc);
2723 
2724 	icp_native_eoi(d);
2725 }
2726 
2727 
2728 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2729 {
2730 	struct irq_data *idata;
2731 	struct irq_chip *ichip;
2732 
2733 	/* The MSI EOI OPAL call is only needed on PHB3 */
2734 	if (phb->model != PNV_PHB_MODEL_PHB3)
2735 		return;
2736 
2737 	if (!phb->ioda.irq_chip_init) {
2738 		/*
2739 		 * First time we setup an MSI IRQ, we need to setup the
2740 		 * corresponding IRQ chip to route correctly.
2741 		 */
2742 		idata = irq_get_irq_data(virq);
2743 		ichip = irq_data_get_irq_chip(idata);
2744 		phb->ioda.irq_chip_init = 1;
2745 		phb->ioda.irq_chip = *ichip;
2746 		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2747 	}
2748 	irq_set_chip(virq, &phb->ioda.irq_chip);
2749 }
2750 
2751 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2752 				  unsigned int hwirq, unsigned int virq,
2753 				  unsigned int is_64, struct msi_msg *msg)
2754 {
2755 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2756 	unsigned int xive_num = hwirq - phb->msi_base;
2757 	__be32 data;
2758 	int rc;
2759 
2760 	/* No PE assigned ? bail out ... no MSI for you ! */
2761 	if (pe == NULL)
2762 		return -ENXIO;
2763 
2764 	/* Check if we have an MVE */
2765 	if (pe->mve_number < 0)
2766 		return -ENXIO;
2767 
2768 	/* Force 32-bit MSI on some broken devices */
2769 	if (dev->no_64bit_msi)
2770 		is_64 = 0;
2771 
2772 	/* Assign XIVE to PE */
2773 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2774 	if (rc) {
2775 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2776 			pci_name(dev), rc, xive_num);
2777 		return -EIO;
2778 	}
2779 
2780 	if (is_64) {
2781 		__be64 addr64;
2782 
2783 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2784 				     &addr64, &data);
2785 		if (rc) {
2786 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2787 				pci_name(dev), rc);
2788 			return -EIO;
2789 		}
2790 		msg->address_hi = be64_to_cpu(addr64) >> 32;
2791 		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2792 	} else {
2793 		__be32 addr32;
2794 
2795 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2796 				     &addr32, &data);
2797 		if (rc) {
2798 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2799 				pci_name(dev), rc);
2800 			return -EIO;
2801 		}
2802 		msg->address_hi = 0;
2803 		msg->address_lo = be32_to_cpu(addr32);
2804 	}
2805 	msg->data = be32_to_cpu(data);
2806 
2807 	pnv_set_msi_irq_chip(phb, virq);
2808 
2809 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2810 		 " address=%x_%08x data=%x PE# %d\n",
2811 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2812 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2813 
2814 	return 0;
2815 }
2816 
2817 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2818 {
2819 	unsigned int count;
2820 	const __be32 *prop = of_get_property(phb->hose->dn,
2821 					     "ibm,opal-msi-ranges", NULL);
2822 	if (!prop) {
2823 		/* BML Fallback */
2824 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2825 	}
2826 	if (!prop)
2827 		return;
2828 
2829 	phb->msi_base = be32_to_cpup(prop);
2830 	count = be32_to_cpup(prop + 1);
2831 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2832 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2833 		       phb->hose->global_number);
2834 		return;
2835 	}
2836 
2837 	phb->msi_setup = pnv_pci_ioda_msi_setup;
2838 	phb->msi32_support = 1;
2839 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2840 		count, phb->msi_base);
2841 }
2842 #else
2843 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2844 #endif /* CONFIG_PCI_MSI */
2845 
2846 #ifdef CONFIG_PCI_IOV
2847 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2848 {
2849 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2850 	struct pnv_phb *phb = hose->private_data;
2851 	const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2852 	struct resource *res;
2853 	int i;
2854 	resource_size_t size, total_vf_bar_sz;
2855 	struct pci_dn *pdn;
2856 	int mul, total_vfs;
2857 
2858 	if (!pdev->is_physfn || pdev->is_added)
2859 		return;
2860 
2861 	pdn = pci_get_pdn(pdev);
2862 	pdn->vfs_expanded = 0;
2863 	pdn->m64_single_mode = false;
2864 
2865 	total_vfs = pci_sriov_get_totalvfs(pdev);
2866 	mul = phb->ioda.total_pe_num;
2867 	total_vf_bar_sz = 0;
2868 
2869 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2870 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2871 		if (!res->flags || res->parent)
2872 			continue;
2873 		if (!pnv_pci_is_m64(phb, res)) {
2874 			dev_warn(&pdev->dev, "Don't support SR-IOV with"
2875 					" non M64 VF BAR%d: %pR. \n",
2876 				 i, res);
2877 			goto truncate_iov;
2878 		}
2879 
2880 		total_vf_bar_sz += pci_iov_resource_size(pdev,
2881 				i + PCI_IOV_RESOURCES);
2882 
2883 		/*
2884 		 * If bigger than quarter of M64 segment size, just round up
2885 		 * power of two.
2886 		 *
2887 		 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2888 		 * with other devices, IOV BAR size is expanded to be
2889 		 * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2890 		 * segment size , the expanded size would equal to half of the
2891 		 * whole M64 space size, which will exhaust the M64 Space and
2892 		 * limit the system flexibility.  This is a design decision to
2893 		 * set the boundary to quarter of the M64 segment size.
2894 		 */
2895 		if (total_vf_bar_sz > gate) {
2896 			mul = roundup_pow_of_two(total_vfs);
2897 			dev_info(&pdev->dev,
2898 				"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2899 				total_vf_bar_sz, gate, mul);
2900 			pdn->m64_single_mode = true;
2901 			break;
2902 		}
2903 	}
2904 
2905 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2906 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2907 		if (!res->flags || res->parent)
2908 			continue;
2909 
2910 		size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2911 		/*
2912 		 * On PHB3, the minimum size alignment of M64 BAR in single
2913 		 * mode is 32MB.
2914 		 */
2915 		if (pdn->m64_single_mode && (size < SZ_32M))
2916 			goto truncate_iov;
2917 		dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2918 		res->end = res->start + size * mul - 1;
2919 		dev_dbg(&pdev->dev, "                       %pR\n", res);
2920 		dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2921 			 i, res, mul);
2922 	}
2923 	pdn->vfs_expanded = mul;
2924 
2925 	return;
2926 
2927 truncate_iov:
2928 	/* To save MMIO space, IOV BAR is truncated. */
2929 	for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2930 		res = &pdev->resource[i + PCI_IOV_RESOURCES];
2931 		res->flags = 0;
2932 		res->end = res->start - 1;
2933 	}
2934 }
2935 #endif /* CONFIG_PCI_IOV */
2936 
2937 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2938 				  struct resource *res)
2939 {
2940 	struct pnv_phb *phb = pe->phb;
2941 	struct pci_bus_region region;
2942 	int index;
2943 	int64_t rc;
2944 
2945 	if (!res || !res->flags || res->start > res->end)
2946 		return;
2947 
2948 	if (res->flags & IORESOURCE_IO) {
2949 		region.start = res->start - phb->ioda.io_pci_base;
2950 		region.end   = res->end - phb->ioda.io_pci_base;
2951 		index = region.start / phb->ioda.io_segsize;
2952 
2953 		while (index < phb->ioda.total_pe_num &&
2954 		       region.start <= region.end) {
2955 			phb->ioda.io_segmap[index] = pe->pe_number;
2956 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2957 				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2958 			if (rc != OPAL_SUCCESS) {
2959 				pr_err("%s: Error %lld mapping IO segment#%d to PE#%d\n",
2960 				       __func__, rc, index, pe->pe_number);
2961 				break;
2962 			}
2963 
2964 			region.start += phb->ioda.io_segsize;
2965 			index++;
2966 		}
2967 	} else if ((res->flags & IORESOURCE_MEM) &&
2968 		   !pnv_pci_is_m64(phb, res)) {
2969 		region.start = res->start -
2970 			       phb->hose->mem_offset[0] -
2971 			       phb->ioda.m32_pci_base;
2972 		region.end   = res->end -
2973 			       phb->hose->mem_offset[0] -
2974 			       phb->ioda.m32_pci_base;
2975 		index = region.start / phb->ioda.m32_segsize;
2976 
2977 		while (index < phb->ioda.total_pe_num &&
2978 		       region.start <= region.end) {
2979 			phb->ioda.m32_segmap[index] = pe->pe_number;
2980 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2981 				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2982 			if (rc != OPAL_SUCCESS) {
2983 				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%d",
2984 				       __func__, rc, index, pe->pe_number);
2985 				break;
2986 			}
2987 
2988 			region.start += phb->ioda.m32_segsize;
2989 			index++;
2990 		}
2991 	}
2992 }
2993 
2994 /*
2995  * This function is supposed to be called on basis of PE from top
2996  * to bottom style. So the the I/O or MMIO segment assigned to
2997  * parent PE could be overrided by its child PEs if necessary.
2998  */
2999 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3000 {
3001 	struct pci_dev *pdev;
3002 	int i;
3003 
3004 	/*
3005 	 * NOTE: We only care PCI bus based PE for now. For PCI
3006 	 * device based PE, for example SRIOV sensitive VF should
3007 	 * be figured out later.
3008 	 */
3009 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3010 
3011 	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3012 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3013 			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3014 
3015 		/*
3016 		 * If the PE contains all subordinate PCI buses, the
3017 		 * windows of the child bridges should be mapped to
3018 		 * the PE as well.
3019 		 */
3020 		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3021 			continue;
3022 		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3023 			pnv_ioda_setup_pe_res(pe,
3024 				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3025 	}
3026 }
3027 
3028 static void pnv_pci_ioda_create_dbgfs(void)
3029 {
3030 #ifdef CONFIG_DEBUG_FS
3031 	struct pci_controller *hose, *tmp;
3032 	struct pnv_phb *phb;
3033 	char name[16];
3034 
3035 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3036 		phb = hose->private_data;
3037 
3038 		/* Notify initialization of PHB done */
3039 		phb->initialized = 1;
3040 
3041 		sprintf(name, "PCI%04x", hose->global_number);
3042 		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3043 		if (!phb->dbgfs)
3044 			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3045 				__func__, hose->global_number);
3046 	}
3047 #endif /* CONFIG_DEBUG_FS */
3048 }
3049 
3050 static void pnv_pci_ioda_fixup(void)
3051 {
3052 	pnv_pci_ioda_setup_PEs();
3053 	pnv_pci_ioda_setup_iommu_api();
3054 	pnv_pci_ioda_create_dbgfs();
3055 
3056 #ifdef CONFIG_EEH
3057 	eeh_init();
3058 	eeh_addr_cache_build();
3059 #endif
3060 }
3061 
3062 /*
3063  * Returns the alignment for I/O or memory windows for P2P
3064  * bridges. That actually depends on how PEs are segmented.
3065  * For now, we return I/O or M32 segment size for PE sensitive
3066  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3067  * 1MiB for memory) will be returned.
3068  *
3069  * The current PCI bus might be put into one PE, which was
3070  * create against the parent PCI bridge. For that case, we
3071  * needn't enlarge the alignment so that we can save some
3072  * resources.
3073  */
3074 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3075 						unsigned long type)
3076 {
3077 	struct pci_dev *bridge;
3078 	struct pci_controller *hose = pci_bus_to_host(bus);
3079 	struct pnv_phb *phb = hose->private_data;
3080 	int num_pci_bridges = 0;
3081 
3082 	bridge = bus->self;
3083 	while (bridge) {
3084 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3085 			num_pci_bridges++;
3086 			if (num_pci_bridges >= 2)
3087 				return 1;
3088 		}
3089 
3090 		bridge = bridge->bus->self;
3091 	}
3092 
3093 	/*
3094 	 * We fall back to M32 if M64 isn't supported. We enforce the M64
3095 	 * alignment for any 64-bit resource, PCIe doesn't care and
3096 	 * bridges only do 64-bit prefetchable anyway.
3097 	 */
3098 	if (phb->ioda.m64_segsize && (type & IORESOURCE_MEM_64))
3099 		return phb->ioda.m64_segsize;
3100 	if (type & IORESOURCE_MEM)
3101 		return phb->ioda.m32_segsize;
3102 
3103 	return phb->ioda.io_segsize;
3104 }
3105 
3106 /*
3107  * We are updating root port or the upstream port of the
3108  * bridge behind the root port with PHB's windows in order
3109  * to accommodate the changes on required resources during
3110  * PCI (slot) hotplug, which is connected to either root
3111  * port or the downstream ports of PCIe switch behind the
3112  * root port.
3113  */
3114 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3115 					   unsigned long type)
3116 {
3117 	struct pci_controller *hose = pci_bus_to_host(bus);
3118 	struct pnv_phb *phb = hose->private_data;
3119 	struct pci_dev *bridge = bus->self;
3120 	struct resource *r, *w;
3121 	bool msi_region = false;
3122 	int i;
3123 
3124 	/* Check if we need apply fixup to the bridge's windows */
3125 	if (!pci_is_root_bus(bridge->bus) &&
3126 	    !pci_is_root_bus(bridge->bus->self->bus))
3127 		return;
3128 
3129 	/* Fixup the resources */
3130 	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3131 		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3132 		if (!r->flags || !r->parent)
3133 			continue;
3134 
3135 		w = NULL;
3136 		if (r->flags & type & IORESOURCE_IO)
3137 			w = &hose->io_resource;
3138 		else if (pnv_pci_is_m64(phb, r) &&
3139 			 (type & IORESOURCE_PREFETCH) &&
3140 			 phb->ioda.m64_segsize)
3141 			w = &hose->mem_resources[1];
3142 		else if (r->flags & type & IORESOURCE_MEM) {
3143 			w = &hose->mem_resources[0];
3144 			msi_region = true;
3145 		}
3146 
3147 		r->start = w->start;
3148 		r->end = w->end;
3149 
3150 		/* The 64KB 32-bits MSI region shouldn't be included in
3151 		 * the 32-bits bridge window. Otherwise, we can see strange
3152 		 * issues. One of them is EEH error observed on Garrison.
3153 		 *
3154 		 * Exclude top 1MB region which is the minimal alignment of
3155 		 * 32-bits bridge window.
3156 		 */
3157 		if (msi_region) {
3158 			r->end += 0x10000;
3159 			r->end -= 0x100000;
3160 		}
3161 	}
3162 }
3163 
3164 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3165 {
3166 	struct pci_controller *hose = pci_bus_to_host(bus);
3167 	struct pnv_phb *phb = hose->private_data;
3168 	struct pci_dev *bridge = bus->self;
3169 	struct pnv_ioda_pe *pe;
3170 	bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3171 
3172 	/* Extend bridge's windows if necessary */
3173 	pnv_pci_fixup_bridge_resources(bus, type);
3174 
3175 	/* The PE for root bus should be realized before any one else */
3176 	if (!phb->ioda.root_pe_populated) {
3177 		pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3178 		if (pe) {
3179 			phb->ioda.root_pe_idx = pe->pe_number;
3180 			phb->ioda.root_pe_populated = true;
3181 		}
3182 	}
3183 
3184 	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3185 	if (list_empty(&bus->devices))
3186 		return;
3187 
3188 	/* Reserve PEs according to used M64 resources */
3189 	if (phb->reserve_m64_pe)
3190 		phb->reserve_m64_pe(bus, NULL, all);
3191 
3192 	/*
3193 	 * Assign PE. We might run here because of partial hotplug.
3194 	 * For the case, we just pick up the existing PE and should
3195 	 * not allocate resources again.
3196 	 */
3197 	pe = pnv_ioda_setup_bus_PE(bus, all);
3198 	if (!pe)
3199 		return;
3200 
3201 	pnv_ioda_setup_pe_seg(pe);
3202 	switch (phb->type) {
3203 	case PNV_PHB_IODA1:
3204 		pnv_pci_ioda1_setup_dma_pe(phb, pe);
3205 		break;
3206 	case PNV_PHB_IODA2:
3207 		pnv_pci_ioda2_setup_dma_pe(phb, pe);
3208 		break;
3209 	default:
3210 		pr_warn("%s: No DMA for PHB#%d (type %d)\n",
3211 			__func__, phb->hose->global_number, phb->type);
3212 	}
3213 }
3214 
3215 #ifdef CONFIG_PCI_IOV
3216 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3217 						      int resno)
3218 {
3219 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3220 	struct pnv_phb *phb = hose->private_data;
3221 	struct pci_dn *pdn = pci_get_pdn(pdev);
3222 	resource_size_t align;
3223 
3224 	/*
3225 	 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3226 	 * SR-IOV. While from hardware perspective, the range mapped by M64
3227 	 * BAR should be size aligned.
3228 	 *
3229 	 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3230 	 * powernv-specific hardware restriction is gone. But if just use the
3231 	 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3232 	 * in one segment of M64 #15, which introduces the PE conflict between
3233 	 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3234 	 * m64_segsize.
3235 	 *
3236 	 * This function returns the total IOV BAR size if M64 BAR is in
3237 	 * Shared PE mode or just VF BAR size if not.
3238 	 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3239 	 * M64 segment size if IOV BAR size is less.
3240 	 */
3241 	align = pci_iov_resource_size(pdev, resno);
3242 	if (!pdn->vfs_expanded)
3243 		return align;
3244 	if (pdn->m64_single_mode)
3245 		return max(align, (resource_size_t)phb->ioda.m64_segsize);
3246 
3247 	return pdn->vfs_expanded * align;
3248 }
3249 #endif /* CONFIG_PCI_IOV */
3250 
3251 /* Prevent enabling devices for which we couldn't properly
3252  * assign a PE
3253  */
3254 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3255 {
3256 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
3257 	struct pnv_phb *phb = hose->private_data;
3258 	struct pci_dn *pdn;
3259 
3260 	/* The function is probably called while the PEs have
3261 	 * not be created yet. For example, resource reassignment
3262 	 * during PCI probe period. We just skip the check if
3263 	 * PEs isn't ready.
3264 	 */
3265 	if (!phb->initialized)
3266 		return true;
3267 
3268 	pdn = pci_get_pdn(dev);
3269 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3270 		return false;
3271 
3272 	return true;
3273 }
3274 
3275 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3276 				       int num)
3277 {
3278 	struct pnv_ioda_pe *pe = container_of(table_group,
3279 					      struct pnv_ioda_pe, table_group);
3280 	struct pnv_phb *phb = pe->phb;
3281 	unsigned int idx;
3282 	long rc;
3283 
3284 	pe_info(pe, "Removing DMA window #%d\n", num);
3285 	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3286 		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3287 			continue;
3288 
3289 		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3290 						idx, 0, 0ul, 0ul, 0ul);
3291 		if (rc != OPAL_SUCCESS) {
3292 			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3293 				rc, idx);
3294 			return rc;
3295 		}
3296 
3297 		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3298 	}
3299 
3300 	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3301 	return OPAL_SUCCESS;
3302 }
3303 
3304 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3305 {
3306 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3307 	struct iommu_table *tbl = pe->table_group.tables[0];
3308 	int64_t rc;
3309 
3310 	if (!weight)
3311 		return;
3312 
3313 	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3314 	if (rc != OPAL_SUCCESS)
3315 		return;
3316 
3317 	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3318 	if (pe->table_group.group) {
3319 		iommu_group_put(pe->table_group.group);
3320 		WARN_ON(pe->table_group.group);
3321 	}
3322 
3323 	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3324 	iommu_free_table(tbl, "pnv");
3325 }
3326 
3327 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3328 {
3329 	struct iommu_table *tbl = pe->table_group.tables[0];
3330 	unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3331 #ifdef CONFIG_IOMMU_API
3332 	int64_t rc;
3333 #endif
3334 
3335 	if (!weight)
3336 		return;
3337 
3338 #ifdef CONFIG_IOMMU_API
3339 	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3340 	if (rc)
3341 		pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3342 #endif
3343 
3344 	pnv_pci_ioda2_set_bypass(pe, false);
3345 	if (pe->table_group.group) {
3346 		iommu_group_put(pe->table_group.group);
3347 		WARN_ON(pe->table_group.group);
3348 	}
3349 
3350 	pnv_pci_ioda2_table_free_pages(tbl);
3351 	iommu_free_table(tbl, "pnv");
3352 }
3353 
3354 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3355 				 unsigned short win,
3356 				 unsigned int *map)
3357 {
3358 	struct pnv_phb *phb = pe->phb;
3359 	int idx;
3360 	int64_t rc;
3361 
3362 	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3363 		if (map[idx] != pe->pe_number)
3364 			continue;
3365 
3366 		if (win == OPAL_M64_WINDOW_TYPE)
3367 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3368 					phb->ioda.reserved_pe_idx, win,
3369 					idx / PNV_IODA1_M64_SEGS,
3370 					idx % PNV_IODA1_M64_SEGS);
3371 		else
3372 			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3373 					phb->ioda.reserved_pe_idx, win, 0, idx);
3374 
3375 		if (rc != OPAL_SUCCESS)
3376 			pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3377 				rc, win, idx);
3378 
3379 		map[idx] = IODA_INVALID_PE;
3380 	}
3381 }
3382 
3383 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3384 {
3385 	struct pnv_phb *phb = pe->phb;
3386 
3387 	if (phb->type == PNV_PHB_IODA1) {
3388 		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3389 				     phb->ioda.io_segmap);
3390 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3391 				     phb->ioda.m32_segmap);
3392 		pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3393 				     phb->ioda.m64_segmap);
3394 	} else if (phb->type == PNV_PHB_IODA2) {
3395 		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3396 				     phb->ioda.m32_segmap);
3397 	}
3398 }
3399 
3400 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3401 {
3402 	struct pnv_phb *phb = pe->phb;
3403 	struct pnv_ioda_pe *slave, *tmp;
3404 
3405 	/* Release slave PEs in compound PE */
3406 	if (pe->flags & PNV_IODA_PE_MASTER) {
3407 		list_for_each_entry_safe(slave, tmp, &pe->slaves, list)
3408 			pnv_ioda_release_pe(slave);
3409 	}
3410 
3411 	list_del(&pe->list);
3412 	switch (phb->type) {
3413 	case PNV_PHB_IODA1:
3414 		pnv_pci_ioda1_release_pe_dma(pe);
3415 		break;
3416 	case PNV_PHB_IODA2:
3417 		pnv_pci_ioda2_release_pe_dma(pe);
3418 		break;
3419 	default:
3420 		WARN_ON(1);
3421 	}
3422 
3423 	pnv_ioda_release_pe_seg(pe);
3424 	pnv_ioda_deconfigure_pe(pe->phb, pe);
3425 	pnv_ioda_free_pe(pe);
3426 }
3427 
3428 static void pnv_pci_release_device(struct pci_dev *pdev)
3429 {
3430 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3431 	struct pnv_phb *phb = hose->private_data;
3432 	struct pci_dn *pdn = pci_get_pdn(pdev);
3433 	struct pnv_ioda_pe *pe;
3434 
3435 	if (pdev->is_virtfn)
3436 		return;
3437 
3438 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3439 		return;
3440 
3441 	pe = &phb->ioda.pe_array[pdn->pe_number];
3442 	WARN_ON(--pe->device_count < 0);
3443 	if (pe->device_count == 0)
3444 		pnv_ioda_release_pe(pe);
3445 }
3446 
3447 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3448 {
3449 	struct pnv_phb *phb = hose->private_data;
3450 
3451 	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3452 		       OPAL_ASSERT_RESET);
3453 }
3454 
3455 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3456 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3457 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3458 #ifdef CONFIG_PCI_MSI
3459 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3460 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3461 #endif
3462 	.enable_device_hook	= pnv_pci_enable_device_hook,
3463 	.release_device		= pnv_pci_release_device,
3464 	.window_alignment	= pnv_pci_window_alignment,
3465 	.setup_bridge		= pnv_pci_setup_bridge,
3466 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3467 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3468 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3469 	.shutdown		= pnv_pci_ioda_shutdown,
3470 };
3471 
3472 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3473 {
3474 	dev_err_once(&npdev->dev,
3475 			"%s operation unsupported for NVLink devices\n",
3476 			__func__);
3477 	return -EPERM;
3478 }
3479 
3480 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3481 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3482 #ifdef CONFIG_PCI_MSI
3483 	.setup_msi_irqs		= pnv_setup_msi_irqs,
3484 	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
3485 #endif
3486 	.enable_device_hook	= pnv_pci_enable_device_hook,
3487 	.window_alignment	= pnv_pci_window_alignment,
3488 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3489 	.dma_set_mask		= pnv_npu_dma_set_mask,
3490 	.shutdown		= pnv_pci_ioda_shutdown,
3491 };
3492 
3493 #ifdef CONFIG_CXL_BASE
3494 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3495 	.dma_dev_setup		= pnv_pci_dma_dev_setup,
3496 	.dma_bus_setup		= pnv_pci_dma_bus_setup,
3497 #ifdef CONFIG_PCI_MSI
3498 	.setup_msi_irqs		= pnv_cxl_cx4_setup_msi_irqs,
3499 	.teardown_msi_irqs	= pnv_cxl_cx4_teardown_msi_irqs,
3500 #endif
3501 	.enable_device_hook	= pnv_cxl_enable_device_hook,
3502 	.disable_device		= pnv_cxl_disable_device,
3503 	.release_device		= pnv_pci_release_device,
3504 	.window_alignment	= pnv_pci_window_alignment,
3505 	.setup_bridge		= pnv_pci_setup_bridge,
3506 	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
3507 	.dma_set_mask		= pnv_pci_ioda_dma_set_mask,
3508 	.dma_get_required_mask	= pnv_pci_ioda_dma_get_required_mask,
3509 	.shutdown		= pnv_pci_ioda_shutdown,
3510 };
3511 #endif
3512 
3513 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3514 					 u64 hub_id, int ioda_type)
3515 {
3516 	struct pci_controller *hose;
3517 	struct pnv_phb *phb;
3518 	unsigned long size, m64map_off, m32map_off, pemap_off;
3519 	unsigned long iomap_off = 0, dma32map_off = 0;
3520 	struct resource r;
3521 	const __be64 *prop64;
3522 	const __be32 *prop32;
3523 	int len;
3524 	unsigned int segno;
3525 	u64 phb_id;
3526 	void *aux;
3527 	long rc;
3528 
3529 	if (!of_device_is_available(np))
3530 		return;
3531 
3532 	pr_info("Initializing %s PHB (%s)\n",
3533 		pnv_phb_names[ioda_type], of_node_full_name(np));
3534 
3535 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3536 	if (!prop64) {
3537 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3538 		return;
3539 	}
3540 	phb_id = be64_to_cpup(prop64);
3541 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3542 
3543 	phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3544 
3545 	/* Allocate PCI controller */
3546 	phb->hose = hose = pcibios_alloc_controller(np);
3547 	if (!phb->hose) {
3548 		pr_err("  Can't allocate PCI controller for %s\n",
3549 		       np->full_name);
3550 		memblock_free(__pa(phb), sizeof(struct pnv_phb));
3551 		return;
3552 	}
3553 
3554 	spin_lock_init(&phb->lock);
3555 	prop32 = of_get_property(np, "bus-range", &len);
3556 	if (prop32 && len == 8) {
3557 		hose->first_busno = be32_to_cpu(prop32[0]);
3558 		hose->last_busno = be32_to_cpu(prop32[1]);
3559 	} else {
3560 		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3561 		hose->first_busno = 0;
3562 		hose->last_busno = 0xff;
3563 	}
3564 	hose->private_data = phb;
3565 	phb->hub_id = hub_id;
3566 	phb->opal_id = phb_id;
3567 	phb->type = ioda_type;
3568 	mutex_init(&phb->ioda.pe_alloc_mutex);
3569 
3570 	/* Detect specific models for error handling */
3571 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3572 		phb->model = PNV_PHB_MODEL_P7IOC;
3573 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3574 		phb->model = PNV_PHB_MODEL_PHB3;
3575 	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3576 		phb->model = PNV_PHB_MODEL_NPU;
3577 	else
3578 		phb->model = PNV_PHB_MODEL_UNKNOWN;
3579 
3580 	/* Parse 32-bit and IO ranges (if any) */
3581 	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3582 
3583 	/* Get registers */
3584 	if (!of_address_to_resource(np, 0, &r)) {
3585 		phb->regs_phys = r.start;
3586 		phb->regs = ioremap(r.start, resource_size(&r));
3587 		if (phb->regs == NULL)
3588 			pr_err("  Failed to map registers !\n");
3589 	}
3590 
3591 	/* Initialize more IODA stuff */
3592 	phb->ioda.total_pe_num = 1;
3593 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3594 	if (prop32)
3595 		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3596 	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3597 	if (prop32)
3598 		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3599 
3600 	/* Invalidate RID to PE# mapping */
3601 	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3602 		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3603 
3604 	/* Parse 64-bit MMIO range */
3605 	pnv_ioda_parse_m64_window(phb);
3606 
3607 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3608 	/* FW Has already off top 64k of M32 space (MSI space) */
3609 	phb->ioda.m32_size += 0x10000;
3610 
3611 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3612 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3613 	phb->ioda.io_size = hose->pci_io_size;
3614 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3615 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3616 
3617 	/* Calculate how many 32-bit TCE segments we have */
3618 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3619 				PNV_IODA1_DMA32_SEGSIZE;
3620 
3621 	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3622 	size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3623 			sizeof(unsigned long));
3624 	m64map_off = size;
3625 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3626 	m32map_off = size;
3627 	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3628 	if (phb->type == PNV_PHB_IODA1) {
3629 		iomap_off = size;
3630 		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3631 		dma32map_off = size;
3632 		size += phb->ioda.dma32_count *
3633 			sizeof(phb->ioda.dma32_segmap[0]);
3634 	}
3635 	pemap_off = size;
3636 	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3637 	aux = memblock_virt_alloc(size, 0);
3638 	phb->ioda.pe_alloc = aux;
3639 	phb->ioda.m64_segmap = aux + m64map_off;
3640 	phb->ioda.m32_segmap = aux + m32map_off;
3641 	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3642 		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3643 		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3644 	}
3645 	if (phb->type == PNV_PHB_IODA1) {
3646 		phb->ioda.io_segmap = aux + iomap_off;
3647 		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3648 			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3649 
3650 		phb->ioda.dma32_segmap = aux + dma32map_off;
3651 		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3652 			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3653 	}
3654 	phb->ioda.pe_array = aux + pemap_off;
3655 
3656 	/*
3657 	 * Choose PE number for root bus, which shouldn't have
3658 	 * M64 resources consumed by its child devices. To pick
3659 	 * the PE number adjacent to the reserved one if possible.
3660 	 */
3661 	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3662 	if (phb->ioda.reserved_pe_idx == 0) {
3663 		phb->ioda.root_pe_idx = 1;
3664 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3665 	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3666 		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3667 		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3668 	} else {
3669 		phb->ioda.root_pe_idx = IODA_INVALID_PE;
3670 	}
3671 
3672 	INIT_LIST_HEAD(&phb->ioda.pe_list);
3673 	mutex_init(&phb->ioda.pe_list_mutex);
3674 
3675 	/* Calculate how many 32-bit TCE segments we have */
3676 	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3677 				PNV_IODA1_DMA32_SEGSIZE;
3678 
3679 #if 0 /* We should really do that ... */
3680 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3681 					 window_type,
3682 					 window_num,
3683 					 starting_real_address,
3684 					 starting_pci_address,
3685 					 segment_size);
3686 #endif
3687 
3688 	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3689 		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3690 		phb->ioda.m32_size, phb->ioda.m32_segsize);
3691 	if (phb->ioda.m64_size)
3692 		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3693 			phb->ioda.m64_size, phb->ioda.m64_segsize);
3694 	if (phb->ioda.io_size)
3695 		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3696 			phb->ioda.io_size, phb->ioda.io_segsize);
3697 
3698 
3699 	phb->hose->ops = &pnv_pci_ops;
3700 	phb->get_pe_state = pnv_ioda_get_pe_state;
3701 	phb->freeze_pe = pnv_ioda_freeze_pe;
3702 	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3703 
3704 	/* Setup MSI support */
3705 	pnv_pci_init_ioda_msis(phb);
3706 
3707 	/*
3708 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3709 	 * to let the PCI core do resource assignment. It's supposed
3710 	 * that the PCI core will do correct I/O and MMIO alignment
3711 	 * for the P2P bridge bars so that each PCI bus (excluding
3712 	 * the child P2P bridges) can form individual PE.
3713 	 */
3714 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3715 
3716 	if (phb->type == PNV_PHB_NPU) {
3717 		hose->controller_ops = pnv_npu_ioda_controller_ops;
3718 	} else {
3719 		phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3720 		hose->controller_ops = pnv_pci_ioda_controller_ops;
3721 	}
3722 
3723 #ifdef CONFIG_PCI_IOV
3724 	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3725 	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3726 #endif
3727 
3728 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3729 
3730 	/* Reset IODA tables to a clean state */
3731 	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3732 	if (rc)
3733 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3734 
3735 	/* If we're running in kdump kerenl, the previous kerenl never
3736 	 * shutdown PCI devices correctly. We already got IODA table
3737 	 * cleaned out. So we have to issue PHB reset to stop all PCI
3738 	 * transactions from previous kerenl.
3739 	 */
3740 	if (is_kdump_kernel()) {
3741 		pr_info("  Issue PHB reset ...\n");
3742 		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3743 		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3744 	}
3745 
3746 	/* Remove M64 resource if we can't configure it successfully */
3747 	if (!phb->init_m64 || phb->init_m64(phb))
3748 		hose->mem_resources[1].flags = 0;
3749 }
3750 
3751 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3752 {
3753 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3754 }
3755 
3756 void __init pnv_pci_init_npu_phb(struct device_node *np)
3757 {
3758 	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3759 }
3760 
3761 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3762 {
3763 	struct device_node *phbn;
3764 	const __be64 *prop64;
3765 	u64 hub_id;
3766 
3767 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3768 
3769 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3770 	if (!prop64) {
3771 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3772 		return;
3773 	}
3774 	hub_id = be64_to_cpup(prop64);
3775 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3776 
3777 	/* Count child PHBs */
3778 	for_each_child_of_node(np, phbn) {
3779 		/* Look for IODA1 PHBs */
3780 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3781 			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3782 	}
3783 }
3784