1 /* 2 * Support PCI/PCIe on PowerNV platforms 3 * 4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #undef DEBUG 13 14 #include <linux/kernel.h> 15 #include <linux/pci.h> 16 #include <linux/crash_dump.h> 17 #include <linux/debugfs.h> 18 #include <linux/delay.h> 19 #include <linux/string.h> 20 #include <linux/init.h> 21 #include <linux/bootmem.h> 22 #include <linux/irq.h> 23 #include <linux/io.h> 24 #include <linux/msi.h> 25 #include <linux/memblock.h> 26 #include <linux/iommu.h> 27 #include <linux/rculist.h> 28 #include <linux/sizes.h> 29 30 #include <asm/sections.h> 31 #include <asm/io.h> 32 #include <asm/prom.h> 33 #include <asm/pci-bridge.h> 34 #include <asm/machdep.h> 35 #include <asm/msi_bitmap.h> 36 #include <asm/ppc-pci.h> 37 #include <asm/opal.h> 38 #include <asm/iommu.h> 39 #include <asm/tce.h> 40 #include <asm/xics.h> 41 #include <asm/debug.h> 42 #include <asm/firmware.h> 43 #include <asm/pnv-pci.h> 44 #include <asm/mmzone.h> 45 46 #include <misc/cxl-base.h> 47 48 #include "powernv.h" 49 #include "pci.h" 50 51 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */ 52 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */ 53 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000 54 55 #define POWERNV_IOMMU_DEFAULT_LEVELS 1 56 #define POWERNV_IOMMU_MAX_LEVELS 5 57 58 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" }; 59 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl); 60 61 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level, 62 const char *fmt, ...) 63 { 64 struct va_format vaf; 65 va_list args; 66 char pfix[32]; 67 68 va_start(args, fmt); 69 70 vaf.fmt = fmt; 71 vaf.va = &args; 72 73 if (pe->flags & PNV_IODA_PE_DEV) 74 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix)); 75 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 76 sprintf(pfix, "%04x:%02x ", 77 pci_domain_nr(pe->pbus), pe->pbus->number); 78 #ifdef CONFIG_PCI_IOV 79 else if (pe->flags & PNV_IODA_PE_VF) 80 sprintf(pfix, "%04x:%02x:%2x.%d", 81 pci_domain_nr(pe->parent_dev->bus), 82 (pe->rid & 0xff00) >> 8, 83 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid)); 84 #endif /* CONFIG_PCI_IOV*/ 85 86 printk("%spci %s: [PE# %.3d] %pV", 87 level, pfix, pe->pe_number, &vaf); 88 89 va_end(args); 90 } 91 92 static bool pnv_iommu_bypass_disabled __read_mostly; 93 94 static int __init iommu_setup(char *str) 95 { 96 if (!str) 97 return -EINVAL; 98 99 while (*str) { 100 if (!strncmp(str, "nobypass", 8)) { 101 pnv_iommu_bypass_disabled = true; 102 pr_info("PowerNV: IOMMU bypass window disabled.\n"); 103 break; 104 } 105 str += strcspn(str, ","); 106 if (*str == ',') 107 str++; 108 } 109 110 return 0; 111 } 112 early_param("iommu", iommu_setup); 113 114 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r) 115 { 116 /* 117 * WARNING: We cannot rely on the resource flags. The Linux PCI 118 * allocation code sometimes decides to put a 64-bit prefetchable 119 * BAR in the 32-bit window, so we have to compare the addresses. 120 * 121 * For simplicity we only test resource start. 122 */ 123 return (r->start >= phb->ioda.m64_base && 124 r->start < (phb->ioda.m64_base + phb->ioda.m64_size)); 125 } 126 127 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no) 128 { 129 phb->ioda.pe_array[pe_no].phb = phb; 130 phb->ioda.pe_array[pe_no].pe_number = pe_no; 131 132 return &phb->ioda.pe_array[pe_no]; 133 } 134 135 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no) 136 { 137 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) { 138 pr_warn("%s: Invalid PE %d on PHB#%x\n", 139 __func__, pe_no, phb->hose->global_number); 140 return; 141 } 142 143 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) 144 pr_debug("%s: PE %d was reserved on PHB#%x\n", 145 __func__, pe_no, phb->hose->global_number); 146 147 pnv_ioda_init_pe(phb, pe_no); 148 } 149 150 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb) 151 { 152 unsigned long pe = phb->ioda.total_pe_num - 1; 153 154 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) { 155 if (!test_and_set_bit(pe, phb->ioda.pe_alloc)) 156 return pnv_ioda_init_pe(phb, pe); 157 } 158 159 return NULL; 160 } 161 162 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe) 163 { 164 struct pnv_phb *phb = pe->phb; 165 166 WARN_ON(pe->pdev); 167 168 memset(pe, 0, sizeof(struct pnv_ioda_pe)); 169 clear_bit(pe->pe_number, phb->ioda.pe_alloc); 170 } 171 172 /* The default M64 BAR is shared by all PEs */ 173 static int pnv_ioda2_init_m64(struct pnv_phb *phb) 174 { 175 const char *desc; 176 struct resource *r; 177 s64 rc; 178 179 /* Configure the default M64 BAR */ 180 rc = opal_pci_set_phb_mem_window(phb->opal_id, 181 OPAL_M64_WINDOW_TYPE, 182 phb->ioda.m64_bar_idx, 183 phb->ioda.m64_base, 184 0, /* unused */ 185 phb->ioda.m64_size); 186 if (rc != OPAL_SUCCESS) { 187 desc = "configuring"; 188 goto fail; 189 } 190 191 /* Enable the default M64 BAR */ 192 rc = opal_pci_phb_mmio_enable(phb->opal_id, 193 OPAL_M64_WINDOW_TYPE, 194 phb->ioda.m64_bar_idx, 195 OPAL_ENABLE_M64_SPLIT); 196 if (rc != OPAL_SUCCESS) { 197 desc = "enabling"; 198 goto fail; 199 } 200 201 /* 202 * Exclude the segments for reserved and root bus PE, which 203 * are first or last two PEs. 204 */ 205 r = &phb->hose->mem_resources[1]; 206 if (phb->ioda.reserved_pe_idx == 0) 207 r->start += (2 * phb->ioda.m64_segsize); 208 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 209 r->end -= (2 * phb->ioda.m64_segsize); 210 else 211 pr_warn(" Cannot strip M64 segment for reserved PE#%d\n", 212 phb->ioda.reserved_pe_idx); 213 214 return 0; 215 216 fail: 217 pr_warn(" Failure %lld %s M64 BAR#%d\n", 218 rc, desc, phb->ioda.m64_bar_idx); 219 opal_pci_phb_mmio_enable(phb->opal_id, 220 OPAL_M64_WINDOW_TYPE, 221 phb->ioda.m64_bar_idx, 222 OPAL_DISABLE_M64); 223 return -EIO; 224 } 225 226 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev, 227 unsigned long *pe_bitmap) 228 { 229 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 230 struct pnv_phb *phb = hose->private_data; 231 struct resource *r; 232 resource_size_t base, sgsz, start, end; 233 int segno, i; 234 235 base = phb->ioda.m64_base; 236 sgsz = phb->ioda.m64_segsize; 237 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 238 r = &pdev->resource[i]; 239 if (!r->parent || !pnv_pci_is_m64(phb, r)) 240 continue; 241 242 start = _ALIGN_DOWN(r->start - base, sgsz); 243 end = _ALIGN_UP(r->end - base, sgsz); 244 for (segno = start / sgsz; segno < end / sgsz; segno++) { 245 if (pe_bitmap) 246 set_bit(segno, pe_bitmap); 247 else 248 pnv_ioda_reserve_pe(phb, segno); 249 } 250 } 251 } 252 253 static int pnv_ioda1_init_m64(struct pnv_phb *phb) 254 { 255 struct resource *r; 256 int index; 257 258 /* 259 * There are 16 M64 BARs, each of which has 8 segments. So 260 * there are as many M64 segments as the maximum number of 261 * PEs, which is 128. 262 */ 263 for (index = 0; index < PNV_IODA1_M64_NUM; index++) { 264 unsigned long base, segsz = phb->ioda.m64_segsize; 265 int64_t rc; 266 267 base = phb->ioda.m64_base + 268 index * PNV_IODA1_M64_SEGS * segsz; 269 rc = opal_pci_set_phb_mem_window(phb->opal_id, 270 OPAL_M64_WINDOW_TYPE, index, base, 0, 271 PNV_IODA1_M64_SEGS * segsz); 272 if (rc != OPAL_SUCCESS) { 273 pr_warn(" Error %lld setting M64 PHB#%d-BAR#%d\n", 274 rc, phb->hose->global_number, index); 275 goto fail; 276 } 277 278 rc = opal_pci_phb_mmio_enable(phb->opal_id, 279 OPAL_M64_WINDOW_TYPE, index, 280 OPAL_ENABLE_M64_SPLIT); 281 if (rc != OPAL_SUCCESS) { 282 pr_warn(" Error %lld enabling M64 PHB#%d-BAR#%d\n", 283 rc, phb->hose->global_number, index); 284 goto fail; 285 } 286 } 287 288 /* 289 * Exclude the segments for reserved and root bus PE, which 290 * are first or last two PEs. 291 */ 292 r = &phb->hose->mem_resources[1]; 293 if (phb->ioda.reserved_pe_idx == 0) 294 r->start += (2 * phb->ioda.m64_segsize); 295 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) 296 r->end -= (2 * phb->ioda.m64_segsize); 297 else 298 WARN(1, "Wrong reserved PE#%d on PHB#%d\n", 299 phb->ioda.reserved_pe_idx, phb->hose->global_number); 300 301 return 0; 302 303 fail: 304 for ( ; index >= 0; index--) 305 opal_pci_phb_mmio_enable(phb->opal_id, 306 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64); 307 308 return -EIO; 309 } 310 311 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus, 312 unsigned long *pe_bitmap, 313 bool all) 314 { 315 struct pci_dev *pdev; 316 317 list_for_each_entry(pdev, &bus->devices, bus_list) { 318 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap); 319 320 if (all && pdev->subordinate) 321 pnv_ioda_reserve_m64_pe(pdev->subordinate, 322 pe_bitmap, all); 323 } 324 } 325 326 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all) 327 { 328 struct pci_controller *hose = pci_bus_to_host(bus); 329 struct pnv_phb *phb = hose->private_data; 330 struct pnv_ioda_pe *master_pe, *pe; 331 unsigned long size, *pe_alloc; 332 int i; 333 334 /* Root bus shouldn't use M64 */ 335 if (pci_is_root_bus(bus)) 336 return NULL; 337 338 /* Allocate bitmap */ 339 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long)); 340 pe_alloc = kzalloc(size, GFP_KERNEL); 341 if (!pe_alloc) { 342 pr_warn("%s: Out of memory !\n", 343 __func__); 344 return NULL; 345 } 346 347 /* Figure out reserved PE numbers by the PE */ 348 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all); 349 350 /* 351 * the current bus might not own M64 window and that's all 352 * contributed by its child buses. For the case, we needn't 353 * pick M64 dependent PE#. 354 */ 355 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) { 356 kfree(pe_alloc); 357 return NULL; 358 } 359 360 /* 361 * Figure out the master PE and put all slave PEs to master 362 * PE's list to form compound PE. 363 */ 364 master_pe = NULL; 365 i = -1; 366 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) < 367 phb->ioda.total_pe_num) { 368 pe = &phb->ioda.pe_array[i]; 369 370 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number; 371 if (!master_pe) { 372 pe->flags |= PNV_IODA_PE_MASTER; 373 INIT_LIST_HEAD(&pe->slaves); 374 master_pe = pe; 375 } else { 376 pe->flags |= PNV_IODA_PE_SLAVE; 377 pe->master = master_pe; 378 list_add_tail(&pe->list, &master_pe->slaves); 379 } 380 381 /* 382 * P7IOC supports M64DT, which helps mapping M64 segment 383 * to one particular PE#. However, PHB3 has fixed mapping 384 * between M64 segment and PE#. In order to have same logic 385 * for P7IOC and PHB3, we enforce fixed mapping between M64 386 * segment and PE# on P7IOC. 387 */ 388 if (phb->type == PNV_PHB_IODA1) { 389 int64_t rc; 390 391 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 392 pe->pe_number, OPAL_M64_WINDOW_TYPE, 393 pe->pe_number / PNV_IODA1_M64_SEGS, 394 pe->pe_number % PNV_IODA1_M64_SEGS); 395 if (rc != OPAL_SUCCESS) 396 pr_warn("%s: Error %lld mapping M64 for PHB#%d-PE#%d\n", 397 __func__, rc, phb->hose->global_number, 398 pe->pe_number); 399 } 400 } 401 402 kfree(pe_alloc); 403 return master_pe; 404 } 405 406 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb) 407 { 408 struct pci_controller *hose = phb->hose; 409 struct device_node *dn = hose->dn; 410 struct resource *res; 411 u32 m64_range[2], i; 412 const u32 *r; 413 u64 pci_addr; 414 415 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) { 416 pr_info(" Not support M64 window\n"); 417 return; 418 } 419 420 if (!firmware_has_feature(FW_FEATURE_OPAL)) { 421 pr_info(" Firmware too old to support M64 window\n"); 422 return; 423 } 424 425 r = of_get_property(dn, "ibm,opal-m64-window", NULL); 426 if (!r) { 427 pr_info(" No <ibm,opal-m64-window> on %s\n", 428 dn->full_name); 429 return; 430 } 431 432 /* 433 * Find the available M64 BAR range and pickup the last one for 434 * covering the whole 64-bits space. We support only one range. 435 */ 436 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges", 437 m64_range, 2)) { 438 /* In absence of the property, assume 0..15 */ 439 m64_range[0] = 0; 440 m64_range[1] = 16; 441 } 442 /* We only support 64 bits in our allocator */ 443 if (m64_range[1] > 63) { 444 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n", 445 __func__, m64_range[1], phb->hose->global_number); 446 m64_range[1] = 63; 447 } 448 /* Empty range, no m64 */ 449 if (m64_range[1] <= m64_range[0]) { 450 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n", 451 __func__, phb->hose->global_number); 452 return; 453 } 454 455 /* Configure M64 informations */ 456 res = &hose->mem_resources[1]; 457 res->name = dn->full_name; 458 res->start = of_translate_address(dn, r + 2); 459 res->end = res->start + of_read_number(r + 4, 2) - 1; 460 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH); 461 pci_addr = of_read_number(r, 2); 462 hose->mem_offset[1] = res->start - pci_addr; 463 464 phb->ioda.m64_size = resource_size(res); 465 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num; 466 phb->ioda.m64_base = pci_addr; 467 468 /* This lines up nicely with the display from processing OF ranges */ 469 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n", 470 res->start, res->end, pci_addr, m64_range[0], 471 m64_range[0] + m64_range[1] - 1); 472 473 /* Mark all M64 used up by default */ 474 phb->ioda.m64_bar_alloc = (unsigned long)-1; 475 476 /* Use last M64 BAR to cover M64 window */ 477 m64_range[1]--; 478 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1]; 479 480 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx); 481 482 /* Mark remaining ones free */ 483 for (i = m64_range[0]; i < m64_range[1]; i++) 484 clear_bit(i, &phb->ioda.m64_bar_alloc); 485 486 /* 487 * Setup init functions for M64 based on IODA version, IODA3 uses 488 * the IODA2 code. 489 */ 490 if (phb->type == PNV_PHB_IODA1) 491 phb->init_m64 = pnv_ioda1_init_m64; 492 else 493 phb->init_m64 = pnv_ioda2_init_m64; 494 phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe; 495 phb->pick_m64_pe = pnv_ioda_pick_m64_pe; 496 } 497 498 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no) 499 { 500 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no]; 501 struct pnv_ioda_pe *slave; 502 s64 rc; 503 504 /* Fetch master PE */ 505 if (pe->flags & PNV_IODA_PE_SLAVE) { 506 pe = pe->master; 507 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER))) 508 return; 509 510 pe_no = pe->pe_number; 511 } 512 513 /* Freeze master PE */ 514 rc = opal_pci_eeh_freeze_set(phb->opal_id, 515 pe_no, 516 OPAL_EEH_ACTION_SET_FREEZE_ALL); 517 if (rc != OPAL_SUCCESS) { 518 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 519 __func__, rc, phb->hose->global_number, pe_no); 520 return; 521 } 522 523 /* Freeze slave PEs */ 524 if (!(pe->flags & PNV_IODA_PE_MASTER)) 525 return; 526 527 list_for_each_entry(slave, &pe->slaves, list) { 528 rc = opal_pci_eeh_freeze_set(phb->opal_id, 529 slave->pe_number, 530 OPAL_EEH_ACTION_SET_FREEZE_ALL); 531 if (rc != OPAL_SUCCESS) 532 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 533 __func__, rc, phb->hose->global_number, 534 slave->pe_number); 535 } 536 } 537 538 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt) 539 { 540 struct pnv_ioda_pe *pe, *slave; 541 s64 rc; 542 543 /* Find master PE */ 544 pe = &phb->ioda.pe_array[pe_no]; 545 if (pe->flags & PNV_IODA_PE_SLAVE) { 546 pe = pe->master; 547 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 548 pe_no = pe->pe_number; 549 } 550 551 /* Clear frozen state for master PE */ 552 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt); 553 if (rc != OPAL_SUCCESS) { 554 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 555 __func__, rc, opt, phb->hose->global_number, pe_no); 556 return -EIO; 557 } 558 559 if (!(pe->flags & PNV_IODA_PE_MASTER)) 560 return 0; 561 562 /* Clear frozen state for slave PEs */ 563 list_for_each_entry(slave, &pe->slaves, list) { 564 rc = opal_pci_eeh_freeze_clear(phb->opal_id, 565 slave->pe_number, 566 opt); 567 if (rc != OPAL_SUCCESS) { 568 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n", 569 __func__, rc, opt, phb->hose->global_number, 570 slave->pe_number); 571 return -EIO; 572 } 573 } 574 575 return 0; 576 } 577 578 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no) 579 { 580 struct pnv_ioda_pe *slave, *pe; 581 u8 fstate, state; 582 __be16 pcierr; 583 s64 rc; 584 585 /* Sanity check on PE number */ 586 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num) 587 return OPAL_EEH_STOPPED_PERM_UNAVAIL; 588 589 /* 590 * Fetch the master PE and the PE instance might be 591 * not initialized yet. 592 */ 593 pe = &phb->ioda.pe_array[pe_no]; 594 if (pe->flags & PNV_IODA_PE_SLAVE) { 595 pe = pe->master; 596 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)); 597 pe_no = pe->pe_number; 598 } 599 600 /* Check the master PE */ 601 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no, 602 &state, &pcierr, NULL); 603 if (rc != OPAL_SUCCESS) { 604 pr_warn("%s: Failure %lld getting " 605 "PHB#%x-PE#%x state\n", 606 __func__, rc, 607 phb->hose->global_number, pe_no); 608 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 609 } 610 611 /* Check the slave PE */ 612 if (!(pe->flags & PNV_IODA_PE_MASTER)) 613 return state; 614 615 list_for_each_entry(slave, &pe->slaves, list) { 616 rc = opal_pci_eeh_freeze_status(phb->opal_id, 617 slave->pe_number, 618 &fstate, 619 &pcierr, 620 NULL); 621 if (rc != OPAL_SUCCESS) { 622 pr_warn("%s: Failure %lld getting " 623 "PHB#%x-PE#%x state\n", 624 __func__, rc, 625 phb->hose->global_number, slave->pe_number); 626 return OPAL_EEH_STOPPED_TEMP_UNAVAIL; 627 } 628 629 /* 630 * Override the result based on the ascending 631 * priority. 632 */ 633 if (fstate > state) 634 state = fstate; 635 } 636 637 return state; 638 } 639 640 /* Currently those 2 are only used when MSIs are enabled, this will change 641 * but in the meantime, we need to protect them to avoid warnings 642 */ 643 #ifdef CONFIG_PCI_MSI 644 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev) 645 { 646 struct pci_controller *hose = pci_bus_to_host(dev->bus); 647 struct pnv_phb *phb = hose->private_data; 648 struct pci_dn *pdn = pci_get_pdn(dev); 649 650 if (!pdn) 651 return NULL; 652 if (pdn->pe_number == IODA_INVALID_PE) 653 return NULL; 654 return &phb->ioda.pe_array[pdn->pe_number]; 655 } 656 #endif /* CONFIG_PCI_MSI */ 657 658 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb, 659 struct pnv_ioda_pe *parent, 660 struct pnv_ioda_pe *child, 661 bool is_add) 662 { 663 const char *desc = is_add ? "adding" : "removing"; 664 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN : 665 OPAL_REMOVE_PE_FROM_DOMAIN; 666 struct pnv_ioda_pe *slave; 667 long rc; 668 669 /* Parent PE affects child PE */ 670 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 671 child->pe_number, op); 672 if (rc != OPAL_SUCCESS) { 673 pe_warn(child, "OPAL error %ld %s to parent PELTV\n", 674 rc, desc); 675 return -ENXIO; 676 } 677 678 if (!(child->flags & PNV_IODA_PE_MASTER)) 679 return 0; 680 681 /* Compound case: parent PE affects slave PEs */ 682 list_for_each_entry(slave, &child->slaves, list) { 683 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number, 684 slave->pe_number, op); 685 if (rc != OPAL_SUCCESS) { 686 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n", 687 rc, desc); 688 return -ENXIO; 689 } 690 } 691 692 return 0; 693 } 694 695 static int pnv_ioda_set_peltv(struct pnv_phb *phb, 696 struct pnv_ioda_pe *pe, 697 bool is_add) 698 { 699 struct pnv_ioda_pe *slave; 700 struct pci_dev *pdev = NULL; 701 int ret; 702 703 /* 704 * Clear PE frozen state. If it's master PE, we need 705 * clear slave PE frozen state as well. 706 */ 707 if (is_add) { 708 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 709 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 710 if (pe->flags & PNV_IODA_PE_MASTER) { 711 list_for_each_entry(slave, &pe->slaves, list) 712 opal_pci_eeh_freeze_clear(phb->opal_id, 713 slave->pe_number, 714 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 715 } 716 } 717 718 /* 719 * Associate PE in PELT. We need add the PE into the 720 * corresponding PELT-V as well. Otherwise, the error 721 * originated from the PE might contribute to other 722 * PEs. 723 */ 724 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add); 725 if (ret) 726 return ret; 727 728 /* For compound PEs, any one affects all of them */ 729 if (pe->flags & PNV_IODA_PE_MASTER) { 730 list_for_each_entry(slave, &pe->slaves, list) { 731 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add); 732 if (ret) 733 return ret; 734 } 735 } 736 737 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS)) 738 pdev = pe->pbus->self; 739 else if (pe->flags & PNV_IODA_PE_DEV) 740 pdev = pe->pdev->bus->self; 741 #ifdef CONFIG_PCI_IOV 742 else if (pe->flags & PNV_IODA_PE_VF) 743 pdev = pe->parent_dev; 744 #endif /* CONFIG_PCI_IOV */ 745 while (pdev) { 746 struct pci_dn *pdn = pci_get_pdn(pdev); 747 struct pnv_ioda_pe *parent; 748 749 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 750 parent = &phb->ioda.pe_array[pdn->pe_number]; 751 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add); 752 if (ret) 753 return ret; 754 } 755 756 pdev = pdev->bus->self; 757 } 758 759 return 0; 760 } 761 762 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 763 { 764 struct pci_dev *parent; 765 uint8_t bcomp, dcomp, fcomp; 766 int64_t rc; 767 long rid_end, rid; 768 769 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/ 770 if (pe->pbus) { 771 int count; 772 773 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 774 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 775 parent = pe->pbus->self; 776 if (pe->flags & PNV_IODA_PE_BUS_ALL) 777 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1; 778 else 779 count = 1; 780 781 switch(count) { 782 case 1: bcomp = OpalPciBusAll; break; 783 case 2: bcomp = OpalPciBus7Bits; break; 784 case 4: bcomp = OpalPciBus6Bits; break; 785 case 8: bcomp = OpalPciBus5Bits; break; 786 case 16: bcomp = OpalPciBus4Bits; break; 787 case 32: bcomp = OpalPciBus3Bits; break; 788 default: 789 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 790 count); 791 /* Do an exact match only */ 792 bcomp = OpalPciBusAll; 793 } 794 rid_end = pe->rid + (count << 8); 795 } else { 796 #ifdef CONFIG_PCI_IOV 797 if (pe->flags & PNV_IODA_PE_VF) 798 parent = pe->parent_dev; 799 else 800 #endif 801 parent = pe->pdev->bus->self; 802 bcomp = OpalPciBusAll; 803 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 804 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 805 rid_end = pe->rid + 1; 806 } 807 808 /* Clear the reverse map */ 809 for (rid = pe->rid; rid < rid_end; rid++) 810 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE; 811 812 /* Release from all parents PELT-V */ 813 while (parent) { 814 struct pci_dn *pdn = pci_get_pdn(parent); 815 if (pdn && pdn->pe_number != IODA_INVALID_PE) { 816 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number, 817 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); 818 /* XXX What to do in case of error ? */ 819 } 820 parent = parent->bus->self; 821 } 822 823 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number, 824 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 825 826 /* Disassociate PE in PELT */ 827 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number, 828 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN); 829 if (rc) 830 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc); 831 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 832 bcomp, dcomp, fcomp, OPAL_UNMAP_PE); 833 if (rc) 834 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); 835 836 pe->pbus = NULL; 837 pe->pdev = NULL; 838 #ifdef CONFIG_PCI_IOV 839 pe->parent_dev = NULL; 840 #endif 841 842 return 0; 843 } 844 845 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe) 846 { 847 struct pci_dev *parent; 848 uint8_t bcomp, dcomp, fcomp; 849 long rc, rid_end, rid; 850 851 /* Bus validation ? */ 852 if (pe->pbus) { 853 int count; 854 855 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER; 856 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER; 857 parent = pe->pbus->self; 858 if (pe->flags & PNV_IODA_PE_BUS_ALL) 859 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1; 860 else 861 count = 1; 862 863 switch(count) { 864 case 1: bcomp = OpalPciBusAll; break; 865 case 2: bcomp = OpalPciBus7Bits; break; 866 case 4: bcomp = OpalPciBus6Bits; break; 867 case 8: bcomp = OpalPciBus5Bits; break; 868 case 16: bcomp = OpalPciBus4Bits; break; 869 case 32: bcomp = OpalPciBus3Bits; break; 870 default: 871 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n", 872 count); 873 /* Do an exact match only */ 874 bcomp = OpalPciBusAll; 875 } 876 rid_end = pe->rid + (count << 8); 877 } else { 878 #ifdef CONFIG_PCI_IOV 879 if (pe->flags & PNV_IODA_PE_VF) 880 parent = pe->parent_dev; 881 else 882 #endif /* CONFIG_PCI_IOV */ 883 parent = pe->pdev->bus->self; 884 bcomp = OpalPciBusAll; 885 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER; 886 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER; 887 rid_end = pe->rid + 1; 888 } 889 890 /* 891 * Associate PE in PELT. We need add the PE into the 892 * corresponding PELT-V as well. Otherwise, the error 893 * originated from the PE might contribute to other 894 * PEs. 895 */ 896 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid, 897 bcomp, dcomp, fcomp, OPAL_MAP_PE); 898 if (rc) { 899 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc); 900 return -ENXIO; 901 } 902 903 /* 904 * Configure PELTV. NPUs don't have a PELTV table so skip 905 * configuration on them. 906 */ 907 if (phb->type != PNV_PHB_NPU) 908 pnv_ioda_set_peltv(phb, pe, true); 909 910 /* Setup reverse map */ 911 for (rid = pe->rid; rid < rid_end; rid++) 912 phb->ioda.pe_rmap[rid] = pe->pe_number; 913 914 /* Setup one MVTs on IODA1 */ 915 if (phb->type != PNV_PHB_IODA1) { 916 pe->mve_number = 0; 917 goto out; 918 } 919 920 pe->mve_number = pe->pe_number; 921 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number); 922 if (rc != OPAL_SUCCESS) { 923 pe_err(pe, "OPAL error %ld setting up MVE %d\n", 924 rc, pe->mve_number); 925 pe->mve_number = -1; 926 } else { 927 rc = opal_pci_set_mve_enable(phb->opal_id, 928 pe->mve_number, OPAL_ENABLE_MVE); 929 if (rc) { 930 pe_err(pe, "OPAL error %ld enabling MVE %d\n", 931 rc, pe->mve_number); 932 pe->mve_number = -1; 933 } 934 } 935 936 out: 937 return 0; 938 } 939 940 #ifdef CONFIG_PCI_IOV 941 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset) 942 { 943 struct pci_dn *pdn = pci_get_pdn(dev); 944 int i; 945 struct resource *res, res2; 946 resource_size_t size; 947 u16 num_vfs; 948 949 if (!dev->is_physfn) 950 return -EINVAL; 951 952 /* 953 * "offset" is in VFs. The M64 windows are sized so that when they 954 * are segmented, each segment is the same size as the IOV BAR. 955 * Each segment is in a separate PE, and the high order bits of the 956 * address are the PE number. Therefore, each VF's BAR is in a 957 * separate PE, and changing the IOV BAR start address changes the 958 * range of PEs the VFs are in. 959 */ 960 num_vfs = pdn->num_vfs; 961 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 962 res = &dev->resource[i + PCI_IOV_RESOURCES]; 963 if (!res->flags || !res->parent) 964 continue; 965 966 /* 967 * The actual IOV BAR range is determined by the start address 968 * and the actual size for num_vfs VFs BAR. This check is to 969 * make sure that after shifting, the range will not overlap 970 * with another device. 971 */ 972 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 973 res2.flags = res->flags; 974 res2.start = res->start + (size * offset); 975 res2.end = res2.start + (size * num_vfs) - 1; 976 977 if (res2.end > res->end) { 978 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n", 979 i, &res2, res, num_vfs, offset); 980 return -EBUSY; 981 } 982 } 983 984 /* 985 * After doing so, there would be a "hole" in the /proc/iomem when 986 * offset is a positive value. It looks like the device return some 987 * mmio back to the system, which actually no one could use it. 988 */ 989 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 990 res = &dev->resource[i + PCI_IOV_RESOURCES]; 991 if (!res->flags || !res->parent) 992 continue; 993 994 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 995 res2 = *res; 996 res->start += size * offset; 997 998 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n", 999 i, &res2, res, (offset > 0) ? "En" : "Dis", 1000 num_vfs, offset); 1001 pci_update_resource(dev, i + PCI_IOV_RESOURCES); 1002 } 1003 return 0; 1004 } 1005 #endif /* CONFIG_PCI_IOV */ 1006 1007 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev) 1008 { 1009 struct pci_controller *hose = pci_bus_to_host(dev->bus); 1010 struct pnv_phb *phb = hose->private_data; 1011 struct pci_dn *pdn = pci_get_pdn(dev); 1012 struct pnv_ioda_pe *pe; 1013 1014 if (!pdn) { 1015 pr_err("%s: Device tree node not associated properly\n", 1016 pci_name(dev)); 1017 return NULL; 1018 } 1019 if (pdn->pe_number != IODA_INVALID_PE) 1020 return NULL; 1021 1022 pe = pnv_ioda_alloc_pe(phb); 1023 if (!pe) { 1024 pr_warning("%s: Not enough PE# available, disabling device\n", 1025 pci_name(dev)); 1026 return NULL; 1027 } 1028 1029 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the 1030 * pointer in the PE data structure, both should be destroyed at the 1031 * same time. However, this needs to be looked at more closely again 1032 * once we actually start removing things (Hotplug, SR-IOV, ...) 1033 * 1034 * At some point we want to remove the PDN completely anyways 1035 */ 1036 pci_dev_get(dev); 1037 pdn->pcidev = dev; 1038 pdn->pe_number = pe->pe_number; 1039 pe->flags = PNV_IODA_PE_DEV; 1040 pe->pdev = dev; 1041 pe->pbus = NULL; 1042 pe->mve_number = -1; 1043 pe->rid = dev->bus->number << 8 | pdn->devfn; 1044 1045 pe_info(pe, "Associated device to PE\n"); 1046 1047 if (pnv_ioda_configure_pe(phb, pe)) { 1048 /* XXX What do we do here ? */ 1049 pnv_ioda_free_pe(pe); 1050 pdn->pe_number = IODA_INVALID_PE; 1051 pe->pdev = NULL; 1052 pci_dev_put(dev); 1053 return NULL; 1054 } 1055 1056 /* Put PE to the list */ 1057 list_add_tail(&pe->list, &phb->ioda.pe_list); 1058 1059 return pe; 1060 } 1061 1062 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe) 1063 { 1064 struct pci_dev *dev; 1065 1066 list_for_each_entry(dev, &bus->devices, bus_list) { 1067 struct pci_dn *pdn = pci_get_pdn(dev); 1068 1069 if (pdn == NULL) { 1070 pr_warn("%s: No device node associated with device !\n", 1071 pci_name(dev)); 1072 continue; 1073 } 1074 1075 /* 1076 * In partial hotplug case, the PCI device might be still 1077 * associated with the PE and needn't attach it to the PE 1078 * again. 1079 */ 1080 if (pdn->pe_number != IODA_INVALID_PE) 1081 continue; 1082 1083 pe->device_count++; 1084 pdn->pcidev = dev; 1085 pdn->pe_number = pe->pe_number; 1086 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 1087 pnv_ioda_setup_same_PE(dev->subordinate, pe); 1088 } 1089 } 1090 1091 /* 1092 * There're 2 types of PCI bus sensitive PEs: One that is compromised of 1093 * single PCI bus. Another one that contains the primary PCI bus and its 1094 * subordinate PCI devices and buses. The second type of PE is normally 1095 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports. 1096 */ 1097 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all) 1098 { 1099 struct pci_controller *hose = pci_bus_to_host(bus); 1100 struct pnv_phb *phb = hose->private_data; 1101 struct pnv_ioda_pe *pe = NULL; 1102 unsigned int pe_num; 1103 1104 /* 1105 * In partial hotplug case, the PE instance might be still alive. 1106 * We should reuse it instead of allocating a new one. 1107 */ 1108 pe_num = phb->ioda.pe_rmap[bus->number << 8]; 1109 if (pe_num != IODA_INVALID_PE) { 1110 pe = &phb->ioda.pe_array[pe_num]; 1111 pnv_ioda_setup_same_PE(bus, pe); 1112 return NULL; 1113 } 1114 1115 /* PE number for root bus should have been reserved */ 1116 if (pci_is_root_bus(bus) && 1117 phb->ioda.root_pe_idx != IODA_INVALID_PE) 1118 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx]; 1119 1120 /* Check if PE is determined by M64 */ 1121 if (!pe && phb->pick_m64_pe) 1122 pe = phb->pick_m64_pe(bus, all); 1123 1124 /* The PE number isn't pinned by M64 */ 1125 if (!pe) 1126 pe = pnv_ioda_alloc_pe(phb); 1127 1128 if (!pe) { 1129 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n", 1130 __func__, pci_domain_nr(bus), bus->number); 1131 return NULL; 1132 } 1133 1134 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS); 1135 pe->pbus = bus; 1136 pe->pdev = NULL; 1137 pe->mve_number = -1; 1138 pe->rid = bus->busn_res.start << 8; 1139 1140 if (all) 1141 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n", 1142 bus->busn_res.start, bus->busn_res.end, pe->pe_number); 1143 else 1144 pe_info(pe, "Secondary bus %d associated with PE#%d\n", 1145 bus->busn_res.start, pe->pe_number); 1146 1147 if (pnv_ioda_configure_pe(phb, pe)) { 1148 /* XXX What do we do here ? */ 1149 pnv_ioda_free_pe(pe); 1150 pe->pbus = NULL; 1151 return NULL; 1152 } 1153 1154 /* Associate it with all child devices */ 1155 pnv_ioda_setup_same_PE(bus, pe); 1156 1157 /* Put PE to the list */ 1158 list_add_tail(&pe->list, &phb->ioda.pe_list); 1159 1160 return pe; 1161 } 1162 1163 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev) 1164 { 1165 int pe_num, found_pe = false, rc; 1166 long rid; 1167 struct pnv_ioda_pe *pe; 1168 struct pci_dev *gpu_pdev; 1169 struct pci_dn *npu_pdn; 1170 struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus); 1171 struct pnv_phb *phb = hose->private_data; 1172 1173 /* 1174 * Due to a hardware errata PE#0 on the NPU is reserved for 1175 * error handling. This means we only have three PEs remaining 1176 * which need to be assigned to four links, implying some 1177 * links must share PEs. 1178 * 1179 * To achieve this we assign PEs such that NPUs linking the 1180 * same GPU get assigned the same PE. 1181 */ 1182 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev); 1183 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) { 1184 pe = &phb->ioda.pe_array[pe_num]; 1185 if (!pe->pdev) 1186 continue; 1187 1188 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) { 1189 /* 1190 * This device has the same peer GPU so should 1191 * be assigned the same PE as the existing 1192 * peer NPU. 1193 */ 1194 dev_info(&npu_pdev->dev, 1195 "Associating to existing PE %d\n", pe_num); 1196 pci_dev_get(npu_pdev); 1197 npu_pdn = pci_get_pdn(npu_pdev); 1198 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn; 1199 npu_pdn->pcidev = npu_pdev; 1200 npu_pdn->pe_number = pe_num; 1201 phb->ioda.pe_rmap[rid] = pe->pe_number; 1202 1203 /* Map the PE to this link */ 1204 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid, 1205 OpalPciBusAll, 1206 OPAL_COMPARE_RID_DEVICE_NUMBER, 1207 OPAL_COMPARE_RID_FUNCTION_NUMBER, 1208 OPAL_MAP_PE); 1209 WARN_ON(rc != OPAL_SUCCESS); 1210 found_pe = true; 1211 break; 1212 } 1213 } 1214 1215 if (!found_pe) 1216 /* 1217 * Could not find an existing PE so allocate a new 1218 * one. 1219 */ 1220 return pnv_ioda_setup_dev_PE(npu_pdev); 1221 else 1222 return pe; 1223 } 1224 1225 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus) 1226 { 1227 struct pci_dev *pdev; 1228 1229 list_for_each_entry(pdev, &bus->devices, bus_list) 1230 pnv_ioda_setup_npu_PE(pdev); 1231 } 1232 1233 static void pnv_pci_ioda_setup_PEs(void) 1234 { 1235 struct pci_controller *hose, *tmp; 1236 struct pnv_phb *phb; 1237 1238 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 1239 phb = hose->private_data; 1240 if (phb->type == PNV_PHB_NPU) { 1241 /* PE#0 is needed for error reporting */ 1242 pnv_ioda_reserve_pe(phb, 0); 1243 pnv_ioda_setup_npu_PEs(hose->bus); 1244 } 1245 } 1246 } 1247 1248 #ifdef CONFIG_PCI_IOV 1249 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs) 1250 { 1251 struct pci_bus *bus; 1252 struct pci_controller *hose; 1253 struct pnv_phb *phb; 1254 struct pci_dn *pdn; 1255 int i, j; 1256 int m64_bars; 1257 1258 bus = pdev->bus; 1259 hose = pci_bus_to_host(bus); 1260 phb = hose->private_data; 1261 pdn = pci_get_pdn(pdev); 1262 1263 if (pdn->m64_single_mode) 1264 m64_bars = num_vfs; 1265 else 1266 m64_bars = 1; 1267 1268 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) 1269 for (j = 0; j < m64_bars; j++) { 1270 if (pdn->m64_map[j][i] == IODA_INVALID_M64) 1271 continue; 1272 opal_pci_phb_mmio_enable(phb->opal_id, 1273 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0); 1274 clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc); 1275 pdn->m64_map[j][i] = IODA_INVALID_M64; 1276 } 1277 1278 kfree(pdn->m64_map); 1279 return 0; 1280 } 1281 1282 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs) 1283 { 1284 struct pci_bus *bus; 1285 struct pci_controller *hose; 1286 struct pnv_phb *phb; 1287 struct pci_dn *pdn; 1288 unsigned int win; 1289 struct resource *res; 1290 int i, j; 1291 int64_t rc; 1292 int total_vfs; 1293 resource_size_t size, start; 1294 int pe_num; 1295 int m64_bars; 1296 1297 bus = pdev->bus; 1298 hose = pci_bus_to_host(bus); 1299 phb = hose->private_data; 1300 pdn = pci_get_pdn(pdev); 1301 total_vfs = pci_sriov_get_totalvfs(pdev); 1302 1303 if (pdn->m64_single_mode) 1304 m64_bars = num_vfs; 1305 else 1306 m64_bars = 1; 1307 1308 pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL); 1309 if (!pdn->m64_map) 1310 return -ENOMEM; 1311 /* Initialize the m64_map to IODA_INVALID_M64 */ 1312 for (i = 0; i < m64_bars ; i++) 1313 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++) 1314 pdn->m64_map[i][j] = IODA_INVALID_M64; 1315 1316 1317 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 1318 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 1319 if (!res->flags || !res->parent) 1320 continue; 1321 1322 for (j = 0; j < m64_bars; j++) { 1323 do { 1324 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc, 1325 phb->ioda.m64_bar_idx + 1, 0); 1326 1327 if (win >= phb->ioda.m64_bar_idx + 1) 1328 goto m64_failed; 1329 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc)); 1330 1331 pdn->m64_map[j][i] = win; 1332 1333 if (pdn->m64_single_mode) { 1334 size = pci_iov_resource_size(pdev, 1335 PCI_IOV_RESOURCES + i); 1336 start = res->start + size * j; 1337 } else { 1338 size = resource_size(res); 1339 start = res->start; 1340 } 1341 1342 /* Map the M64 here */ 1343 if (pdn->m64_single_mode) { 1344 pe_num = pdn->pe_num_map[j]; 1345 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 1346 pe_num, OPAL_M64_WINDOW_TYPE, 1347 pdn->m64_map[j][i], 0); 1348 } 1349 1350 rc = opal_pci_set_phb_mem_window(phb->opal_id, 1351 OPAL_M64_WINDOW_TYPE, 1352 pdn->m64_map[j][i], 1353 start, 1354 0, /* unused */ 1355 size); 1356 1357 1358 if (rc != OPAL_SUCCESS) { 1359 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n", 1360 win, rc); 1361 goto m64_failed; 1362 } 1363 1364 if (pdn->m64_single_mode) 1365 rc = opal_pci_phb_mmio_enable(phb->opal_id, 1366 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2); 1367 else 1368 rc = opal_pci_phb_mmio_enable(phb->opal_id, 1369 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1); 1370 1371 if (rc != OPAL_SUCCESS) { 1372 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n", 1373 win, rc); 1374 goto m64_failed; 1375 } 1376 } 1377 } 1378 return 0; 1379 1380 m64_failed: 1381 pnv_pci_vf_release_m64(pdev, num_vfs); 1382 return -EBUSY; 1383 } 1384 1385 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, 1386 int num); 1387 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable); 1388 1389 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe) 1390 { 1391 struct iommu_table *tbl; 1392 int64_t rc; 1393 1394 tbl = pe->table_group.tables[0]; 1395 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); 1396 if (rc) 1397 pe_warn(pe, "OPAL error %ld release DMA window\n", rc); 1398 1399 pnv_pci_ioda2_set_bypass(pe, false); 1400 if (pe->table_group.group) { 1401 iommu_group_put(pe->table_group.group); 1402 BUG_ON(pe->table_group.group); 1403 } 1404 pnv_pci_ioda2_table_free_pages(tbl); 1405 iommu_free_table(tbl, of_node_full_name(dev->dev.of_node)); 1406 } 1407 1408 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev) 1409 { 1410 struct pci_bus *bus; 1411 struct pci_controller *hose; 1412 struct pnv_phb *phb; 1413 struct pnv_ioda_pe *pe, *pe_n; 1414 struct pci_dn *pdn; 1415 1416 bus = pdev->bus; 1417 hose = pci_bus_to_host(bus); 1418 phb = hose->private_data; 1419 pdn = pci_get_pdn(pdev); 1420 1421 if (!pdev->is_physfn) 1422 return; 1423 1424 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) { 1425 if (pe->parent_dev != pdev) 1426 continue; 1427 1428 pnv_pci_ioda2_release_dma_pe(pdev, pe); 1429 1430 /* Remove from list */ 1431 mutex_lock(&phb->ioda.pe_list_mutex); 1432 list_del(&pe->list); 1433 mutex_unlock(&phb->ioda.pe_list_mutex); 1434 1435 pnv_ioda_deconfigure_pe(phb, pe); 1436 1437 pnv_ioda_free_pe(pe); 1438 } 1439 } 1440 1441 void pnv_pci_sriov_disable(struct pci_dev *pdev) 1442 { 1443 struct pci_bus *bus; 1444 struct pci_controller *hose; 1445 struct pnv_phb *phb; 1446 struct pnv_ioda_pe *pe; 1447 struct pci_dn *pdn; 1448 struct pci_sriov *iov; 1449 u16 num_vfs, i; 1450 1451 bus = pdev->bus; 1452 hose = pci_bus_to_host(bus); 1453 phb = hose->private_data; 1454 pdn = pci_get_pdn(pdev); 1455 iov = pdev->sriov; 1456 num_vfs = pdn->num_vfs; 1457 1458 /* Release VF PEs */ 1459 pnv_ioda_release_vf_PE(pdev); 1460 1461 if (phb->type == PNV_PHB_IODA2) { 1462 if (!pdn->m64_single_mode) 1463 pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map); 1464 1465 /* Release M64 windows */ 1466 pnv_pci_vf_release_m64(pdev, num_vfs); 1467 1468 /* Release PE numbers */ 1469 if (pdn->m64_single_mode) { 1470 for (i = 0; i < num_vfs; i++) { 1471 if (pdn->pe_num_map[i] == IODA_INVALID_PE) 1472 continue; 1473 1474 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]]; 1475 pnv_ioda_free_pe(pe); 1476 } 1477 } else 1478 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1479 /* Releasing pe_num_map */ 1480 kfree(pdn->pe_num_map); 1481 } 1482 } 1483 1484 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, 1485 struct pnv_ioda_pe *pe); 1486 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs) 1487 { 1488 struct pci_bus *bus; 1489 struct pci_controller *hose; 1490 struct pnv_phb *phb; 1491 struct pnv_ioda_pe *pe; 1492 int pe_num; 1493 u16 vf_index; 1494 struct pci_dn *pdn; 1495 1496 bus = pdev->bus; 1497 hose = pci_bus_to_host(bus); 1498 phb = hose->private_data; 1499 pdn = pci_get_pdn(pdev); 1500 1501 if (!pdev->is_physfn) 1502 return; 1503 1504 /* Reserve PE for each VF */ 1505 for (vf_index = 0; vf_index < num_vfs; vf_index++) { 1506 if (pdn->m64_single_mode) 1507 pe_num = pdn->pe_num_map[vf_index]; 1508 else 1509 pe_num = *pdn->pe_num_map + vf_index; 1510 1511 pe = &phb->ioda.pe_array[pe_num]; 1512 pe->pe_number = pe_num; 1513 pe->phb = phb; 1514 pe->flags = PNV_IODA_PE_VF; 1515 pe->pbus = NULL; 1516 pe->parent_dev = pdev; 1517 pe->mve_number = -1; 1518 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) | 1519 pci_iov_virtfn_devfn(pdev, vf_index); 1520 1521 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n", 1522 hose->global_number, pdev->bus->number, 1523 PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)), 1524 PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num); 1525 1526 if (pnv_ioda_configure_pe(phb, pe)) { 1527 /* XXX What do we do here ? */ 1528 pnv_ioda_free_pe(pe); 1529 pe->pdev = NULL; 1530 continue; 1531 } 1532 1533 /* Put PE to the list */ 1534 mutex_lock(&phb->ioda.pe_list_mutex); 1535 list_add_tail(&pe->list, &phb->ioda.pe_list); 1536 mutex_unlock(&phb->ioda.pe_list_mutex); 1537 1538 pnv_pci_ioda2_setup_dma_pe(phb, pe); 1539 } 1540 } 1541 1542 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 1543 { 1544 struct pci_bus *bus; 1545 struct pci_controller *hose; 1546 struct pnv_phb *phb; 1547 struct pnv_ioda_pe *pe; 1548 struct pci_dn *pdn; 1549 int ret; 1550 u16 i; 1551 1552 bus = pdev->bus; 1553 hose = pci_bus_to_host(bus); 1554 phb = hose->private_data; 1555 pdn = pci_get_pdn(pdev); 1556 1557 if (phb->type == PNV_PHB_IODA2) { 1558 if (!pdn->vfs_expanded) { 1559 dev_info(&pdev->dev, "don't support this SRIOV device" 1560 " with non 64bit-prefetchable IOV BAR\n"); 1561 return -ENOSPC; 1562 } 1563 1564 /* 1565 * When M64 BARs functions in Single PE mode, the number of VFs 1566 * could be enabled must be less than the number of M64 BARs. 1567 */ 1568 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) { 1569 dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n"); 1570 return -EBUSY; 1571 } 1572 1573 /* Allocating pe_num_map */ 1574 if (pdn->m64_single_mode) 1575 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs, 1576 GFP_KERNEL); 1577 else 1578 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL); 1579 1580 if (!pdn->pe_num_map) 1581 return -ENOMEM; 1582 1583 if (pdn->m64_single_mode) 1584 for (i = 0; i < num_vfs; i++) 1585 pdn->pe_num_map[i] = IODA_INVALID_PE; 1586 1587 /* Calculate available PE for required VFs */ 1588 if (pdn->m64_single_mode) { 1589 for (i = 0; i < num_vfs; i++) { 1590 pe = pnv_ioda_alloc_pe(phb); 1591 if (!pe) { 1592 ret = -EBUSY; 1593 goto m64_failed; 1594 } 1595 1596 pdn->pe_num_map[i] = pe->pe_number; 1597 } 1598 } else { 1599 mutex_lock(&phb->ioda.pe_alloc_mutex); 1600 *pdn->pe_num_map = bitmap_find_next_zero_area( 1601 phb->ioda.pe_alloc, phb->ioda.total_pe_num, 1602 0, num_vfs, 0); 1603 if (*pdn->pe_num_map >= phb->ioda.total_pe_num) { 1604 mutex_unlock(&phb->ioda.pe_alloc_mutex); 1605 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs); 1606 kfree(pdn->pe_num_map); 1607 return -EBUSY; 1608 } 1609 bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1610 mutex_unlock(&phb->ioda.pe_alloc_mutex); 1611 } 1612 pdn->num_vfs = num_vfs; 1613 1614 /* Assign M64 window accordingly */ 1615 ret = pnv_pci_vf_assign_m64(pdev, num_vfs); 1616 if (ret) { 1617 dev_info(&pdev->dev, "Not enough M64 window resources\n"); 1618 goto m64_failed; 1619 } 1620 1621 /* 1622 * When using one M64 BAR to map one IOV BAR, we need to shift 1623 * the IOV BAR according to the PE# allocated to the VFs. 1624 * Otherwise, the PE# for the VF will conflict with others. 1625 */ 1626 if (!pdn->m64_single_mode) { 1627 ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map); 1628 if (ret) 1629 goto m64_failed; 1630 } 1631 } 1632 1633 /* Setup VF PEs */ 1634 pnv_ioda_setup_vf_PE(pdev, num_vfs); 1635 1636 return 0; 1637 1638 m64_failed: 1639 if (pdn->m64_single_mode) { 1640 for (i = 0; i < num_vfs; i++) { 1641 if (pdn->pe_num_map[i] == IODA_INVALID_PE) 1642 continue; 1643 1644 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]]; 1645 pnv_ioda_free_pe(pe); 1646 } 1647 } else 1648 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs); 1649 1650 /* Releasing pe_num_map */ 1651 kfree(pdn->pe_num_map); 1652 1653 return ret; 1654 } 1655 1656 int pcibios_sriov_disable(struct pci_dev *pdev) 1657 { 1658 pnv_pci_sriov_disable(pdev); 1659 1660 /* Release PCI data */ 1661 remove_dev_pci_data(pdev); 1662 return 0; 1663 } 1664 1665 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 1666 { 1667 /* Allocate PCI data */ 1668 add_dev_pci_data(pdev); 1669 1670 return pnv_pci_sriov_enable(pdev, num_vfs); 1671 } 1672 #endif /* CONFIG_PCI_IOV */ 1673 1674 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev) 1675 { 1676 struct pci_dn *pdn = pci_get_pdn(pdev); 1677 struct pnv_ioda_pe *pe; 1678 1679 /* 1680 * The function can be called while the PE# 1681 * hasn't been assigned. Do nothing for the 1682 * case. 1683 */ 1684 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 1685 return; 1686 1687 pe = &phb->ioda.pe_array[pdn->pe_number]; 1688 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops); 1689 set_dma_offset(&pdev->dev, pe->tce_bypass_base); 1690 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]); 1691 /* 1692 * Note: iommu_add_device() will fail here as 1693 * for physical PE: the device is already added by now; 1694 * for virtual PE: sysfs entries are not ready yet and 1695 * tce_iommu_bus_notifier will add the device to a group later. 1696 */ 1697 } 1698 1699 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask) 1700 { 1701 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 1702 struct pnv_phb *phb = hose->private_data; 1703 struct pci_dn *pdn = pci_get_pdn(pdev); 1704 struct pnv_ioda_pe *pe; 1705 uint64_t top; 1706 bool bypass = false; 1707 1708 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) 1709 return -ENODEV;; 1710 1711 pe = &phb->ioda.pe_array[pdn->pe_number]; 1712 if (pe->tce_bypass_enabled) { 1713 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1; 1714 bypass = (dma_mask >= top); 1715 } 1716 1717 if (bypass) { 1718 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n"); 1719 set_dma_ops(&pdev->dev, &dma_direct_ops); 1720 } else { 1721 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n"); 1722 set_dma_ops(&pdev->dev, &dma_iommu_ops); 1723 } 1724 *pdev->dev.dma_mask = dma_mask; 1725 1726 /* Update peer npu devices */ 1727 pnv_npu_try_dma_set_bypass(pdev, bypass); 1728 1729 return 0; 1730 } 1731 1732 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev) 1733 { 1734 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 1735 struct pnv_phb *phb = hose->private_data; 1736 struct pci_dn *pdn = pci_get_pdn(pdev); 1737 struct pnv_ioda_pe *pe; 1738 u64 end, mask; 1739 1740 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE)) 1741 return 0; 1742 1743 pe = &phb->ioda.pe_array[pdn->pe_number]; 1744 if (!pe->tce_bypass_enabled) 1745 return __dma_get_required_mask(&pdev->dev); 1746 1747 1748 end = pe->tce_bypass_base + memblock_end_of_DRAM(); 1749 mask = 1ULL << (fls64(end) - 1); 1750 mask += mask - 1; 1751 1752 return mask; 1753 } 1754 1755 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, 1756 struct pci_bus *bus) 1757 { 1758 struct pci_dev *dev; 1759 1760 list_for_each_entry(dev, &bus->devices, bus_list) { 1761 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]); 1762 set_dma_offset(&dev->dev, pe->tce_bypass_base); 1763 iommu_add_device(&dev->dev); 1764 1765 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate) 1766 pnv_ioda_setup_bus_dma(pe, dev->subordinate); 1767 } 1768 } 1769 1770 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb, 1771 bool real_mode) 1772 { 1773 return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) : 1774 (phb->regs + 0x210); 1775 } 1776 1777 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl, 1778 unsigned long index, unsigned long npages, bool rm) 1779 { 1780 struct iommu_table_group_link *tgl = list_first_entry_or_null( 1781 &tbl->it_group_list, struct iommu_table_group_link, 1782 next); 1783 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 1784 struct pnv_ioda_pe, table_group); 1785 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); 1786 unsigned long start, end, inc; 1787 1788 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset); 1789 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset + 1790 npages - 1); 1791 1792 /* p7ioc-style invalidation, 2 TCEs per write */ 1793 start |= (1ull << 63); 1794 end |= (1ull << 63); 1795 inc = 16; 1796 end |= inc - 1; /* round up end to be different than start */ 1797 1798 mb(); /* Ensure above stores are visible */ 1799 while (start <= end) { 1800 if (rm) 1801 __raw_rm_writeq(cpu_to_be64(start), invalidate); 1802 else 1803 __raw_writeq(cpu_to_be64(start), invalidate); 1804 start += inc; 1805 } 1806 1807 /* 1808 * The iommu layer will do another mb() for us on build() 1809 * and we don't care on free() 1810 */ 1811 } 1812 1813 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index, 1814 long npages, unsigned long uaddr, 1815 enum dma_data_direction direction, 1816 unsigned long attrs) 1817 { 1818 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 1819 attrs); 1820 1821 if (!ret) 1822 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); 1823 1824 return ret; 1825 } 1826 1827 #ifdef CONFIG_IOMMU_API 1828 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index, 1829 unsigned long *hpa, enum dma_data_direction *direction) 1830 { 1831 long ret = pnv_tce_xchg(tbl, index, hpa, direction); 1832 1833 if (!ret) 1834 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false); 1835 1836 return ret; 1837 } 1838 #endif 1839 1840 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index, 1841 long npages) 1842 { 1843 pnv_tce_free(tbl, index, npages); 1844 1845 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false); 1846 } 1847 1848 static struct iommu_table_ops pnv_ioda1_iommu_ops = { 1849 .set = pnv_ioda1_tce_build, 1850 #ifdef CONFIG_IOMMU_API 1851 .exchange = pnv_ioda1_tce_xchg, 1852 #endif 1853 .clear = pnv_ioda1_tce_free, 1854 .get = pnv_tce_get, 1855 }; 1856 1857 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0) 1858 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1) 1859 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2) 1860 1861 void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm) 1862 { 1863 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm); 1864 const unsigned long val = PHB3_TCE_KILL_INVAL_ALL; 1865 1866 mb(); /* Ensure previous TCE table stores are visible */ 1867 if (rm) 1868 __raw_rm_writeq(cpu_to_be64(val), invalidate); 1869 else 1870 __raw_writeq(cpu_to_be64(val), invalidate); 1871 } 1872 1873 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe) 1874 { 1875 /* 01xb - invalidate TCEs that match the specified PE# */ 1876 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false); 1877 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF); 1878 1879 mb(); /* Ensure above stores are visible */ 1880 __raw_writeq(cpu_to_be64(val), invalidate); 1881 } 1882 1883 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm, 1884 unsigned shift, unsigned long index, 1885 unsigned long npages) 1886 { 1887 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm); 1888 unsigned long start, end, inc; 1889 1890 /* We'll invalidate DMA address in PE scope */ 1891 start = PHB3_TCE_KILL_INVAL_ONE; 1892 start |= (pe->pe_number & 0xFF); 1893 end = start; 1894 1895 /* Figure out the start, end and step */ 1896 start |= (index << shift); 1897 end |= ((index + npages - 1) << shift); 1898 inc = (0x1ull << shift); 1899 mb(); 1900 1901 while (start <= end) { 1902 if (rm) 1903 __raw_rm_writeq(cpu_to_be64(start), invalidate); 1904 else 1905 __raw_writeq(cpu_to_be64(start), invalidate); 1906 start += inc; 1907 } 1908 } 1909 1910 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe) 1911 { 1912 struct pnv_phb *phb = pe->phb; 1913 1914 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 1915 pnv_pci_phb3_tce_invalidate_pe(pe); 1916 else 1917 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE, 1918 pe->pe_number, 0, 0, 0); 1919 } 1920 1921 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl, 1922 unsigned long index, unsigned long npages, bool rm) 1923 { 1924 struct iommu_table_group_link *tgl; 1925 1926 list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) { 1927 struct pnv_ioda_pe *pe = container_of(tgl->table_group, 1928 struct pnv_ioda_pe, table_group); 1929 struct pnv_phb *phb = pe->phb; 1930 unsigned int shift = tbl->it_page_shift; 1931 1932 if (phb->type == PNV_PHB_NPU) { 1933 /* 1934 * The NVLink hardware does not support TCE kill 1935 * per TCE entry so we have to invalidate 1936 * the entire cache for it. 1937 */ 1938 pnv_pci_phb3_tce_invalidate_entire(phb, rm); 1939 continue; 1940 } 1941 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs) 1942 pnv_pci_phb3_tce_invalidate(pe, rm, shift, 1943 index, npages); 1944 else if (rm) 1945 opal_rm_pci_tce_kill(phb->opal_id, 1946 OPAL_PCI_TCE_KILL_PAGES, 1947 pe->pe_number, 1u << shift, 1948 index << shift, npages); 1949 else 1950 opal_pci_tce_kill(phb->opal_id, 1951 OPAL_PCI_TCE_KILL_PAGES, 1952 pe->pe_number, 1u << shift, 1953 index << shift, npages); 1954 } 1955 } 1956 1957 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index, 1958 long npages, unsigned long uaddr, 1959 enum dma_data_direction direction, 1960 unsigned long attrs) 1961 { 1962 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction, 1963 attrs); 1964 1965 if (!ret) 1966 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); 1967 1968 return ret; 1969 } 1970 1971 #ifdef CONFIG_IOMMU_API 1972 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index, 1973 unsigned long *hpa, enum dma_data_direction *direction) 1974 { 1975 long ret = pnv_tce_xchg(tbl, index, hpa, direction); 1976 1977 if (!ret) 1978 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false); 1979 1980 return ret; 1981 } 1982 #endif 1983 1984 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index, 1985 long npages) 1986 { 1987 pnv_tce_free(tbl, index, npages); 1988 1989 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false); 1990 } 1991 1992 static void pnv_ioda2_table_free(struct iommu_table *tbl) 1993 { 1994 pnv_pci_ioda2_table_free_pages(tbl); 1995 iommu_free_table(tbl, "pnv"); 1996 } 1997 1998 static struct iommu_table_ops pnv_ioda2_iommu_ops = { 1999 .set = pnv_ioda2_tce_build, 2000 #ifdef CONFIG_IOMMU_API 2001 .exchange = pnv_ioda2_tce_xchg, 2002 #endif 2003 .clear = pnv_ioda2_tce_free, 2004 .get = pnv_tce_get, 2005 .free = pnv_ioda2_table_free, 2006 }; 2007 2008 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data) 2009 { 2010 unsigned int *weight = (unsigned int *)data; 2011 2012 /* This is quite simplistic. The "base" weight of a device 2013 * is 10. 0 means no DMA is to be accounted for it. 2014 */ 2015 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL) 2016 return 0; 2017 2018 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI || 2019 dev->class == PCI_CLASS_SERIAL_USB_OHCI || 2020 dev->class == PCI_CLASS_SERIAL_USB_EHCI) 2021 *weight += 3; 2022 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID) 2023 *weight += 15; 2024 else 2025 *weight += 10; 2026 2027 return 0; 2028 } 2029 2030 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe) 2031 { 2032 unsigned int weight = 0; 2033 2034 /* SRIOV VF has same DMA32 weight as its PF */ 2035 #ifdef CONFIG_PCI_IOV 2036 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) { 2037 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight); 2038 return weight; 2039 } 2040 #endif 2041 2042 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) { 2043 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight); 2044 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) { 2045 struct pci_dev *pdev; 2046 2047 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) 2048 pnv_pci_ioda_dev_dma_weight(pdev, &weight); 2049 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) { 2050 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight); 2051 } 2052 2053 return weight; 2054 } 2055 2056 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb, 2057 struct pnv_ioda_pe *pe) 2058 { 2059 2060 struct page *tce_mem = NULL; 2061 struct iommu_table *tbl; 2062 unsigned int weight, total_weight = 0; 2063 unsigned int tce32_segsz, base, segs, avail, i; 2064 int64_t rc; 2065 void *addr; 2066 2067 /* XXX FIXME: Handle 64-bit only DMA devices */ 2068 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */ 2069 /* XXX FIXME: Allocate multi-level tables on PHB3 */ 2070 weight = pnv_pci_ioda_pe_dma_weight(pe); 2071 if (!weight) 2072 return; 2073 2074 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight, 2075 &total_weight); 2076 segs = (weight * phb->ioda.dma32_count) / total_weight; 2077 if (!segs) 2078 segs = 1; 2079 2080 /* 2081 * Allocate contiguous DMA32 segments. We begin with the expected 2082 * number of segments. With one more attempt, the number of DMA32 2083 * segments to be allocated is decreased by one until one segment 2084 * is allocated successfully. 2085 */ 2086 do { 2087 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) { 2088 for (avail = 0, i = base; i < base + segs; i++) { 2089 if (phb->ioda.dma32_segmap[i] == 2090 IODA_INVALID_PE) 2091 avail++; 2092 } 2093 2094 if (avail == segs) 2095 goto found; 2096 } 2097 } while (--segs); 2098 2099 if (!segs) { 2100 pe_warn(pe, "No available DMA32 segments\n"); 2101 return; 2102 } 2103 2104 found: 2105 tbl = pnv_pci_table_alloc(phb->hose->node); 2106 iommu_register_group(&pe->table_group, phb->hose->global_number, 2107 pe->pe_number); 2108 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group); 2109 2110 /* Grab a 32-bit TCE table */ 2111 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n", 2112 weight, total_weight, base, segs); 2113 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n", 2114 base * PNV_IODA1_DMA32_SEGSIZE, 2115 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1); 2116 2117 /* XXX Currently, we allocate one big contiguous table for the 2118 * TCEs. We only really need one chunk per 256M of TCE space 2119 * (ie per segment) but that's an optimization for later, it 2120 * requires some added smarts with our get/put_tce implementation 2121 * 2122 * Each TCE page is 4KB in size and each TCE entry occupies 8 2123 * bytes 2124 */ 2125 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3); 2126 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL, 2127 get_order(tce32_segsz * segs)); 2128 if (!tce_mem) { 2129 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n"); 2130 goto fail; 2131 } 2132 addr = page_address(tce_mem); 2133 memset(addr, 0, tce32_segsz * segs); 2134 2135 /* Configure HW */ 2136 for (i = 0; i < segs; i++) { 2137 rc = opal_pci_map_pe_dma_window(phb->opal_id, 2138 pe->pe_number, 2139 base + i, 1, 2140 __pa(addr) + tce32_segsz * i, 2141 tce32_segsz, IOMMU_PAGE_SIZE_4K); 2142 if (rc) { 2143 pe_err(pe, " Failed to configure 32-bit TCE table," 2144 " err %ld\n", rc); 2145 goto fail; 2146 } 2147 } 2148 2149 /* Setup DMA32 segment mapping */ 2150 for (i = base; i < base + segs; i++) 2151 phb->ioda.dma32_segmap[i] = pe->pe_number; 2152 2153 /* Setup linux iommu table */ 2154 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs, 2155 base * PNV_IODA1_DMA32_SEGSIZE, 2156 IOMMU_PAGE_SHIFT_4K); 2157 2158 tbl->it_ops = &pnv_ioda1_iommu_ops; 2159 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift; 2160 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift; 2161 iommu_init_table(tbl, phb->hose->node); 2162 2163 if (pe->flags & PNV_IODA_PE_DEV) { 2164 /* 2165 * Setting table base here only for carrying iommu_group 2166 * further down to let iommu_add_device() do the job. 2167 * pnv_pci_ioda_dma_dev_setup will override it later anyway. 2168 */ 2169 set_iommu_table_base(&pe->pdev->dev, tbl); 2170 iommu_add_device(&pe->pdev->dev); 2171 } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 2172 pnv_ioda_setup_bus_dma(pe, pe->pbus); 2173 2174 return; 2175 fail: 2176 /* XXX Failure: Try to fallback to 64-bit only ? */ 2177 if (tce_mem) 2178 __free_pages(tce_mem, get_order(tce32_segsz * segs)); 2179 if (tbl) { 2180 pnv_pci_unlink_table_and_group(tbl, &pe->table_group); 2181 iommu_free_table(tbl, "pnv"); 2182 } 2183 } 2184 2185 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group, 2186 int num, struct iommu_table *tbl) 2187 { 2188 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2189 table_group); 2190 struct pnv_phb *phb = pe->phb; 2191 int64_t rc; 2192 const unsigned long size = tbl->it_indirect_levels ? 2193 tbl->it_level_size : tbl->it_size; 2194 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift; 2195 const __u64 win_size = tbl->it_size << tbl->it_page_shift; 2196 2197 pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num, 2198 start_addr, start_addr + win_size - 1, 2199 IOMMU_PAGE_SIZE(tbl)); 2200 2201 /* 2202 * Map TCE table through TVT. The TVE index is the PE number 2203 * shifted by 1 bit for 32-bits DMA space. 2204 */ 2205 rc = opal_pci_map_pe_dma_window(phb->opal_id, 2206 pe->pe_number, 2207 (pe->pe_number << 1) + num, 2208 tbl->it_indirect_levels + 1, 2209 __pa(tbl->it_base), 2210 size << 3, 2211 IOMMU_PAGE_SIZE(tbl)); 2212 if (rc) { 2213 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc); 2214 return rc; 2215 } 2216 2217 pnv_pci_link_table_and_group(phb->hose->node, num, 2218 tbl, &pe->table_group); 2219 pnv_pci_phb3_tce_invalidate_pe(pe); 2220 2221 return 0; 2222 } 2223 2224 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable) 2225 { 2226 uint16_t window_id = (pe->pe_number << 1 ) + 1; 2227 int64_t rc; 2228 2229 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis"); 2230 if (enable) { 2231 phys_addr_t top = memblock_end_of_DRAM(); 2232 2233 top = roundup_pow_of_two(top); 2234 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 2235 pe->pe_number, 2236 window_id, 2237 pe->tce_bypass_base, 2238 top); 2239 } else { 2240 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id, 2241 pe->pe_number, 2242 window_id, 2243 pe->tce_bypass_base, 2244 0); 2245 } 2246 if (rc) 2247 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc); 2248 else 2249 pe->tce_bypass_enabled = enable; 2250 } 2251 2252 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset, 2253 __u32 page_shift, __u64 window_size, __u32 levels, 2254 struct iommu_table *tbl); 2255 2256 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group, 2257 int num, __u32 page_shift, __u64 window_size, __u32 levels, 2258 struct iommu_table **ptbl) 2259 { 2260 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2261 table_group); 2262 int nid = pe->phb->hose->node; 2263 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start; 2264 long ret; 2265 struct iommu_table *tbl; 2266 2267 tbl = pnv_pci_table_alloc(nid); 2268 if (!tbl) 2269 return -ENOMEM; 2270 2271 ret = pnv_pci_ioda2_table_alloc_pages(nid, 2272 bus_offset, page_shift, window_size, 2273 levels, tbl); 2274 if (ret) { 2275 iommu_free_table(tbl, "pnv"); 2276 return ret; 2277 } 2278 2279 tbl->it_ops = &pnv_ioda2_iommu_ops; 2280 2281 *ptbl = tbl; 2282 2283 return 0; 2284 } 2285 2286 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe) 2287 { 2288 struct iommu_table *tbl = NULL; 2289 long rc; 2290 2291 /* 2292 * crashkernel= specifies the kdump kernel's maximum memory at 2293 * some offset and there is no guaranteed the result is a power 2294 * of 2, which will cause errors later. 2295 */ 2296 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max()); 2297 2298 /* 2299 * In memory constrained environments, e.g. kdump kernel, the 2300 * DMA window can be larger than available memory, which will 2301 * cause errors later. 2302 */ 2303 const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory); 2304 2305 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, 2306 IOMMU_PAGE_SHIFT_4K, 2307 window_size, 2308 POWERNV_IOMMU_DEFAULT_LEVELS, &tbl); 2309 if (rc) { 2310 pe_err(pe, "Failed to create 32-bit TCE table, err %ld", 2311 rc); 2312 return rc; 2313 } 2314 2315 iommu_init_table(tbl, pe->phb->hose->node); 2316 2317 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl); 2318 if (rc) { 2319 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", 2320 rc); 2321 pnv_ioda2_table_free(tbl); 2322 return rc; 2323 } 2324 2325 if (!pnv_iommu_bypass_disabled) 2326 pnv_pci_ioda2_set_bypass(pe, true); 2327 2328 /* 2329 * Setting table base here only for carrying iommu_group 2330 * further down to let iommu_add_device() do the job. 2331 * pnv_pci_ioda_dma_dev_setup will override it later anyway. 2332 */ 2333 if (pe->flags & PNV_IODA_PE_DEV) 2334 set_iommu_table_base(&pe->pdev->dev, tbl); 2335 2336 return 0; 2337 } 2338 2339 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV) 2340 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group, 2341 int num) 2342 { 2343 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2344 table_group); 2345 struct pnv_phb *phb = pe->phb; 2346 long ret; 2347 2348 pe_info(pe, "Removing DMA window #%d\n", num); 2349 2350 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 2351 (pe->pe_number << 1) + num, 2352 0/* levels */, 0/* table address */, 2353 0/* table size */, 0/* page size */); 2354 if (ret) 2355 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret); 2356 else 2357 pnv_pci_phb3_tce_invalidate_pe(pe); 2358 2359 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 2360 2361 return ret; 2362 } 2363 #endif 2364 2365 #ifdef CONFIG_IOMMU_API 2366 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift, 2367 __u64 window_size, __u32 levels) 2368 { 2369 unsigned long bytes = 0; 2370 const unsigned window_shift = ilog2(window_size); 2371 unsigned entries_shift = window_shift - page_shift; 2372 unsigned table_shift = entries_shift + 3; 2373 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift); 2374 unsigned long direct_table_size; 2375 2376 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) || 2377 (window_size > memory_hotplug_max()) || 2378 !is_power_of_2(window_size)) 2379 return 0; 2380 2381 /* Calculate a direct table size from window_size and levels */ 2382 entries_shift = (entries_shift + levels - 1) / levels; 2383 table_shift = entries_shift + 3; 2384 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT); 2385 direct_table_size = 1UL << table_shift; 2386 2387 for ( ; levels; --levels) { 2388 bytes += _ALIGN_UP(tce_table_size, direct_table_size); 2389 2390 tce_table_size /= direct_table_size; 2391 tce_table_size <<= 3; 2392 tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size); 2393 } 2394 2395 return bytes; 2396 } 2397 2398 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group) 2399 { 2400 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2401 table_group); 2402 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */ 2403 struct iommu_table *tbl = pe->table_group.tables[0]; 2404 2405 pnv_pci_ioda2_set_bypass(pe, false); 2406 pnv_pci_ioda2_unset_window(&pe->table_group, 0); 2407 pnv_ioda2_table_free(tbl); 2408 } 2409 2410 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group) 2411 { 2412 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe, 2413 table_group); 2414 2415 pnv_pci_ioda2_setup_default_config(pe); 2416 } 2417 2418 static struct iommu_table_group_ops pnv_pci_ioda2_ops = { 2419 .get_table_size = pnv_pci_ioda2_get_table_size, 2420 .create_table = pnv_pci_ioda2_create_table, 2421 .set_window = pnv_pci_ioda2_set_window, 2422 .unset_window = pnv_pci_ioda2_unset_window, 2423 .take_ownership = pnv_ioda2_take_ownership, 2424 .release_ownership = pnv_ioda2_release_ownership, 2425 }; 2426 2427 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque) 2428 { 2429 struct pci_controller *hose; 2430 struct pnv_phb *phb; 2431 struct pnv_ioda_pe **ptmppe = opaque; 2432 struct pci_dev *pdev = container_of(dev, struct pci_dev, dev); 2433 struct pci_dn *pdn = pci_get_pdn(pdev); 2434 2435 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 2436 return 0; 2437 2438 hose = pci_bus_to_host(pdev->bus); 2439 phb = hose->private_data; 2440 if (phb->type != PNV_PHB_NPU) 2441 return 0; 2442 2443 *ptmppe = &phb->ioda.pe_array[pdn->pe_number]; 2444 2445 return 1; 2446 } 2447 2448 /* 2449 * This returns PE of associated NPU. 2450 * This assumes that NPU is in the same IOMMU group with GPU and there is 2451 * no other PEs. 2452 */ 2453 static struct pnv_ioda_pe *gpe_table_group_to_npe( 2454 struct iommu_table_group *table_group) 2455 { 2456 struct pnv_ioda_pe *npe = NULL; 2457 int ret = iommu_group_for_each_dev(table_group->group, &npe, 2458 gpe_table_group_to_npe_cb); 2459 2460 BUG_ON(!ret || !npe); 2461 2462 return npe; 2463 } 2464 2465 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group, 2466 int num, struct iommu_table *tbl) 2467 { 2468 long ret = pnv_pci_ioda2_set_window(table_group, num, tbl); 2469 2470 if (ret) 2471 return ret; 2472 2473 ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl); 2474 if (ret) 2475 pnv_pci_ioda2_unset_window(table_group, num); 2476 2477 return ret; 2478 } 2479 2480 static long pnv_pci_ioda2_npu_unset_window( 2481 struct iommu_table_group *table_group, 2482 int num) 2483 { 2484 long ret = pnv_pci_ioda2_unset_window(table_group, num); 2485 2486 if (ret) 2487 return ret; 2488 2489 return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num); 2490 } 2491 2492 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group) 2493 { 2494 /* 2495 * Detach NPU first as pnv_ioda2_take_ownership() will destroy 2496 * the iommu_table if 32bit DMA is enabled. 2497 */ 2498 pnv_npu_take_ownership(gpe_table_group_to_npe(table_group)); 2499 pnv_ioda2_take_ownership(table_group); 2500 } 2501 2502 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = { 2503 .get_table_size = pnv_pci_ioda2_get_table_size, 2504 .create_table = pnv_pci_ioda2_create_table, 2505 .set_window = pnv_pci_ioda2_npu_set_window, 2506 .unset_window = pnv_pci_ioda2_npu_unset_window, 2507 .take_ownership = pnv_ioda2_npu_take_ownership, 2508 .release_ownership = pnv_ioda2_release_ownership, 2509 }; 2510 2511 static void pnv_pci_ioda_setup_iommu_api(void) 2512 { 2513 struct pci_controller *hose, *tmp; 2514 struct pnv_phb *phb; 2515 struct pnv_ioda_pe *pe, *gpe; 2516 2517 /* 2518 * Now we have all PHBs discovered, time to add NPU devices to 2519 * the corresponding IOMMU groups. 2520 */ 2521 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 2522 phb = hose->private_data; 2523 2524 if (phb->type != PNV_PHB_NPU) 2525 continue; 2526 2527 list_for_each_entry(pe, &phb->ioda.pe_list, list) { 2528 gpe = pnv_pci_npu_setup_iommu(pe); 2529 if (gpe) 2530 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops; 2531 } 2532 } 2533 } 2534 #else /* !CONFIG_IOMMU_API */ 2535 static void pnv_pci_ioda_setup_iommu_api(void) { }; 2536 #endif 2537 2538 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift, 2539 unsigned levels, unsigned long limit, 2540 unsigned long *current_offset, unsigned long *total_allocated) 2541 { 2542 struct page *tce_mem = NULL; 2543 __be64 *addr, *tmp; 2544 unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT; 2545 unsigned long allocated = 1UL << (order + PAGE_SHIFT); 2546 unsigned entries = 1UL << (shift - 3); 2547 long i; 2548 2549 tce_mem = alloc_pages_node(nid, GFP_KERNEL, order); 2550 if (!tce_mem) { 2551 pr_err("Failed to allocate a TCE memory, order=%d\n", order); 2552 return NULL; 2553 } 2554 addr = page_address(tce_mem); 2555 memset(addr, 0, allocated); 2556 *total_allocated += allocated; 2557 2558 --levels; 2559 if (!levels) { 2560 *current_offset += allocated; 2561 return addr; 2562 } 2563 2564 for (i = 0; i < entries; ++i) { 2565 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift, 2566 levels, limit, current_offset, total_allocated); 2567 if (!tmp) 2568 break; 2569 2570 addr[i] = cpu_to_be64(__pa(tmp) | 2571 TCE_PCI_READ | TCE_PCI_WRITE); 2572 2573 if (*current_offset >= limit) 2574 break; 2575 } 2576 2577 return addr; 2578 } 2579 2580 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr, 2581 unsigned long size, unsigned level); 2582 2583 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset, 2584 __u32 page_shift, __u64 window_size, __u32 levels, 2585 struct iommu_table *tbl) 2586 { 2587 void *addr; 2588 unsigned long offset = 0, level_shift, total_allocated = 0; 2589 const unsigned window_shift = ilog2(window_size); 2590 unsigned entries_shift = window_shift - page_shift; 2591 unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT); 2592 const unsigned long tce_table_size = 1UL << table_shift; 2593 2594 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS)) 2595 return -EINVAL; 2596 2597 if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size)) 2598 return -EINVAL; 2599 2600 /* Adjust direct table size from window_size and levels */ 2601 entries_shift = (entries_shift + levels - 1) / levels; 2602 level_shift = entries_shift + 3; 2603 level_shift = max_t(unsigned, level_shift, PAGE_SHIFT); 2604 2605 /* Allocate TCE table */ 2606 addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift, 2607 levels, tce_table_size, &offset, &total_allocated); 2608 2609 /* addr==NULL means that the first level allocation failed */ 2610 if (!addr) 2611 return -ENOMEM; 2612 2613 /* 2614 * First level was allocated but some lower level failed as 2615 * we did not allocate as much as we wanted, 2616 * release partially allocated table. 2617 */ 2618 if (offset < tce_table_size) { 2619 pnv_pci_ioda2_table_do_free_pages(addr, 2620 1ULL << (level_shift - 3), levels - 1); 2621 return -ENOMEM; 2622 } 2623 2624 /* Setup linux iommu table */ 2625 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset, 2626 page_shift); 2627 tbl->it_level_size = 1ULL << (level_shift - 3); 2628 tbl->it_indirect_levels = levels - 1; 2629 tbl->it_allocated_size = total_allocated; 2630 2631 pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n", 2632 window_size, tce_table_size, bus_offset); 2633 2634 return 0; 2635 } 2636 2637 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr, 2638 unsigned long size, unsigned level) 2639 { 2640 const unsigned long addr_ul = (unsigned long) addr & 2641 ~(TCE_PCI_READ | TCE_PCI_WRITE); 2642 2643 if (level) { 2644 long i; 2645 u64 *tmp = (u64 *) addr_ul; 2646 2647 for (i = 0; i < size; ++i) { 2648 unsigned long hpa = be64_to_cpu(tmp[i]); 2649 2650 if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE))) 2651 continue; 2652 2653 pnv_pci_ioda2_table_do_free_pages(__va(hpa), size, 2654 level - 1); 2655 } 2656 } 2657 2658 free_pages(addr_ul, get_order(size << 3)); 2659 } 2660 2661 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl) 2662 { 2663 const unsigned long size = tbl->it_indirect_levels ? 2664 tbl->it_level_size : tbl->it_size; 2665 2666 if (!tbl->it_size) 2667 return; 2668 2669 pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size, 2670 tbl->it_indirect_levels); 2671 } 2672 2673 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, 2674 struct pnv_ioda_pe *pe) 2675 { 2676 int64_t rc; 2677 2678 if (!pnv_pci_ioda_pe_dma_weight(pe)) 2679 return; 2680 2681 /* TVE #1 is selected by PCI address bit 59 */ 2682 pe->tce_bypass_base = 1ull << 59; 2683 2684 iommu_register_group(&pe->table_group, phb->hose->global_number, 2685 pe->pe_number); 2686 2687 /* The PE will reserve all possible 32-bits space */ 2688 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n", 2689 phb->ioda.m32_pci_base); 2690 2691 /* Setup linux iommu table */ 2692 pe->table_group.tce32_start = 0; 2693 pe->table_group.tce32_size = phb->ioda.m32_pci_base; 2694 pe->table_group.max_dynamic_windows_supported = 2695 IOMMU_TABLE_GROUP_MAX_TABLES; 2696 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS; 2697 pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M; 2698 #ifdef CONFIG_IOMMU_API 2699 pe->table_group.ops = &pnv_pci_ioda2_ops; 2700 #endif 2701 2702 rc = pnv_pci_ioda2_setup_default_config(pe); 2703 if (rc) 2704 return; 2705 2706 if (pe->flags & PNV_IODA_PE_DEV) 2707 iommu_add_device(&pe->pdev->dev); 2708 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) 2709 pnv_ioda_setup_bus_dma(pe, pe->pbus); 2710 } 2711 2712 #ifdef CONFIG_PCI_MSI 2713 static void pnv_ioda2_msi_eoi(struct irq_data *d) 2714 { 2715 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d); 2716 struct irq_chip *chip = irq_data_get_irq_chip(d); 2717 struct pnv_phb *phb = container_of(chip, struct pnv_phb, 2718 ioda.irq_chip); 2719 int64_t rc; 2720 2721 rc = opal_pci_msi_eoi(phb->opal_id, hw_irq); 2722 WARN_ON_ONCE(rc); 2723 2724 icp_native_eoi(d); 2725 } 2726 2727 2728 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq) 2729 { 2730 struct irq_data *idata; 2731 struct irq_chip *ichip; 2732 2733 /* The MSI EOI OPAL call is only needed on PHB3 */ 2734 if (phb->model != PNV_PHB_MODEL_PHB3) 2735 return; 2736 2737 if (!phb->ioda.irq_chip_init) { 2738 /* 2739 * First time we setup an MSI IRQ, we need to setup the 2740 * corresponding IRQ chip to route correctly. 2741 */ 2742 idata = irq_get_irq_data(virq); 2743 ichip = irq_data_get_irq_chip(idata); 2744 phb->ioda.irq_chip_init = 1; 2745 phb->ioda.irq_chip = *ichip; 2746 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi; 2747 } 2748 irq_set_chip(virq, &phb->ioda.irq_chip); 2749 } 2750 2751 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev, 2752 unsigned int hwirq, unsigned int virq, 2753 unsigned int is_64, struct msi_msg *msg) 2754 { 2755 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev); 2756 unsigned int xive_num = hwirq - phb->msi_base; 2757 __be32 data; 2758 int rc; 2759 2760 /* No PE assigned ? bail out ... no MSI for you ! */ 2761 if (pe == NULL) 2762 return -ENXIO; 2763 2764 /* Check if we have an MVE */ 2765 if (pe->mve_number < 0) 2766 return -ENXIO; 2767 2768 /* Force 32-bit MSI on some broken devices */ 2769 if (dev->no_64bit_msi) 2770 is_64 = 0; 2771 2772 /* Assign XIVE to PE */ 2773 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num); 2774 if (rc) { 2775 pr_warn("%s: OPAL error %d setting XIVE %d PE\n", 2776 pci_name(dev), rc, xive_num); 2777 return -EIO; 2778 } 2779 2780 if (is_64) { 2781 __be64 addr64; 2782 2783 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1, 2784 &addr64, &data); 2785 if (rc) { 2786 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n", 2787 pci_name(dev), rc); 2788 return -EIO; 2789 } 2790 msg->address_hi = be64_to_cpu(addr64) >> 32; 2791 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful; 2792 } else { 2793 __be32 addr32; 2794 2795 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1, 2796 &addr32, &data); 2797 if (rc) { 2798 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n", 2799 pci_name(dev), rc); 2800 return -EIO; 2801 } 2802 msg->address_hi = 0; 2803 msg->address_lo = be32_to_cpu(addr32); 2804 } 2805 msg->data = be32_to_cpu(data); 2806 2807 pnv_set_msi_irq_chip(phb, virq); 2808 2809 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d)," 2810 " address=%x_%08x data=%x PE# %d\n", 2811 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num, 2812 msg->address_hi, msg->address_lo, data, pe->pe_number); 2813 2814 return 0; 2815 } 2816 2817 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) 2818 { 2819 unsigned int count; 2820 const __be32 *prop = of_get_property(phb->hose->dn, 2821 "ibm,opal-msi-ranges", NULL); 2822 if (!prop) { 2823 /* BML Fallback */ 2824 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL); 2825 } 2826 if (!prop) 2827 return; 2828 2829 phb->msi_base = be32_to_cpup(prop); 2830 count = be32_to_cpup(prop + 1); 2831 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) { 2832 pr_err("PCI %d: Failed to allocate MSI bitmap !\n", 2833 phb->hose->global_number); 2834 return; 2835 } 2836 2837 phb->msi_setup = pnv_pci_ioda_msi_setup; 2838 phb->msi32_support = 1; 2839 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n", 2840 count, phb->msi_base); 2841 } 2842 #else 2843 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { } 2844 #endif /* CONFIG_PCI_MSI */ 2845 2846 #ifdef CONFIG_PCI_IOV 2847 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev) 2848 { 2849 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 2850 struct pnv_phb *phb = hose->private_data; 2851 const resource_size_t gate = phb->ioda.m64_segsize >> 2; 2852 struct resource *res; 2853 int i; 2854 resource_size_t size, total_vf_bar_sz; 2855 struct pci_dn *pdn; 2856 int mul, total_vfs; 2857 2858 if (!pdev->is_physfn || pdev->is_added) 2859 return; 2860 2861 pdn = pci_get_pdn(pdev); 2862 pdn->vfs_expanded = 0; 2863 pdn->m64_single_mode = false; 2864 2865 total_vfs = pci_sriov_get_totalvfs(pdev); 2866 mul = phb->ioda.total_pe_num; 2867 total_vf_bar_sz = 0; 2868 2869 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 2870 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 2871 if (!res->flags || res->parent) 2872 continue; 2873 if (!pnv_pci_is_m64(phb, res)) { 2874 dev_warn(&pdev->dev, "Don't support SR-IOV with" 2875 " non M64 VF BAR%d: %pR. \n", 2876 i, res); 2877 goto truncate_iov; 2878 } 2879 2880 total_vf_bar_sz += pci_iov_resource_size(pdev, 2881 i + PCI_IOV_RESOURCES); 2882 2883 /* 2884 * If bigger than quarter of M64 segment size, just round up 2885 * power of two. 2886 * 2887 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict 2888 * with other devices, IOV BAR size is expanded to be 2889 * (total_pe * VF_BAR_size). When VF_BAR_size is half of M64 2890 * segment size , the expanded size would equal to half of the 2891 * whole M64 space size, which will exhaust the M64 Space and 2892 * limit the system flexibility. This is a design decision to 2893 * set the boundary to quarter of the M64 segment size. 2894 */ 2895 if (total_vf_bar_sz > gate) { 2896 mul = roundup_pow_of_two(total_vfs); 2897 dev_info(&pdev->dev, 2898 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n", 2899 total_vf_bar_sz, gate, mul); 2900 pdn->m64_single_mode = true; 2901 break; 2902 } 2903 } 2904 2905 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 2906 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 2907 if (!res->flags || res->parent) 2908 continue; 2909 2910 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES); 2911 /* 2912 * On PHB3, the minimum size alignment of M64 BAR in single 2913 * mode is 32MB. 2914 */ 2915 if (pdn->m64_single_mode && (size < SZ_32M)) 2916 goto truncate_iov; 2917 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res); 2918 res->end = res->start + size * mul - 1; 2919 dev_dbg(&pdev->dev, " %pR\n", res); 2920 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)", 2921 i, res, mul); 2922 } 2923 pdn->vfs_expanded = mul; 2924 2925 return; 2926 2927 truncate_iov: 2928 /* To save MMIO space, IOV BAR is truncated. */ 2929 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 2930 res = &pdev->resource[i + PCI_IOV_RESOURCES]; 2931 res->flags = 0; 2932 res->end = res->start - 1; 2933 } 2934 } 2935 #endif /* CONFIG_PCI_IOV */ 2936 2937 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe, 2938 struct resource *res) 2939 { 2940 struct pnv_phb *phb = pe->phb; 2941 struct pci_bus_region region; 2942 int index; 2943 int64_t rc; 2944 2945 if (!res || !res->flags || res->start > res->end) 2946 return; 2947 2948 if (res->flags & IORESOURCE_IO) { 2949 region.start = res->start - phb->ioda.io_pci_base; 2950 region.end = res->end - phb->ioda.io_pci_base; 2951 index = region.start / phb->ioda.io_segsize; 2952 2953 while (index < phb->ioda.total_pe_num && 2954 region.start <= region.end) { 2955 phb->ioda.io_segmap[index] = pe->pe_number; 2956 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 2957 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index); 2958 if (rc != OPAL_SUCCESS) { 2959 pr_err("%s: Error %lld mapping IO segment#%d to PE#%d\n", 2960 __func__, rc, index, pe->pe_number); 2961 break; 2962 } 2963 2964 region.start += phb->ioda.io_segsize; 2965 index++; 2966 } 2967 } else if ((res->flags & IORESOURCE_MEM) && 2968 !pnv_pci_is_m64(phb, res)) { 2969 region.start = res->start - 2970 phb->hose->mem_offset[0] - 2971 phb->ioda.m32_pci_base; 2972 region.end = res->end - 2973 phb->hose->mem_offset[0] - 2974 phb->ioda.m32_pci_base; 2975 index = region.start / phb->ioda.m32_segsize; 2976 2977 while (index < phb->ioda.total_pe_num && 2978 region.start <= region.end) { 2979 phb->ioda.m32_segmap[index] = pe->pe_number; 2980 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 2981 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index); 2982 if (rc != OPAL_SUCCESS) { 2983 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%d", 2984 __func__, rc, index, pe->pe_number); 2985 break; 2986 } 2987 2988 region.start += phb->ioda.m32_segsize; 2989 index++; 2990 } 2991 } 2992 } 2993 2994 /* 2995 * This function is supposed to be called on basis of PE from top 2996 * to bottom style. So the the I/O or MMIO segment assigned to 2997 * parent PE could be overrided by its child PEs if necessary. 2998 */ 2999 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe) 3000 { 3001 struct pci_dev *pdev; 3002 int i; 3003 3004 /* 3005 * NOTE: We only care PCI bus based PE for now. For PCI 3006 * device based PE, for example SRIOV sensitive VF should 3007 * be figured out later. 3008 */ 3009 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))); 3010 3011 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) { 3012 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 3013 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]); 3014 3015 /* 3016 * If the PE contains all subordinate PCI buses, the 3017 * windows of the child bridges should be mapped to 3018 * the PE as well. 3019 */ 3020 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev)) 3021 continue; 3022 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) 3023 pnv_ioda_setup_pe_res(pe, 3024 &pdev->resource[PCI_BRIDGE_RESOURCES + i]); 3025 } 3026 } 3027 3028 static void pnv_pci_ioda_create_dbgfs(void) 3029 { 3030 #ifdef CONFIG_DEBUG_FS 3031 struct pci_controller *hose, *tmp; 3032 struct pnv_phb *phb; 3033 char name[16]; 3034 3035 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { 3036 phb = hose->private_data; 3037 3038 /* Notify initialization of PHB done */ 3039 phb->initialized = 1; 3040 3041 sprintf(name, "PCI%04x", hose->global_number); 3042 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root); 3043 if (!phb->dbgfs) 3044 pr_warning("%s: Error on creating debugfs on PHB#%x\n", 3045 __func__, hose->global_number); 3046 } 3047 #endif /* CONFIG_DEBUG_FS */ 3048 } 3049 3050 static void pnv_pci_ioda_fixup(void) 3051 { 3052 pnv_pci_ioda_setup_PEs(); 3053 pnv_pci_ioda_setup_iommu_api(); 3054 pnv_pci_ioda_create_dbgfs(); 3055 3056 #ifdef CONFIG_EEH 3057 eeh_init(); 3058 eeh_addr_cache_build(); 3059 #endif 3060 } 3061 3062 /* 3063 * Returns the alignment for I/O or memory windows for P2P 3064 * bridges. That actually depends on how PEs are segmented. 3065 * For now, we return I/O or M32 segment size for PE sensitive 3066 * P2P bridges. Otherwise, the default values (4KiB for I/O, 3067 * 1MiB for memory) will be returned. 3068 * 3069 * The current PCI bus might be put into one PE, which was 3070 * create against the parent PCI bridge. For that case, we 3071 * needn't enlarge the alignment so that we can save some 3072 * resources. 3073 */ 3074 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus, 3075 unsigned long type) 3076 { 3077 struct pci_dev *bridge; 3078 struct pci_controller *hose = pci_bus_to_host(bus); 3079 struct pnv_phb *phb = hose->private_data; 3080 int num_pci_bridges = 0; 3081 3082 bridge = bus->self; 3083 while (bridge) { 3084 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) { 3085 num_pci_bridges++; 3086 if (num_pci_bridges >= 2) 3087 return 1; 3088 } 3089 3090 bridge = bridge->bus->self; 3091 } 3092 3093 /* 3094 * We fall back to M32 if M64 isn't supported. We enforce the M64 3095 * alignment for any 64-bit resource, PCIe doesn't care and 3096 * bridges only do 64-bit prefetchable anyway. 3097 */ 3098 if (phb->ioda.m64_segsize && (type & IORESOURCE_MEM_64)) 3099 return phb->ioda.m64_segsize; 3100 if (type & IORESOURCE_MEM) 3101 return phb->ioda.m32_segsize; 3102 3103 return phb->ioda.io_segsize; 3104 } 3105 3106 /* 3107 * We are updating root port or the upstream port of the 3108 * bridge behind the root port with PHB's windows in order 3109 * to accommodate the changes on required resources during 3110 * PCI (slot) hotplug, which is connected to either root 3111 * port or the downstream ports of PCIe switch behind the 3112 * root port. 3113 */ 3114 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus, 3115 unsigned long type) 3116 { 3117 struct pci_controller *hose = pci_bus_to_host(bus); 3118 struct pnv_phb *phb = hose->private_data; 3119 struct pci_dev *bridge = bus->self; 3120 struct resource *r, *w; 3121 bool msi_region = false; 3122 int i; 3123 3124 /* Check if we need apply fixup to the bridge's windows */ 3125 if (!pci_is_root_bus(bridge->bus) && 3126 !pci_is_root_bus(bridge->bus->self->bus)) 3127 return; 3128 3129 /* Fixup the resources */ 3130 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) { 3131 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i]; 3132 if (!r->flags || !r->parent) 3133 continue; 3134 3135 w = NULL; 3136 if (r->flags & type & IORESOURCE_IO) 3137 w = &hose->io_resource; 3138 else if (pnv_pci_is_m64(phb, r) && 3139 (type & IORESOURCE_PREFETCH) && 3140 phb->ioda.m64_segsize) 3141 w = &hose->mem_resources[1]; 3142 else if (r->flags & type & IORESOURCE_MEM) { 3143 w = &hose->mem_resources[0]; 3144 msi_region = true; 3145 } 3146 3147 r->start = w->start; 3148 r->end = w->end; 3149 3150 /* The 64KB 32-bits MSI region shouldn't be included in 3151 * the 32-bits bridge window. Otherwise, we can see strange 3152 * issues. One of them is EEH error observed on Garrison. 3153 * 3154 * Exclude top 1MB region which is the minimal alignment of 3155 * 32-bits bridge window. 3156 */ 3157 if (msi_region) { 3158 r->end += 0x10000; 3159 r->end -= 0x100000; 3160 } 3161 } 3162 } 3163 3164 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type) 3165 { 3166 struct pci_controller *hose = pci_bus_to_host(bus); 3167 struct pnv_phb *phb = hose->private_data; 3168 struct pci_dev *bridge = bus->self; 3169 struct pnv_ioda_pe *pe; 3170 bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE); 3171 3172 /* Extend bridge's windows if necessary */ 3173 pnv_pci_fixup_bridge_resources(bus, type); 3174 3175 /* The PE for root bus should be realized before any one else */ 3176 if (!phb->ioda.root_pe_populated) { 3177 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false); 3178 if (pe) { 3179 phb->ioda.root_pe_idx = pe->pe_number; 3180 phb->ioda.root_pe_populated = true; 3181 } 3182 } 3183 3184 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */ 3185 if (list_empty(&bus->devices)) 3186 return; 3187 3188 /* Reserve PEs according to used M64 resources */ 3189 if (phb->reserve_m64_pe) 3190 phb->reserve_m64_pe(bus, NULL, all); 3191 3192 /* 3193 * Assign PE. We might run here because of partial hotplug. 3194 * For the case, we just pick up the existing PE and should 3195 * not allocate resources again. 3196 */ 3197 pe = pnv_ioda_setup_bus_PE(bus, all); 3198 if (!pe) 3199 return; 3200 3201 pnv_ioda_setup_pe_seg(pe); 3202 switch (phb->type) { 3203 case PNV_PHB_IODA1: 3204 pnv_pci_ioda1_setup_dma_pe(phb, pe); 3205 break; 3206 case PNV_PHB_IODA2: 3207 pnv_pci_ioda2_setup_dma_pe(phb, pe); 3208 break; 3209 default: 3210 pr_warn("%s: No DMA for PHB#%d (type %d)\n", 3211 __func__, phb->hose->global_number, phb->type); 3212 } 3213 } 3214 3215 #ifdef CONFIG_PCI_IOV 3216 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, 3217 int resno) 3218 { 3219 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 3220 struct pnv_phb *phb = hose->private_data; 3221 struct pci_dn *pdn = pci_get_pdn(pdev); 3222 resource_size_t align; 3223 3224 /* 3225 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the 3226 * SR-IOV. While from hardware perspective, the range mapped by M64 3227 * BAR should be size aligned. 3228 * 3229 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra 3230 * powernv-specific hardware restriction is gone. But if just use the 3231 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with 3232 * in one segment of M64 #15, which introduces the PE conflict between 3233 * PF and VF. Based on this, the minimum alignment of an IOV BAR is 3234 * m64_segsize. 3235 * 3236 * This function returns the total IOV BAR size if M64 BAR is in 3237 * Shared PE mode or just VF BAR size if not. 3238 * If the M64 BAR is in Single PE mode, return the VF BAR size or 3239 * M64 segment size if IOV BAR size is less. 3240 */ 3241 align = pci_iov_resource_size(pdev, resno); 3242 if (!pdn->vfs_expanded) 3243 return align; 3244 if (pdn->m64_single_mode) 3245 return max(align, (resource_size_t)phb->ioda.m64_segsize); 3246 3247 return pdn->vfs_expanded * align; 3248 } 3249 #endif /* CONFIG_PCI_IOV */ 3250 3251 /* Prevent enabling devices for which we couldn't properly 3252 * assign a PE 3253 */ 3254 bool pnv_pci_enable_device_hook(struct pci_dev *dev) 3255 { 3256 struct pci_controller *hose = pci_bus_to_host(dev->bus); 3257 struct pnv_phb *phb = hose->private_data; 3258 struct pci_dn *pdn; 3259 3260 /* The function is probably called while the PEs have 3261 * not be created yet. For example, resource reassignment 3262 * during PCI probe period. We just skip the check if 3263 * PEs isn't ready. 3264 */ 3265 if (!phb->initialized) 3266 return true; 3267 3268 pdn = pci_get_pdn(dev); 3269 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 3270 return false; 3271 3272 return true; 3273 } 3274 3275 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group, 3276 int num) 3277 { 3278 struct pnv_ioda_pe *pe = container_of(table_group, 3279 struct pnv_ioda_pe, table_group); 3280 struct pnv_phb *phb = pe->phb; 3281 unsigned int idx; 3282 long rc; 3283 3284 pe_info(pe, "Removing DMA window #%d\n", num); 3285 for (idx = 0; idx < phb->ioda.dma32_count; idx++) { 3286 if (phb->ioda.dma32_segmap[idx] != pe->pe_number) 3287 continue; 3288 3289 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number, 3290 idx, 0, 0ul, 0ul, 0ul); 3291 if (rc != OPAL_SUCCESS) { 3292 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n", 3293 rc, idx); 3294 return rc; 3295 } 3296 3297 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE; 3298 } 3299 3300 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group); 3301 return OPAL_SUCCESS; 3302 } 3303 3304 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe) 3305 { 3306 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe); 3307 struct iommu_table *tbl = pe->table_group.tables[0]; 3308 int64_t rc; 3309 3310 if (!weight) 3311 return; 3312 3313 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0); 3314 if (rc != OPAL_SUCCESS) 3315 return; 3316 3317 pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false); 3318 if (pe->table_group.group) { 3319 iommu_group_put(pe->table_group.group); 3320 WARN_ON(pe->table_group.group); 3321 } 3322 3323 free_pages(tbl->it_base, get_order(tbl->it_size << 3)); 3324 iommu_free_table(tbl, "pnv"); 3325 } 3326 3327 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe) 3328 { 3329 struct iommu_table *tbl = pe->table_group.tables[0]; 3330 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe); 3331 #ifdef CONFIG_IOMMU_API 3332 int64_t rc; 3333 #endif 3334 3335 if (!weight) 3336 return; 3337 3338 #ifdef CONFIG_IOMMU_API 3339 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0); 3340 if (rc) 3341 pe_warn(pe, "OPAL error %ld release DMA window\n", rc); 3342 #endif 3343 3344 pnv_pci_ioda2_set_bypass(pe, false); 3345 if (pe->table_group.group) { 3346 iommu_group_put(pe->table_group.group); 3347 WARN_ON(pe->table_group.group); 3348 } 3349 3350 pnv_pci_ioda2_table_free_pages(tbl); 3351 iommu_free_table(tbl, "pnv"); 3352 } 3353 3354 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe, 3355 unsigned short win, 3356 unsigned int *map) 3357 { 3358 struct pnv_phb *phb = pe->phb; 3359 int idx; 3360 int64_t rc; 3361 3362 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) { 3363 if (map[idx] != pe->pe_number) 3364 continue; 3365 3366 if (win == OPAL_M64_WINDOW_TYPE) 3367 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3368 phb->ioda.reserved_pe_idx, win, 3369 idx / PNV_IODA1_M64_SEGS, 3370 idx % PNV_IODA1_M64_SEGS); 3371 else 3372 rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3373 phb->ioda.reserved_pe_idx, win, 0, idx); 3374 3375 if (rc != OPAL_SUCCESS) 3376 pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n", 3377 rc, win, idx); 3378 3379 map[idx] = IODA_INVALID_PE; 3380 } 3381 } 3382 3383 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe) 3384 { 3385 struct pnv_phb *phb = pe->phb; 3386 3387 if (phb->type == PNV_PHB_IODA1) { 3388 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE, 3389 phb->ioda.io_segmap); 3390 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 3391 phb->ioda.m32_segmap); 3392 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE, 3393 phb->ioda.m64_segmap); 3394 } else if (phb->type == PNV_PHB_IODA2) { 3395 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE, 3396 phb->ioda.m32_segmap); 3397 } 3398 } 3399 3400 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe) 3401 { 3402 struct pnv_phb *phb = pe->phb; 3403 struct pnv_ioda_pe *slave, *tmp; 3404 3405 /* Release slave PEs in compound PE */ 3406 if (pe->flags & PNV_IODA_PE_MASTER) { 3407 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) 3408 pnv_ioda_release_pe(slave); 3409 } 3410 3411 list_del(&pe->list); 3412 switch (phb->type) { 3413 case PNV_PHB_IODA1: 3414 pnv_pci_ioda1_release_pe_dma(pe); 3415 break; 3416 case PNV_PHB_IODA2: 3417 pnv_pci_ioda2_release_pe_dma(pe); 3418 break; 3419 default: 3420 WARN_ON(1); 3421 } 3422 3423 pnv_ioda_release_pe_seg(pe); 3424 pnv_ioda_deconfigure_pe(pe->phb, pe); 3425 pnv_ioda_free_pe(pe); 3426 } 3427 3428 static void pnv_pci_release_device(struct pci_dev *pdev) 3429 { 3430 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 3431 struct pnv_phb *phb = hose->private_data; 3432 struct pci_dn *pdn = pci_get_pdn(pdev); 3433 struct pnv_ioda_pe *pe; 3434 3435 if (pdev->is_virtfn) 3436 return; 3437 3438 if (!pdn || pdn->pe_number == IODA_INVALID_PE) 3439 return; 3440 3441 pe = &phb->ioda.pe_array[pdn->pe_number]; 3442 WARN_ON(--pe->device_count < 0); 3443 if (pe->device_count == 0) 3444 pnv_ioda_release_pe(pe); 3445 } 3446 3447 static void pnv_pci_ioda_shutdown(struct pci_controller *hose) 3448 { 3449 struct pnv_phb *phb = hose->private_data; 3450 3451 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE, 3452 OPAL_ASSERT_RESET); 3453 } 3454 3455 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = { 3456 .dma_dev_setup = pnv_pci_dma_dev_setup, 3457 .dma_bus_setup = pnv_pci_dma_bus_setup, 3458 #ifdef CONFIG_PCI_MSI 3459 .setup_msi_irqs = pnv_setup_msi_irqs, 3460 .teardown_msi_irqs = pnv_teardown_msi_irqs, 3461 #endif 3462 .enable_device_hook = pnv_pci_enable_device_hook, 3463 .release_device = pnv_pci_release_device, 3464 .window_alignment = pnv_pci_window_alignment, 3465 .setup_bridge = pnv_pci_setup_bridge, 3466 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3467 .dma_set_mask = pnv_pci_ioda_dma_set_mask, 3468 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask, 3469 .shutdown = pnv_pci_ioda_shutdown, 3470 }; 3471 3472 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask) 3473 { 3474 dev_err_once(&npdev->dev, 3475 "%s operation unsupported for NVLink devices\n", 3476 __func__); 3477 return -EPERM; 3478 } 3479 3480 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = { 3481 .dma_dev_setup = pnv_pci_dma_dev_setup, 3482 #ifdef CONFIG_PCI_MSI 3483 .setup_msi_irqs = pnv_setup_msi_irqs, 3484 .teardown_msi_irqs = pnv_teardown_msi_irqs, 3485 #endif 3486 .enable_device_hook = pnv_pci_enable_device_hook, 3487 .window_alignment = pnv_pci_window_alignment, 3488 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3489 .dma_set_mask = pnv_npu_dma_set_mask, 3490 .shutdown = pnv_pci_ioda_shutdown, 3491 }; 3492 3493 #ifdef CONFIG_CXL_BASE 3494 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = { 3495 .dma_dev_setup = pnv_pci_dma_dev_setup, 3496 .dma_bus_setup = pnv_pci_dma_bus_setup, 3497 #ifdef CONFIG_PCI_MSI 3498 .setup_msi_irqs = pnv_cxl_cx4_setup_msi_irqs, 3499 .teardown_msi_irqs = pnv_cxl_cx4_teardown_msi_irqs, 3500 #endif 3501 .enable_device_hook = pnv_cxl_enable_device_hook, 3502 .disable_device = pnv_cxl_disable_device, 3503 .release_device = pnv_pci_release_device, 3504 .window_alignment = pnv_pci_window_alignment, 3505 .setup_bridge = pnv_pci_setup_bridge, 3506 .reset_secondary_bus = pnv_pci_reset_secondary_bus, 3507 .dma_set_mask = pnv_pci_ioda_dma_set_mask, 3508 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask, 3509 .shutdown = pnv_pci_ioda_shutdown, 3510 }; 3511 #endif 3512 3513 static void __init pnv_pci_init_ioda_phb(struct device_node *np, 3514 u64 hub_id, int ioda_type) 3515 { 3516 struct pci_controller *hose; 3517 struct pnv_phb *phb; 3518 unsigned long size, m64map_off, m32map_off, pemap_off; 3519 unsigned long iomap_off = 0, dma32map_off = 0; 3520 struct resource r; 3521 const __be64 *prop64; 3522 const __be32 *prop32; 3523 int len; 3524 unsigned int segno; 3525 u64 phb_id; 3526 void *aux; 3527 long rc; 3528 3529 if (!of_device_is_available(np)) 3530 return; 3531 3532 pr_info("Initializing %s PHB (%s)\n", 3533 pnv_phb_names[ioda_type], of_node_full_name(np)); 3534 3535 prop64 = of_get_property(np, "ibm,opal-phbid", NULL); 3536 if (!prop64) { 3537 pr_err(" Missing \"ibm,opal-phbid\" property !\n"); 3538 return; 3539 } 3540 phb_id = be64_to_cpup(prop64); 3541 pr_debug(" PHB-ID : 0x%016llx\n", phb_id); 3542 3543 phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0); 3544 3545 /* Allocate PCI controller */ 3546 phb->hose = hose = pcibios_alloc_controller(np); 3547 if (!phb->hose) { 3548 pr_err(" Can't allocate PCI controller for %s\n", 3549 np->full_name); 3550 memblock_free(__pa(phb), sizeof(struct pnv_phb)); 3551 return; 3552 } 3553 3554 spin_lock_init(&phb->lock); 3555 prop32 = of_get_property(np, "bus-range", &len); 3556 if (prop32 && len == 8) { 3557 hose->first_busno = be32_to_cpu(prop32[0]); 3558 hose->last_busno = be32_to_cpu(prop32[1]); 3559 } else { 3560 pr_warn(" Broken <bus-range> on %s\n", np->full_name); 3561 hose->first_busno = 0; 3562 hose->last_busno = 0xff; 3563 } 3564 hose->private_data = phb; 3565 phb->hub_id = hub_id; 3566 phb->opal_id = phb_id; 3567 phb->type = ioda_type; 3568 mutex_init(&phb->ioda.pe_alloc_mutex); 3569 3570 /* Detect specific models for error handling */ 3571 if (of_device_is_compatible(np, "ibm,p7ioc-pciex")) 3572 phb->model = PNV_PHB_MODEL_P7IOC; 3573 else if (of_device_is_compatible(np, "ibm,power8-pciex")) 3574 phb->model = PNV_PHB_MODEL_PHB3; 3575 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex")) 3576 phb->model = PNV_PHB_MODEL_NPU; 3577 else 3578 phb->model = PNV_PHB_MODEL_UNKNOWN; 3579 3580 /* Parse 32-bit and IO ranges (if any) */ 3581 pci_process_bridge_OF_ranges(hose, np, !hose->global_number); 3582 3583 /* Get registers */ 3584 if (!of_address_to_resource(np, 0, &r)) { 3585 phb->regs_phys = r.start; 3586 phb->regs = ioremap(r.start, resource_size(&r)); 3587 if (phb->regs == NULL) 3588 pr_err(" Failed to map registers !\n"); 3589 } 3590 3591 /* Initialize more IODA stuff */ 3592 phb->ioda.total_pe_num = 1; 3593 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL); 3594 if (prop32) 3595 phb->ioda.total_pe_num = be32_to_cpup(prop32); 3596 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL); 3597 if (prop32) 3598 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32); 3599 3600 /* Invalidate RID to PE# mapping */ 3601 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++) 3602 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE; 3603 3604 /* Parse 64-bit MMIO range */ 3605 pnv_ioda_parse_m64_window(phb); 3606 3607 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]); 3608 /* FW Has already off top 64k of M32 space (MSI space) */ 3609 phb->ioda.m32_size += 0x10000; 3610 3611 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num; 3612 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0]; 3613 phb->ioda.io_size = hose->pci_io_size; 3614 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num; 3615 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */ 3616 3617 /* Calculate how many 32-bit TCE segments we have */ 3618 phb->ioda.dma32_count = phb->ioda.m32_pci_base / 3619 PNV_IODA1_DMA32_SEGSIZE; 3620 3621 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */ 3622 size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8, 3623 sizeof(unsigned long)); 3624 m64map_off = size; 3625 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]); 3626 m32map_off = size; 3627 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]); 3628 if (phb->type == PNV_PHB_IODA1) { 3629 iomap_off = size; 3630 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]); 3631 dma32map_off = size; 3632 size += phb->ioda.dma32_count * 3633 sizeof(phb->ioda.dma32_segmap[0]); 3634 } 3635 pemap_off = size; 3636 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe); 3637 aux = memblock_virt_alloc(size, 0); 3638 phb->ioda.pe_alloc = aux; 3639 phb->ioda.m64_segmap = aux + m64map_off; 3640 phb->ioda.m32_segmap = aux + m32map_off; 3641 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) { 3642 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE; 3643 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE; 3644 } 3645 if (phb->type == PNV_PHB_IODA1) { 3646 phb->ioda.io_segmap = aux + iomap_off; 3647 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) 3648 phb->ioda.io_segmap[segno] = IODA_INVALID_PE; 3649 3650 phb->ioda.dma32_segmap = aux + dma32map_off; 3651 for (segno = 0; segno < phb->ioda.dma32_count; segno++) 3652 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE; 3653 } 3654 phb->ioda.pe_array = aux + pemap_off; 3655 3656 /* 3657 * Choose PE number for root bus, which shouldn't have 3658 * M64 resources consumed by its child devices. To pick 3659 * the PE number adjacent to the reserved one if possible. 3660 */ 3661 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx); 3662 if (phb->ioda.reserved_pe_idx == 0) { 3663 phb->ioda.root_pe_idx = 1; 3664 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 3665 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) { 3666 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1; 3667 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx); 3668 } else { 3669 phb->ioda.root_pe_idx = IODA_INVALID_PE; 3670 } 3671 3672 INIT_LIST_HEAD(&phb->ioda.pe_list); 3673 mutex_init(&phb->ioda.pe_list_mutex); 3674 3675 /* Calculate how many 32-bit TCE segments we have */ 3676 phb->ioda.dma32_count = phb->ioda.m32_pci_base / 3677 PNV_IODA1_DMA32_SEGSIZE; 3678 3679 #if 0 /* We should really do that ... */ 3680 rc = opal_pci_set_phb_mem_window(opal->phb_id, 3681 window_type, 3682 window_num, 3683 starting_real_address, 3684 starting_pci_address, 3685 segment_size); 3686 #endif 3687 3688 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n", 3689 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx, 3690 phb->ioda.m32_size, phb->ioda.m32_segsize); 3691 if (phb->ioda.m64_size) 3692 pr_info(" M64: 0x%lx [segment=0x%lx]\n", 3693 phb->ioda.m64_size, phb->ioda.m64_segsize); 3694 if (phb->ioda.io_size) 3695 pr_info(" IO: 0x%x [segment=0x%x]\n", 3696 phb->ioda.io_size, phb->ioda.io_segsize); 3697 3698 3699 phb->hose->ops = &pnv_pci_ops; 3700 phb->get_pe_state = pnv_ioda_get_pe_state; 3701 phb->freeze_pe = pnv_ioda_freeze_pe; 3702 phb->unfreeze_pe = pnv_ioda_unfreeze_pe; 3703 3704 /* Setup MSI support */ 3705 pnv_pci_init_ioda_msis(phb); 3706 3707 /* 3708 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here 3709 * to let the PCI core do resource assignment. It's supposed 3710 * that the PCI core will do correct I/O and MMIO alignment 3711 * for the P2P bridge bars so that each PCI bus (excluding 3712 * the child P2P bridges) can form individual PE. 3713 */ 3714 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup; 3715 3716 if (phb->type == PNV_PHB_NPU) { 3717 hose->controller_ops = pnv_npu_ioda_controller_ops; 3718 } else { 3719 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup; 3720 hose->controller_ops = pnv_pci_ioda_controller_ops; 3721 } 3722 3723 #ifdef CONFIG_PCI_IOV 3724 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources; 3725 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment; 3726 #endif 3727 3728 pci_add_flags(PCI_REASSIGN_ALL_RSRC); 3729 3730 /* Reset IODA tables to a clean state */ 3731 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET); 3732 if (rc) 3733 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc); 3734 3735 /* If we're running in kdump kerenl, the previous kerenl never 3736 * shutdown PCI devices correctly. We already got IODA table 3737 * cleaned out. So we have to issue PHB reset to stop all PCI 3738 * transactions from previous kerenl. 3739 */ 3740 if (is_kdump_kernel()) { 3741 pr_info(" Issue PHB reset ...\n"); 3742 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL); 3743 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE); 3744 } 3745 3746 /* Remove M64 resource if we can't configure it successfully */ 3747 if (!phb->init_m64 || phb->init_m64(phb)) 3748 hose->mem_resources[1].flags = 0; 3749 } 3750 3751 void __init pnv_pci_init_ioda2_phb(struct device_node *np) 3752 { 3753 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2); 3754 } 3755 3756 void __init pnv_pci_init_npu_phb(struct device_node *np) 3757 { 3758 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU); 3759 } 3760 3761 void __init pnv_pci_init_ioda_hub(struct device_node *np) 3762 { 3763 struct device_node *phbn; 3764 const __be64 *prop64; 3765 u64 hub_id; 3766 3767 pr_info("Probing IODA IO-Hub %s\n", np->full_name); 3768 3769 prop64 = of_get_property(np, "ibm,opal-hubid", NULL); 3770 if (!prop64) { 3771 pr_err(" Missing \"ibm,opal-hubid\" property !\n"); 3772 return; 3773 } 3774 hub_id = be64_to_cpup(prop64); 3775 pr_devel(" HUB-ID : 0x%016llx\n", hub_id); 3776 3777 /* Count child PHBs */ 3778 for_each_child_of_node(np, phbn) { 3779 /* Look for IODA1 PHBs */ 3780 if (of_device_is_compatible(phbn, "ibm,ioda-phb")) 3781 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1); 3782 } 3783 } 3784