1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/delay.h>
17 #include <linux/string.h>
18 #include <linux/init.h>
19 #include <linux/bootmem.h>
20 #include <linux/irq.h>
21 #include <linux/io.h>
22 #include <linux/msi.h>
23 
24 #include <asm/sections.h>
25 #include <asm/io.h>
26 #include <asm/prom.h>
27 #include <asm/pci-bridge.h>
28 #include <asm/machdep.h>
29 #include <asm/msi_bitmap.h>
30 #include <asm/ppc-pci.h>
31 #include <asm/opal.h>
32 #include <asm/iommu.h>
33 #include <asm/tce.h>
34 #include <asm/xics.h>
35 
36 #include "powernv.h"
37 #include "pci.h"
38 
39 #define define_pe_printk_level(func, kern_level)		\
40 static int func(const struct pnv_ioda_pe *pe, const char *fmt, ...)	\
41 {								\
42 	struct va_format vaf;					\
43 	va_list args;						\
44 	char pfix[32];						\
45 	int r;							\
46 								\
47 	va_start(args, fmt);					\
48 								\
49 	vaf.fmt = fmt;						\
50 	vaf.va = &args;						\
51 								\
52 	if (pe->pdev)						\
53 		strlcpy(pfix, dev_name(&pe->pdev->dev),		\
54 			sizeof(pfix));				\
55 	else							\
56 		sprintf(pfix, "%04x:%02x     ",			\
57 			pci_domain_nr(pe->pbus),		\
58 			pe->pbus->number);			\
59 	r = printk(kern_level "pci %s: [PE# %.3d] %pV",		\
60 		   pfix, pe->pe_number, &vaf);			\
61 								\
62 	va_end(args);						\
63 								\
64 	return r;						\
65 }								\
66 
67 define_pe_printk_level(pe_err, KERN_ERR);
68 define_pe_printk_level(pe_warn, KERN_WARNING);
69 define_pe_printk_level(pe_info, KERN_INFO);
70 
71 static struct pci_dn *pnv_ioda_get_pdn(struct pci_dev *dev)
72 {
73 	struct device_node *np;
74 
75 	np = pci_device_to_OF_node(dev);
76 	if (!np)
77 		return NULL;
78 	return PCI_DN(np);
79 }
80 
81 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
82 {
83 	unsigned long pe;
84 
85 	do {
86 		pe = find_next_zero_bit(phb->ioda.pe_alloc,
87 					phb->ioda.total_pe, 0);
88 		if (pe >= phb->ioda.total_pe)
89 			return IODA_INVALID_PE;
90 	} while(test_and_set_bit(pe, phb->ioda.pe_alloc));
91 
92 	phb->ioda.pe_array[pe].phb = phb;
93 	phb->ioda.pe_array[pe].pe_number = pe;
94 	return pe;
95 }
96 
97 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
98 {
99 	WARN_ON(phb->ioda.pe_array[pe].pdev);
100 
101 	memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
102 	clear_bit(pe, phb->ioda.pe_alloc);
103 }
104 
105 /* Currently those 2 are only used when MSIs are enabled, this will change
106  * but in the meantime, we need to protect them to avoid warnings
107  */
108 #ifdef CONFIG_PCI_MSI
109 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
110 {
111 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
112 	struct pnv_phb *phb = hose->private_data;
113 	struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
114 
115 	if (!pdn)
116 		return NULL;
117 	if (pdn->pe_number == IODA_INVALID_PE)
118 		return NULL;
119 	return &phb->ioda.pe_array[pdn->pe_number];
120 }
121 #endif /* CONFIG_PCI_MSI */
122 
123 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
124 {
125 	struct pci_dev *parent;
126 	uint8_t bcomp, dcomp, fcomp;
127 	long rc, rid_end, rid;
128 
129 	/* Bus validation ? */
130 	if (pe->pbus) {
131 		int count;
132 
133 		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
134 		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
135 		parent = pe->pbus->self;
136 		if (pe->flags & PNV_IODA_PE_BUS_ALL)
137 			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
138 		else
139 			count = 1;
140 
141 		switch(count) {
142 		case  1: bcomp = OpalPciBusAll;		break;
143 		case  2: bcomp = OpalPciBus7Bits;	break;
144 		case  4: bcomp = OpalPciBus6Bits;	break;
145 		case  8: bcomp = OpalPciBus5Bits;	break;
146 		case 16: bcomp = OpalPciBus4Bits;	break;
147 		case 32: bcomp = OpalPciBus3Bits;	break;
148 		default:
149 			pr_err("%s: Number of subordinate busses %d"
150 			       " unsupported\n",
151 			       pci_name(pe->pbus->self), count);
152 			/* Do an exact match only */
153 			bcomp = OpalPciBusAll;
154 		}
155 		rid_end = pe->rid + (count << 8);
156 	} else {
157 		parent = pe->pdev->bus->self;
158 		bcomp = OpalPciBusAll;
159 		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
160 		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
161 		rid_end = pe->rid + 1;
162 	}
163 
164 	/* Associate PE in PELT */
165 	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
166 			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
167 	if (rc) {
168 		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
169 		return -ENXIO;
170 	}
171 	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
172 				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
173 
174 	/* Add to all parents PELT-V */
175 	while (parent) {
176 		struct pci_dn *pdn = pnv_ioda_get_pdn(parent);
177 		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
178 			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
179 						pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
180 			/* XXX What to do in case of error ? */
181 		}
182 		parent = parent->bus->self;
183 	}
184 	/* Setup reverse map */
185 	for (rid = pe->rid; rid < rid_end; rid++)
186 		phb->ioda.pe_rmap[rid] = pe->pe_number;
187 
188 	/* Setup one MVTs on IODA1 */
189 	if (phb->type == PNV_PHB_IODA1) {
190 		pe->mve_number = pe->pe_number;
191 		rc = opal_pci_set_mve(phb->opal_id, pe->mve_number,
192 				      pe->pe_number);
193 		if (rc) {
194 			pe_err(pe, "OPAL error %ld setting up MVE %d\n",
195 			       rc, pe->mve_number);
196 			pe->mve_number = -1;
197 		} else {
198 			rc = opal_pci_set_mve_enable(phb->opal_id,
199 						     pe->mve_number, OPAL_ENABLE_MVE);
200 			if (rc) {
201 				pe_err(pe, "OPAL error %ld enabling MVE %d\n",
202 				       rc, pe->mve_number);
203 				pe->mve_number = -1;
204 			}
205 		}
206 	} else if (phb->type == PNV_PHB_IODA2)
207 		pe->mve_number = 0;
208 
209 	return 0;
210 }
211 
212 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
213 				       struct pnv_ioda_pe *pe)
214 {
215 	struct pnv_ioda_pe *lpe;
216 
217 	list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
218 		if (lpe->dma_weight < pe->dma_weight) {
219 			list_add_tail(&pe->dma_link, &lpe->dma_link);
220 			return;
221 		}
222 	}
223 	list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
224 }
225 
226 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
227 {
228 	/* This is quite simplistic. The "base" weight of a device
229 	 * is 10. 0 means no DMA is to be accounted for it.
230 	 */
231 
232 	/* If it's a bridge, no DMA */
233 	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
234 		return 0;
235 
236 	/* Reduce the weight of slow USB controllers */
237 	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
238 	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
239 	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
240 		return 3;
241 
242 	/* Increase the weight of RAID (includes Obsidian) */
243 	if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
244 		return 15;
245 
246 	/* Default */
247 	return 10;
248 }
249 
250 #if 0
251 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
252 {
253 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
254 	struct pnv_phb *phb = hose->private_data;
255 	struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
256 	struct pnv_ioda_pe *pe;
257 	int pe_num;
258 
259 	if (!pdn) {
260 		pr_err("%s: Device tree node not associated properly\n",
261 			   pci_name(dev));
262 		return NULL;
263 	}
264 	if (pdn->pe_number != IODA_INVALID_PE)
265 		return NULL;
266 
267 	/* PE#0 has been pre-set */
268 	if (dev->bus->number == 0)
269 		pe_num = 0;
270 	else
271 		pe_num = pnv_ioda_alloc_pe(phb);
272 	if (pe_num == IODA_INVALID_PE) {
273 		pr_warning("%s: Not enough PE# available, disabling device\n",
274 			   pci_name(dev));
275 		return NULL;
276 	}
277 
278 	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
279 	 * pointer in the PE data structure, both should be destroyed at the
280 	 * same time. However, this needs to be looked at more closely again
281 	 * once we actually start removing things (Hotplug, SR-IOV, ...)
282 	 *
283 	 * At some point we want to remove the PDN completely anyways
284 	 */
285 	pe = &phb->ioda.pe_array[pe_num];
286 	pci_dev_get(dev);
287 	pdn->pcidev = dev;
288 	pdn->pe_number = pe_num;
289 	pe->pdev = dev;
290 	pe->pbus = NULL;
291 	pe->tce32_seg = -1;
292 	pe->mve_number = -1;
293 	pe->rid = dev->bus->number << 8 | pdn->devfn;
294 
295 	pe_info(pe, "Associated device to PE\n");
296 
297 	if (pnv_ioda_configure_pe(phb, pe)) {
298 		/* XXX What do we do here ? */
299 		if (pe_num)
300 			pnv_ioda_free_pe(phb, pe_num);
301 		pdn->pe_number = IODA_INVALID_PE;
302 		pe->pdev = NULL;
303 		pci_dev_put(dev);
304 		return NULL;
305 	}
306 
307 	/* Assign a DMA weight to the device */
308 	pe->dma_weight = pnv_ioda_dma_weight(dev);
309 	if (pe->dma_weight != 0) {
310 		phb->ioda.dma_weight += pe->dma_weight;
311 		phb->ioda.dma_pe_count++;
312 	}
313 
314 	/* Link the PE */
315 	pnv_ioda_link_pe_by_weight(phb, pe);
316 
317 	return pe;
318 }
319 #endif /* Useful for SRIOV case */
320 
321 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
322 {
323 	struct pci_dev *dev;
324 
325 	list_for_each_entry(dev, &bus->devices, bus_list) {
326 		struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
327 
328 		if (pdn == NULL) {
329 			pr_warn("%s: No device node associated with device !\n",
330 				pci_name(dev));
331 			continue;
332 		}
333 		pci_dev_get(dev);
334 		pdn->pcidev = dev;
335 		pdn->pe_number = pe->pe_number;
336 		pe->dma_weight += pnv_ioda_dma_weight(dev);
337 		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
338 			pnv_ioda_setup_same_PE(dev->subordinate, pe);
339 	}
340 }
341 
342 /*
343  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
344  * single PCI bus. Another one that contains the primary PCI bus and its
345  * subordinate PCI devices and buses. The second type of PE is normally
346  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
347  */
348 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
349 {
350 	struct pci_controller *hose = pci_bus_to_host(bus);
351 	struct pnv_phb *phb = hose->private_data;
352 	struct pnv_ioda_pe *pe;
353 	int pe_num;
354 
355 	pe_num = pnv_ioda_alloc_pe(phb);
356 	if (pe_num == IODA_INVALID_PE) {
357 		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
358 			__func__, pci_domain_nr(bus), bus->number);
359 		return;
360 	}
361 
362 	pe = &phb->ioda.pe_array[pe_num];
363 	pe->flags = (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
364 	pe->pbus = bus;
365 	pe->pdev = NULL;
366 	pe->tce32_seg = -1;
367 	pe->mve_number = -1;
368 	pe->rid = bus->busn_res.start << 8;
369 	pe->dma_weight = 0;
370 
371 	if (all)
372 		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
373 			bus->busn_res.start, bus->busn_res.end, pe_num);
374 	else
375 		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
376 			bus->busn_res.start, pe_num);
377 
378 	if (pnv_ioda_configure_pe(phb, pe)) {
379 		/* XXX What do we do here ? */
380 		if (pe_num)
381 			pnv_ioda_free_pe(phb, pe_num);
382 		pe->pbus = NULL;
383 		return;
384 	}
385 
386 	/* Associate it with all child devices */
387 	pnv_ioda_setup_same_PE(bus, pe);
388 
389 	/* Put PE to the list */
390 	list_add_tail(&pe->list, &phb->ioda.pe_list);
391 
392 	/* Account for one DMA PE if at least one DMA capable device exist
393 	 * below the bridge
394 	 */
395 	if (pe->dma_weight != 0) {
396 		phb->ioda.dma_weight += pe->dma_weight;
397 		phb->ioda.dma_pe_count++;
398 	}
399 
400 	/* Link the PE */
401 	pnv_ioda_link_pe_by_weight(phb, pe);
402 }
403 
404 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
405 {
406 	struct pci_dev *dev;
407 
408 	pnv_ioda_setup_bus_PE(bus, 0);
409 
410 	list_for_each_entry(dev, &bus->devices, bus_list) {
411 		if (dev->subordinate) {
412 			if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
413 				pnv_ioda_setup_bus_PE(dev->subordinate, 1);
414 			else
415 				pnv_ioda_setup_PEs(dev->subordinate);
416 		}
417 	}
418 }
419 
420 /*
421  * Configure PEs so that the downstream PCI buses and devices
422  * could have their associated PE#. Unfortunately, we didn't
423  * figure out the way to identify the PLX bridge yet. So we
424  * simply put the PCI bus and the subordinate behind the root
425  * port to PE# here. The game rule here is expected to be changed
426  * as soon as we can detected PLX bridge correctly.
427  */
428 static void pnv_pci_ioda_setup_PEs(void)
429 {
430 	struct pci_controller *hose, *tmp;
431 
432 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
433 		pnv_ioda_setup_PEs(hose->bus);
434 	}
435 }
436 
437 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
438 {
439 	struct pci_dn *pdn = pnv_ioda_get_pdn(pdev);
440 	struct pnv_ioda_pe *pe;
441 
442 	/*
443 	 * The function can be called while the PE#
444 	 * hasn't been assigned. Do nothing for the
445 	 * case.
446 	 */
447 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
448 		return;
449 
450 	pe = &phb->ioda.pe_array[pdn->pe_number];
451 	set_iommu_table_base(&pdev->dev, &pe->tce32_table);
452 }
453 
454 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
455 					 u64 *startp, u64 *endp)
456 {
457 	u64 __iomem *invalidate = (u64 __iomem *)tbl->it_index;
458 	unsigned long start, end, inc;
459 
460 	start = __pa(startp);
461 	end = __pa(endp);
462 
463 	/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
464 	if (tbl->it_busno) {
465 		start <<= 12;
466 		end <<= 12;
467 		inc = 128 << 12;
468 		start |= tbl->it_busno;
469 		end |= tbl->it_busno;
470 	} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
471 		/* p7ioc-style invalidation, 2 TCEs per write */
472 		start |= (1ull << 63);
473 		end |= (1ull << 63);
474 		inc = 16;
475         } else {
476 		/* Default (older HW) */
477                 inc = 128;
478 	}
479 
480         end |= inc - 1;	/* round up end to be different than start */
481 
482         mb(); /* Ensure above stores are visible */
483         while (start <= end) {
484                 __raw_writeq(start, invalidate);
485                 start += inc;
486         }
487 
488 	/*
489 	 * The iommu layer will do another mb() for us on build()
490 	 * and we don't care on free()
491 	 */
492 }
493 
494 static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
495 					 struct iommu_table *tbl,
496 					 u64 *startp, u64 *endp)
497 {
498 	unsigned long start, end, inc;
499 	u64 __iomem *invalidate = (u64 __iomem *)tbl->it_index;
500 
501 	/* We'll invalidate DMA address in PE scope */
502 	start = 0x2ul << 60;
503 	start |= (pe->pe_number & 0xFF);
504 	end = start;
505 
506 	/* Figure out the start, end and step */
507 	inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
508 	start |= (inc << 12);
509 	inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
510 	end |= (inc << 12);
511 	inc = (0x1ul << 12);
512 	mb();
513 
514 	while (start <= end) {
515 		__raw_writeq(start, invalidate);
516 		start += inc;
517 	}
518 }
519 
520 void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
521 				 u64 *startp, u64 *endp)
522 {
523 	struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
524 					      tce32_table);
525 	struct pnv_phb *phb = pe->phb;
526 
527 	if (phb->type == PNV_PHB_IODA1)
528 		pnv_pci_ioda1_tce_invalidate(tbl, startp, endp);
529 	else
530 		pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp);
531 }
532 
533 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
534 				      struct pnv_ioda_pe *pe, unsigned int base,
535 				      unsigned int segs)
536 {
537 
538 	struct page *tce_mem = NULL;
539 	const __be64 *swinvp;
540 	struct iommu_table *tbl;
541 	unsigned int i;
542 	int64_t rc;
543 	void *addr;
544 
545 	/* 256M DMA window, 4K TCE pages, 8 bytes TCE */
546 #define TCE32_TABLE_SIZE	((0x10000000 / 0x1000) * 8)
547 
548 	/* XXX FIXME: Handle 64-bit only DMA devices */
549 	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
550 	/* XXX FIXME: Allocate multi-level tables on PHB3 */
551 
552 	/* We shouldn't already have a 32-bit DMA associated */
553 	if (WARN_ON(pe->tce32_seg >= 0))
554 		return;
555 
556 	/* Grab a 32-bit TCE table */
557 	pe->tce32_seg = base;
558 	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
559 		(base << 28), ((base + segs) << 28) - 1);
560 
561 	/* XXX Currently, we allocate one big contiguous table for the
562 	 * TCEs. We only really need one chunk per 256M of TCE space
563 	 * (ie per segment) but that's an optimization for later, it
564 	 * requires some added smarts with our get/put_tce implementation
565 	 */
566 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
567 				   get_order(TCE32_TABLE_SIZE * segs));
568 	if (!tce_mem) {
569 		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
570 		goto fail;
571 	}
572 	addr = page_address(tce_mem);
573 	memset(addr, 0, TCE32_TABLE_SIZE * segs);
574 
575 	/* Configure HW */
576 	for (i = 0; i < segs; i++) {
577 		rc = opal_pci_map_pe_dma_window(phb->opal_id,
578 					      pe->pe_number,
579 					      base + i, 1,
580 					      __pa(addr) + TCE32_TABLE_SIZE * i,
581 					      TCE32_TABLE_SIZE, 0x1000);
582 		if (rc) {
583 			pe_err(pe, " Failed to configure 32-bit TCE table,"
584 			       " err %ld\n", rc);
585 			goto fail;
586 		}
587 	}
588 
589 	/* Setup linux iommu table */
590 	tbl = &pe->tce32_table;
591 	pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
592 				  base << 28);
593 
594 	/* OPAL variant of P7IOC SW invalidated TCEs */
595 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
596 	if (swinvp) {
597 		/* We need a couple more fields -- an address and a data
598 		 * to or.  Since the bus is only printed out on table free
599 		 * errors, and on the first pass the data will be a relative
600 		 * bus number, print that out instead.
601 		 */
602 		tbl->it_busno = 0;
603 		tbl->it_index = (unsigned long)ioremap(be64_to_cpup(swinvp), 8);
604 		tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE |
605 			       TCE_PCI_SWINV_PAIR;
606 	}
607 	iommu_init_table(tbl, phb->hose->node);
608 
609 	return;
610  fail:
611 	/* XXX Failure: Try to fallback to 64-bit only ? */
612 	if (pe->tce32_seg >= 0)
613 		pe->tce32_seg = -1;
614 	if (tce_mem)
615 		__free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
616 }
617 
618 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
619 				       struct pnv_ioda_pe *pe)
620 {
621 	struct page *tce_mem = NULL;
622 	void *addr;
623 	const __be64 *swinvp;
624 	struct iommu_table *tbl;
625 	unsigned int tce_table_size, end;
626 	int64_t rc;
627 
628 	/* We shouldn't already have a 32-bit DMA associated */
629 	if (WARN_ON(pe->tce32_seg >= 0))
630 		return;
631 
632 	/* The PE will reserve all possible 32-bits space */
633 	pe->tce32_seg = 0;
634 	end = (1 << ilog2(phb->ioda.m32_pci_base));
635 	tce_table_size = (end / 0x1000) * 8;
636 	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
637 		end);
638 
639 	/* Allocate TCE table */
640 	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
641 				   get_order(tce_table_size));
642 	if (!tce_mem) {
643 		pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
644 		goto fail;
645 	}
646 	addr = page_address(tce_mem);
647 	memset(addr, 0, tce_table_size);
648 
649 	/*
650 	 * Map TCE table through TVT. The TVE index is the PE number
651 	 * shifted by 1 bit for 32-bits DMA space.
652 	 */
653 	rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
654 					pe->pe_number << 1, 1, __pa(addr),
655 					tce_table_size, 0x1000);
656 	if (rc) {
657 		pe_err(pe, "Failed to configure 32-bit TCE table,"
658 		       " err %ld\n", rc);
659 		goto fail;
660 	}
661 
662 	/* Setup linux iommu table */
663 	tbl = &pe->tce32_table;
664 	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0);
665 
666 	/* OPAL variant of PHB3 invalidated TCEs */
667 	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
668 	if (swinvp) {
669 		/* We need a couple more fields -- an address and a data
670 		 * to or.  Since the bus is only printed out on table free
671 		 * errors, and on the first pass the data will be a relative
672 		 * bus number, print that out instead.
673 		 */
674 		tbl->it_busno = 0;
675 		tbl->it_index = (unsigned long)ioremap(be64_to_cpup(swinvp), 8);
676 		tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE;
677 	}
678 	iommu_init_table(tbl, phb->hose->node);
679 
680 	return;
681 fail:
682 	if (pe->tce32_seg >= 0)
683 		pe->tce32_seg = -1;
684 	if (tce_mem)
685 		__free_pages(tce_mem, get_order(tce_table_size));
686 }
687 
688 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
689 {
690 	struct pci_controller *hose = phb->hose;
691 	unsigned int residual, remaining, segs, tw, base;
692 	struct pnv_ioda_pe *pe;
693 
694 	/* If we have more PE# than segments available, hand out one
695 	 * per PE until we run out and let the rest fail. If not,
696 	 * then we assign at least one segment per PE, plus more based
697 	 * on the amount of devices under that PE
698 	 */
699 	if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
700 		residual = 0;
701 	else
702 		residual = phb->ioda.tce32_count -
703 			phb->ioda.dma_pe_count;
704 
705 	pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
706 		hose->global_number, phb->ioda.tce32_count);
707 	pr_info("PCI: %d PE# for a total weight of %d\n",
708 		phb->ioda.dma_pe_count, phb->ioda.dma_weight);
709 
710 	/* Walk our PE list and configure their DMA segments, hand them
711 	 * out one base segment plus any residual segments based on
712 	 * weight
713 	 */
714 	remaining = phb->ioda.tce32_count;
715 	tw = phb->ioda.dma_weight;
716 	base = 0;
717 	list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
718 		if (!pe->dma_weight)
719 			continue;
720 		if (!remaining) {
721 			pe_warn(pe, "No DMA32 resources available\n");
722 			continue;
723 		}
724 		segs = 1;
725 		if (residual) {
726 			segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
727 			if (segs > remaining)
728 				segs = remaining;
729 		}
730 
731 		/*
732 		 * For IODA2 compliant PHB3, we needn't care about the weight.
733 		 * The all available 32-bits DMA space will be assigned to
734 		 * the specific PE.
735 		 */
736 		if (phb->type == PNV_PHB_IODA1) {
737 			pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
738 				pe->dma_weight, segs);
739 			pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
740 		} else {
741 			pe_info(pe, "Assign DMA32 space\n");
742 			segs = 0;
743 			pnv_pci_ioda2_setup_dma_pe(phb, pe);
744 		}
745 
746 		remaining -= segs;
747 		base += segs;
748 	}
749 }
750 
751 #ifdef CONFIG_PCI_MSI
752 static void pnv_ioda2_msi_eoi(struct irq_data *d)
753 {
754 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
755 	struct irq_chip *chip = irq_data_get_irq_chip(d);
756 	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
757 					   ioda.irq_chip);
758 	int64_t rc;
759 
760 	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
761 	WARN_ON_ONCE(rc);
762 
763 	icp_native_eoi(d);
764 }
765 
766 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
767 				  unsigned int hwirq, unsigned int virq,
768 				  unsigned int is_64, struct msi_msg *msg)
769 {
770 	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
771 	struct irq_data *idata;
772 	struct irq_chip *ichip;
773 	unsigned int xive_num = hwirq - phb->msi_base;
774 	uint64_t addr64;
775 	uint32_t addr32, data;
776 	int rc;
777 
778 	/* No PE assigned ? bail out ... no MSI for you ! */
779 	if (pe == NULL)
780 		return -ENXIO;
781 
782 	/* Check if we have an MVE */
783 	if (pe->mve_number < 0)
784 		return -ENXIO;
785 
786 	/* Assign XIVE to PE */
787 	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
788 	if (rc) {
789 		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
790 			pci_name(dev), rc, xive_num);
791 		return -EIO;
792 	}
793 
794 	if (is_64) {
795 		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
796 				     &addr64, &data);
797 		if (rc) {
798 			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
799 				pci_name(dev), rc);
800 			return -EIO;
801 		}
802 		msg->address_hi = addr64 >> 32;
803 		msg->address_lo = addr64 & 0xfffffffful;
804 	} else {
805 		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
806 				     &addr32, &data);
807 		if (rc) {
808 			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
809 				pci_name(dev), rc);
810 			return -EIO;
811 		}
812 		msg->address_hi = 0;
813 		msg->address_lo = addr32;
814 	}
815 	msg->data = data;
816 
817 	/*
818 	 * Change the IRQ chip for the MSI interrupts on PHB3.
819 	 * The corresponding IRQ chip should be populated for
820 	 * the first time.
821 	 */
822 	if (phb->type == PNV_PHB_IODA2) {
823 		if (!phb->ioda.irq_chip_init) {
824 			idata = irq_get_irq_data(virq);
825 			ichip = irq_data_get_irq_chip(idata);
826 			phb->ioda.irq_chip_init = 1;
827 			phb->ioda.irq_chip = *ichip;
828 			phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
829 		}
830 
831 		irq_set_chip(virq, &phb->ioda.irq_chip);
832 	}
833 
834 	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
835 		 " address=%x_%08x data=%x PE# %d\n",
836 		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
837 		 msg->address_hi, msg->address_lo, data, pe->pe_number);
838 
839 	return 0;
840 }
841 
842 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
843 {
844 	unsigned int count;
845 	const __be32 *prop = of_get_property(phb->hose->dn,
846 					     "ibm,opal-msi-ranges", NULL);
847 	if (!prop) {
848 		/* BML Fallback */
849 		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
850 	}
851 	if (!prop)
852 		return;
853 
854 	phb->msi_base = be32_to_cpup(prop);
855 	count = be32_to_cpup(prop + 1);
856 	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
857 		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
858 		       phb->hose->global_number);
859 		return;
860 	}
861 
862 	phb->msi_setup = pnv_pci_ioda_msi_setup;
863 	phb->msi32_support = 1;
864 	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
865 		count, phb->msi_base);
866 }
867 #else
868 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
869 #endif /* CONFIG_PCI_MSI */
870 
871 /*
872  * This function is supposed to be called on basis of PE from top
873  * to bottom style. So the the I/O or MMIO segment assigned to
874  * parent PE could be overrided by its child PEs if necessary.
875  */
876 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
877 				  struct pnv_ioda_pe *pe)
878 {
879 	struct pnv_phb *phb = hose->private_data;
880 	struct pci_bus_region region;
881 	struct resource *res;
882 	int i, index;
883 	int rc;
884 
885 	/*
886 	 * NOTE: We only care PCI bus based PE for now. For PCI
887 	 * device based PE, for example SRIOV sensitive VF should
888 	 * be figured out later.
889 	 */
890 	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
891 
892 	pci_bus_for_each_resource(pe->pbus, res, i) {
893 		if (!res || !res->flags ||
894 		    res->start > res->end)
895 			continue;
896 
897 		if (res->flags & IORESOURCE_IO) {
898 			region.start = res->start - phb->ioda.io_pci_base;
899 			region.end   = res->end - phb->ioda.io_pci_base;
900 			index = region.start / phb->ioda.io_segsize;
901 
902 			while (index < phb->ioda.total_pe &&
903 			       region.start <= region.end) {
904 				phb->ioda.io_segmap[index] = pe->pe_number;
905 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
906 					pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
907 				if (rc != OPAL_SUCCESS) {
908 					pr_err("%s: OPAL error %d when mapping IO "
909 					       "segment #%d to PE#%d\n",
910 					       __func__, rc, index, pe->pe_number);
911 					break;
912 				}
913 
914 				region.start += phb->ioda.io_segsize;
915 				index++;
916 			}
917 		} else if (res->flags & IORESOURCE_MEM) {
918 			/* WARNING: Assumes M32 is mem region 0 in PHB. We need to
919 			 * harden that algorithm when we start supporting M64
920 			 */
921 			region.start = res->start -
922 				       hose->mem_offset[0] -
923 				       phb->ioda.m32_pci_base;
924 			region.end   = res->end -
925 				       hose->mem_offset[0] -
926 				       phb->ioda.m32_pci_base;
927 			index = region.start / phb->ioda.m32_segsize;
928 
929 			while (index < phb->ioda.total_pe &&
930 			       region.start <= region.end) {
931 				phb->ioda.m32_segmap[index] = pe->pe_number;
932 				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
933 					pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
934 				if (rc != OPAL_SUCCESS) {
935 					pr_err("%s: OPAL error %d when mapping M32 "
936 					       "segment#%d to PE#%d",
937 					       __func__, rc, index, pe->pe_number);
938 					break;
939 				}
940 
941 				region.start += phb->ioda.m32_segsize;
942 				index++;
943 			}
944 		}
945 	}
946 }
947 
948 static void pnv_pci_ioda_setup_seg(void)
949 {
950 	struct pci_controller *tmp, *hose;
951 	struct pnv_phb *phb;
952 	struct pnv_ioda_pe *pe;
953 
954 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
955 		phb = hose->private_data;
956 		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
957 			pnv_ioda_setup_pe_seg(hose, pe);
958 		}
959 	}
960 }
961 
962 static void pnv_pci_ioda_setup_DMA(void)
963 {
964 	struct pci_controller *hose, *tmp;
965 	struct pnv_phb *phb;
966 
967 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
968 		pnv_ioda_setup_dma(hose->private_data);
969 
970 		/* Mark the PHB initialization done */
971 		phb = hose->private_data;
972 		phb->initialized = 1;
973 	}
974 }
975 
976 static void pnv_pci_ioda_fixup(void)
977 {
978 	pnv_pci_ioda_setup_PEs();
979 	pnv_pci_ioda_setup_seg();
980 	pnv_pci_ioda_setup_DMA();
981 }
982 
983 /*
984  * Returns the alignment for I/O or memory windows for P2P
985  * bridges. That actually depends on how PEs are segmented.
986  * For now, we return I/O or M32 segment size for PE sensitive
987  * P2P bridges. Otherwise, the default values (4KiB for I/O,
988  * 1MiB for memory) will be returned.
989  *
990  * The current PCI bus might be put into one PE, which was
991  * create against the parent PCI bridge. For that case, we
992  * needn't enlarge the alignment so that we can save some
993  * resources.
994  */
995 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
996 						unsigned long type)
997 {
998 	struct pci_dev *bridge;
999 	struct pci_controller *hose = pci_bus_to_host(bus);
1000 	struct pnv_phb *phb = hose->private_data;
1001 	int num_pci_bridges = 0;
1002 
1003 	bridge = bus->self;
1004 	while (bridge) {
1005 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
1006 			num_pci_bridges++;
1007 			if (num_pci_bridges >= 2)
1008 				return 1;
1009 		}
1010 
1011 		bridge = bridge->bus->self;
1012 	}
1013 
1014 	/* We need support prefetchable memory window later */
1015 	if (type & IORESOURCE_MEM)
1016 		return phb->ioda.m32_segsize;
1017 
1018 	return phb->ioda.io_segsize;
1019 }
1020 
1021 /* Prevent enabling devices for which we couldn't properly
1022  * assign a PE
1023  */
1024 static int pnv_pci_enable_device_hook(struct pci_dev *dev)
1025 {
1026 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
1027 	struct pnv_phb *phb = hose->private_data;
1028 	struct pci_dn *pdn;
1029 
1030 	/* The function is probably called while the PEs have
1031 	 * not be created yet. For example, resource reassignment
1032 	 * during PCI probe period. We just skip the check if
1033 	 * PEs isn't ready.
1034 	 */
1035 	if (!phb->initialized)
1036 		return 0;
1037 
1038 	pdn = pnv_ioda_get_pdn(dev);
1039 	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1040 		return -EINVAL;
1041 
1042 	return 0;
1043 }
1044 
1045 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
1046 			       u32 devfn)
1047 {
1048 	return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
1049 }
1050 
1051 void __init pnv_pci_init_ioda_phb(struct device_node *np, int ioda_type)
1052 {
1053 	struct pci_controller *hose;
1054 	static int primary = 1;
1055 	struct pnv_phb *phb;
1056 	unsigned long size, m32map_off, iomap_off, pemap_off;
1057 	const u64 *prop64;
1058 	const u32 *prop32;
1059 	u64 phb_id;
1060 	void *aux;
1061 	long rc;
1062 
1063 	pr_info(" Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
1064 
1065 	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
1066 	if (!prop64) {
1067 		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
1068 		return;
1069 	}
1070 	phb_id = be64_to_cpup(prop64);
1071 	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
1072 
1073 	phb = alloc_bootmem(sizeof(struct pnv_phb));
1074 	if (phb) {
1075 		memset(phb, 0, sizeof(struct pnv_phb));
1076 		phb->hose = hose = pcibios_alloc_controller(np);
1077 	}
1078 	if (!phb || !phb->hose) {
1079 		pr_err("PCI: Failed to allocate PCI controller for %s\n",
1080 		       np->full_name);
1081 		return;
1082 	}
1083 
1084 	spin_lock_init(&phb->lock);
1085 	/* XXX Use device-tree */
1086 	hose->first_busno = 0;
1087 	hose->last_busno = 0xff;
1088 	hose->private_data = phb;
1089 	phb->opal_id = phb_id;
1090 	phb->type = ioda_type;
1091 
1092 	/* Detect specific models for error handling */
1093 	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
1094 		phb->model = PNV_PHB_MODEL_P7IOC;
1095 	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
1096 		phb->model = PNV_PHB_MODEL_PHB3;
1097 	else
1098 		phb->model = PNV_PHB_MODEL_UNKNOWN;
1099 
1100 	/* Parse 32-bit and IO ranges (if any) */
1101 	pci_process_bridge_OF_ranges(phb->hose, np, primary);
1102 	primary = 0;
1103 
1104 	/* Get registers */
1105 	phb->regs = of_iomap(np, 0);
1106 	if (phb->regs == NULL)
1107 		pr_err("  Failed to map registers !\n");
1108 
1109 	/* Initialize more IODA stuff */
1110 	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
1111 	if (!prop32)
1112 		phb->ioda.total_pe = 1;
1113 	else
1114 		phb->ioda.total_pe = *prop32;
1115 
1116 	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
1117 	/* FW Has already off top 64k of M32 space (MSI space) */
1118 	phb->ioda.m32_size += 0x10000;
1119 
1120 	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
1121 	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
1122 	phb->ioda.io_size = hose->pci_io_size;
1123 	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
1124 	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
1125 
1126 	/* Allocate aux data & arrays
1127 	 *
1128 	 * XXX TODO: Don't allocate io segmap on PHB3
1129 	 */
1130 	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
1131 	m32map_off = size;
1132 	size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
1133 	iomap_off = size;
1134 	size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
1135 	pemap_off = size;
1136 	size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
1137 	aux = alloc_bootmem(size);
1138 	memset(aux, 0, size);
1139 	phb->ioda.pe_alloc = aux;
1140 	phb->ioda.m32_segmap = aux + m32map_off;
1141 	phb->ioda.io_segmap = aux + iomap_off;
1142 	phb->ioda.pe_array = aux + pemap_off;
1143 	set_bit(0, phb->ioda.pe_alloc);
1144 
1145 	INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
1146 	INIT_LIST_HEAD(&phb->ioda.pe_list);
1147 
1148 	/* Calculate how many 32-bit TCE segments we have */
1149 	phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
1150 
1151 	/* Clear unusable m64 */
1152 	hose->mem_resources[1].flags = 0;
1153 	hose->mem_resources[1].start = 0;
1154 	hose->mem_resources[1].end = 0;
1155 	hose->mem_resources[2].flags = 0;
1156 	hose->mem_resources[2].start = 0;
1157 	hose->mem_resources[2].end = 0;
1158 
1159 #if 0 /* We should really do that ... */
1160 	rc = opal_pci_set_phb_mem_window(opal->phb_id,
1161 					 window_type,
1162 					 window_num,
1163 					 starting_real_address,
1164 					 starting_pci_address,
1165 					 segment_size);
1166 #endif
1167 
1168 	pr_info("  %d PE's M32: 0x%x [segment=0x%x] IO: 0x%x [segment=0x%x]\n",
1169 		phb->ioda.total_pe,
1170 		phb->ioda.m32_size, phb->ioda.m32_segsize,
1171 		phb->ioda.io_size, phb->ioda.io_segsize);
1172 
1173 	phb->hose->ops = &pnv_pci_ops;
1174 
1175 	/* Setup RID -> PE mapping function */
1176 	phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
1177 
1178 	/* Setup TCEs */
1179 	phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
1180 
1181 	/* Setup MSI support */
1182 	pnv_pci_init_ioda_msis(phb);
1183 
1184 	/*
1185 	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
1186 	 * to let the PCI core do resource assignment. It's supposed
1187 	 * that the PCI core will do correct I/O and MMIO alignment
1188 	 * for the P2P bridge bars so that each PCI bus (excluding
1189 	 * the child P2P bridges) can form individual PE.
1190 	 */
1191 	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
1192 	ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
1193 	ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
1194 	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
1195 
1196 	/* Reset IODA tables to a clean state */
1197 	rc = opal_pci_reset(phb_id, OPAL_PCI_IODA_TABLE_RESET, OPAL_ASSERT_RESET);
1198 	if (rc)
1199 		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
1200 
1201 	/*
1202 	 * On IODA1 map everything to PE#0, on IODA2 we assume the IODA reset
1203 	 * has cleared the RTT which has the same effect
1204 	 */
1205 	if (ioda_type == PNV_PHB_IODA1)
1206 		opal_pci_set_pe(phb_id, 0, 0, 7, 1, 1 , OPAL_MAP_PE);
1207 }
1208 
1209 void pnv_pci_init_ioda2_phb(struct device_node *np)
1210 {
1211 	pnv_pci_init_ioda_phb(np, PNV_PHB_IODA2);
1212 }
1213 
1214 void __init pnv_pci_init_ioda_hub(struct device_node *np)
1215 {
1216 	struct device_node *phbn;
1217 	const u64 *prop64;
1218 	u64 hub_id;
1219 
1220 	pr_info("Probing IODA IO-Hub %s\n", np->full_name);
1221 
1222 	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
1223 	if (!prop64) {
1224 		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
1225 		return;
1226 	}
1227 	hub_id = be64_to_cpup(prop64);
1228 	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
1229 
1230 	/* Count child PHBs */
1231 	for_each_child_of_node(np, phbn) {
1232 		/* Look for IODA1 PHBs */
1233 		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
1234 			pnv_pci_init_ioda_phb(phbn, PNV_PHB_IODA1);
1235 	}
1236 }
1237